1
|
Fenech C, Winters BL, Otsu Y, Aubrey KR. Supraspinal glycinergic neurotransmission in pain: A scoping review of current literature. J Neurochem 2024; 168:3663-3684. [PMID: 39075923 DOI: 10.1111/jnc.16191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The neurotransmitter glycine is an agonist at the strychnine-sensitive glycine receptors. In addition, it has recently been discovered to act at two new receptors, the excitatory glycine receptor and metabotropic glycine receptor. Glycine's neurotransmitter roles have been most extensively investigated in the spinal cord, where it is known to play essential roles in pain, itch, and motor function. In contrast, less is known about supraspinal glycinergic functions, and their contributions to pain circuits are largely unrecognized. As glycinergic neurons are absent from cortical regions, a clearer understanding of how supraspinal glycine modulates pain could reveal new pharmacological targets. This review aims to synthesize the published research on glycine's role in the adult brain, highlighting regions where glycine signaling may modulate pain responses. This was achieved through a scoping review methodology identifying several key regions of supraspinal pain circuitry where glycine signaling is involved. Therefore, this review unveils critical research gaps for supraspinal glycine's potential roles in pain and pain-associated responses, encouraging researchers to consider glycinergic neurotransmission more widely when investigating neural mechanisms of pain.
Collapse
Affiliation(s)
- Caitlin Fenech
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yo Otsu
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
3
|
Rial RV, Akaârir M, Canellas F, Barceló P, Rubiño JA, Martín-Reina A, Gamundí A, Nicolau MC. Mammalian NREM and REM sleep: Why, when and how. Neurosci Biobehav Rev 2023; 146:105041. [PMID: 36646258 DOI: 10.1016/j.neubiorev.2023.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
This report proposes that fish use the spinal-rhombencephalic regions of their brain to support their activities while awake. Instead, the brainstem-diencephalic regions support the wakefulness in amphibians and reptiles. Lastly, mammals developed the telencephalic cortex to attain the highest degree of wakefulness, the cortical wakefulness. However, a paralyzed form of spinal-rhombencephalic wakefulness remains in mammals in the form of REMS, whose phasic signs are highly efficient in promoting maternal care to mammalian litter. Therefore, the phasic REMS is highly adaptive. However, their importance is low for singletons, in which it is a neutral trait, devoid of adaptive value for adults, and is mal-adaptive for marine mammals. Therefore, they lost it. The spinal-rhombencephalic and cortical wakeful states disregard the homeostasis: animals only attend their most immediate needs: foraging defense and reproduction. However, these activities generate allostatic loads that must be recovered during NREMS, that is a paralyzed form of the amphibian-reptilian subcortical wakefulness. Regarding the regulation of tonic REMS, it depends on a hypothalamic switch. Instead, the phasic REMS depends on an independent proportional pontine control.
Collapse
Affiliation(s)
- Rubén V Rial
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Mourad Akaârir
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Francesca Canellas
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Pere Barceló
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - José A Rubiño
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Aida Martín-Reina
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Antoni Gamundí
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - M Cristina Nicolau
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| |
Collapse
|
4
|
A Discrete Glycinergic Neuronal Population in the Ventromedial Medulla That Induces Muscle Atonia during REM Sleep and Cataplexy in Mice. J Neurosci 2021; 41:1582-1596. [PMID: 33372061 DOI: 10.1523/jneurosci.0688-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
During rapid eye movement (REM) sleep, anti-gravity muscle tone and bodily movements are mostly absent, because somatic motoneurons are inhibited by descending inhibitory pathways. Recent studies showed that glycine/GABA neurons in the ventromedial medulla (VMM; GlyVMM neurons) play an important role in generating muscle atonia during REM sleep (REM-atonia). However, how these REM-atonia-inducing neurons interconnect with other neuronal populations has been unknown. In the present study, we first identified a specific subpopulation of GlyVMM neurons that play an important role in induction of REM-atonia by virus vector-mediated tracing in male mice in which glycinergic neurons expressed Cre recombinase. We found these neurons receive direct synaptic input from neurons in several brain stem regions, including glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD; GluSLD neurons). Silencing this circuit by specifically expressing tetanus toxin light chain (TeTNLC) resulted in REM sleep without atonia. This manipulation also caused a marked decrease in time spent in cataplexy-like episodes (CLEs) when applied to narcoleptic orexin-ataxin-3 mice. We also showed that GlyVMM neurons play an important role in maintenance of sleep. This present study identified a population of glycinergic neurons in the VMM that are commonly involved in REM-atonia and cataplexy.SIGNIFICANCE STATEMENT We identified a population of glycinergic neurons in the ventral medulla that plays an important role in inducing muscle atonia during rapid eye movement (REM) sleep. It sends axonal projections almost exclusively to motoneurons in the spinal cord and brain stem except to those that innervate extraocular muscles, while other glycinergic neurons in the same region also send projections to other regions including monoaminergic nuclei. Furthermore, these neurons receive direct inputs from several brainstem regions including glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD). Genetic silencing of this pathway resulted in REM sleep without atonia and a decrease of cataplexy when applied to narcoleptic mice. This work identified a neural population involved in generating muscle atonia during REM sleep and cataplexy.
Collapse
|
5
|
Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Nat Commun 2018; 9:504. [PMID: 29402935 PMCID: PMC5799338 DOI: 10.1038/s41467-017-02761-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Despite decades of research, there is a persistent debate regarding the localization of GABA/glycine neurons responsible for hyperpolarizing somatic motoneurons during paradoxical (or REM) sleep (PS), resulting in the loss of muscle tone during this sleep state. Combining complementary neuroanatomical approaches in rats, we first show that these inhibitory neurons are localized within the ventromedial medulla (vmM) rather than within the spinal cord. We then demonstrate their functional role in PS expression through local injections of adeno-associated virus carrying specific short-hairpin RNA in order to chronically impair inhibitory neurotransmission from vmM. After such selective genetic inactivation, rats display PS without atonia associated with abnormal and violent motor activity, concomitant with a small reduction of daily PS quantity. These symptoms closely mimic human REM sleep behavior disorder (RBD), a prodromal parasomnia of synucleinopathies. Our findings demonstrate the crucial role of GABA/glycine inhibitory vmM neurons in muscle atonia during PS and highlight a candidate brain region that can be susceptible to α-synuclein-dependent degeneration in RBD patients.
