1
|
Rahman SM, Hauser C, Luebke AE. Loss of calcitonin gene-related peptide (αCGRP) and use of a vestibular challenge highlight balance deficiencies in aging mice. PLoS One 2024; 19:e0303801. [PMID: 38865379 PMCID: PMC11168652 DOI: 10.1371/journal.pone.0303801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Aging impacts the vestibular system and contributes to imbalance. In fact, imbalance precedes changes in cognition in the elderly. However, research is limited in assessing aging mouse models that are deficient in crucial neuromodulators like Calcitonin Gene-Related Peptide (CGRP). We studied the loss of CGRP and its effects in the aging mouse, namely its effect on both static and dynamic imbalances. Postural sway and rotarod testing were performed before and after a vestibular challenge (VC) in the 129S wild type and the αCGRP (-/-) null mice. Four age groups were tested that correspond to young adulthood, late adulthood, middle age, and senescence in humans. Our results suggest wild type mice experience a decline in rotarod ability due to aging after they reach their prime performance at 6-10 months of age, while the αCGRP (-/-) null mice perform poorly on rotarod early in life but improve with age as they get older, potentially due to vestibular compensation. Our postural sway study suggests that a vestibular challenge can lead to significantly reduced CoP ellipse areas (freezing behaviors) in older mice, and this change occurs earlier in the αCGRP (-/-) null but requires future studies to evaluate anxiety effects. These results indicate that αCGRP is an important component of proper balance and that the loss of αCGRP can contribute to balance complications that may compound with aging.
Collapse
Affiliation(s)
- Shafaqat M. Rahman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Catherine Hauser
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Anne E. Luebke
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
2
|
Marin-Valencia I, Kocabas A, Rodriguez-Navas C, Miloushev VZ, González-Rodríguez M, Lees H, Henry KE, Vaynshteyn J, Longo V, Deh K, Eskandari R, Mamakhanyan A, Berishaj M, Keshari KR. Imaging brain glucose metabolism in vivo reveals propionate as a major anaplerotic substrate in pyruvate dehydrogenase deficiency. Cell Metab 2024; 36:1394-1410.e12. [PMID: 38838644 PMCID: PMC11187753 DOI: 10.1016/j.cmet.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA.
| | - Arif Kocabas
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Rodriguez-Navas
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Manuel González-Rodríguez
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Lees
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly E Henry
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jake Vaynshteyn
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valerie Longo
- Small Animal Imaging Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kofi Deh
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roozbeh Eskandari
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arsen Mamakhanyan
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marjan Berishaj
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayvan R Keshari
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Rahman SM, Hauser C, Luebke AE. Age-Related Balance Problems in Mice Are Sharpened by the Loss of Calcitonin Gene-Related Peptide (CGRP) and a Vestibular Challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546965. [PMID: 37461730 PMCID: PMC10349980 DOI: 10.1101/2023.06.28.546965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Aging impacts the vestibular system and contributes to imbalance. In fact, in the elderly balance deficits often precede changes in cognition. However, imbalance research is limited in assessing aging mouse models that are deficient in neuromodulators like Calcitonin Gene-Related Peptide (CGRP). We studied the loss of CGRP and its effects in the aging mouse, namely its effect on both static and dynamic imbalances. In addition, postural sway and rotarod testing were performed before and after a vestibular challenge (VC) in the 129S wildtype and the αCGRP (-/-) null mice. Four age groups were tested that correspond to young adulthood, late adulthood, middle age, and senescence in humans. Our results suggest wildtype mice experience a decline in rotarod ability with increased age, while the αCGRP (-/-) null mice perform poorly on rotarod early in life and do not improve. Our postural sway study suggests that a vestibular challenge can lead to significantly reduced CoP ellipse areas (freezing behaviors) in older mice, and this change occurs earlier in the αCGRP (-/-) null mouse. These results indicate that αCGRP is an important component of static and dynamic balance; and that the loss of αCGRP can contribute to balance complications that may compound with aging.
