1
|
Zhang X, Zhu Z, Zhu L, Guan Y, Zhu Z, Liu B, Ren H, Yang X. Integrating Mendelian Randomization With Single-Cell Sequencing Data Reveals the Causal Effect and Related Mechanisms of Smoking on Parkinson's Disease. Nicotine Tob Res 2025; 27:884-892. [PMID: 39030896 DOI: 10.1093/ntr/ntae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Smoking (nicotine) has been reported to possibly be neuroprotective and conducive to patients with early Parkinson's disease (PD). However, the causal effect of smoking on PD and the molecular mechanisms of smoking-related genes (SRGs) are vague. AIMS AND METHODS First, genome-wide association study summary data on smoking (ukb-b-6244) and PD (ieu-b-7) were retrieved from the Integrative Epidemiology Unit OpenGWAS database for Mendelian randomization (MR) analysis. Sensitivity analyses were performed to validate the results of the MR analyses. Subsequently, a differential analysis of PD patients and controls was performed to identify differentially expressed SRGs (DE-SRGs). Finally, the expression of DE-SRGs was analyzed in annotated cell types. RESULTS The MR analysis revealed that smoking was a protective factor causally related to PD (p = .008, odds ratio = 0.288). Furthermore, a total of five DE-SRGs enriched in Toll-like receptor signaling pathways were identified in GSE7621 dataset. Regarding the single-cell analysis of the GSE184950 dataset, a total of nine cell types were annotated. The expression of LRRN1 in oligodendrocyte progenitor cells and oligodendrocytes, respectively, differed significantly between PD patients and controls. CONCLUSIONS Our study supported a causal relationship between smoking and PD and found that five SRGs (MAPK8IP1, LRRN1, LINC00324, HIST1H2BK, and YOD1) enriched in Toll-like receptor signaling pathways might be beneficial in PD. In addition, single-cell sequencing indicated that four SRGs were differentially expressed in different cell types. All four genes except MAPK8IP1 were significantly correlated with the 10 genes calculated by scPagwas. Thus, this evidence provides a theoretical basis for further research on the effect of nicotine (smoking) on PD. IMPLICATIONS In search of explore the potential etiology and pathogenesis of Parkinson's disease, this study combined MR analysis, transcriptomics, and single-cell sequencing analysis to explore the association between exposure factors and Parkinson's disease, observe and confirm the relationship and mechanism between the two from the perspective of genetics, and provide more reliable evidence for causal inference.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - Zhigang Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - Liuhui Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - Ying Guan
- Joint Institute of Smoking and Health, Kunming, Yunnan Province, PR China
| | - Zhouhai Zhu
- Joint Institute of Smoking and Health, Kunming, Yunnan Province, PR China
| | - Bin Liu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China
| |
Collapse
|
2
|
Colombo L, Baldesi J, Martella S, Quisisana C, Antico A, Mapelli L, Montagner S, Primon A, Rossetti L. Managing Retinitis Pigmentosa: A Literature Review of Current Non-Surgical Approaches. J Clin Med 2025; 14:330. [PMID: 39860336 PMCID: PMC11765533 DOI: 10.3390/jcm14020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases characterized by the progressive loss of photoreceptor function, visual impairment, and, ultimately, blindness. While gene therapy has emerged as a promising therapy, it is currently available only for the RPE65 gene mutation, leaving many patients without targeted genetic treatments. Non-surgical interventions may help in managing the progression of RP and improving patients' quality of life. Visual training and rehabilitation, maximizing residual vision, have shown potential in improving mobility and patients' ability to perform daily activities. Visual aids enhance visual function. Moreover, photo-protection demonstrated effectiveness in mitigating light-induced damage and improving visual comfort. Alternative therapies (i.e., electrostimulation, acupuncture, and ozone therapy) are being explored to preserve retinal function and reduce disease progression. Pharmacological interventions supported by nutritional and psychological counseling play a role in slowing retinal degeneration while managing the emotional burden of progressive vision loss. Although for these interventions, further validation is required, their potential benefits make them valuable additions to care for RP patients. The integration of these interventions into a multidisciplinary care approach-including ophthalmologists, orthoptist, dietitians, and psychologists-is essential for providing comprehensive, personalized care to RP patients while awaiting more widespread gene therapy solutions.
Collapse
Affiliation(s)
- Leonardo Colombo
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Jacopo Baldesi
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Salvatore Martella
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Chiara Quisisana
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Aleksei Antico
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Luca Mapelli
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Stefania Montagner
- Eye & Vision—Visual Rehabilitation Center, 20128 Milan, Italy; (S.M.); (A.P.)
| | - Alberto Primon
- Eye & Vision—Visual Rehabilitation Center, 20128 Milan, Italy; (S.M.); (A.P.)
| | - Luca Rossetti
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| |
Collapse
|
3
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
4
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
5
|
Sharma R, Bisht P, Kesharwani A, Murti K, Kumar N. Epigenetic modifications in Parkinson's disease: A critical review. Eur J Pharmacol 2024; 975:176641. [PMID: 38754537 DOI: 10.1016/j.ejphar.2024.176641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder expected to increase by over 50% by 2030 due to increasing life expectancy. The disease's hallmarks include slow movement, tremors, and postural instability. Impaired protein processing is a major factor in the pathophysiology of PD, leading to the buildup of aberrant protein aggregates, particularly misfolded α-synuclein, also known as Lewy bodies. These Lewy bodies lead to inflammation and further death of dopaminergic neurons, leading to imbalances in excitatory and inhibitory neurotransmitters, causing excessive uncontrollable movements called dyskinesias. It was previously suggested that a complex interplay involving hereditary and environmental variables causes the specific death of neurons in PD; however, the exact mechanism of the association involving the two primary modifiers is yet unknown. An increasing amount of research points to the involvement of epigenetics in the onset and course of several neurological conditions, such as PD. DNA methylation, post-modifications of histones, and non-coding RNAs are the primary examples of epigenetic alterations, that is defined as alterations to the expression of genes and functioning without modifications in DNA sequence. Epigenetic modifications play a significant role in the development of PD, with genes such as Parkin, PTEN-induced kinase 1 (PINK1), DJ1, Leucine-Rich Repeat Kinase 2 (LRRK2), and alpha-synuclein associated with the disease. The aberrant epigenetic changes implicated in the pathophysiology of PD and their impact on the design of novel therapeutic approaches are the primary focus of this review.
Collapse
Affiliation(s)
- Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
6
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
7
|
Ogawa E, Suzuki N, Kamiya T, Hara H. Sebacic acid, a royal jelly-containing fatty acid, decreases LPS-induced IL-6 mRNA expression in differentiated human THP-1 macrophage-like cells. J Clin Biochem Nutr 2024; 74:192-198. [PMID: 38799138 PMCID: PMC11111463 DOI: 10.3164/jcbn.23-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/11/2023] [Indexed: 05/29/2024] Open
Abstract
Macrophages produce many inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), in innate immune responses. However, excess production of these mediators by activated macrophages triggers deleterious effects, leading to disorders associated with inflammation. Royal jelly (RJ), a milky-white substance secreted by worker bees, contains unique fatty acids, including 10-hydroxy-2-decenoic acid (10H2DA) and sebacic acid (SA). 10H2DA has been reported to have various biological functions, such as anti-inflammation. However, the anti-inflammatory effect of SA is not fully understood. In this study, we investigated the effects of SA on lipopolysaccharide (LPS)-induced cytokine expression using differentiated human THP-1 macrophage-like cells. SA dose-dependently decreased LPS-induced mRNA expression of IL-6, but not TNF-α and IL-1β. SA suppressed the phosphorylation of signal transducers and activators of transcription 1 (STAT1) and STAT3, but hardly affected the activation of JNK, p38, or NF-κB. In addition, SA decreased LPS-induced interferon-β (IFN-β) expression, and the addition of IFN-β restored the inhibition by SA of LPS-induced STAT activation and IL-6 expression. Furthermore, SA suppressed LPS-induced nuclear translocation of interferon regulatory factor 3 (IRF3), a transcription factor responsible for IFN-β expression. Taken together, we conclude that SA selectively decreases LPS-induced expression of IL-6 mRNA through inhibition of the IRF3/IFN-β/STAT axis.
Collapse
Affiliation(s)
- Erika Ogawa
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Nobuko Suzuki
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
8
|
Duan WX, Wang F, Liu JY, Liu CF. Relationship Between Short-chain Fatty Acids and Parkinson's Disease: A Review from Pathology to Clinic. Neurosci Bull 2024; 40:500-516. [PMID: 37755674 PMCID: PMC11003953 DOI: 10.1007/s12264-023-01123-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.
