1
|
Lai BQ, Wu RJ, Wu CR, Yu HY, Xu J, Yang SB, Chen ZH, Li X, Guo YN, Yang Y, Che MT, Wu TT, Fu GT, Yang YH, Chen Z, Hua N, Liu R, Zheng QJ, Chen YF. DON-Apt19S bioactive scaffold transplantation promotes in situ spinal cord repair in rats with transected spinal cord injury by effectively recruiting endogenous neural stem cells and mesenchymal stem cells. Mater Today Bio 2025; 32:101753. [PMID: 40275960 PMCID: PMC12019207 DOI: 10.1016/j.mtbio.2025.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
The spinal cord's limited regeneration is attributed to the scarcity of endogenous stem cells and a poor post-injury microenvironment in adult mammals. To overcome these challenges, we transplanted a DNA aptamer 19S (Apt19S) sustained-release decellularized optic nerve (DON) scaffold (DON-A) into completely transected spinal cord injury (SCI) site in rats and investigated its effect on endogenous stem cell recruitment and differentiation, which subsequently contributed to in situ SCI repair. It has been demonstrated that Apt19S specifically binds to the membrane receptor alkaline phosphatase highly expressed on neural stem cells (NSCs) and mesenchymal stem cells (MSCs), and our study further proved that Apt19S can simultaneously recruit endogenous NSCs and MSCs to the lesion of SCI. In our study, the DON-A promoted stem cell proliferation in the early stage of the injury, followed by the rapid neurogenesis through NSCs and revascularization via MSCs. Synaptic connections between corticospinal tracts and calcitonin gene-related peptide positive nerve fibers with newborn neurons confirmed the formation of endogenous neuronal relays at the injury site, which improved the rats' motor and sensory functions. This study offers a new strategy for recruiting both NSCs and MSCs to synergistically overcome low spinal cord self-repair ability, holding a high potential for clinical translation.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| | - Rong-Jie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chuang-Ran Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Yang Yu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Shang-Bin Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Zheng-Hong Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Rehabilitation Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Nan Guo
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Yue Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Ming-Tian Che
- Cedars Sinai Biobank & Research Pathology Resource, Cedars-Sinai, Los Angeles, CA, 90048, USA
| | - Ting-Ting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Guang-Tao Fu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu-Hui Yang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Hua
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Rui Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Qiu-Jian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuan-Feng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Mileti LN, Baleja JD. The Role of Purine Metabolism and Uric Acid in Postnatal Neurologic Development. Molecules 2025; 30:839. [PMID: 40005150 PMCID: PMC11858483 DOI: 10.3390/molecules30040839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the essential roles of purine metabolism including the catabolic product, uric acid, in the development of dopaminergic neurons of the substantia nigra pars compacta. The high energy requirements of the substantia nigra pars compacta alongside necessary purinergic neurotransmission and the influence of oxidative stress during development makes these neurons uniquely susceptible to changes in purine metabolism. Uric acid's role as a central nervous system antioxidant may help to ameliorate these effects in utero. Understanding the mechanisms by which purines and uric acid influence development of the substantia nigra pars compacta can help further explain neurologic consequences of inborn errors of purine metabolism, such as Lesch-Nyhan disease.
