1
|
Brozoski T, Brozoski D, Wisner K, Bauer C. Chronic tinnitus and unipolar brush cell alterations in the cerebellum and dorsal cochlear nucleus. Hear Res 2017; 350:139-151. [PMID: 28478300 DOI: 10.1016/j.heares.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
Animal model research has shown that the central features of tinnitus, the perception of sound without an acoustic correlate, include elevated spontaneous and stimulus-driven activity, enhanced burst-mode firing, decreased variance of inter-spike intervals, and distortion of tonotopic frequency representation. Less well documented are cell-specific correlates of tinnitus. Unipolar brush cell (UBC) alterations in animals with psychophysical evidence of tinnitus has recently been reported. UBCs are glutamatergic interneurons that appear to function as local-circuit signal amplifiers. UBCs are abundant in the dorsal cochlear nucleus (DCN) and very abundant in the flocculus (FL) and paraflocculus (PFL) of the cerebellum. In the present research, two indicators of UBC structure and function were examined: Doublecortin (DCX) and epidermal growth factor receptor substrate 8 (Eps8). DCX is a protein that binds to microtubules where it can modify their assembly and growth. Eps8 is a cell-surface tyrosine kinase receptor mediating the response to epidermal growth factor; it appears to have a role in actin polymerization as well as cytoskeletal protein interactions. Both functions could contribute to synaptic remodeling. In the present research UBC Eps8 and DCX immunoreactivity (IR) were determined in 4 groups of rats distinguished by their exposure to high-level sound and psychophysical performance: Unexposed, exposed to high-level sound with behavioral evidence of tinnitus, and two exposed groups without behavioral evidence of tinnitus. Compared to unexposed controls, exposed animals with tinnitus had Eps8 IR elevated in their PFL; other structures were not affected, nor was DCX IR affected. This was interpreted as UBC upregulation in animals with tinnitus. Exposure that failed to produce tinnitus did not increase either Eps8 or DCX IR. Rather Eps8 IR was decreased in the FL and DCN of one subgroup (Least-Tinnitus), while DCX IR decreased in the FL of the other subgroup (No-Tinnitus). Neuron degeneration was also documented in the cochlear nucleus and PFL of exposed animals, both with and without tinnitus. Degeneration was not found in unexposed animals. Implications for tinnitus neuropathy are discussed in the context of synaptic remodeling and cerebellar sensory modulation.
Collapse
Affiliation(s)
- Thomas Brozoski
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States.
| | - Daniel Brozoski
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | - Kurt Wisner
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | - Carol Bauer
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| |
Collapse
|
2
|
Wang YT, Huang CC, Lin YS, Huang WF, Yang CY, Lee CC, Yeh CM, Hsu KS. Conditional deletion of Eps8 reduces hippocampal synaptic plasticity and impairs cognitive function. Neuropharmacology 2016; 112:113-123. [PMID: 27450093 DOI: 10.1016/j.neuropharm.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/28/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Epidermal growth factor receptor substrate 8 (Eps8) is a multifunctional protein involved in actin cytoskeleton regulation and is abundantly expressed in many brain regions. However, the functional significance of Eps8 in the brain has only just begun to be elucidated. Here, we demonstrate that genetic deletion of Eps8 (Eps8-/-) from excitatory neurons leads to impaired performance in a novel object recognition test. Consistently, Eps8-/- mice displayed a deficit in the maintenance of long-term potentiation in the CA1 region of hippocampal slices, which was rescued by bath application of N-methyl-d-aspartate receptor (NMDAR) antagonist 2-amino-5-phosphonopentanoate. While Eps8-/- mice showed normal basal synaptic transmission, a significant increase in the amplitude and a significantly slower decay kinetic of NMDAR-mediated excitatory postsynaptic currents (EPSCs) were observed in hippocampal CA1 neurons. Furthermore, a significant increase in the expression of ifenprodil-sensitive NMDAR-mediated EPSCs was observed in neurons from Eps8-/- mice compared with those from wild-type mice. Eps8 deletion led to decreased mature mushroom-shaped dendritic spine density but increased complexity of basal dendritic trees of hippocampal CA1 pyramidal neurons. These results implicate NMDAR hyperfunction in the cognitive deficits observed in Eps8-/- mice and demonstrate a novel role for Eps8 in regulating hippocampal long-term synaptic plasticity and cognitive function. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Yu-Ting Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yun-Shan Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Weu-Fang Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Yi Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Che Lee
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Che-Ming Yeh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
3
|
Shih EK, Sekerková G, Ohtsuki G, Aldinger KA, Chizhikov VV, Hansel C, Mugnaini E, Millen KJ. The Spontaneous Ataxic Mouse Mutant Tippy is Characterized by a Novel Purkinje Cell Morphogenesis and Degeneration Phenotype. CEREBELLUM (LONDON, ENGLAND) 2015; 14:292-307. [PMID: 25626522 PMCID: PMC4832921 DOI: 10.1007/s12311-014-0640-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic, and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei, and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber-Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1 MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function.