Collapse
Affiliation(s)
- Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital affiliated to Soochow University, Suzhou, 215125, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Zißler J, Rothhammer V, Linnerbauer M. Gut-Brain Interactions and Their Impact on Astrocytes in the Context of Multiple Sclerosis and Beyond. Cells 2024; 13:497. [PMID: 38534341 PMCID: PMC10968834 DOI: 10.3390/cells13060497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) that leads to physical and cognitive impairment in young adults. The increasing prevalence of MS underscores the critical need for innovative therapeutic approaches. Recent advances in neuroimmunology have highlighted the significant role of the gut microbiome in MS pathology, unveiling distinct alterations in patients' gut microbiota. Dysbiosis not only impacts gut-intrinsic processes but also influences the production of bacterial metabolites and hormones, which can regulate processes in remote tissues, such as the CNS. Central to this paradigm is the gut-brain axis, a bidirectional communication network linking the gastrointestinal tract to the brain and spinal cord. Via specific routes, bacterial metabolites and hormones can influence CNS-resident cells and processes both directly and indirectly. Exploiting this axis, novel therapeutic interventions, including pro- and prebiotic treatments, have emerged as promising avenues with the aim of mitigating the severity of MS. This review delves into the complex interplay between the gut microbiome and the brain in the context of MS, summarizing current knowledge on the key signals of cross-organ crosstalk, routes of communication, and potential therapeutic relevance of the gut microbiome. Moreover, this review places particular emphasis on elucidating the influence of these interactions on astrocyte functions within the CNS, offering insights into their role in MS pathophysiology and potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | |
Collapse
|
10
|
Liu J, Lv X, Ye T, Zhao M, Chen Z, Zhang Y, Yang W, Xie H, Zhan L, Chen L, Liu WC, Su KP, Sun J. Microbiota-microglia crosstalk between Blautia producta and neuroinflammation of Parkinson's disease: A bench-to-bedside translational approach. Brain Behav Immun 2024; 117:270-282. [PMID: 38211635 DOI: 10.1016/j.bbi.2024.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Parkinson's disease (PD) is intricately linked to abnormal gut microbiota, yet the specific microbiota influencing clinical outcomes remain poorly understood. Our study identified a deficiency in the microbiota genus Blautia and a reduction in fecal short-chain fatty acid (SCFA) butyrate level in PD patients compared to healthy controls. The abundance of Blautia correlated with the clinical severity of PD. Supplementation with butyrate-producing bacterium B. producta demonstrated neuroprotective effects, attenuating neuroinflammation and dopaminergic neuronal death in mice, consequently ameliorating motor dysfunction. A pivotal inflammatory signaling pathway, the RAS-related pathway, modulated by butyrate, emerged as a key mechanism inhibiting microglial activation in PD. The change of RAS-NF-κB pathway in PD patients was observed. Furthermore, B. producta-derived butyrate demonstrated the inhibition of microglial activation in PD through regulation of the RAS-NF-κB pathway. These findings elucidate the causal relationship between specific gut microbiota and PD, presenting a novel microbiota-based treatment perspective for PD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xinhuang Lv
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Zhao
- Department of Neurosurgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Zhibo Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenwen Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Zhan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liuzhu Chen
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan.
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Xu Y, Wen L, Tang Y, Zhao Z, Xu M, Wang T, Chen Z. Sodium butyrate activates the K ATP channels to regulate the mechanism of Parkinson's disease microglia model inflammation. Immun Inflamm Dis 2024; 12:e1194. [PMID: 38501544 PMCID: PMC10949401 DOI: 10.1002/iid3.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder. Microglia-mediated neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. Activation of adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels can protect dopaminergic neurons from damage. Sodium butyrate (NaB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury and regulates the KATP channels in islet β cells. In this study, we aimed to verify the anti-inflammatory effect of NaB on PD and further explored potential molecular mechanisms. METHODS We established an in vitro PD model in BV2 cells using 1-methyl-4-phenylpyridinium (MPP+ ). The effects of MPP+ and NaB on BV2 cell viability were detected by cell counting kit-8 assays. The morphology of BV2 cells with or without MPP+ treatment was imaged via an optical microscope. The expression of Iba-1 was examined by the immunofluorescence staining. The intracellular ATP content was estimated through the colorimetric method, and Griess assay was conducted to measure the nitric oxide production. The expression levels of pro-inflammatory cytokines and KATP channel subunits were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analysis. RESULTS NaB (5 mM) activated the KATP channels through elevating Kir6.1 and Kir6.1 expression in MPP+ -challenged BV2 cells. Both NaB and pinacidil (a KATP opener) suppressed the MPP+ -induced activation of BV2 cells and reduced the production of nitrite and pro-inflammatory cytokines in MPP+ -challenged BV2 cells. CONCLUSION NaB treatment alleviates the MPP+ -induced inflammatory responses in microglia via activation of KATP channels.
Collapse
Affiliation(s)
- Ye Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Laofu Wen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yunyi Tang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhenqiang Zhao
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Miaojing Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tan Wang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhibin Chen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| |
Collapse
|
12
|
Jing Y, Yang D, Bai F, Wang Q, Zhang C, Yan Y, Li Z, Li Y, Chen Z, Li J, Yu Y. Spinal cord injury-induced gut dysbiosis influences neurological recovery partly through short-chain fatty acids. NPJ Biofilms Microbiomes 2023; 9:99. [PMID: 38092763 PMCID: PMC10719379 DOI: 10.1038/s41522-023-00466-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Spinal cord injury (SCI) can reshape gut microbial composition, significantly affecting clinical outcomes in SCI patients. However, mechanisms regarding gut-brain interactions and their clinical implications have not been elucidated. We hypothesized that short-chain fatty acids (SCFAs), intestinal microbial bioactive metabolites, may significantly affect the gut-brain axis and enhance functional recovery in a mouse model of SCI. We enrolled 59 SCI patients and 27 healthy control subjects and collected samples. Thereafter, gut microbiota and SCFAs were analyzed using 16 S rDNA sequencing and gas chromatography-mass spectrometry, respectively. We observed an increase in Actinobacteriota abundance and a decrease in Firmicutes abundance. Particularly, the SCFA-producing genera, such as Faecalibacterium, Megamonas, and Agathobacter were significantly downregulated among SCI patients compared to healthy controls. Moreover, SCI induced downregulation of acetic acid (AA), propionic acid (PA), and butyric acid (BA) in the SCI group. Fecal SCFA contents were altered in SCI patients with different injury course and injury segments. Main SCFAs (AA, BA, and PA) were administered in combination to treat SCI mice. SCFA supplementation significantly improved locomotor recovery in SCI mice, enhanced neuronal survival, promoted axonal formation, reduced astrogliosis, and suppressed microglial activation. Furthermore, SCFA supplementation downregulated NF-κB signaling while upregulating neurotrophin-3 expression following SCI. Microbial sequencing and metabolomics analysis showed that SCI patients exhibited a lower level of certain SCFAs and related bacterial strains than healthy controls. SCFA supplementation can reduce inflammation and enhance nourishing elements, facilitating the restoration of neurological tissues and the improvement of functional recuperation. Trial registration: This study was registered in the China Clinical Trial Registry ( www.chictr.org.cn ) on February 13, 2017 (ChiCTR-RPC-17010621).