Collapse
|
4
|
Tan EJ, Elgar MA, Bian X, Peters RA. Interpreting animal behaviors – A cautionary note about swaying in phasmids. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1065789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diverse animals including snakes, spiders and phasmids sway in response to abiotic and biotic factors. Recent research on swaying in phasmids suggest they may adopt distinctive swaying to reduce detection from predators. This view was recently challenged, by interpreting swaying behavior as serving a balancing function related to postural sway and not a form of anti-predator behavior. We dispute this interpretation as the reanalysis of data for balance was based on an erroneous perception of the upright posture of the insects, contrary to the initial study and natural history observations. We present observations collected from four species of more than 300 phasmids over a three-day period and show that the insects seldom adopt an upright posture (4% of observations). While we appreciate that attempts to reinterpret data form a central role of the scientific method, we urge caution when inferring biological function without an accurate knowledge of the species’ natural history. Investigations of signals in motion require great care to ensure they are interpreted in a natural environment and context.
Collapse
|
5
|
Takahashi M, Nakajima T, Takakusaki K. Preceding Postural Control in Forelimb Reaching Movements in Cats. Front Syst Neurosci 2022; 15:792665. [PMID: 35115911 PMCID: PMC8805610 DOI: 10.3389/fnsys.2021.792665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Postural control precedes the goal-directed movement to maintain body equilibrium during the action. Because the environment continuously changes due to one’s activity, postural control requires a higher-order brain function that predicts the interaction between the body and the environment. Here, we tried to elucidate to what extent such a preceding postural control (PPC) predictively offered a posture that ensured the entire process of the goal-directed movement before starting the action. For this purpose, we employed three cats, which we trained to maintain a four-leg standing posture on force transducers to reach the target by either forelimb. Each cat performed the task under nine target locations in front with different directions and distances. As an index of posture, we employed the center of pressure (CVP) and examined CVP positions when the cat started postural alteration, began to lift its paw, and reached the target. After gazing at the target, each cat started PPC where postural alteration was accompanied by a 20–35 mm CVP shift to the opposite side of the forelimb to be lifted. Then, the cat lifted its paw at the predicted CVP position and reached the forelimb to the target with a CVP shift of only several mm. Moreover, each cat had an optimal target location where the relationship between the cat and target minimized the difference in the CVP positions between the predicted and the final. In this condition, more than 80% of the predicted CVP positions matched the final CVP positions, and the time requiring the reaching movement was the shortest. By contrast, the forelimb reaching movement required a greater CVP shift and longer time when the target was far from the cat. In addition, the time during forelimb reaching showed a negative correlation with the speed of the CVP shift during the PPC. These results suggest that the visuospatial information, such as the body-environment interaction, contributes to the motor programming of the PPC. We conclude that the PPC ensures postural stability throughout the action to optimize the subsequent goal-directed movements. Impairments in these processes may disturb postural stability during movements, resulting in falling.
Collapse
Affiliation(s)
- Mirai Takahashi
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Toshi Nakajima
- Department of Integrative Neuroscience, Faculty of Medicine, The University of Toyama, Toyama, Japan
| | - Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan
- *Correspondence: Kaoru Takakusaki,
| |
Collapse
|
6
|
Objective detection of microtremors in netrin-G2 knockout mice. J Neurosci Methods 2021; 351:109074. [PMID: 33450333 DOI: 10.1016/j.jneumeth.2021.109074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Essential tremor is the most prevalent movement disorder and is thought to be caused by abnormalities in the cerebellar system; however, its underlying neural mechanism is poorly understood. In this study, we found that mice lacking netrin-G2, a cell adhesion molecule which is expressed in neural circuits related to the cerebellar system, exhibited a microtremor resembling an essential tremor. However, it was difficult to quantify microtremors in netrin-G2 KO mice. NEW METHOD We developed a new tremor detector which can quantify the intensity and frequency of a tremor. RESULTS Using this system, we were able to characterize both the microtremors in netrin-G2 KO mice and low-dose harmaline-induced tremors which, to date, had been difficult to detect. Alcohol and anti-tremor drugs, which are effective in decreasing the symptoms of essential tremor in patients, were examined in netrin-G2 KO mice. We found that some drugs lowered the tremor frequency, but had little effect on tremor intensity. Forced swim as a stress stimulus in netrin-G2 KO mice dramatically enhanced tremor symptoms. COMPARISON WITH EXISTING METHODS The detection performance even for tremors induced by low-dose harmaline was similar to that in previous studies or more sensitive than the others. CONCLUSIONS Microtremors in netrin-G2 KO mice are reliably and quantitatively detected by our new tremor detection system. We found different effects of medicines and factors between human essential tremors and microtremors in netrin-G2 KO mice, suggesting that the causations, mechanisms, and symptoms of tremors vary and are heterogeneous, and the objective analyses are required.