Collapse
Affiliation(s)
- Evelyn K. Shih
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 10194
| | - Gabriella Sekerková
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Gen Ohtsuki
- Department of Molecular Physiology, Kyushu University, Kyushu University, Graduate School of Medical Sciences, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kimberly A. Aldinger
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, 98101
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | - Christian Hansel
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
| | - Enrico Mugnaini
- Department of Cellular and Molecular Biology, Feinberg School of Medicine and Hugh Knowles Center, Northwestern University, Chicago, Illinois, 60611
| | - Kathleen J. Millen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, 98101
- The University of Washington Department of Pediatrics, Seattle, Washington, 98101
| |
Collapse
|
4
|
Baizer JS, Wong KM, Paolone NA, Weinstock N, Salvi RJ, Manohar S, Witelson SF, Baker JF, Sherwood CC, Hof PR. Laminar and neurochemical organization of the dorsal cochlear nucleus of the human, monkey, cat, and rodents. Anat Rec (Hoboken) 2014; 297:1865-84. [PMID: 25132345 DOI: 10.1002/ar.23000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 06/09/2014] [Indexed: 01/02/2023]
Abstract
The dorsal cochlear nucleus (DCN) is a brainstem structure that receives input from the auditory nerve. Many studies in a diversity of species have shown that the DCN has a laminar organization and identifiable neuron types with predictable synaptic relations to each other. In contrast, studies on the human DCN have found a less distinct laminar organization and fewer cell types, although there has been disagreement among studies in how to characterize laminar organization and which of the cell types identified in other animals are also present in humans. We have reexamined DCN organization in the human using immunohistochemistry to analyze the expression of several proteins that have been useful in delineating the neurochemical organization of other brainstem structures in humans: nonphosphorylated neurofilament protein (NPNFP), nitric oxide synthase (nNOS), and three calcium-binding proteins. The results for humans suggest a laminar organization with only two layers, and the presence of large projection neurons that are enriched in NPNFP. We did not observe evidence in humans of the inhibitory interneurons that have been described in the cat and rodent DCN. To compare humans and other animals directly we used immunohistochemistry to examine the DCN in the macaque monkey, the cat, and three rodents. We found similarities between macaque monkey and human in the expression of NPNFP and nNOS, and unexpected differences among species in the patterns of expression of the calcium-binding proteins.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Huang CC, Lin YS, Lee CC, Hsu KS. Cell type-specific expression of Eps8 in the mouse hippocampus. BMC Neurosci 2014; 15:26. [PMID: 24533597 PMCID: PMC3937003 DOI: 10.1186/1471-2202-15-26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor substrate 8 (Eps8) is a multifunctional protein that regulates actin cytoskeleton dynamics and architecture through its barbed-end capping and bundling activities. In cultured hippocampal neurons, Eps8 is enriched at dendritic spine heads and is required for spine morphogenesis; however, the detailed expression pattern of Eps8 in the hippocampus has not yet been explored. RESULTS Here, we demonstrate that endogenous Eps8 protein is restrictively expressed in neurons (NeuN-positive), but not in glial cells (glial fibrillary acidic protein-positive) in area CA1 of the mouse hippocampus. Surprisingly, Eps8 immunoreactivity is rarely found in pyramidal cell somata, but is expressed predominantly in the somata and dendrites of 67 kDa isoform of glutamic acid decarboxylase-expressing GABAergic interneurons in the stratum radiatum and at the border of stratum radiatum and lacunosum-moleculare of area CA1. On the basis of co-localizing markers, we found that Eps8 is not present in perisomatic inhibitory parvalbumin-expressing cells or calretinin-expressing interneurons. However, Eps8 is richly expressed in calbindin-expressing interneurons. Furthermore, Eps8 is also present in cholecystokinin-expressing interneurons, but not in somatostatin-expressing interneurons in area CA1 stratum pyramidale and stratum radiatum. CONCLUSIONS These results reveal a previously unknown cell type-specific expression pattern of endogenous Eps8 protein in the mouse hippocampus and speculate that the role of Eps8 in controlling and orchestrating neuronal morphogenesis and structural plasticity might be more prominent in interneurons than in pyramidal cells of the hippocampus.