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Degang Yang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Department of Spinal and Neural Function Reconstruction, Beijing Bo'ai Hospital, Beijing, 100068, China
| | - Fan Bai
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Qiuying Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Chao Zhang
- Department of Neurosurgery, Linyi People's Hospital, Shangdong, 276034, China
| | - Yitong Yan
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Yan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Zhiguo Chen
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| | - Jianjun Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
| |
Collapse
|
13
|
Wang Y, Du W, Hu X, Yu X, Guo C, Jin X, Wang W. Targeting the blood-brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharm Sin B 2023; 13:4667-4687. [PMID: 38045038 PMCID: PMC10692395 DOI: 10.1016/j.apsb.2023.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
The blood-brain barrier (BBB) impairment plays a crucial role in the pathological processes of aging-accompanied neurological diseases (AAND). Meanwhile, circadian rhythms disruption and gut microbiota dysbiosis are associated with increased morbidity of neurological diseases in the accelerated aging population. Importantly, circadian rhythms disruption and gut microbiota dysbiosis are also known to induce the generation of toxic metabolites and pro-inflammatory cytokines, resulting in disruption of BBB integrity. Collectively, this provides a new perspective for exploring the relationship among circadian rhythms, gut microbes, and the BBB in aging-accompanied neurological diseases. In this review, we focus on recent advances in the interplay between circadian rhythm disturbances and gut microbiota dysbiosis, and their potential roles in the BBB disruption that occurs in AAND. Based on existing literature, we discuss and propose potential mechanisms underlying BBB damage induced by dysregulated circadian rhythms and gut microbiota, which would serve as the basis for developing potential interventions to protect the BBB in the aging population through targeting the BBB by exploiting its links with gut microbiota and circadian rhythms for treating AAND.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing City, Jiaxing 314000, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xin Yu
- Bengbu Medical College (Department of Neurology, the Second Hospital of Jiaxing City), Jiaxing 233030, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Wang HK, Su YT, Ho YC, Lee YK, Chu TH, Chen KT, Wu CC. HDAC1 is Involved in Neuroinflammation and Blood-Brain Barrier Damage in Stroke Pathogenesis. J Inflamm Res 2023; 16:4103-4116. [PMID: 37745794 PMCID: PMC10516226 DOI: 10.2147/jir.s416239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Background Stroke is a common cause of disability and mortality worldwide; however, effective therapy remains limited. In stroke pathogenesis, ischemia/reperfusion injury triggers gliosis and neuroinflammation that further activates matrix metalloproteinases (MMPs), thereby damaging the blood-brain barrier (BBB). Increased BBB permeability promotes macrophage infiltration and brain edema, thereby worsening behavioral outcomes and prognosis. Histone deacetylase 1 (HDAC1) is a repressor of epigenomic gene transcription and participates in DNA damage and cell cycle regulation. Although HDAC1 is deregulated after stroke and is involved in neuronal loss and DNA repair, its role in neuroinflammation and BBB damage remains unknown. Methods The rats with cerebral ischemia were evaluated in behavioral outcomes, levels of inflammation in gliosis and cytokines, and BBB damage by using an endothelin-1-induced rat model with cerebral ischemia/reperfusion injury. Results The results revealed that HDAC1 dysfunction could promote BBB damage through the destruction of tight junction proteins, such as ZO-1 and occludin, after stroke in rats. HDAC1 inhibition also increased the levels of astrocyte and microglial gliosis, tumor necrosis factor-alpha, interleukin-1 beta, lactate dehydrogenase, and reactive oxygen species, further triggering MMP-2 and MMP-9 activity. Moreover, modified neurological severity scores for the cylinder test revealed that HDAC1 inhibition deteriorated behavioral outcomes in rats with cerebral ischemia. Discussion HDAC1 plays a crucial role in ischemia/reperfusion-induced neuroinflammation and BBB damage, thus indicating its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hao-Kuang Wang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Yu-Cheng Ho
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Kuang-Ti Chen
- Department of Veterinary Medicine, Nation Chung-Hsing University, Taichung City, Taiwan
| | - Cheng-Chun Wu
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
15
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
16
|
Zhao J, He Y, Duan Y, Ma Y, Dong H, Zhang X, Fang R, Zhang Y, Yu M, Huang F. HDAC6 Deficiency Has Moderate Effects on Behaviors and Parkinson's Disease Pathology in Mice. Int J Mol Sci 2023; 24:9975. [PMID: 37373121 DOI: 10.3390/ijms24129975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is involved in the regulation of protein aggregation and neuroinflammation, but its role in Parkinson's disease (PD) remains controversial. In this study, Hdac6-/- mice were generated by CRISPR-Cas9 technology for exploring the effect of HDAC6 on the pathological progression of PD. We found that male Hdac6-/- mice exhibit hyperactivity and certain anxiety. In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, though motor injury was slightly alleviated by HDAC6 deficiency, dopamine (DA) depletion in the striatum, the decrease in the number of DA neurons in the substantia nigra (SN) and the reduction in DA neuronal terminals were not affected. In addition, activation of glial cells and the expression of α-synuclein, as well as the levels of apoptosis-related proteins in the nigrostriatal pathway, were not changed in MPTP-injected wild-type and Hdac6-/- mice. Therefore, HDAC6 deficiency leads to moderate alterations of behaviors and Parkinson's disease pathology in mice.
Collapse
Affiliation(s)
- Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
17
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Chen Z, Huang Y, Wang B, Peng H, Wang X, Wu H, Chen W, Wang M. T cells: an emerging cast of roles in bipolar disorder. Transl Psychiatry 2023; 13:153. [PMID: 37156764 PMCID: PMC10167236 DOI: 10.1038/s41398-023-02445-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Bipolar disorder (BD) is a distinctly heterogeneous and multifactorial disorder with a high individual and social burden. Immune pathway dysregulation is an important pathophysiological feature of BD. Recent studies have suggested a potential role for T lymphocytes in the pathogenesis of BD. Therefore, greater insight into T lymphocytes' functioning in patients with BD is essential. In this narrative review, we describe the presence of an imbalance in the ratio and altered function of T lymphocyte subsets in BD patients, mainly in T helper (Th) 1, Th2, Th17 cells and regulatory T cells, and alterations in hormones, intracellular signaling, and microbiomes may be potential causes. Abnormal T cell presence explains the elevated rates of comorbid inflammatory illnesses in the BD population. We also update the findings on T cell-targeting drugs as potentially immunomodulatory therapeutic agents for BD disease in addition to classical mood stabilizers (lithium, valproic acid). In conclusion, an imbalance in T lymphocyte subpopulation ratios and altered function may be involved in the development of BD, and maintaining T cell immune homeostasis may provide an overall therapeutic benefit.
Collapse
Affiliation(s)
- Zhenni Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yiran Huang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bingqi Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanxin Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
19
|
Johnson D, Jiang W. Infectious diseases, autoantibodies, and autoimmunity. J Autoimmun 2023; 137:102962. [PMID: 36470769 PMCID: PMC10235211 DOI: 10.1016/j.jaut.2022.102962] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Infections are known to trigger flares of autoimmune diseases in humans and serve as an inciting cause of autoimmunity in animals. Evidence suggests a causative role of infections in triggering antigen-specific autoimmunity, previous thought mainly through antigen mimicry. However, an infection can induce bystander autoreactive T and B cell polyclonal activation, believed to result in non-pathogenic and pathogenic autoimmune responses. Lastly, epitope spreading in autoimmunity is a mechanism of epitope changes of autoreactive cells induced by infection, promoting the targeting of additional self-epitopes. This review highlights recent research findings, emphasizes infection-mediated autoimmune responses, and discusses the possible mechanisms involved.
Collapse
Affiliation(s)
- Douglas Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Divison of Infectious Disease, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
20
|
Huang R, Lu Y, Jin M, Liu Y, Zhang M, Xian S, Chang Z, Wang L, Zhang W, Lu J, Tong X, Wang S, Zhu Y, Huang J, Jiang L, Gu M, Huang Z, Wu M, Ji S. A bibliometric analysis of the role of microbiota in trauma. Front Microbiol 2023; 14:1091060. [PMID: 36819034 PMCID: PMC9932281 DOI: 10.3389/fmicb.2023.1091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Over the last several decades, the gut microbiota has been implicated in the formation and stabilization of health, as well as the development of disease. With basic and clinical experiments, scholars are gradually understanding the important role of gut microbiota in trauma, which may offer novel ideas of treatment for trauma patients. In this study, we purposed to summarize the current state and access future trends in gut microbiota and trauma research. Methods We retrieved relevant documents and their published information from the Web of Science Core Collection (WoSCC). Bibliometrix package was responsible for the visualized analysis. Results Totally, 625 documents were collected and the number of annual publications kept increasing, especially from 2016. China published the most documents while the USA had the highest local citations. The University of Colorado and Food & Function are respectively the top productive institution and journal, as PLOS One is the most local cited journal. With the maximum number of articles and local citations, Deitch EA is supported to be the most contributive author. Combining visualized analysis of keywords and documents and literature reading, we recognized two key topics: bacteria translocation in trauma and gut microbiota's effect on inflammation in injury, especially in nervous system injury. Discussion The impact of gut microbiota on molecular and pathological mechanism of inflammation is the focus now. In addition, the experiments of novel therapies based on gut microbiota's impact on trauma are being carried out. We hope that this study can offer a birds-eye view of this field and promote the gradual improvement of it.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyuan Xian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Zongqiang Huang ✉
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Minjuan Wu ✉
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Shizhao Ji ✉
| |
Collapse
|
21
|
Emerging insights between gut microbiome dysbiosis and Parkinson's disease: Pathogenic and clinical relevance. Ageing Res Rev 2022; 82:101759. [PMID: 36243356 DOI: 10.1016/j.arr.2022.101759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, of which gastrointestinal disturbance appears prior to motor symptoms. Numerous studies have shed light on the roles of gastrointestinal tract and its neural connection to brain in PD pathology. In the past decades, the fields of microbiology and neuroscience have become ever more entwined. The emergence of gut microbiome has been considered as one of the key regulators of gut-brain function. With the advent of multi-omics sequencing techniques, gut microbiome of PD patients has been shown unique characteristics. The resident gut microbiota can exert considerable effects in PD and there are suggestions of a link between gut microbiome dysbiosis and PD progression. In this review, we summarize the latest progresses of gut microbiome dysbiosis in PD pathogenesis, further highlight the clinical relevance of gut microbiota and its metabolites in both the non-motor and motor symptoms of PD. Furthermore, we draw attention to the complex interplay between gut microbiota and PD drugs, with the purpose of improving drug efficacy and prescription accordingly. Further studies at specific strain level and longitudinal prospective clinical trials using optimized methods are still needed for the development of diagnostic markers and novel therapeutic regimens for PD.