Collapse
|
6
|
Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016; 594:5391-414. [PMID: 27060683 DOI: 10.1113/jp271324] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus. Neuropsychopharmacology 2015; 40:1405-16. [PMID: 25533534 PMCID: PMC4397399 DOI: 10.1038/npp.2014.326] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
The use of glycine as a therapeutic option for improving sleep quality is a novel and safe approach. However, despite clinical evidence of its efficacy, the details of its mechanism remain poorly understood. In this study, we investigated the site of action and sleep-promoting mechanisms of glycine in rats. In acute sleep disturbance, oral administration of glycine-induced non-rapid eye movement (REM) sleep and shortened NREM sleep latency with a simultaneous decrease in core temperature. Oral and intracerebroventricular injection of glycine elevated cutaneous blood flow (CBF) at the plantar surface in a dose-dependent manner, resulting in heat loss. Pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists AP5 and CGP78608 but not the glycine receptor antagonist strychnine inhibited the CBF increase caused by glycine injection into the brain. Induction of c-Fos expression was observed in the hypothalamic nuclei, including the medial preoptic area (MPO) and the suprachiasmatic nucleus (SCN) shell after glycine administration. Bilateral microinjection of glycine into the SCN elevated CBF in a dose-dependent manner, whereas no effect was observed when glycine was injected into the MPO and dorsal subparaventricular zone. In addition, microinjection of D-serine into the SCN also increased CBF, whereas these effects were blocked in the presence of L-701324. SCN ablation completely abolished the sleep-promoting and hypothermic effects of glycine. These data suggest that exogenous glycine promotes sleep via peripheral vasodilatation through the activation of NMDA receptors in the SCN shell.
Collapse
|
8
|
Renouard L, Billwiller F, Ogawa K, Clément O, Camargo N, Abdelkarim M, Gay N, Scoté-Blachon C, Touré R, Libourel PA, Ravassard P, Salvert D, Peyron C, Claustrat B, Léger L, Salin P, Malleret G, Fort P, Luppi PH. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. SCIENCE ADVANCES 2015; 1:e1400177. [PMID: 26601158 PMCID: PMC4640625 DOI: 10.1126/sciadv.1400177] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/11/2015] [Indexed: 05/10/2023]
Abstract
Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing.
Collapse
Affiliation(s)
- Leslie Renouard
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
- College of Medical Sciences, Washington State University, 412 E. Spokane Falls Boulevard, PBS230, Spokane, WA 99202, USA
| | - Francesca Billwiller
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Keiko Ogawa
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Olivier Clément
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Nutabi Camargo
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Mouaadh Abdelkarim
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Nadine Gay
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Céline Scoté-Blachon
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Rouguy Touré
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Paul-Antoine Libourel
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Pascal Ravassard
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Denise Salvert
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Christelle Peyron
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Bruno Claustrat
- Service de Radioanalyse, Centre de Médecine nucléaire, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | - Lucienne Léger
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Paul Salin
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Gael Malleret
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Patrice Fort
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Pierre-Hervé Luppi
- UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| |
Collapse
|
9
|
Fung SJ, Chase MH. Postsynaptic inhibition of hypoglossal motoneurons produces atonia of the genioglossal muscle during rapid eye movement sleep. Sleep 2015; 38:139-46. [PMID: 25325470 DOI: 10.5665/sleep.4340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
STUDY OBJECTIVES Hypoglossal motoneurons were recorded intracellularly to determine whether postsynaptic inhibition or disfacilitation was responsible for atonia of the lingual muscles during rapid eye movement (REM) sleep. DESIGN Intracellular records were obtained of the action potentials and subthreshold membrane potential activity of antidromically identified hypoglossal motoneurons in cats during wakefulness, nonrapid eye movement (NREM) sleep, and REM sleep. A cuff electrode was placed around the hypoglossal nerve to antidromically activate hypoglossal motoneurons. The state-dependent changes in membrane potential, spontaneous discharge, postsynaptic potentials, and rheobase of hypoglossal motoneurons were determined. ANALYSES AND RESULTS During quiet wakefulness and NREM sleep, hypoglossal motoneurons exhibited spontaneous repetitive discharge. In the transition from NREM sleep to REM sleep, repetitive discharge ceased and the membrane potential began to hyperpolarize; maximal hyperpolarization (10.5 mV) persisted throughout REM sleep. During REM sleep there was a significant increase in rheobase, which was accompanied by barrages of large-amplitude inhibitory postsynaptic potentials (IPSPs), which were reversed following the intracellular injection of chloride ions. The latter result indicates that they were mediated by glycine; IPSPs were not present during wakefulness or NREM sleep. CONCLUSIONS We conclude that hypoglossal motoneurons are postsynaptically inhibited during naturally occurring REM sleep; no evidence of disfacilitation was observed. The data also indicate that glycine receptor-mediated postsynaptic inhibition of hypoglossal motoneurons is crucial in promoting atonia of the lingual muscles during REM sleep.
Collapse
Affiliation(s)
- Simon J Fung
- VA Greater Los Angeles Healthcare System, Los Angeles, CA: Websciences International, Los Angeles, CA
| | - Michael H Chase
- VA Greater Los Angeles Healthcare System, Los Angeles, CA: Websciences International, Los Angeles, CA: Department of Physiology, UCLA School of Medicine, Los Angeles, CA
| |
Collapse
|
10
|
Clément O, Valencia Garcia S, Libourel PA, Arthaud S, Fort P, Luppi PH. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study. PLoS One 2014; 9:e96851. [PMID: 24811249 PMCID: PMC4014589 DOI: 10.1371/journal.pone.0096851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 04/12/2014] [Indexed: 11/18/2022] Open
Abstract
GABAergic neurons specifically active during paradoxical sleep (PS) localized in the dorsal paragigantocellular reticular nucleus (DPGi) are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.