Collapse
Affiliation(s)
| | - James D. Baleja
- Master’s Program in Biomedical Sciences, Departments of Medical Education and Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA;
| |
Collapse
|
3
|
Liu M, Teng T. Exosomes: new targets for understanding axon guidance in the developing central nervous system. Front Cell Dev Biol 2025; 12:1510862. [PMID: 39850798 PMCID: PMC11754257 DOI: 10.3389/fcell.2024.1510862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied. However, the interaction between exosomes and axon guidance molecules is poorly understood. This review summarizes the relationship between exosomes and canonical and non-canonical guidance cues and hypothesizes a possible model for exosomes mediating axon guidance between cells. The roles of exosomes in axon outgrowth, regeneration, and neurodevelopmental disorders are also reviewed, to discuss exosome-guidance interactions as potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Teng Teng
- Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- Department of Histology and Embryology, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
5
|
Zhang YL, Jia SY, Yang B, Miao J, Su C, Cui ZG, Yang LM, Guo JH. Non-linear association of liver enzymes with cognitive performance in the elderly: A cross-sectional study. PLoS One 2024; 19:e0306839. [PMID: 39042647 PMCID: PMC11265699 DOI: 10.1371/journal.pone.0306839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Although liver metabolic dysfunction has been found to potentially elevate susceptibility to cognitive impairment and dementia, there is still insufficient evidence to explore the non-linear association of liver enzymes with cognitive performance. Therefore, we aimed to elucidate the non-linear relationship between liver enzymes and cognitive performance. METHODS In this cross-sectional study, 2764 individuals aged ≥ 60 who participated in the National Health and Nutrition Survey (NHANES) between 2011 and 2014 were included. The primary data comprised liver enzyme levels (alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), AST/ALT ratio, and gamma-glutamyl transferase (GGT)), and cognitive performance was the major measured outcome. The associations were analyzed using weighted multivariate logistic regression, subgroup analysis, a generalized additive model, smooth fitting curves, and threshold effects. RESULTS The results of the fully adjusted model indicated that ALP was negatively associated with the animal fluency test (AFT) score (OR = 1.48, 95% CI: 1.11-1.98), whereas ALT demonstrated a positive association with the consortium to establish a registry for Alzheimer's disease (CERAD) test score (OR = 0.72, 95% CI: 0.53-0.97). Additionally, the AST/ALT ratio was negatively associated with the global cognitive test (OR = 2.39, 95% CI: 1.53-3.73), CERAD (OR = 2.61, 95% CI: 1.77-3.84), and digit symbol substitution test (DSST) scores (OR = 2.51, 95% CI: 1.57-4.02). GGT was also negatively associated with the AFT score (OR = 1.16, 95% CI: 1.01-1.33) in unadjusted model. A non-linear relationship was observed between liver enzymes and the risk of cognitive impairment as assessed by the global cognitive test. Specifically, when ALP > 60 U/L, 0.77 < AST/ALT < 1.76, and 25 < GGT < 94 U/L, higher liver enzyme levels were significantly associated with an elevated cognitive impairment risk, while a lower cognitive impairment risk when ALT level was > 17 U/L. CONCLUSIONS There is a non-linear relationship between liver enzymes and cognitive performance, indicating that liver enzyme levels should be maintained within a certain level to mitigate the risk of cognitive impairment.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Department of Neurological Intensive Care Unit, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi, China
| | - Shi-Ying Jia
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Yang
- Department of Hernia and Abdominal Wall Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhi-Gang Cui
- Department of Neurology, The Third People’s Hospital of Datong, Datong, Shanxi, China
| | - Li-Ming Yang
- Department of Neurological Intensive Care Unit, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi, China
| | - Jun-Hong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
7
|
Robledo-Avila LA, Phillips-Farfán BV, García-Bucio IY, Montes-Sánchez S, Herrera-Vargas MA, Contreras-Garduño J, Núñez-Anita RE, Martínez-Lendech N, Meléndez-Herrera E. Incubation in shaded hatcheries biases sex-determination but preserves Lepidochelys olivacea hatchling physiology. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106244. [PMID: 37924794 DOI: 10.1016/j.marenvres.2023.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Some studies have associated ex situ conservation with cerebral and gonadal developmental delay, as well as decreased motor performance in Lepidochelys olivacea offspring. Ex situ management is also related to a more mature spleen and a differential leukocyte count in newly emerged Lepidochelys olivacea hatchlings. The physiological relevance of a more mature spleen is unknown in sea turtles, but studies in birds suggest an increased immune response. Because egg relocation to hatcheries is a common conservation practice, it is imperative to know its impact on hatchling physiology. Herein, plasma activity of superoxide dismutase, alkaline phosphatase and the alternative complement pathway, as well as total antioxidant capacity and hydrogen peroxide concentrations were quantified in hatchlings from in situ and ex situ nests under basal conditions at nest emergence. Toll-like receptor 4 (tlr4), heat shock proteins (hsp) 70 and hsp90 expression were quantified in the spleen and liver of the hatchlings. Hepatocyte density and nuclear area were quantified in histological sections of the liver and all turtles were sexed by histological sectioning of the gonads. Total antioxidant capacity and hydrogen peroxide concentrations in plasma were lower in turtles from ex situ nests, while tlr4 and hsp70 mRNA expression was higher in the spleen but not in the liver. Ex situ incubation produced 98% male hatchlings, whereas in situ incubation produced 100% females. There were no other differences in the attributes sampled between hatchlings emerging from ex situ and in situ treatments. The results suggest that ex situ relocated turtles may be less prone to oxidative stress than in situ incubated hatchlings and could have more mature splenic function. Together, the data suggest that ex situ relocation to shaded hatcheries biased sex determination but preserved the general physiological condition of sea turtle hatchlings.