Collapse
|
22
|
Zhang Y, Lang R, Guo S, Luo X, Li H, Liu C, Dong W, Bao C, Yu Y. Intestinal microbiota and melatonin in the treatment of secondary injury and complications after spinal cord injury. Front Neurosci 2022; 16:981772. [PMID: 36440294 PMCID: PMC9682189 DOI: 10.3389/fnins.2022.981772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) disease that can cause sensory and motor impairment below the level of injury. Currently, the treatment scheme for SCI mainly focuses on secondary injury and complications. Recent studies have shown that SCI leads to an imbalance of intestinal microbiota and the imbalance is also associated with complications after SCI, possibly through the microbial-brain-gut axis. Melatonin is secreted in many parts of the body including pineal gland and gut, effectively protecting the spinal cord from secondary damage. The secretion of melatonin is affected by circadian rhythms, known as the dark light cycle, and SCI would also cause dysregulation of melatonin secretion. In addition, melatonin is closely related to the intestinal microbiota, which protects the barrier function of the gut through its antioxidant and anti-inflammatory effects, and increases the abundance of intestinal microbiota by influencing the metabolism of the intestinal microbiota. Furthermore, the intestinal microbiota can influence melatonin formation by regulating tryptophan and serotonin metabolism. This paper summarizes and reviews the knowledge on the relationship among intestinal microbiota, melatonin, and SCI in recent years, to provide new theories and ideas for clinical research related to SCI treatment.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Lang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shunyu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, Deyang, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Ubah UDB, Triyasakorn K, Roan B, Conlin M, Lai JCK, Awale PS. Pan HDACi Valproic Acid and Trichostatin A Show Apparently Contrasting Inflammatory Responses in Cultured J774A.1 Macrophages. EPIGENOMES 2022; 6:epigenomes6040038. [PMID: 36412793 PMCID: PMC9680436 DOI: 10.3390/epigenomes6040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study was initiated as an attempt to clarify some of the apparent conflicting data regarding the so-called anti-inflammatory versus proinflammatory properties of histone deacetylase inhibitors (HDACis). In cell culture, typically, chronic pretreatment with the HDACi valproic acid (VPA) and trichostatin A (TSA) exhibits an anti-inflammatory effect. However, the effect of acute treatment with VPA and TSA on the levels of inflammatory cytokines in J774A.1 macrophage cell line is unknown. Therefore, this study investigated the effect of acute treatment with VPA and TSA on levels of key inflammatory cytokines in maximally stimulated J774A.1 cells. J774A.1 macrophages were treated with either VPA or TSA for 1 h (acute treatment), followed by maximal stimulation with LPS + IFNγ for 24 h. ELISA was used to measure the levels of proinflammatory cytokines TNFα, NO and IL-1β from the culture medium. Acute treatment with VPA showed a dose-dependent increase in levels of all three cytokines. Similar to VPA, TSA also showed a dose-dependent increase in levels of IL-1β alone. This study sheds new light on the conflicting data in the literature that may partly be explained by acute or short-term exposure versus chronic or long-term exposure to HDACi.
Collapse
Affiliation(s)
- Ubah Dominic Babah Ubah
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Korawin Triyasakorn
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Brandon Roan
- Division of Health Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Minsyusheen Conlin
- Department of Biological Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Prabha S. Awale
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
- Correspondence:
| |
Collapse
|
24
|
Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res 2022; 248:128-150. [PMID: 35688319 DOI: 10.1016/j.trsl.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The human gut microbiota influences obesity, insulin resistance, and the subsequent development of type 2 diabetes (T2D). The gut microbiota digests and ferments nutrients resulting in the production of short-chain fatty acids (SCFAs), which generate various beneficial metabolic effects on energy and glucose homeostasis. However, their roles in the central nervous system (CNS)-mediated outputs on the metabolism have only been minimally studied. Here, we explore what is known and future directions that may be worth exploring in this emerging area. Specifically, we searched studies or data in English by using PubMed, Google Scholar, and the Human Metabolome Database. Studies were filtered by time from 1978 to March 2022. As a result, 195 studies, 53 reviews, 1 website, and 1 book were included. One hundred and sixty-five of 195 studies describe the production and metabolism of SCFAs or the effects of SCFAs on energy homeostasis, glucose balance, and mental diseases through the gut-brain axis or directly by a central pathway. Thirty of 195 studies show that inappropriate metabolism and excessive of SCFAs are metabolically detrimental. Most studies suggest that SCFAs exert beneficial metabolic effects by acting as the energy substrate in the TCA cycle, regulating the hormones related to satiety regulation and insulin secretion, and modulating immune cells and microglia. These functions have been linked with AMPK signaling, GPCRs-dependent pathways, and inhibition of histone deacetylases (HDACs). However, the studies focusing on the central effects of SCFAs are still limited. The mechanisms by which central SCFAs regulate appetite, energy expenditure, and blood glucose during different physiological conditions warrant further investigation.
Collapse
|
25
|
Pang R, Wang J, Xiong Y, Liu J, Ma X, Gou X, He X, Cheng C, Wang W, Zheng J, Sun M, Bai X, Bai L, Zhang A. Relationship between gut microbiota and lymphocyte subsets in Chinese Han patients with spinal cord injury. Front Microbiol 2022; 13:986480. [PMID: 36225368 PMCID: PMC9549169 DOI: 10.3389/fmicb.2022.986480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study is to investigate the changes of lymphocyte subsets and the gut microbiota in Chinese Han patients with spinal cord injury (SCI). We enrolled 23 patients with SCI and 21 healthy controls. Blood and fecal samples were collected. The proportion of lymphocyte subsets was detected by flow cytometry. 16S rDNA sequencing of the V4 region was used to analyze the gut microbiota. The changes of the gut microbiota were analyzed by bioinformatics. Correlation analysis between gut microbiota and lymphocyte subsets was performed. CD4 + cells, CD4 + /CD8 + ratio and CD4 + CD8 + cells in peripheral blood of SCI patients were significantly lower than those of the control group (P < 0.05). There was no significant difference in B cells and CIK cells between the SCI group and the control group. The gut microbiota community diversity index of SCI patients was significantly higher than that of healthy controls. In SCI patients, the relative abundance of Lachnospiraceae (related to lymphocyte subset regulation), Ruminococcaceae (closely related to central nervous system diseases), and Escherichia-Shigella (closely related to intestinal infections) increased significantly, while the butyrate producing bacteria (Fusobacterium) that were beneficial to the gut were dramatically decreased. Correlation analysis showed that the five bacterial genera of SCI patients, including Lachnospiraceae UCG-008, Lachnoclostridium 12, Tyzzerella 3, Eubacterium eligens group, and Rumencocciucg-002, were correlated with T lymphocyte subsets and NK cells. In the SCI group, the flora Prevotella 9, Lachnospiraceae NC2004 group, Veillonella, and Sutterella were positively correlated with B cells. However, Fusobacterium and Akkermansia were negatively correlated with B cells. Moreover, Roseburia and Ruminococcaceae UCG-003 were positively correlated with CIK cells. Our results suggest that the gut microbiota of patients with SCI is associated with lymphocyte subsets. Therefore, it is possible to improve immune dysregulation in SCI patients by modulating gut microbiota, which may serve as a new therapeutic method for SCI.