Collapse
Affiliation(s)
- Olivier Clément
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Sara Valencia Garcia
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Paul-Antoine Libourel
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Arthaud
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
11
|
Chen MC, Yu H, Huang ZL, Lu J. Rapid eye movement sleep behavior disorder. Curr Opin Neurobiol 2013; 23:793-8. [PMID: 23518139 PMCID: PMC3750096 DOI: 10.1016/j.conb.2013.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/15/2022]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a failure of the circuitry regulating motor atonia during REM sleep. In REM sleep, neurons of the sublaterodorsal tegmental nucleus (SLD) project to interneurons in the ventromedial medulla (VMM) and spinal cord that in turn inhibit spinal motoneurons. In RBD, degeneration of this circuitry disinhibits phasic motor commands originating from motor generators. The resulting behavior ranges from simple twitches or jerks to complex behavior. Simple behaviors in RBD may originate from cortical, brainstem and spinal cord motor generators, while complex behavior may originate from cortical motor generators, possibly related to dream content in REM sleep. While RBD can occur idiopathically, it is usually comorbid with or a precursor to a synucleinopathy such as Parkinson's disease (PD). RBD can precede the onset of PD by decades, suggesting an underlying pathology that can progressively afflict REM atonia and midbrain dopaminergic centers. The relative recovery of motor function during REM sleep in some of the cases of PD with RBD emphasizes the complexity of motor pathway control during wakefulness and REM sleep.
Collapse
Affiliation(s)
- Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
12
|
Chase MH. Motor control during sleep and wakefulness: Clarifying controversies and resolving paradoxes. Sleep Med Rev 2013; 17:299-312. [DOI: 10.1016/j.smrv.2012.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 08/29/2012] [Accepted: 09/12/2012] [Indexed: 11/16/2022]
|
13
|
Ramaligam V, Chen MC, Saper CB, Lu J. Perspectives on the rapid eye movement sleep switch in rapid eye movement sleep behavior disorder. Sleep Med 2013; 14:707-13. [PMID: 23768838 DOI: 10.1016/j.sleep.2013.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/25/2013] [Accepted: 03/25/2013] [Indexed: 01/10/2023]
Abstract
Rapid eye movement (REM) sleep in mammals is associated with wakelike cortical and hippocampal activation and concurrent postural muscle atonia. Research during the past 5 decades has revealed the details of the neural circuitry regulating REM sleep and muscle atonia during this state. REM-active glutamatergic neurons in the sublaterodorsal nucleus (SLD) of the dorsal pons are critical for generation for REM sleep atonia. Descending projections from SLD glutamatergic neurons activate inhibitory premotor neurons in the ventromedial medulla (VMM) and in the spinal cord to antagonize the glutamatergic supraspinal inputs on the motor neurons during REM sleep. REM sleep behavior disorder (RBD) consists of simple behaviors (i.e., twitching, jerking) and complex behaviors (i.e., defensive behavior, talking). Animal research has lead to the hypothesis that complex behaviors in RBD are due to SLD pathology, while simple behaviors of RBD may be due to less severe SLD pathology or dysfunction of the VMM, ventral pons, or spinal cord.
Collapse
Affiliation(s)
- Vetrivelan Ramaligam
- Department of Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
14
|
The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci 2013; 32:16763-74. [PMID: 23175830 DOI: 10.1523/jneurosci.1885-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has recently been shown that the ventrolateral part of the periaqueductal gray (VLPAG) and the adjacent dorsal deep mesencephalic nucleus (dDpMe) contain GABAergic neurons gating paradoxical sleep (PS) onset by means of their projection to the glutamatergic PS-on neurons of the sublaterodorsal tegmental nucleus (SLD). To determine the mechanisms responsible for the cessation of activity of these GABAergic PS-off neurons at the onset and during PS, we combined the immunostaining of c-FOS, a marker of neuronal activation, with cholera toxin b subunit (CTb) retrograde tracing from the VLPAG/dDpMe in three groups of rats (control, PS deprived, and PS hypersomniac). We found that the lateral hypothalamic area (LH) is the only brain structure containing a very large number of neurons activated during PS hypersomnia and projecting to the VLPAG/dDpMe. We further demonstrated that 44% of these neurons express the neuropeptide melanin concentrating hormone (MCH). We then showed that bilateral injections in the LH of two inhibitory compounds, clonidine (an α-2 adrenergic agonist) and muscimol (a GABAa agonist) induce an inhibition of PS. Furthermore, after muscimol injections in the LH, the VLPAG/dDpMe contained a large number of activated neurons, mostly GABAergic, and projecting to the SLD. Altogether, our results indicate for the first time that the activation of a population of LH neurons, in part MCH containing, is necessary for PS to occur. Furthermore, our results strongly suggest that these neurons trigger PS by means of their inhibitory projection to the PS-off GABAergic neurons located in the VLPAG/dDpMe.
Collapse
|
15
|
Krenzer M, Lu J, Mayer G, Oertel W. From bench to bed: putative animal models of REM sleep behavior disorder (RBD). J Neural Transm (Vienna) 2013; 120:683-8. [PMID: 23338670 DOI: 10.1007/s00702-012-0965-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/19/2012] [Indexed: 11/25/2022]
Abstract
REM behavior disorder (RBD) is a parasomnia characterized by REM sleep without atonia, leading to abnormal and potentially injurious behavior during REM sleep. It is considered one of the most specific predictors of neurodegenerative disorders, such as Parkinson's disease. In this paper, we provide an overview of animal models contributing to our current understanding of REM-associated atonia, and, as a consequence, the pathophysiology of RBD. The generator of REM-associated atonia is located in glutamatergic neurons of the pontine sublaterodorsal nucleus (SLD), as shown in cats, rats and mice. These findings are supported by clinical cases of patients with lesions of the homologous structure in humans. Glutamatergic SLD neurons, presumably in conjunction with others, project to (a) the ventromedial medulla, where they either directly target inhibitory interneurons to alpha motor neurons or are relayed, and (b) the spinal cord directly. At the spinal level, alpha motor neurons are inhibited by GABAergic and glycinergic interneurons. Our current understanding is that lesions of the glutamatergic SLD are the key factor for REM sleep behavior disorder. However, open questions remain, e.g. other features of RBD (such as the typically aggressive dream content) or the frequent progression from idiopathic RBD to neurodegenerative disorders, to name only a few. In order to elucidate these questions, a constant interaction between basic and clinical researchers is required, which might, ultimately, create an early therapeutic window for neurodegenerative disorders.