Collapse
|
7
|
Gao S, Calderon DP. Robust alternative to the righting reflex to assess arousal in rodents. Sci Rep 2020; 10:20280. [PMID: 33219247 PMCID: PMC7679463 DOI: 10.1038/s41598-020-77162-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
The righting reflex (RR) is frequently used to assess level of arousal and applied to animal models of a range of neurological disorders. RR produces a binary result that, when positive, is used to infer restoration of consciousness, often without further behavioral corroboration. We find that RR is an unreliable metric for arousal/recovery of consciousness. Instead, cortical activity and motor behavior that accompany RR are a non-binary, superior criterion that accurately calibrates and establishes level of arousal in rodents.
Collapse
Affiliation(s)
- Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
- School of Electrical and Computer Engineering, Cornell University, New York, NY, 10044, USA
| | - Diany Paola Calderon
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Marouane E, Rastoldo G, El Mahmoudi N, Péricat D, Chabbert C, Artzner V, Tighilet B. Identification of New Biomarkers of Posturo-Locomotor Instability in a Rodent Model of Vestibular Pathology. Front Neurol 2020; 11:470. [PMID: 32547480 PMCID: PMC7273747 DOI: 10.3389/fneur.2020.00470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
The vestibular system plays a crucial role in maintaining postural balance. Unilateral vestibular lesions result in a typical syndrome characterized by postural imbalance, altered locomotor patterns and gaze stabilization, as well as cognitive and neurovegetative disorders. One of the main difficulties encountered in the development of new anti-vertigo drugs is the lack of sensitivity in the evaluation of this syndrome. Qualitative assessments of the vestibular syndrome have been developed, but methods of conducting quantitative evaluations are critically lacking. Recently, assessments with a dynamic weight-bearing device (DWB®, Bioseb) revealed postural alterations in rats subjected to unilateral vestibular neurectomy (UVN). Our team is evaluating a new version of this device capable of quantifying additional parameters of postural and locomotor equilibrium. The objective of this study was to use this device to assess these new posturo-locomotor parameters in a rat model of a vestibular pathology. The biomarkers measured by this device are as follows: the barycenter, the support surface and the weight distribution of the rats when they were moving or stationary. Before UVN, the rats showed a symmetric distribution of their weight along the lateral axis. In the acute phase after UVN on the left side, the rats distributed more weight on the right side than on the left side and then distributed more weight on the left side. These results corroborate those presented in our previous study. The support surface of the rats increased between 1 day and 30 days after UVN, and the barycenter distribution reflected the weight distribution. In addition, our results show smaller changes in the weight distributions when the animals are moving compared with when they are stationary in the acute phase after UVN. This study provides new information on the static and dynamic postural balance patterns observed after unilateral vestibular loss in rats. These data are relevant because they objectively quantify the posturo-locomotor component of vestibular syndrome as well as the compensatory strategies used after vestibular loss. These results may guide the development of rehabilitation protocols for vestibular patients and the validation of pharmacological compounds favoring the restoration of equilibrium.
Collapse
Affiliation(s)
- Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France.,BIOSEB SAS, Vitrolles, France
| | - Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| | - Nada El Mahmoudi
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| | - David Péricat
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| | | | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| |
Collapse
|
9
|
Timotius IK, Canneva F, Minakaki G, Pasluosta C, Moceri S, Casadei N, Riess O, Winkler J, Klucken J, von Hörsten S, Eskofier B. Dynamic footprint based locomotion sway assessment in α-synucleinopathic mice using Fast Fourier Transform and Low Pass Filter. J Neurosci Methods 2018; 296:1-11. [DOI: 10.1016/j.jneumeth.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/28/2017] [Accepted: 12/09/2017] [Indexed: 12/16/2022]
|
10
|
Funato T, Sato Y, Fujiki S, Sato Y, Aoi S, Tsuchiya K, Yanagihara D. Postural control during quiet bipedal standing in rats. PLoS One 2017; 12:e0189248. [PMID: 29244818 PMCID: PMC5731682 DOI: 10.1371/journal.pone.0189248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
The control of bipedal posture in humans is subject to non-ideal conditions such as delayed sensation and heartbeat noise. However, the controller achieves a high level of functionality by utilizing body dynamics dexterously. In order to elucidate the neural mechanism responsible for postural control, the present study made use of an experimental setup involving rats because they have more accessible neural structures. The experimental design requires rats to stand bipedally in order to obtain a water reward placed in a water supplier above them. Their motions can be measured in detail using a motion capture system and a force plate. Rats have the ability to stand bipedally for long durations (over 200 s), allowing for the construction of an experimental environment in which the steady standing motion of rats could be measured. The characteristics of the measured motion were evaluated based on aspects of the rats’ intersegmental coordination and power spectrum density (PSD). These characteristics were compared with those of the human bipedal posture. The intersegmental coordination of the standing rats included two components that were similar to that of standing humans: center of mass and trunk motion. The rats’ PSD showed a peak at approximately 1.8 Hz and the pattern of the PSD under the peak frequency was similar to that of the human PSD. However, the frequencies were five times higher in rats than in humans. Based on the analysis of the rats’ bipedal standing motion, there were some common characteristics between rat and human standing motions. Thus, using standing rats is expected to be a powerful tool to reveal the neural basis of postural control.