Collapse
Affiliation(s)
- Liliana Areli Robledo-Avila
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| | - Bryan Víctor Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán, C.P. 04530, Cd. de México, Mexico.
| | - Irma Yunuen García-Bucio
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| | - Shannen Montes-Sánchez
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| | - Ma Antonia Herrera-Vargas
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de la Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Rosa Elvira Núñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, 58130, Morelia, Michoacán, Mexico.
| | - Norma Martínez-Lendech
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de la Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337, Morelia, Michoacán, Mexico.
| |
Collapse
|
8
|
Liang Y, Mao Y, Liang W, Liang L, Suo M, Xue J, Yang H. Association of serum alkaline phosphatase and depression in US adults: a population-based cross-sectional study. Front Psychiatry 2023; 14:1131105. [PMID: 37265554 PMCID: PMC10229779 DOI: 10.3389/fpsyt.2023.1131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Background Depression, a serious public health disorder, is increasingly prevalent worldwide. An association between alkaline phosphatase (ALP) and neurological disorders has been reported. However, data on ALP and depression risk are scarce, which warrants attention. Methods We assessed the association between ALP and risk of depression in adults from the 2007-2014 National Health and Nutrition Examination Survey (NHANES). Depression was assessed using the Patient Health Questionnaire-9. Univariate and multivariate logistic regression were used to assess the association between ALP and risk of depression, and subgroup analyses were also performed. Results A total of 17,485 participants were included. The prevalence of depression was 9.3% (1,631/17,485) and ALP was significantly associated with the risk of depression when ALP was a categorical variable (quadratic or categorized by 79 U/L) in a multivariate logistic regression model after adjusting for confounding factors (≥79 U/L vs. <79 U/L, adjusted OR, 1.15; 95%CI, 1.02-1.29). Each 1-unit increase in ALP (log2) was associated with a 20% increase in depression prevalence (adjusted OR, 1.20; 95%CI, 1.06-1.36) when ALP was used as a continuous variable. Subgroup analysis showed that ALP was positively associated with the risk of depression with different characteristics. Conclusion Our findings suggest that higher alkaline phosphatase levels, even within the normal range, are significantly associated with a higher risk of depression in US adults. Such findings require further prospective studies to provide more evidence.
Collapse
Affiliation(s)
- Yujiang Liang
- Department of Laboratory Medicine, Fengfeng General Hospital of North China Medical & Health Group, Han Dan, Hebei, China
| | - Yafei Mao
- Department of Laboratory Medicine, Fengfeng General Hospital of North China Medical & Health Group, Han Dan, Hebei, China
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | - Liping Liang
- Department of Laboratory Medicine, Fengfeng General Hospital of North China Medical & Health Group, Han Dan, Hebei, China
| | - Min Suo
- Department of Laboratory Medicine, Fengfeng General Hospital of North China Medical & Health Group, Han Dan, Hebei, China
| | - Juan Xue
- Department of Laboratory Medicine, Fengfeng General Hospital of North China Medical & Health Group, Han Dan, Hebei, China
| | - Hui Yang
- Department of Orthopaedics, Fengfeng General Hospital of North China Medical & Health Group, Han Dan, Hebei, China
| |
Collapse
|
9
|
Sun Y, Kong J, Ge X, Mao M, Yu H, Wang Y. An Antisense Oligonucleotide-Loaded Blood-Brain Barrier Penetrable Nanoparticle Mediating Recruitment of Endogenous Neural Stem Cells for the Treatment of Parkinson's Disease. ACS NANO 2023; 17:4414-4432. [PMID: 36688425 DOI: 10.1021/acsnano.2c09752] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic (DA) neurons and currently cannot be cured. One selected antisense oligonucleotide (ASO) is reported to be effective for the treatment of PD. However, ASO is usually intrathecally administered by lumbar puncture into the cerebral spinal fluid, through which the risks of highly invasive neurosurgery are the major concerns. In this study, ZAAM, an ASO-loaded, aptamer Apt 19S-conjugated, neural stem cell membrane (NSCM)-coated nanoparticle (NP), was developed for the targeted treatment of PD. NSCM facilitated the blood-brain barrier (BBB) penetration of NPs, and both NSCM and Apt 19S promoted the recruitment of the neural stem cells (NSCs) toward the PD site for DA neuron regeneration. The behavioral tests demonstrated that ZAAM highly improved the efficacy of ASO on PD by the targeted delivery of ASO and the recruitment of NSCs. This work is a heuristic report of (1) nonchemoattractant induced endogenous NSC recruitment, (2) NSCM-coated nanoparticles for the treatment of neurodegenerative diseases, and (3) systemic delivery of ASO for the treatment of PD. These findings provide insights into the development of biomimetic BBB penetrable drug carriers for precise diagnosis and therapy of central nervous system diseases.