Collapse
Affiliation(s)
- Martina Krenzer
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|
16
|
Brooks PL, Peever JH. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci 2012; 32:9785-95. [PMID: 22815493 PMCID: PMC6621291 DOI: 10.1523/jneurosci.0482-12.2012] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/25/2012] [Accepted: 05/07/2012] [Indexed: 11/21/2022] Open
Abstract
During REM sleep the CNS is intensely active, but the skeletal motor system is paradoxically forced into a state of muscle paralysis. The mechanisms that trigger REM sleep paralysis are a matter of intense debate. Two competing theories argue that it is caused by either active inhibition or reduced excitation of somatic motoneuron activity. Here, we identify the transmitter and receptor mechanisms that function to silence skeletal muscles during REM sleep. We used behavioral, electrophysiological, receptor pharmacology and neuroanatomical approaches to determine how trigeminal motoneurons and masseter muscles are switched off during REM sleep in rats. We show that a powerful GABA and glycine drive triggers REM paralysis by switching off motoneuron activity. This drive inhibits motoneurons by targeting both metabotropic GABA(B) and ionotropic GABA(A)/glycine receptors. REM paralysis is only reversed when motoneurons are cut off from GABA(B), GABA(A) and glycine receptor-mediated inhibition. Neither metabotropic nor ionotropic receptor mechanisms alone are sufficient for generating REM paralysis. These results demonstrate that multiple receptor mechanisms trigger REM sleep paralysis. Breakdown in normal REM inhibition may underlie common sleep motor pathologies such as REM sleep behavior disorder.
Collapse
Affiliation(s)
- Patricia L Brooks
- Department of Cell and Systems Biology, Systems Neurobiology Laboratory, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | | |
Collapse
|
17
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
18
|
Simon C, Hayar A, Garcia-Rill E. Developmental changes in glutamatergic fast synaptic neurotransmission in the dorsal subcoeruleus nucleus. Sleep 2012; 35:407-17. [PMID: 22379247 DOI: 10.5665/sleep.1706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES The dorsal subcoeruleus nucleus (SubCD) is involved in the generation of rapid eye movement sleep (REM), a state distinguished by high-frequency EEG activity, muscle atonia, and ponto-geniculo-occipital (PGO) waves. Activation of the SubCD by injection of the glutamate (GLU) receptor agonist kainic acid (KA) produced a REM sleep-like state with muscle atonia. We tested the hypothesis that developmental changes in the GLU excitability of SubCD neurons could underlie the developmental decrease in REM sleep that occurs in the rat from postnatal days 10-30. DESIGN Sagittal sections containing the SubCD were cut using 9-15 day old rat pups. Whole-cell patch clamp recordings were performed on SubCD neurons and responses were measured following electrical stimulation or bath application of the GLU receptor agonists N-methyl-D-aspartic acid (NMDA) or KA. MEASUREMENTS AND RESULTS Pharmacological or electrical stimulation increased non-cholinergic excitatory postsynaptic currents (EPSCs) in SubCD neurons, which were blocked by GLU receptor antagonists. Although no developmental changes were observed in the relative contribution of AMPA/KA and NMDA receptors to the responses, there was a developmental decrease in the half-width duration of both evoked and miniature EPSCs. Bath application of NMDA or KA revealed a developmental decrease in the direct response of SubCD neurons to these agonists. CONCLUSIONS The SubCD receives glutamatergic input, which may be involved in activation of SubCD neurons during REM sleep. A developmental decrease in the glutamatergic excitability of these neurons could underlie the developmental decrease in REM sleep observed in humans and rodents.
Collapse
Affiliation(s)
- Christen Simon
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
19
|
Hondo M, Furutani N, Yamasaki M, Watanabe M, Sakurai T. Orexin neurons receive glycinergic innervations. PLoS One 2011; 6:e25076. [PMID: 21949857 PMCID: PMC3174993 DOI: 10.1371/journal.pone.0025076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM) sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2)-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.
Collapse
Affiliation(s)
- Mari Hondo
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naoki Furutani
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miwako Yamasaki
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
20
|
Pose I, Sampogna S, Chase MH, Morales FR. Nitrergic ventro-medial medullary neurons activated during cholinergically induced active (rapid eye movement) sleep in the cat. Neuroscience 2011; 172:246-55. [PMID: 21044662 PMCID: PMC3010523 DOI: 10.1016/j.neuroscience.2010.10.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 11/28/2022]
Abstract
The rostral ventro-medial medullary reticular formation is a complex structure that is involved with a variety of motor functions. It contains glycinergic neurons that are activated during active (rapid eye movement (REM)) sleep (AS); these neurons appear to be responsible for the postsynaptic inhibition of motoneurons that occurs during this state. We have reported that neurons in this same region contain nitric oxide (NO) synthase and that they innervate brainstem motor pools. In the present study we examined the c-fos expression of these neurons after carbachol-induced active sleep (C-AS). Three control and four experimental cats were employed to identify c-fos expressing nitrergic neurons using immunocytochemical techniques to detect the Fos protein together with neuronal nitric oxide synthase (nNOS) or nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity. The classical neurotransmitter content of the nitrergic cells in this region was examined through the combination of immunocytochemical techniques for the detection of glutamate, glycine, choline acetyltransferase (ChAT), tyrosine hydroxilase (TH) or GABA together with nNOS. During C-AS, there was a 1074% increase in the number of nitrergic neurons that expressed c-fos. These neurons did not contain glycine, ChAT, TH or GABA, but a subpopulation (15%) of them displayed glutamate-like immunoreactivity. Therefore, some of these neurons contain both an excitatory neurotransmitter (glutamate) and an excitatory neuromodulator (NO); the neurotransmitter content of the rest of them remains to be determined. Because some of the nitrergic neurons innervate brainstem motoneurons it is possible that they participate in the generation of tonic and excitatory phasic motor events that occur during AS. We also suggest that these nitrergic neurons may be involved in autonomic regulation during this state. In addition, because NO has trophic effects on target neurons, the present findings represent the first, albeit indirect, evidence for a possible trophic function of this nature during AS.