Collapse
Affiliation(s)
- Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Junyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yisong Xiong
- Department of Laboratory Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xin Ma
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiang Gou
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xin He
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Chao Cheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jinqi Zheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Mengyuan Sun
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xingang Bai
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Ling Bai
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Anren Zhang,
| |
Collapse
|
26
|
The impact of the histone deacetylase inhibitor sodium butyrate on microglial polarization after oxygen and glucose deprivation. Pharmacol Rep 2022; 74:909-919. [PMID: 35796871 DOI: 10.1007/s43440-022-00384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Microglia play a major role in the development of brain inflammation after central nervous system injury. On the other hand, microglia also participate in the repair process. The dualistic role of these cells results from the fact that various states of their activation are associated with specific phenotypes. The M1 phenotype is responsible for the production of proinflammatory mediators, whereas the M2 microglia release anti-inflammatory and trophic factors and take part in immunosuppressive and neuroprotective processes. The histone deacetylase inhibitor sodium butyrate (SB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury. The aim of this study was to examine the effects of sodium butyrate on the proliferation and M1/M2 polarization of primary microglial cells after oxygen and glucose deprivation (OGD) in vitro. METHODS Primary microglial cultures were prepared from 1-day-old rats, subjected to the OGD procedure and treated with SB (0.1 mM, 1 mM and 10 mM). The effect of OGD and SB on microglial proliferation was assessed by double immunofluorescence, and microglial phenotypes were evaluated by qPCR. RESULTS The OGD procedure stimulated the proliferation of microglia after 24 h of culturing, and SB treatment reduced the division of these cells. This effect was inversely proportional to the SB concentration. The OGD procedure increased proinflammatory CD86 and IL1β gene expression and reduced the expression of the anti-inflammatory M2 markers arginase and CD200 in microglia. CONCLUSIONS SB can change the polarization of microglia after OGD from an unfavourable M1 to a beneficial M2 phenotype. Our results show that SB is a potential immunosuppressive agent that can modulate microglial activation stimulated by ischaemic-like conditions.
Collapse
|
27
|
Li Y, Gu Z, Lin S, Chen L, Dzreyan V, Eid M, Demyanenko S, He B. Histone Deacetylases as Epigenetic Targets for Treating Parkinson's Disease. Brain Sci 2022; 12:672. [PMID: 35625059 PMCID: PMC9140162 DOI: 10.3390/brainsci12050672] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that is increasingly becoming a global threat to the health and life of the elderly worldwide. Although there are some drugs clinically available for treating PD, these treatments can only alleviate the symptoms of PD patients but cannot completely cure the disease. Therefore, exploring other potential mechanisms to develop more effective treatments that can modify the course of PD is still highly desirable. Over the last two decades, histone deacetylases, as an important group of epigenetic targets, have attracted much attention in drug discovery. This review focused on the current knowledge about histone deacetylases involved in PD pathophysiology and their inhibitors used in PD studies. Further perspectives related to small molecules that can inhibit or degrade histone deacetylases to treat PD were also discussed.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Moez Eid
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| |
Collapse
|
28
|
Tribble JR, Kastanaki E, Uslular AB, Rutigliani C, Enz TJ, Williams PA. Valproic Acid Reduces Neuroinflammation to Provide Retinal Ganglion Cell Neuroprotection in the Retina Axotomy Model. Front Cell Dev Biol 2022; 10:903436. [PMID: 35646919 PMCID: PMC9135180 DOI: 10.3389/fcell.2022.903436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is a critical and targetable pathogenic component of neurodegenerative diseases, including glaucoma, the leading cause of irreversible blindness. Valproic acid has previously been demonstrated to reduce neuroinflammation and is neuroprotective in a number of experimental settings. To determine whether valproic acid can limit retinal neuroinflammation and protect retinal neurons we used an ex vivo retina explant (axotomy) model to isolate resident glial responses from blood-derived monocytes. Neuroinflammatory status was defined using high resolution confocal imaging with 3D morphological reconstruction and cytokine protein arrays. Valproic acid significantly reduced microglia and astrocyte morphological changes, consistent with a reduction in pro-inflammatory phenotypes. Cytokine profiling demonstrated that valproic acid significantly attenuated or prevented expression of pro-inflammatory cytokines in injured retina. This identifies that the retinal explant model as a useful tool to explore resident neuroinflammation in a rapid timescale whilst maintaining a complex system of cell interactions and valproic acid as a useful drug to further explore anti-neuroinflammatory strategies in retinal disease.
Collapse
|
29
|
Sun Y, Bedlack R, Armon C, Beauchamp M, Bertorini T, Bowser R, Bromberg M, Caress J, Carter G, Crayle J, Cudkowicz ME, Glass JD, Jackson C, Lund I, Martin S, Paganoni S, Pattee G, Ratner D, Salmon K, Wicks P. ALSUntangled #64: butyrates. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:638-643. [PMID: 35225121 DOI: 10.1080/21678421.2022.2045323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review butyrate and its different chemical forms (butyrates). Butyrates have plausible mechanisms for slowing ALS progression and positive pre-clinical studies. One trial suggests that sodium phenylbutyrate (NaPB) in combination with Tauroursodeoxycholic acid (TUDCA) can slow ALS progression and prolong survival, but the specific contribution of NaPB toward this effect is unclear. Butyrates appear reasonably safe for use in humans. Based on the above information, we support a trial of a butyrate in PALS, but we cannot yet recommend one as a treatment.
Collapse
Affiliation(s)
- Yuyao Sun
- Neurology Department, Duke University, Durham, NC, USA
| | | | - Carmel Armon
- Department of Neurology, Loma Linda University, Loma Linda, CA, USA
| | - Morgan Beauchamp
- Undergraduate, North Carolina State University, Raleigh, NC, USA
| | - Tulio Bertorini
- Neurology Department, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - James Caress
- Department of Neurology, Baptist Medical Center, Winston Salem, NC, USA
| | - Gregory Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Spokane, WA, USA
| | - Jesse Crayle
- Neurology Department, Washington University, St. Louis, MO, USA
| | | | | | - Carlayne Jackson
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Isaac Lund
- Student, Green Hope High School, Cary, NC, USA
| | - Sarah Martin
- Physical Therapy Program, Duke University, Durham, NC, USA
| | | | - Gary Pattee
- Department of Neurology, Nebraska Medical Center, Omaha, NE, USA
| | - Dylan Ratner
- Student, Longmeadow High School, Longmeadow, MA, USA
| | - Kristiana Salmon
- Department of Neurology, Montreal Neurological Institute, Montreal Canada
| | | |
Collapse
|
30
|
Xie J, Van Hoecke L, Vandenbroucke RE. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol 2022; 12:796867. [PMID: 35069578 PMCID: PMC8770958 DOI: 10.3389/fimmu.2021.796867] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder with an alarming increasing prevalence. Except for the recently FDA-approved Aducanumab of which the therapeutic effect is not yet conclusively proven, only symptomatic medication that is effective for some AD patients is available. In order to be able to design more rational and effective treatments, our understanding of the mechanisms behind the pathogenesis and progression of AD urgently needs to be improved. Over the last years, it became increasingly clear that peripheral inflammation is one of the detrimental factors that can contribute to the disease. Here, we discuss the current understanding of how systemic and intestinal (referred to as the gut-brain axis) inflammatory processes may affect brain pathology, with a specific focus on AD. Moreover, we give a comprehensive overview of the different preclinical as well as clinical studies that link peripheral Inflammation to AD initiation and progression. Altogether, this review broadens our understanding of the mechanisms behind AD pathology and may help in the rational design of further research aiming to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Ornoy A, Weinstein-Fudim L, Becker M. SAMe, Choline, and Valproic Acid as Possible Epigenetic Drugs: Their Effects in Pregnancy with a Special Emphasis on Animal Studies. Pharmaceuticals (Basel) 2022; 15:192. [PMID: 35215304 PMCID: PMC8879727 DOI: 10.3390/ph15020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
In this review, we discuss the functions and main effects on pregnancy outcomes of three agents that have the ability to induce epigenetic modifications: valproic acid (VPA), a well-known teratogen that is a histone deacetylase inhibitor; S-adenosylmethionine (SAMe), the most effective methyl donor; and choline, an important micronutrient involved in the one methyl group cycle and in the synthesis of SAMe. Our aim was to describe the possible effects of these compounds when administered during pregnancy on the developing embryo and fetus or, if administered postnatally, their effects on the developing child. These substances are able to modify gene expression and possibly alleviate neurobehavioral changes in disturbances that have epigenetic origins, such as autism spectrum disorder (ASD), depression, Rett syndrome, and fetal alcohol spectrum disorder (FASD). Valproic acid and SAMe are antagonistic epigenetic modulators whether administered in utero or postnatally. However, VPA is a major human teratogen and, whenever possible, should not be used by pregnant women. Most currently relevant data come from experimental animal studies that aimed to explore the possibility of using these substances as epigenetic modifiers and possible therapeutic agents. In experimental animals, each of these substances was able to alleviate the severity of several well-known diseases by inducing changes in the expression of affected genes or by other yet unknown mechanisms. We believe that additional studies are needed to further explore the possibility of using these substances, and similar compounds, for the treatment of "epigenetic human diseases".