Collapse
Affiliation(s)
| | | | | | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
6
|
Paolone N, Manohar S, Hayes SH, Wong KM, Salvi RJ, Baizer JS. Dissociation of doublecortin expression and neurogenesis in unipolar brush cells in the vestibulocerebellum and dorsal cochlear nucleus of the adult rat. Neuroscience 2014; 265:323-31. [PMID: 24462608 DOI: 10.1016/j.neuroscience.2014.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/27/2022]
Abstract
We have previously shown expression of the protein doublecortin (DCX) in unipolar brush cells (UBCs) in the dorsal cochlear nucleus and vestibulocerebellum of the adult rat. We also saw DCX-immunoreactive elements with the appearance of neuroblasts around the fourth ventricle. Expression of DCX is seen in newborn and migrating neurons and hence considered a correlate of neurogenesis. There were two interpretations of the expression of DCX in UBCs. One possibility is that there might be adult neurogenesis of this cell population. Adult neurogenesis is now well-established, but only for the dentate gyrus of the hippocampus and the subventricular zone. The other possibility is that there is prolonged expression of DCX in adult UBCs that may signal a unique role in plasticity of these neurons. We tested the neurogenesis hypothesis by systemic injections of bromodeoxyuridine (BrdU), a thymidine analog, followed by immunohistochemistry to examine the numbers and locations of dividing cells. We used several different injection paradigms, varying the dose of BrdU, the number of injections and the survival time to assess the possibility of neuronal birth and migration. We saw BrdU-labeled cells in the cerebellum and brainstem; cell division in these regions was confirmed by immunohistochemistry for the protein Ki67. However, neither the numbers nor the distribution of labeled nuclei support the idea of adult neurogenesis and migration of UBCs. The function of DCX expression in UBC's in the adult remains to be understood.
Collapse
Affiliation(s)
- N Paolone
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - S Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - S H Hayes
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - K M Wong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - R J Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - J S Baizer
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO J 2013; 32:1730-44. [PMID: 23685357 DOI: 10.1038/emboj.2013.107] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022] Open
Abstract
Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.
Collapse
|
8
|
Abstract
Neuronal activity regulates the formation and morphology of dendritic spines through changes in the actin cytoskeleton. However, the molecular mechanisms that regulate this process remain poorly understood. Here we report that Eps8, an actin-capping protein, is required for spine morphogenesis. In rat hippocampal neurons, gain- and loss-of-function studies demonstrate that Eps8 promotes the formation of dendritic spines but inhibits filopodium formation. Loss of function of Eps8 increases actin polymerization and induces fast actin turnover within dendritic spines, as revealed by free-barbed end and FRAP assays, consistent with a role for Eps8 as an actin-capping protein. Interestingly, Eps8 regulates the balance between excitatory synapses on spines and on the dendritic shaft, without affecting the total number of synapses or basal synaptic transmission. Importantly, Eps8 loss of function impairs the structural and functional plasticity of synapses induced by long-term potentiation. These findings demonstrate a novel role for Eps8 in spine formation and in activity-mediated synaptic plasticity.