Collapse
Affiliation(s)
- Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
- Ningbo Research Institute, Zhejiang University, Ningbo315100, P.R. China
| |
Collapse
|
10
|
Habib SJ, Acebrón SP. Wnt signalling in cell division: from mechanisms to tissue engineering. Trends Cell Biol 2022; 32:1035-1048. [PMID: 35717422 DOI: 10.1016/j.tcb.2022.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/21/2023]
Abstract
Wnt signalling is an essential player in tissue formation, notably in the regulation of stem cell function. Wnt signalling is best known for its roles in G1/S progression. However, a complex Wnt programme that also mediates mitotic progression and asymmetric cell division (ACD) is emerging. Recent developments in this area have provided mechanistic insights as well as tools to engineer or target Wnt signalling for translational and therapeutic purposes. Here, we discuss the bidirectional relationship between Wnt activity and mitosis. We emphasise how various Wnt-dependent mechanisms control spindle dynamics, chromosome segregation, and ACD. Finally, we illustrate how knowledge about these mechanisms has been successfully employed in tissue engineering for regenerative medicine applications.
Collapse
Affiliation(s)
- Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7a, CH-1005 Lausanne, Switzerland.
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Bartlett CL, Cave EM, Crowther NJ, Ferris WF. A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation. Mol Cell Biochem 2022; 477:2093-2106. [PMID: 35471716 DOI: 10.1007/s11010-022-04429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is one of four isozymes, which include germ cell, placental and intestinal alkaline phosphatases. The TNAP isozyme has 3 isoforms (liver, bone and kidney) which differ by tissue expression and glycosylation pattern. Despite a long history of investigation, the exact function of TNAP in many tissues is largely unknown. Only the bone isoform has been well characterised during mineralization where the enzyme hydrolyses pyrophosphate to inorganic phosphate, which combines with calcium to form hydroxyapatite crystals deposited as new bone. The inorganic phosphate also increases gene expression of proteins that support tissue mineralization. Recent studies have shown that TNAP is expressed in preadipocytes from several species, and that inhibition of TNAP activity causes attenuation of intracellular lipid accumulation in these and other lipid-storing cells. The mechanism by which TNAP stimulates lipid accumulation is not known; however, proteins that are important for controlling phosphate levels in bone are also expressed in adipocytes. This review examines the evidence that inorganic phosphate generated by TNAP promotes transcription that enhances the expression of the regulators of lipid storage and consequently, that TNAP has a major function of lipid metabolism.