Collapse
Affiliation(s)
- Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
32
|
He X, Wu Y, Huang H, Guo F. A novel histone deacetylase inhibitor‐based approach to eliminate microglia and retain astrocyte properties in glial cell culture. J Neurochem 2022; 161:405-416. [PMID: 35092690 DOI: 10.1111/jnc.15581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xi‐Biao He
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences Shanghai University of Medicine and Health Sciences Shanghai China
| | - Yi Wu
- Speech Therapy Department, The Second Rehabilitation Hospital of Shanghai Shanghai China
| | - Haozhi Huang
- Department of Orthopaedic Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University Shanghai China
| | - Fang Guo
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences Shanghai University of Medicine and Health Sciences Shanghai China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital Shanghai China
| |
Collapse
|
33
|
Yu Y, Li C, Li W, Chen L, Wang D, Wang J, Wang J, Yao R. Neurodevelopmental disorders and anti-epileptic treatment in a patient with a SATB1 mutation: A case report. Front Pediatr 2022; 10:931667. [PMID: 36120649 PMCID: PMC9479181 DOI: 10.3389/fped.2022.931667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
SATB1 variants causing developmental delay with dysmorphic facies and dental anomalies have been reported in a small cohort. Most patients present epilepsy as a main clinical feature in neurodevelopmental disorders; however, its treatment is unknown. Here, we present a Chinese patient with a de novo truncating variation in SATB1 who presented with mild developmental delay. We disclose the detailed anti-epileptic pharmacological treatment that enabled a favorable outcome. Our study provides important information that may aid clinicians in the prognosis and treatment of rare neurological developmental disorders caused by gene mutations.
Collapse
Affiliation(s)
- Ying Yu
- Antenatal Diagnostic Center, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China
| | - Cuiyun Li
- Antenatal Diagnostic Center, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China
| | - Wei Li
- Antenatal Diagnostic Center, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China
| | - Liting Chen
- Antenatal Diagnostic Center, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China
| | - Dan Wang
- Department of Science and Education, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China
| | - Jie Wang
- Antenatal Diagnostic Center, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China
| | - Jian Wang
- Molecular Genetic Diagnosis Center, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China.,Molecular Diagnostic Laboratory, Department of Medical Genetics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruen Yao
- Molecular Genetic Diagnosis Center, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China.,Molecular Diagnostic Laboratory, Department of Medical Genetics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Doelman A, Tigchelaar S, McConeghy B, Sinha S, Keung MS, Manouchehri N, Webster M, Fisk S, Morrison C, Streijger F, Nislow C, Kwon BK. Characterization of the gut microbiome in a porcine model of thoracic spinal cord injury. BMC Genomics 2021; 22:775. [PMID: 34717545 PMCID: PMC8557039 DOI: 10.1186/s12864-021-07979-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI) disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies in rodent models have shown that SCI-induced bacterial imbalances in the gut can exacerbate the spinal cord damage and impair recovery. In this study we, for the first time, characterized the composition of the gut microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd or 10th Thoracic level. RESULTS We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific time-frame, "SCI-acute stage", during which many of these bacterial fluctuations occur before returning to "baseline" levels. CONCLUSION This work presents a dynamic view of the microbiome changes that accompany SCI, establishes a resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and may point to a potential therapeutic target for future treatment.
Collapse
Affiliation(s)
- Adam Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Brian McConeghy
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Sunita Sinha
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Martin S. Keung
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Megan Webster
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Corey Nislow
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
- Department of Orthopedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
35
|
Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells. Int J Biol Sci 2021; 17:3381-3400. [PMID: 34512154 PMCID: PMC8416716 DOI: 10.7150/ijbs.62001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic changes are difficult to reverse; thus, epigenetic aberrations, including changes in DNA methylation, histone modifications, and noncoding RNAs, with potential reversibility, have attracted attention as pharmaceutical targets. The current paradigm is that histone deacetylases (HDACs) regulate gene expression via deacetylation of histone and nonhistone proteins or by forming corepressor complexes with transcription factors. The emergence of epigenetic tools related to HDACs can be used as diagnostic and therapeutic markers. HDAC inhibitors that block specific or a series of HDACs have proven to be a powerful therapeutic treatment for immune-related diseases. Here, we summarize the various roles of HDACs and HDAC inhibitors in the development and function of innate and adaptive immune cells and their implications for various diseases and therapies.
Collapse
Affiliation(s)
- Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
36
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
37
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
38
|
O'Connor E, Fourier C, Ran C, Sivakumar P, Liesecke F, Southgate L, Harder AVE, Vijfhuizen LS, Yip J, Giffin N, Silver N, Ahmed F, Hostettler IC, Davies B, Cader MZ, Simpson BS, Sullivan R, Efthymiou S, Adebimpe J, Quinn O, Campbell C, Cavalleri GL, Vikelis M, Kelderman T, Paemeleire K, Kilbride E, Grangeon L, Lagrata S, Danno D, Trembath R, Wood NW, Kockum I, Winsvold BS, Steinberg A, Sjöstrand C, Waldenlind E, Vandrovcova J, Houlden H, Matharu M, Belin AC. Genome-Wide Association Study Identifies Risk Loci for Cluster Headache. Ann Neurol 2021; 90:193-202. [PMID: 34184781 DOI: 10.1002/ana.26150] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10-17 , odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37-1.66) and rs4519530 (p = 6.98 × 10-17 , OR = 1.47, 95% CI = 1.34-1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10-8 , OR = 1.36, 95% CI = 1.22-1.52), and rs11153082 (p = 1.85 × 10-8 , OR = 1.30, 95% CI = 1.19-1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193-202.