Collapse
Affiliation(s)
- Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-communications, Chofu, Tokyo, Japan
- * E-mail:
| | - Yota Sato
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-communications, Chofu, Tokyo, Japan
| | - Soichiro Fujiki
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yamato Sato
- Department of General Education, Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Kyoto University, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Kyoto University, Kyoto, Japan
| | - Dai Yanagihara
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
11
|
Sato Y, Funato T, Yanagihara D, Sato Y, Aoi S, Fujiki S, Nakano K, Tsuchiya K. Measuring body sway of bipedally standing rat and quantitative evaluation of its postural control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5311-4. [PMID: 26737490 DOI: 10.1109/embc.2015.7319590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human generates very slow (<1 Hz) body sway during standing, and the behavior of this sway is known to be changed characteristically depending on the neural ataxia. In order to investigate the sway mechanism and mechanism of neural ataxia through this sway behavior, the present research proposes an experimental environment of rats under bipedal standing. By the experiment, we succeeded the measurement of six intact rats standing for over 200 seconds without postural supports. Moreover, by comparing measured center of pressure (COP) and that of system model with nonlinear PID control model which is proposed as human standing model, control parameters of rats were numerically evaluated. Evaluated control parameters of rats were close to those of human, i.e., control strategy was considered to be comparable between rats and human.
Collapse
|
12
|
Pharmacological characterization of harmaline-induced tremor activity in mice. Eur J Pharmacol 2009; 616:73-80. [DOI: 10.1016/j.ejphar.2009.05.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/12/2009] [Accepted: 05/19/2009] [Indexed: 01/06/2023]
|
13
|
Colton CA, Wilcock DM, Wink DA, Davis J, Van Nostrand WE, Vitek MP. The effects of NOS2 gene deletion on mice expressing mutated human AbetaPP. J Alzheimers Dis 2008; 15:571-87. [PMID: 19096157 PMCID: PMC2667339 DOI: 10.3233/jad-2008-15405] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nitric oxide synthase 2 (NOS2) and its gene product, inducible NOS (iNOS) play an important role in neuroinflammation by generating nitric oxide (NO), a critical signaling and redox factor in the brain. Although NO is associated with tissue damage, it can also promote cell survival. We hypothesize that during long-term exposure to amyloid-beta (Abeta) in Alzheimer's disease (AD), NO levels fall in the brain to a threshold at which the protective effects of NO cannot be sustained, promoting Abeta mediated damage. Two new mouse models of AD have been developed that utilize this concept of NO's action. These mice express human amyloid-beta protein precursor (AbetaPP) mutations that generate Abeta peptides on a mouse NOS2 knockout background. The APP/NOS2(-/-) bigenic mice progress from Abeta production and amyloid deposition to hyperphosphorylated normal mouse tau at AD-associated epitopes, aggregation and redistribution of tau to somatodendritic regions of neurons and significant neuronal loss including loss of interneurons. This AD-like pathology is accompanied by robust behavioral changes. As APP/NOS2(-/-) bigenic mice more fully model the human AD disease pathology, they may serve as a tool to better understand disease progression in AD and the role of NO in altering chronic neurological disease processes.
Collapse
Affiliation(s)
- Carol A Colton
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|