Collapse
Affiliation(s)
- Cara-Lesley Bartlett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleanor Margaret Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Nigel John Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
12
|
Goettsch C, Strzelecka-Kiliszek A, Bessueille L, Quillard T, Mechtouff L, Pikula S, Canet-Soulas E, Luis MJ, Fonta C, Magne D. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res 2022; 118:84-96. [PMID: 33070177 PMCID: PMC8752354 DOI: 10.1093/cvr/cvaa299] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
Collapse
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen
University, Aachen, Germany
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| | - Thibaut Quillard
- PHY-OS Laboratory, UMR 1238 INSERM, Université de Nantes, CHU
de Nantes, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France
- CREATIS Laboratory, CNRS UMR 5220, Inserm U1044, Université Claude Bernard
Lyon 1, Lyon, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude
Bernard Lyon 1, Lyon, France
| | - Millan Jose Luis
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery
Institute, La Jolla, CA 92037, USA
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de
Toulouse, France
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| |
Collapse
|
13
|
Grković I, Mitrović N, Dragić M. Ectonucleotidases in the hippocampus: Spatial distribution and expression after ovariectomy and estradiol replacement. VITAMINS AND HORMONES 2021; 118:199-221. [PMID: 35180927 DOI: 10.1016/bs.vh.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular purine nucleotides, such as adenosine 5'-triphosphate (ATP), are important modulators of hippocampal function and plasticity. In the extracellular space, ATP is inherently short-lived molecule, which undergoes rapid enzymatic degradation to adenosine by ectonucleotidases. Given that ectonucleotidases have distinct and overlapping distribution in the hippocampus, and as ovarian hormones participate in a formation, maturation, and a refinement of synaptic contacts, both during development and in adulthood, the present chapter summarizes known data about spatial distribution of selected ecto-enzymes and estradiol-induced effects on ectonucleotidases in the rat hippocampus.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Sekaran S, Vimalraj S, Thangavelu L. The Physiological and Pathological Role of Tissue Nonspecific Alkaline Phosphatase beyond Mineralization. Biomolecules 2021; 11:1564. [PMID: 34827562 PMCID: PMC8615537 DOI: 10.3390/biom11111564] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme responsible for skeletal tissue mineralization. It is involved in the dephosphorylation of various physiological substrates, and has vital physiological functions, including extra-skeletal functions, such as neuronal development, detoxification of lipopolysaccharide (LPS), an anti-inflammatory role, bile pH regulation, and the maintenance of the blood brain barrier (BBB). TNAP is also implicated in ectopic pathological calcification of soft tissues, especially the vasculature. Although it is the crucial enzyme in mineralization of skeletal and dental tissues, it is a logical clinical target to attenuate vascular calcification. Various tools and studies have been developed to inhibit its activity to arrest soft tissue mineralization. However, we should not neglect its other physiological functions prior to therapies targeting TNAP. Therefore, a better understanding into the mechanisms mediated by TNAP is needed for minimizing off targeted effects and aid in the betterment of various pathological scenarios. In this review, we have discussed the mechanism of mineralization and functions of TNAP beyond its primary role of hard tissue mineralization.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| |
Collapse
|
15
|
Sun Z, Tang Y, Zhang Y, Fang Y, Jia J, Zeng W, Fang D. Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division. Nat Commun 2021; 12:5941. [PMID: 34642323 PMCID: PMC8511096 DOI: 10.1038/s41467-021-26203-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling usually functions through a spatial gradient. Localized Wnt3a signaling can induce the asymmetric division of mouse embryonic stem cells, where proximal daughter cells maintain self-renewal and distal daughter cells acquire hallmarks of differentiation. Here, we develop an approach, same cell epigenome and transcriptome sequencing, to jointly profile the epigenome and transcriptome in the same single cell. Utilizing this method, we profiled H3K27me3 and H3K4me3 levels along with gene expression in mouse embryonic stem cells with localized Wnt3a signaling, revealing the cell type-specific maps of the epigenome and transcriptome in divided daughter cells. H3K27me3, but not H3K4me3, is correlated with gene expression changes during asymmetric cell division. Furthermore, cell clusters identified by H3K27me3 recapitulate the corresponding clusters defined by gene expression. Our study provides a convenient method to jointly profile the epigenome and transcriptome in the same cell and reveals mechanistic insights into the gene regulatory programs that maintain and reset stem cell fate during differentiation. A localized Wnt3a signal has been shown to induce asymmetric division of mouse embryonic stem cells. Here the authors develop SET-seq, an approach to jointly profile epigenome and transcriptome in the same single cell and use it to provide mechanistic insights into the gene regulatory programs for maintaining and resetting stem cell fate during differentiation.