Collapse
Affiliation(s)
- Emer O'Connor
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK.,Neurogenetics Laboratory, Institute of Neurology, University College London, London, UK.,Headache and Facial Pain Group, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Carmen Fourier
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ran
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Prasanth Sivakumar
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | | | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK.,Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Aster V E Harder
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisanne S Vijfhuizen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janice Yip
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Nicola Giffin
- Neurology Department, Royal United Hospital, Bath, UK
| | | | - Fayyaz Ahmed
- Department of Neurology, Hull Royal Infirmary, Hull, UK
| | - Isabel C Hostettler
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Brendan Davies
- Department of Neurology, University Hospital North Midlands National Health Service Trust, Stoke-on-Trent, UK
| | - M Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Benjamin S Simpson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Roisin Sullivan
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Joycee Adebimpe
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Olivia Quinn
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Ciaran Campbell
- Science Foundation Ireland FutureNeuro Research Centre, Royal College of Surgeons, Ireland School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland Dublin, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Science Foundation Ireland FutureNeuro Research Centre, Royal College of Surgeons, Ireland School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland Dublin, Dublin, Ireland
| | | | - Tim Kelderman
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Koen Paemeleire
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | | | - Lou Grangeon
- Headache and Facial Pain Group, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.,Department of Neurology, Rouen University Hospital, Rouen, France
| | - Susie Lagrata
- Headache and Facial Pain Group, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Daisuke Danno
- Headache and Facial Pain Group, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Richard Trembath
- Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Nicholas W Wood
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK.,Neurogenetics Laboratory, Institute of Neurology, University College London, London, UK
| | - Ingrid Kockum
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Bendik S Winsvold
- Department of Research, Innovation, and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Anna Steinberg
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Christina Sjöstrand
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Elisabet Waldenlind
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Manjit Matharu
- Headache and Facial Pain Group, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | | |
Collapse
|
39
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
40
|
Zaidi SAH, Thakore N, Singh S, Guzman W, Mehrotra S, Gangaraju V, Husain S. Histone Deacetylases Regulation by δ-Opioids in Human Optic Nerve Head Astrocytes. Invest Ophthalmol Vis Sci 2021; 61:17. [PMID: 32915982 PMCID: PMC7488628 DOI: 10.1167/iovs.61.11.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose We determined whether δ-opioid receptor agonist (SNC-121) regulates acetylation homeostasis via controlling histone deacetylases (HDACs) activity and expression in optic nerve head (ONH) astrocytes. Methods ONH astrocytes were treated with SNC-121 (1 µM) for 24 hours. The HDAC activity was measured using HDAC-specific fluorophore-conjugated synthetic substrates, Boc-Lys(Ac)-AMC and (Boc-Lys(Tfa)-AMC). Protein and mRNA expression of each HDAC was determined by Western blotting and quantitative real-time PCR. IOP in rats was elevated by injecting 2.0 M hypertonic saline into the limbal veins. Results Delta opioid receptor agonist, SNC-121 (1 µM), treatment increased acetylation of histone H3, H2B, and H4 by 128 ± 3%, 45 ± 1%, and 68 ± 2%, respectively. The addition of Garcinol, a histone-acetyltransferase inhibitor, fully blocked SNC-121–induced histone H3 acetylation. SNC-121 reduced the activities of class I and IIb HDACs activities significantly (17 ± 3%) and this decrease in HDACs activities was fully blocked by a selective δ-opioid receptors antagonist, naltrindole. SNC-121 also decrease the mRNA expression of HDAC-3 and HDAC-6 by 19% and 18%, respectively. Furthermore, protein expression of HDAC 1, 2, 3, and 6 was significantly (P < 0.05) decreased by SNC-121 treatment. SNC-121 treatment also reduced lipopolysaccharide-induced TNF-α production from ONH astrocytes and glial fibrillary acidic protein immunostaining in the optic nerve of ocular hypertensive animals. Conclusions We provided evidence that δ-opioid receptor agonist activation increased histone acetylation, decrease HDACs class I and class IIb activities, mRNA, and protein expression, lipopolysaccharide-induced TNF-α production in ONH astrocytes. Our data also demonstrate that SNC-121 treatment decrease glial fibrillary acidic protein immunostaining in the optic nerves of animals with ocular hypertension.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Nakul Thakore
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Sudha Singh
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Wendy Guzman
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Vamsi Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
41
|
Jing Y, Yu Y, Bai F, Wang L, Yang D, Zhang C, Qin C, Yang M, Zhang D, Zhu Y, Li J, Chen Z. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. MICROBIOME 2021; 9:59. [PMID: 33678185 PMCID: PMC7937282 DOI: 10.1186/s40168-021-01007-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/02/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) patients display disruption of gut microbiome, and gut dysbiosis exacerbate neurological impairment in SCI models. Cumulative data support an important role of gut microbiome in SCI. Here, we investigated the hypothesis that fecal microbiota transplantation (FMT) from healthy uninjured mice into SCI mice may exert a neuroprotective effect. RESULTS FMT facilitated functional recovery, promoted neuronal axonal regeneration, improved animal weight gain and metabolic profiling, and enhanced intestinal barrier integrity and GI motility in SCI mice. High-throughput sequencing revealed that levels of phylum Firmicutes, family Christensenellaceae, and genus Butyricimonas were reduced in fecal samples of SCI mice, and FMT remarkably reshaped gut microbiome. Also, FMT-treated SCI mice showed increased amount of fecal short-chain fatty acids (SCFAs), which correlated with alteration of intestinal permeability and locomotor recovery. Furthermore, FMT downregulated IL-1β/NF-κB signaling in spinal cord and NF-κB signaling in gut following SCI. CONCLUSION Our study demonstrates that reprogramming of gut microbiota by FMT improves locomotor and GI functions in SCI mice, possibly through the anti-inflammatory functions of SCFAs. Video Abstract.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Limiao Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Degang Yang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Chao Zhang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Chuan Qin
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Mingliang Yang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Dong Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
- Beijing Clinical Research Institute, Beijing, China
| | - Yanbing Zhu
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
- Beijing Clinical Research Institute, Beijing, China
| | - Jianjun Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhiguo Chen
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
42
|
Garcez ML, Tan VX, Heng B, Guillemin GJ. Sodium Butyrate and Indole-3-propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-induced Human Primary Astrocytes. Int J Tryptophan Res 2021; 13:1178646920978404. [PMID: 33447046 PMCID: PMC7780186 DOI: 10.1177/1178646920978404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between central nervous system (CNS) and gut microbiota plays key roles in neuroinflammation and chronic immune activation that are common features of all neurodegenerative diseases. Imbalance in the microbiota can lead to an increase in the intestinal permeability allowing toxins to diffuse and reach the CNS, as well as impairing the production of neuroprotective metabolites such as sodium butyrate (SB) and indole-3-propionic acid (IPA). The aim of the present study was to evaluate the effect of SB and IPA on LPS-induced production of cytokines and tryptophan metabolites in human astrocytes. Primary cultures of human astrocytes were pre-incubated with SB or IPA for 1 hour before treatment with LPS. Cell viability was not affected at 24, 48 or 72 hours after pre-treatment with SB, IPA or LPS treatment. SB was able to significantly prevent the increase of GM-CSF, MCP-1, IL-6 IL-12, and IL-13 triggered by LPS. SB and IPA also prevented inflammation indicated by the increase in kynurenine and kynurenine/tryptophan ratio induced by LPS treatment. IPA pre-treatment prevented the LPS-induced increase in MCP-1, IL-12, IL-13, and TNF-α levels 24 hours after pre-treatment, but had no effect on tryptophan metabolites. The present study showed for the first time that bacterial metabolites SB and IPA have potential anti-inflammatory effect on primary human astrocytes with potential therapeutic benefit in neurodegenerative disease characterized by the presence of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Michelle L Garcez
- Neurochemistry Laboratory, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa X Tan
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,PANDIS.org, Little Collins St, Melbourne VIC, Australia
| |
Collapse
|
43
|
Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100059. [PMID: 33426367 PMCID: PMC7779861 DOI: 10.1016/j.ynpai.2020.100059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury to the central nervous system in which 60 to 80% of patients experience chronic pain. Unfortunately, this pain is notoriously difficult to treat, with few effective options currently available. Patients are also commonly faced with various compounding injuries and medical challenges, often requiring frequent hospitalization and antibiotic treatment. Change in the gut microbiome from the "normal" state to one of imbalance, referred to as gut dysbiosis, has been found in both patients and rodent models following SCI. Similarities exist in the bacterial changes observed after SCI and other diseases with chronic pain as an outcome. These changes cause a shift in the regulation of inflammation, causing immune cell activation and secretion of inflammatory mediators that likely contribute to the generation/maintenance of SCI pain. Therefore, correcting gut dysbiosis may be used as a tool towards providing patients with effective pain management and improved quality of life.
Collapse
Affiliation(s)
- Courtney A. Bannerman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Prameet M. Sheth
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
44
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Parkinson's Disease Master Regulators on Substantia Nigra and Frontal Cortex and Their Use for Drug Repositioning. Mol Neurobiol 2020; 58:1517-1534. [PMID: 33211252 DOI: 10.1007/s12035-020-02203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases. Available evidences support the view of PD as a complex disease, being the outcome of interactions between genetic and environmental factors. In face of diagnosis and therapy challenges, and the elusive PD etiology, the use of alternative methodological approaches for the elucidation of the disease pathophysiological mechanisms and proposal of novel potential therapeutic interventions has become increasingly necessary. In the present study, we first reconstructed the transcriptional regulatory networks (TN), centered on transcription factors (TF), of two brain regions affected in PD, the substantia nigra pars compacta (SNc) and the frontal cortex (FCtx). Then, we used case-control studies data from these regions to identify TFs working as master regulators (MR) of the disease, based on region-specific TNs. Twenty-nine regulatory units enriched with differentially expressed genes were identified for the SNc, and twenty for the FCtx, all of which were considered MR candidates for PD. Three consensus MR candidates were found for SNc and FCtx, namely ATF2, SLC30A9, and ZFP69B. In order to search for novel potential therapeutic interventions, we used these consensus MR candidate signatures as input to the Connectivity Map (CMap), a computational drug repositioning webtool. This analysis resulted in the identification of four drugs that reverse the expression pattern of all three MR consensus simultaneously, benperidol, harmaline, tubocurarine chloride, and vorinostat, thus suggested as novel potential PD therapeutic interventions.