Collapse
|
9
|
Expression of doublecortin, a neuronal migration protein, in unipolar brush cells of the vestibulocerebellum and dorsal cochlear nucleus of the adult rat. Neuroscience 2011; 202:169-83. [PMID: 22198017 DOI: 10.1016/j.neuroscience.2011.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 11/22/2022]
Abstract
Doublecortin (DCX) is a microtubule-associated protein that is critical for neuronal migration and the development of the cerebral cortex. In the adult, it is expressed in newborn neurons in the subventricular and subgranular zones, but not in the mature neurons of the cerebral cortex. By contrast, neurogenesis and neuronal migration of cells in the cerebellum continue into early postnatal life; migration of one class of cerebellar interneuron, unipolar brush cells (UBCs), may continue into adulthood. To explore the possibility of continued neuronal migration in the adult cerebellum, closely spaced sections through the brainstem and cerebellum of adult (3-16 months old) Sprague-Dawley rats were immunolabeled for DCX. Neurons immunoreactive (ir) to DCX were present in the granular cell layer of the vestibulocerebellum, most densely in the transition zone (tz), the region between the flocculus (FL) and ventral paraflocculus (PFL), as well as in the dorsal cochlear nucleus (DCN). These DCX-ir cells had the morphological appearance of UBCs with oval somata and a single dendrite ending in a brush. There were many examples of colocalization of DCX with Eps8 or calretinin, UBC markers. We also identified DCX-ir elements along the fourth ventricle and its lateral recess that had labeled somata but lacked the dendritic structure characteristic of UBCs. Labeled UBCs were seen in nearby white matter. These results suggest that there may be continued neurogenesis and/or migration of UBCs in the adult. Another possibility is that UBCs maintain DCX expression even after migration and maturation, reflecting a role of DCX in adult neuronal plasticity in addition to a developmental role in migration.
Collapse
|
10
|
Fregnan F, Petrov V, Garzotto D, De Marchis S, Offenhäuser N, Grosso E, Chiorino G, Perroteau I, Gambarotta G. Eps8 involvement in neuregulin1-ErbB4 mediated migration in the neuronal progenitor cell line ST14A. Exp Cell Res 2011; 317:757-69. [DOI: 10.1016/j.yexcr.2011.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 12/23/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
|
11
|
Liebau S, Steinestel J, Linta L, Kleger A, Storch A, Schoen M, Steinestel K, Proepper C, Bockmann J, Schmeisser MJ, Boeckers TM. An SK3 channel/nWASP/Abi-1 complex is involved in early neurogenesis. PLoS One 2011; 6:e18148. [PMID: 21464958 PMCID: PMC3064656 DOI: 10.1371/journal.pone.0018148] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 02/27/2011] [Indexed: 12/12/2022] Open
Abstract
Background The stabilization or regulated reorganization of the actin cytoskeleton is essential for cellular structure and function. Recently, we could show that the activation of the SK3-channel that represents the predominant SK-channel in neural stem cells, leads to a rapid local outgrowth of long filopodial processes. This observation indicates that the rearrangement of the actin based cytoskeleton via membrane bound SK3-channels might selectively be controlled in defined micro compartments of the cell. Principal Findings We found two important proteins for cytoskeletal rearrangement, the Abelson interacting protein 1, Abi-1 and the neural Wiskott Aldrich Syndrome Protein, nWASP, to be in complex with SK3- channels in neural stem cells (NSCs). Moreover, this interaction is also found in spines and postsynaptic compartments of developing primary hippocampal neurons and regulates neurite outgrowth during early phases of differentiation. Overexpression of the proteins or pharmacological activation of SK3 channels induces obvious structural changes in NSCs and hippocampal neurons. In both neuronal cell systems SK3 channels and nWASP act synergistic by strongly inducing filopodial outgrowth while Abi-1 behaves antagonistic to its interaction partners. Conclusions Our results give good evidence for a functional interplay of a trimeric complex that transforms incoming signals via SK3-channel activation into the local rearrangement of the cytoskeleton in early steps of neuronal differentiation involving nWASP and Abi-1 actin binding proteins.