Collapse
Affiliation(s)
- I Pose
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Gral Flores 2125. Montevideo, 11800 Uruguay.
| | | | | | | |
Collapse
|
21
|
Morales FR, Silveira V, Damián A, Higgie R, Pose I. The possible additional role of the cystic fibrosis transmembrane regulator to motoneuron inhibition produced by glycine effects. Neuroscience 2010; 177:138-47. [PMID: 21185916 DOI: 10.1016/j.neuroscience.2010.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/29/2010] [Accepted: 12/19/2010] [Indexed: 11/17/2022]
Abstract
In the present work we study the contribution of the chloride channel of the Cystic Fibrosis Transmembrane Regulator (CFTR) in the postsynaptic inhibition of somatic motoneurons during rapid-eye-movement (REM) sleep atonia. Postsynaptic inhibition of motoneurons is partially responsible for the atonia that occurs during REM sleep. Disfacilitation is an additional mechanism that lowers motoneuron excitability in this state. Postsynaptic inhibition is mediated by the release of glycine from synaptic terminals on motoneurons, and by GABA that plays a complementary role to that of glycine. In this work we look in brain stem motoneurons of neonatal rats at a mechanism unrelated to the actions of glycine, GABA or to disfacilitation which depends on the chloride channel of the CFTR. We studied the presence of CFTR by immunocytochemistry. In electrophysiological experiments utilizing whole cell recordings in in vitro slices we examined the consequences of blocking this chloride channel. The effects on motoneurons of the application of glycine, of the application of glibenclamide (a CFTR blocker) and again of glycine during the effects of glibenclamide were studied. Glycine produced an hyperpolarization, a decrease in motoneuron excitability and a decrease in input resistance, all characteristic changes of the postsynaptic inhibition produced by this neurotransmitter. Glibenclamide produced an increase in input resistance and in motoneurons' repetitive discharge as well as a shift in the equilibrium potential for chloride ions as indicated by the displacement of the reversal potential for glycinergic actions. In motoneurons treated with glibenclamide, glycine produced postsynaptic inhibition but this effect was smaller when compared to that elicited by glycine in control conditions. The fact that blocking of the CFTR-chloride channel in brain stem motoneurons influences glycinergic inhibition suggests that this channel may play a complementary role in the glycinergic inhibition that occurs during REM sleep.
Collapse
Affiliation(s)
- F R Morales
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, General Flores 2125, Montevideo 11800, Uruguay.
| | | | | | | | | |
Collapse
|
22
|
Lai YY, Kodama T, Schenkel E, Siegel JM. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol 2010; 104:2024-33. [PMID: 20668280 DOI: 10.1152/jn.00528.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the medial medulla is responsible for rapid eye movement (REM) sleep atonia and cataplexy. Dysfunction can cause REM sleep behavior disorder and other motor pathologies. Here we report the behavioral effects of stimulation of the nucleus gigantocellularis (NGC) and nucleus magnocellularis (NMC) in unrestrained cats. In waking, 62% of the medial medullary stimulation sites suppressed muscle tone. In contrast, stimulation at all sites, including sites where stimulation produced no change or increased muscle tone in waking, produced decreased muscle tone during slow-wave sleep. In the decerebrate cat electrical stimulation of the NGC increased glycine and decreased norepinephrine (NE) release in the lumbar ventral horn, with no change in γ-aminobutyric acid (GABA) or serotonin (5-HT) release. Stimulation of the NMC increased both glycine and GABA release and also decreased both NE and 5-HT release in the ventral horn. Glutamate levels in the ventral horn were not changed by either NGC or NMC stimulation. We conclude that NGC and NMC play neurochemically distinct but synergistic roles in the modulation of motor activity across the sleep-wake cycle via a combination of increased release of glycine and GABA and decreased release of 5-HT and NE. Stimulation of the medial medulla that elicited muscle tone suppression also triggered rapid eye movements, but never produced the phasic twitches that characterize REM sleep, indicating that the twitching and rapid eye movement generators of REM sleep have separate brain stem substrates.
Collapse
Affiliation(s)
- Yuan-Yang Lai
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System Sepulveda, North Hills, CA 91343, USA.
| | | | | | | |
Collapse
|
23
|
Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C. A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 2010; 5:e11766. [PMID: 20668680 PMCID: PMC2909908 DOI: 10.1371/journal.pone.0011766] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/29/2010] [Indexed: 01/24/2023] Open
Abstract
We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis.