Collapse
|
46
|
Dragunow M. Human Brain Neuropharmacology: A Platform for Translational Neuroscience. Trends Pharmacol Sci 2020; 41:777-792. [PMID: 32994050 DOI: 10.1016/j.tips.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
Central nervous system (CNS) drug development has been plagued by a failure to translate effective therapies from the lab to the clinic. There are many potential reasons for this, including poor understanding of brain pharmacokinetic (PK) and pharmacodynamic (PD) factors, preclinical study flaws, clinical trial design issues, the complexity and variability of human brain diseases, as well as species differences. To address some of these problems, we have developed a platform for CNS drug discovery comprising: drug screening of primary adult human brain cells; human brain tissue microarray analysis of drug targets; and high-content phenotypic screening methods. In this opinion, I summarise the theoretical basis and the practical development and use of this platform in CNS drug discovery.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Hugh Green Biobank, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
47
|
Xu R, Tan C, He Y, Wu Q, Wang H, Yin J. Dysbiosis of Gut Microbiota and Short-Chain Fatty Acids in Encephalitis: A Chinese Pilot Study. Front Immunol 2020; 11:1994. [PMID: 32973805 PMCID: PMC7468513 DOI: 10.3389/fimmu.2020.01994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Encephalitis, the inflammation of the brain, may be caused by an infection or an autoimmune reaction. However, few researches were focused on the gut microbiome characteristics in encephalitis patients. Methods A prospective observational study was conducted in an academic hospital in Guangzhou from February 2017 to February 2018. Patients with encephalitis were recruited. Fecal and serum samples were collected at admission. Healthy volunteers were enrolled from a community. Disease severity scores were recorded by specialized physicians, including Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA), and Acute Physiology and Chronic Health Evaluation-II (APACHE-II). 16S rRNA sequence was performed to analyze the gut microbiome, then the α-diversities and β-diversities were estimated. Short-chain fatty acids (SCFAs) were extracted from fecal samples and determined by gas chromatography-mass spectrometry. Serum D-lactate (D-LA), intestinal fatty acid-binding protein (iFABP), lipopolysaccharide (LPS), and lipopolysaccharide-binding protein (LBP) were measured by enzyme-linked immunosorbent assay (ELISA). The associations among microbial indexes and clinical parameters were evaluated by Spearman correlation analysis. Results In total, twenty-eight patients were recruited for analysis (median age 46 years; 82.1% male; median GCS 6.5; median SOFA 6.5; median APACHE-II 14.5). Twenty-eight age- and sex-matched healthy subjects were selected as controls. The β-diversities between patients and healthy subjects were significantly different. The α-diversities did not show significant differences between these two groups. In the patient group, the abundances of Bacteroidetes, Proteobacteria, and Bacilli were significantly enriched. Accordingly, fecal SCFA levels were decreased in the patient group, whereas serum D-LA, iFABP, LPS, and LBP levels were increased compared with those in healthy subjects. Correlation analyses showed that disease severity had positive correlations with Proteobacteria and Akkermansia but negative correlations with Firmicutes, Clostridia, and Ruminococcaceae abundances. The cerebrospinal fluid albumin-to-serum albumin ratio (CSAR) was positively related to the α-diversity but negatively correlated with the fecal butyrate concentration. Conclusion Gut microbiota disruption was observed in encephalitis patients, which manifested as pathogen dominance and health-promoting commensal depletion. Disease severity and brain damage may have associations with the gut microbiota or its metabolites. The causal relationship should be further explored in future studies.
Collapse
Affiliation(s)
- Ruoting Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuhong Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huidi Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Nudelman V, Zahalka MA, Nudelman A, Rephaeli A, Kessler-Icekson G. Cardioprotection by AN-7, a prodrug of the histone deacetylase inhibitor butyric acid: Selective activity in hypoxic cardiomyocytes and cardiofibroblasts. Eur J Pharmacol 2020; 882:173255. [PMID: 32553737 DOI: 10.1016/j.ejphar.2020.173255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
The anticancer prodrug butyroyloxymethyl diethylphosphate (AN-7), upon metabolic hydrolysis, releases the histone deacetylase inhibitor butyric acid and imparts histone hyperacetylation. We have shown previously that AN-7 increases doxorubicin-induced cancer cell death and reduces doxorubicin toxicity and hypoxic damage to the heart and cardiomyocytes. The cardiofibroblasts remain unprotected against both insults. Herein we examined the selective effect of AN-7 on hypoxic cardiomyocytes and cardiofibroblasts and investigated mechanisms underlying the cell specific response. Hypoxic cardiomyocytes and cardiofibroblasts or H2O2-treated H9c2 cardiomyoblasts, were treated with AN-7 and cell damage and death were evaluated as well as cell signaling pathways and the expression levels of heme oxygenase-1 (HO-1). AN-7 diminished hypoxia-induced mitochondrial damage and cell death in hypoxic cardiomyocytes and reduced hydrogen peroxide damage in H9c2 cells while increasing cell injury and death in hypoxic cardiofibroblasts. In the cell line, AN-7 induced Akt and ERK survival pathway activation in a kinase-specific manner including phosphorylation of the respective downstream targets, GSK-3β and BAD. Hypoxic cardiomyocytes responded to AN-7 treatment by enhanced phosphorylation of Akt, ERK, GSK-3β and BAD and a significant 6-fold elevation in HO-1 levels. In hypoxic cardiofibroblasts, AN-7 did not activate Akt and ERK beyond the effect of hypoxia alone and induced a limited (~1.5-fold) increase in HO-1. The cell specific differences in kinase activation and in heme oxygenase-1 upregulation may explain, at least in part, the disparate outcome of AN-7 treatment in hypoxic cardiomyocytes and hypoxic cardiofibroblasts.
Collapse
Affiliation(s)
- Vadim Nudelman
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Muayad A Zahalka
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Abraham Nudelman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel.
| | - Ada Rephaeli
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Gania Kessler-Icekson
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
49
|
Microglia, Lifestyle Stress, and Neurodegeneration. Immunity 2020; 52:222-240. [PMID: 31924476 DOI: 10.1016/j.immuni.2019.12.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a revolution in our understanding of microglia biology, including their major role in the etiology and pathogenesis of neurodegenerative diseases. Technological advances have enabled the identification of microglial signatures in health and disease, including the development of new models to investigate and manipulate human microglia in vivo in the context of disease. In parallel, genetic association studies have identified several gene risk factors associated with Alzheimer's disease that are specifically or highly expressed by microglia in the central nervous system (CNS). Here, we discuss evidence for the effect of stress, diet, sleep patterns, physical activity, and microbiota composition on microglia biology and consider how lifestyle might influence an individual's predisposition to neurodegenerative diseases. We discuss how different lifestyles and environmental factors might regulate microglia, potentially leading to increased susceptibility to neurodegenerative disease, and we highlight the need to investigate the contribution of modern environmental factors on microglia modulation in neurodegeneration.
Collapse
|
50
|
Goodus MT, McTigue DM. Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology? Exp Neurol 2019; 325:113160. [PMID: 31863731 DOI: 10.1016/j.expneurol.2019.113160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The liver is essential for numerous physiological processes, including filtering blood from the intestines, metabolizing fats, proteins, carbohydrates and drugs, and regulating iron storage and release. The liver is also an important immune organ and plays a critical role in response to infection and injury throughout the body. Liver functions are regulated by autonomic parasympathetic innervation from the brainstem and sympathetic innervation from the thoracic spinal cord. Thus, spinal cord injury (SCI) at or above thoracic levels disrupts major regulatory mechanisms for hepatic functions. Work in rodents and humans shows that SCI induces liver pathology, including hepatic inflammation and fat accumulation characteristic of a serious form of non-alcoholic fatty liver disease (NAFLD) called non-alcoholic steatohepatitis (NASH). This hepatic pathology is associated with and likely contributes to indices of metabolic dysfunction often noted in SCI individuals, such as insulin resistance and hyperlipidemia. These occur at greater rates in the SCI population and can negatively impact health and quality of life. In this review, we will: 1) Discuss acute and chronic changes in human and rodent liver pathology and function after SCI; 2) Describe how these hepatic changes affect systemic inflammation, iron regulation and metabolic dysfunction after SCI; 3) Describe how disruption of the hepatic autonomic nervous system may be a key culprit in post-injury chronic liver pathology; and 4) Preview ongoing and future research that aims to elucidate mechanisms driving liver and metabolic dysfunction after SCI.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|