Collapse
Affiliation(s)
- Stefan Liebau
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Julie Steinestel
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Leonhard Linta
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, Ulm, Germany
- Institute of Molecular Medicine and Max-Planck-Research Group on Stem Cell Aging, Ulm, Germany
| | - Alexander Storch
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Dresden University of Technology, Dresden, Germany
| | - Michael Schoen
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Konrad Steinestel
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- * E-mail:
| |
Collapse
|
12
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
13
|
The functional equivalence of ascending and parallel fiber inputs in cerebellar computation. J Neurosci 2009; 29:8462-73. [PMID: 19571137 DOI: 10.1523/jneurosci.5718-08.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the center of the computational cerebellar circuitry are Purkinje cells, which integrate synaptic inputs from >150,000 granule cell inputs. Traditional theories of cerebellar function assume that all granule cell inputs are comparable. However, it has recently been suggested that the two anatomically distinct granule cell inputs, ascending and parallel fiber, have different functional roles. By systematically examining the efficacy of patches of granule cells with photostimulation, we found no differences in the efficacy of the two inputs in driving the activity of, or in producing postsynaptic currents in, Purkinje cells in cerebellar slices in vitro. We also found that the activity of Purkinje cells was significantly increased upon stimulation of lateral granule cells in vivo. Moreover, when we estimated parallel fiber and ascending apparent unitary EPSC amplitudes using photostimulation in cerebellar slices in vitro, we found them to be indistinguishable. These results are inconsistent with differential functional roles for these two inputs. Instead, our data support theories of cerebellar computation that consider granule cell inputs to be functionally comparable.
Collapse
|
14
|
Diño MR, Mugnaini E. Distribution and phenotypes of unipolar brush cells in relation to the granule cell system of the rat cochlear nucleus. Neuroscience 2008; 154:29-50. [PMID: 18343594 PMCID: PMC2976595 DOI: 10.1016/j.neuroscience.2008.01.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/16/2008] [Indexed: 11/21/2022]
Abstract
In most mammals the cochlear nuclear complex (CN) contains a distributed system of granule cells (GCS), whose parallel fiber axons innervate the dorsal cochlear nucleus (DCN). Like their counterpart in cerebellum, CN granules are innervated by mossy fibers of various origins. The GCS is complemented by unipolar brush (UBCs) and Golgi cells, and by stellate and cartwheel cells of the DCN. This cerebellum-like microcircuit modulates the activity of the DCN's main projection neurons, the pyramidal, giant and tuberculoventral neurons, and is thought to improve auditory performance by integrating acoustic and proprioceptive information. In this paper, we focus on the rat UBCs, a chemically heterogeneous neuronal population, using antibodies to calretinin, metabotropic glutamate receptor 1alpha (mGluR1alpha), epidermal growth factor substrate 8 (Eps8) and the transcription factor T-box gene Tbr2 (Tbr2). Eps8 and Tbr2 labeled most of the CN's UBCs, if not the entire population, while calretinin and mGluR1alpha distinguished two largely separate subsets with overlapping distributions. By double labeling with antibodies to Tbr2 and the alpha6 GABA receptor A (GABAA) subunit, we found that UBCs populate all regions of the GCS and occur at remarkably high densities in the DCN and subpeduncular corner, but rarely in the lamina. Although GCS subregions likely share the same microcircuitry, their dissimilar UBC densities suggest they may be functionally distinct. UBCs and granules are also present in regions previously not included in the GCS, namely the rostrodorsal magnocellular portions of ventral cochlear nucleus, vestibular nerve root, trapezoid body, spinal tract and sensory and principal nuclei of the trigeminal nerve, and cerebellar peduncles. The UBC's dendritic brush receives AMPA- and NMDA-mediated input from an individual mossy fiber, favoring singularity of input, and its axon most likely forms several mossy fiber-like endings that target numerous granule cells and other UBCs, as in the cerebellum. The UBCs therefore, may amplify afferent signals temporally and spatially, synchronizing pools of target neurons.
Collapse
Affiliation(s)
- M R Diño
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Searle 5-474, 320 East Superior Street, Chicago, IL 60611, USA
| | | |
Collapse
|