Collapse
Affiliation(s)
- Emilie Sapin
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Anne Bérod
- CNRS, EAC5006, Pharmacologie et Imagerie de la neurotransmission sérotoninergique, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Lucienne Léger
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Paul A. Herman
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Pierre-Hervé Luppi
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Christelle Peyron
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
24
|
Engelhardt JK, Silveira V, Morales FR, Pose I, Chase MH. Serotoninergic control of glycinergic inhibitory postsynaptic currents in rat hypoglossal motoneurons. Brain Res 2010; 1345:1-8. [PMID: 20460115 PMCID: PMC3169173 DOI: 10.1016/j.brainres.2010.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/09/2010] [Accepted: 05/01/2010] [Indexed: 10/19/2022]
Abstract
This report presents the results of a study of the frequency potentiation of inhibitory postsynaptic currents (IPSCs) in hypoglossal motoneurons and its modulation by serotonin. A release-site model of synaptic plasticity was used to characterize the frequency-related potentiation of evoked IPSCs. Data were obtained to determine if the frequency potentiation of IPSCs occurs as a consequence of a low baseline quantal content of evoked IPSCs using whole cell patch-clamp recordings from hypoglossal motoneurons in the neonatal rat brainstem slice preparation. In these motoneurons, EPSCs and GABAergic IPSCs were blocked by the application of CNQX, AP-5 and bicuculline. Glycinergic IPSCs were evoked by threshold stimulation of inhibitory neurons in the nucleus of Roller, which is located ventro-lateral to the hypoglossal nucleus. IPSC responses to trains of stimuli were recorded in control solutions and in solutions containing serotonin, which is known to reduce IPSPs in this preparation. The amplitude of non-potentiated IPSCs was reduced and their frequency potentiation was enhanced when serotonin was added to the bath. These data were examined using a release-site model of synaptic plasticity in which facilitation is attributed to a time-dependent increase in the probability of transmitter release; depression is attributed to a time-dependent decrease in the number of sites available for release. Using this model, the effect of serotonin on frequency potentiation was explained by a combination of a reduction in the baseline probability of transmitter release and an increase in the time constant of decay of the increase in probability of release that follows a stimulus.
Collapse
Affiliation(s)
| | - Valentina Silveira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Francisco R. Morales
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA, USA
- Department of Physiology, UCLA School of Medicine, Los Angeles, CA, USA
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ines Pose
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Michael H. Chase
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA, USA
- Department of Physiology, UCLA School of Medicine, Los Angeles, CA, USA
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Department of Veterans Affairs, Greater Los Angeles Healthcare System
| |
Collapse
|
25
|
Yamuy J, Fung SJ, Xi M, Chase MH. State-dependent control of lumbar motoneurons by the hypocretinergic system. Exp Neurol 2009; 221:335-45. [PMID: 19962375 DOI: 10.1016/j.expneurol.2009.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Neurons in the lateral hypothalamus (LH) that synthesize hypocretins (Hcrt-1 and Hcrt-2) are active during wakefulness and excite lumbar motoneurons. Because hypocretinergic cells also discharge during phasic periods of rapid eye movement (REM) sleep, we sought to examine their action on the activity of motoneurons during this state. Accordingly, cat lumbar motoneurons were intracellularly recorded, under alpha-chloralose anesthesia, prior to (control) and during the carbachol-induced REM sleep-like atonia (REMc). During control conditions, LH stimulation induced excitatory postsynaptic potentials (composite EPSP) in motoneurons. In contrast, during REMc, identical LH stimulation induced inhibitory PSPs in motoneurons. We then tested the effects of LH stimulation on motoneuron responses following the stimulation of the nucleus reticularis gigantocellularis (NRGc) which is part of a brainstem-spinal cord system that controls motoneuron excitability in a state-dependent manner. LH stimulation facilitated NRGc stimulation-induced composite EPSP during control conditions whereas it enhanced NRGc stimulation-induced IPSPs during REMc. These intriguing data indicate that the LH exerts a state-dependent control of motor activity. As a first step to understand these results, we examined whether hypocretinergic synaptic mechanisms in the spinal cord were state dependent. We found that the juxtacellular application of Hcrt-1 induced motoneuron excitation during control conditions whereas motoneuron inhibition was enhanced during REMc. These data indicate that the hypocretinergic system acts on motoneurons in a state-dependent manner via spinal synaptic mechanisms. Thus, deficits in Hcrt-1 may cause the coexistence of incongruous motor signs in cataplectic patients, such as motor suppression during wakefulness and movement disorders during REM sleep.
Collapse
Affiliation(s)
- Jack Yamuy
- WebSciences International, Los Angeles, CA 90024, USA.
| | | | | | | |
Collapse
|
26
|
Vetrivelan R, Fuller PM, Tong Q, Lu J. Medullary circuitry regulating rapid eye movement sleep and motor atonia. J Neurosci 2009; 29:9361-9. [PMID: 19625526 PMCID: PMC2758912 DOI: 10.1523/jneurosci.0737-09.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/21/2022] Open
Abstract
Considerable data support a role for glycinergic ventromedial medulla neurons in the mediation of the postsynaptic inhibition of spinal motoneurons necessary for the motor atonia of rapid-eye movement (REM) sleep in cats. These data are, however, difficult to reconcile with the fact that large lesions of the rostral ventral medulla do not result in loss of REM atonia in rats. In the present study, we sought to clarify which medullary networks in rodents are responsible for REM motor atonia by retrogradely tracing inputs to the spinal ventral horn from the medulla, ablating these medullary sources to determine their effects on REM atonia and using transgenic mice to identify the neurotransmitter(s) involved. Our results reveal a restricted region within the ventromedial medulla, termed here the "supraolivary medulla" (SOM), which contains glutamatergic neurons that project to the spinal ventral horn. Cell-body specific lesions of the SOM resulted in an intermittent loss of muscle atonia, taking the form of exaggerated phasic muscle twitches, during REM sleep. A concomitant reduction in REM sleep time was observed in the SOM-lesioned animals. We next used mice with lox-P modified alleles of either the glutamate or GABA/glycine vesicular transporters to selectively eliminate glutamate or GABA/glycine neurotransmission from SOM neurons. Loss of SOM glutamate release, but not SOM GABA/glycine release, resulted in exaggerated muscle twitches during REM sleep that were similar to those observed after SOM lesions in rats. These findings, together, demonstrate that SOM glutamatergic neurons comprise key elements of the medullary circuitry mediating REM atonia.
Collapse
Affiliation(s)
| | | | - Qingchun Tong
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Jun Lu
- Department of Neurology, Division of Sleep Medicine and
| |
Collapse
|
27
|
Abulafia R, Zalkind V, Devor M. Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J Neurosci 2009; 29:7053-64. [PMID: 19474332 PMCID: PMC6665580 DOI: 10.1523/jneurosci.1357-08.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 04/07/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022] Open
Abstract
Microinjection of pentobarbital into a restricted region of rat brainstem, the mesopontine tegmental anesthesia area (MPTA), induces a reversible anesthesia-like state characterized by loss of the righting reflex, atonia, antinociception, and loss of consciousness as assessed by electroencephalogram synchronization. We examined cerebral activity during this state using FOS expression as a marker. Animals were anesthetized for 50 min with a series of intracerebral microinjections of pentobarbital or with systemic pentobarbital and intracerebral microinjections of vehicle. FOS expression was compared with that in awake animals microinjected with vehicle. Neural activity was suppressed throughout the cortex whether anesthesia was induced by systemic or MPTA routes. Changes were less consistent subcortically. In the zona incerta and the nucleus raphe pallidus, expression was strongly suppressed during systemic anesthesia, but only mildly during MPTA-induced anesthesia. Dissociation was seen in the tuberomammillary nucleus where suppression occurred during systemic-induced anesthesia only, and in the lateral habenular nucleus where activity was markedly increased during systemic-induced anesthesia but not following intracerebral microinjection. Several subcortical nuclei previously associated with cerebral arousal were not affected. In the MPTA itself FOS expression was suppressed during systemic anesthesia. Differences in the pattern of brain activity in the two modes of anesthesia are consistent with the possibility that anesthetic endpoints might be achieved by alternative mechanisms: direct drug action for systemic anesthesia or via ascending pathways for MPTA-induced anesthesia. However, it is also possible that systemically administered agents induce anesthesia, at least in part, by a primary action in the MPTA with cortical inhibition occurring secondarily.
Collapse
Affiliation(s)
- Ruth Abulafia
- Department of Cell and Animal Biology, Institute of Life Sciences and Center for Research on Pain, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vladimir Zalkind
- Department of Cell and Animal Biology, Institute of Life Sciences and Center for Research on Pain, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Marshall Devor
- Department of Cell and Animal Biology, Institute of Life Sciences and Center for Research on Pain, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
28
|
Sapin E, Lapray D, Bérod A, Goutagny R, Léger L, Ravassard P, Clément O, Hanriot L, Fort P, Luppi PH. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One 2009; 4:e4272. [PMID: 19169414 PMCID: PMC2629845 DOI: 10.1371/journal.pone.0004272] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/08/2008] [Indexed: 01/03/2023] Open
Abstract
Paradoxical sleep (PS) is a state characterized by cortical activation, rapid eye movements and muscle atonia. Fifty years after its discovery, the neuronal network responsible for the genesis of PS has been only partially identified. We recently proposed that GABAergic neurons would have a pivotal role in that network. To localize these GABAergic neurons, we combined immunohistochemical detection of Fos with non-radioactive in situ hybridization of GAD67 mRNA (GABA synthesis enzyme) in control rats, rats deprived of PS for 72 h and rats allowed to recover after such deprivation. Here we show that GABAergic neurons gating PS (PS-off neurons) are principally located in the ventrolateral periaqueductal gray (vlPAG) and the dorsal part of the deep mesencephalic reticular nucleus immediately ventral to it (dDpMe). Furthermore, iontophoretic application of muscimol for 20 min in this area in head-restrained rats induced a strong and significant increase in PS quantities compared to saline. In addition, we found a large number of GABAergic PS-on neurons in the vlPAG/dDPMe region and the medullary reticular nuclei known to generate muscle atonia during PS. Finally, we showed that PS-on neurons triggering PS localized in the SLD are not GABAergic. Altogether, our results indicate that multiple populations of PS-on GABAergic neurons are distributed in the brainstem while only one population of PS-off GABAergic neurons localized in the vlPAG/dDpMe region exist. From these results, we propose a revised model for PS control in which GABAergic PS-on and PS-off neurons localized in the vlPAG/dDPMe region play leading roles.
Collapse
Affiliation(s)
- Emilie Sapin
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Damien Lapray
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Anne Bérod
- CNRS, FRE3006, Pharmacologie et Imagerie de la neurotransmission sérotoninergique, Université Lyon1, Lyon, France
| | - Romain Goutagny
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Lucienne Léger
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Pascal Ravassard
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Olivier Clément
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Lucie Hanriot
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Patrice Fort
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Pierre-Hervé Luppi
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
- * E-mail:
| |
Collapse
|
29
|
Soja PJ. Glycine-mediated postsynaptic inhibition is responsible for REM sleep atonia. Sleep 2009; 31:1483-6. [PMID: 19014067 DOI: 10.1093/sleep/31.11.1483] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peter J Soja
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver BC, Canada.
| |
Collapse
|
30
|
Chase MH. Confirmation of the consensus that glycinergic postsynaptic inhibition is responsible for the atonia of REM sleep. Sleep 2009; 31:1487-91. [PMID: 19014068 DOI: 10.1093/sleep/31.11.1487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An overwhelmingly coherent, integrated body of data developed by independent laboratories, over many decades, using intracellular recording in conjunction with the juxtacellular microiontophoretic ejection of neurotransmitters and antagonists, demonstrates conclusively that postsynaptic inhibition, mediated by glycine, is the critical and sufficient process that completely accounts for the suppression of motoneuron discharge during the tonic and phasic periods of REM sleep. These studies, many of which were conducted in intact, naturally sleeping, adult animals, eliminate potential interpretive complications that arise using reduced, in vitro slice or even intact in vivo preparations; they also provide for levels of resolutions that are not possible with microdialysis. On the other hand, when infusing a cocktail of substances for two to four hours into the trigeminal motor pool and adjacent regions, it is to be expected that uninterpretable and nonphysiological results would be obtained, especially when thousands of receptors on thousands of cells that are exclusively responsible for promoting waking-related functions of trigeminal motoneurons are activated. Because receptors in such a large region were indiscriminately activated by substances that Brooks and Peever dialyzed, it is clearly impossible to conclude that any change in EMG activity was due only to the activation of receptors on alpha motoneurons that are involved in state-dependent processes. In addition, because the results that Brooks and Peever obtained cannot be attributed to any specific class of receptors, synaptic process, or cell type, it is not possible to compare their findings with data obtained from intracellular studies. The preceding notwithstanding, the technical execution of their experiments was of an extremely high quality. Given this obvious strength of Brooks and Peever, it is unfortunate that they did not utilize a technique that would have allowed them to obtain meaningful data, such as intracellular recording. In point of fact, the generation of a preparation in which it is possible to record intracellularly and eject substances juxtacellularly during naturally occurring states of sleep and wakefulness was developed, over a period of two years, specifically to avoid the problems that are inherent in the microdialysis technique that Brooks and Peever employed. In conclusion, during wakefulness, numerous receptors on a great many neuronal elements in and in the vicinity of the trigeminal motor nucleus are normally activated in highly regulated sequences depending upon the specific behavior that is being performed, such as vocalization, biting, chewing, swallowing, etc. On the other hand, during REM sleep, only receptors on alpha motoneurons in the trigeminal motor nucleus, which are involved in state-dependent control processes, are excited. These latter receptors have been identified as glycinergic and have been shown to be activated, monosynaptically, by projections from the region of the nucleus reticularis gigantocellularis. Therefore, there is no justification for Brooks and Peever to claim that an unknown "biochemical substrate" is responsible for atonia during REM sleep, nor do they provide any data or reason not to continue to believe in the veracity of their initial statement, reflecting the consensus that "glycinergic inhibition of somatic motoneurons is responsible for loss of postural muscle tone in REM sleep".
Collapse
Affiliation(s)
- Michael H Chase
- WebSciences International, 1251 Westwood Blvd, Los Angeles, CA 90024 90024, USA.
| |
Collapse
|
31
|
Abstract
Rapid eye movement (REM) sleep is a behavioural state characterized by activation of the cortical and hippocampal EEG, rapid eye movements and muscle atonia. For the past 30 years, the most widely accepted neural circuitry model for the regulation of REM sleep has emphasized reciprocal inhibitory interactions between pontine brainstem monoaminergic and cholinergic neurons. In general support of the reciprocal interaction model, neuropharmacological studies have shown that cholinergic agonists promote REM sleep and muscarinic antagonists and monoamines inhibit REM sleep. It has nevertheless proven difficult to reconcile both the theoretical framework of this model and the pharmacological data with the fact that selective lesions of either cholinergic or monoaminergic (noradrenergic, serotoninergic or dopaminergic) nuclei in the brainstem have relatively limited effects on REM sleep. Recent work by our laboratory has revealed the presence of non-cholinergic and non-monoaminergic mutually inhibitory REM-off and REM-on areas in the mesopontine tegmentum that may form the neuroanatomical basis of the switching circuitry for REM sleep. These findings posit a REM switching circuitry model that is analogous to an electronic 'flip-flop' switch. In this flip-flop switch arrangement, GABAergic REM-on neurons (located in the sublaterodorsal tegmental nucleus (SLD)) inhibit GABAergic REM-off neurons (located in the ventrolateral periaqueductal grey matter (vlPAG) and lateral pontine tegmentum (LPT)) and vice versa. In the REM-on area are two populations of glutamatergic neurons, the first of which projects to the basal forebrain and regulates EEG components of REM sleep and the second of which projects to the ventromedial medulla and spinal cord and regulates atonia during REM sleep. Our findings demonstrating independent pathways mediating atonia and the EEG components of REM provide a basis for their occasional dissociation in pathological states, e.g. REM sleep behaviour disorder.
Collapse
Affiliation(s)
- Patrick M Fuller
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
32
|
Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. ACTA ACUST UNITED AC 2007; 100:271-83. [PMID: 17689057 DOI: 10.1016/j.jphysparis.2007.05.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the middle of the last century, Michel Jouvet discovered paradoxical sleep (PS), a sleep phase paradoxically characterized by cortical activation and rapid eye movements and a muscle atonia. Soon after, he showed that it was still present in "pontine cats" in which all structures rostral to the brainstem have been removed. Later on, it was demonstrated that the pontine peri-locus coeruleus alpha (peri-LCalpha in cats, corresponding to the sublaterodorsal nucleus, SLD, in rats) is responsible for PS onset. It was then proposed that the onset and maintenance of PS is due to a reciprocal inhibitory interaction between neurons presumably cholinergic specifically active during PS localized in this region and monoaminergic neurons. In the last decade, we have tested this hypothesis with our model of head-restrained rats and functional neuroanatomical studies. Our results confirmed that the SLD in rats contains the neurons responsible for the onset and maintenance of PS. They further indicate that (1) these neurons are non-cholinergic possibly glutamatergic neurons, (2) they directly project to the glycinergic premotoneurons localized in the medullary ventral gigantocellular reticular nucleus (GiV), (3) the main neurotransmitter responsible for their inhibition during waking (W) and slow wave sleep (SWS) is GABA rather than monoamines, (4) they are constantly and tonically excited by glutamate and (5) the GABAergic neurons responsible for their tonic inhibition during W and SWS are localized in the deep mesencephalic reticular nucleus (DPMe). We also showed that the tonic inhibition of locus coeruleus (LC) noradrenergic and dorsal raphe (DRN) serotonergic neurons during sleep is due to a tonic GABAergic inhibition by neurons localized in the dorsal paragigantocellular reticular nucleus (DPGi) and the ventrolateral periaqueductal gray (vlPAG). We propose that these GABAergic neurons also inhibit the GABAergic neurons of the DPMe at the onset and during PS and are therefore responsible for the onset and maintenance of PS.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- UMR5167 CNRS, Faculté de Médecine Laennec, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7, Rue Guillaume Paradin, 69372 Lyon cedex 08, France.
| | | | | | | | | | | | | | | |
Collapse
|