Collapse
Affiliation(s)
- Zhongxing Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuan Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqi Jia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiwu Zeng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
16
|
Li S, Wang W, Zhang Q, Wang Y, Wang A, Zhao X. Association Between Alkaline Phosphatase and Clinical Outcomes in Patients With Spontaneous Intracerebral Hemorrhage. Front Neurol 2021; 12:677696. [PMID: 34526953 PMCID: PMC8435581 DOI: 10.3389/fneur.2021.677696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Spontaneous intracerebral hemorrhage (ICH) is associated with high rates of mortality and morbidity. Alkaline phosphatase (ALP) is related to increased risk of cardiovascular events and is also closely associated with adverse outcomes after ischemic or hemorrhagic stroke. However, there are limited data about the effect of ALP on clinical outcomes after ICH. Therefore, we aimed to investigate the relationship between serum ALP level and prognosis in ICH patients. Methods: From January 2014 to September 2016, 939 patients with spontaneous ICH were enrolled in our study from 13 hospitals in Beijing. Patients were categorized into four groups based on the ALP quartiles (Q1, Q2, Q3, Q4). The main outcomes were 30-day, 90-day, and 1-year poor functional outcomes (modified Rankin Scale score of 3-6). Multivariable logistic regression and interaction analyses were performed to evaluate the relationships between ALP and clinical outcomes after ICH. Results: In the logistic regression analysis, compared with the third quartile of ALP, the adjusted odds ratios of the Q1, Q2, and Q4 for 30-day poor functional outcome were 1.31 (0.80-2.15), 1.16 (0.71-1.89), and 2.16 (1.32-3.55). In terms of 90-day and 1-year poor functional outcomes, the risks were significantly higher in the highest quartile of ALP compared with the third quartile after adjusting the confounding factors [90-day: highest quartile OR = 1.86 (1.12-3.10); 1-year: highest quartile OR = 2.26 (1.34-3.80)]. Moreover, there was no significant interaction between ALP and variables like age or sex. Conclusions: High ALP level (>94.8 U/L) was independently associated with 30-day, 90-day, and 1-year poor functional outcomes in ICH patients. Serum ALP might serve as a predictor for poor functional outcomes after ICH onset.
Collapse
Affiliation(s)
- Sijia Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Mazzarino RC, Baresova V, Zikánová M, Duval N, Wilkinson TG, Patterson D, Vacano GN. Transcriptome and metabolome analysis of crGART, a novel cell model of de novo purine synthesis deficiency: Alterations in CD36 expression and activity. PLoS One 2021; 16:e0247227. [PMID: 34283828 PMCID: PMC8291708 DOI: 10.1371/journal.pone.0247227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
In humans, GART [phosphoribosylglycinamide formyltransferase (EC 2.1.2.2) / phosphoribosylglycinamide synthetase (EC 6.3.4.13) / phosphoribosylaminoimidazole synthetase (EC 6.3.3.1)] is a trifunctional protein which catalyzes the second, third, and fifth reactions of the ten step de novo purine synthesis (DNPS) pathway. The second step of DNPS is conversion of phosphoribosylamine (5-PRA) to glycineamide ribonucleotide (GAR). 5-PRA is extremely unstable under physiological conditions and is unlikely to accumulate in the absence of GART activity. Recently, a HeLa cell line null mutant for GART was constructed via CRISPR-Cas9 mutagenesis. This cell line, crGART, is an important cellular model of DNPS inactivation that does not accumulate DNPS pathway intermediates. In the current study, we characterized the crGART versus HeLa transcriptomes in purine-supplemented and purine-depleted growth conditions. We observed multiple transcriptome changes and discuss pathways and ontologies particularly relevant to Alzheimer disease and Down syndrome. We selected the Cluster of Differentiation (CD36) gene for initial analysis based on its elevated expression in crGART versus HeLa as well as its high basal expression, high log2 value, and minimal P-value.
Collapse
Affiliation(s)
- Randall C. Mazzarino
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, United States of America
| | - Veronika Baresova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Nathan Duval
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Terry G. Wilkinson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| | - David Patterson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Guido N. Vacano
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| |
Collapse
|
18
|
Alçada-Morais S, Gonçalves N, Moreno-Juan V, Andres B, Ferreira S, Marques JM, Magalhães J, Rocha JMM, Xu X, Partidário M, Cunha RA, López-Bendito G, Rodrigues RJ. Adenosine A2A Receptors Contribute to the Radial Migration of Cortical Projection Neurons through the Regulation of Neuronal Polarization and Axon Formation. Cereb Cortex 2021; 31:5652-5663. [PMID: 34184030 DOI: 10.1093/cercor/bhab188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/02/2023] Open
Abstract
Cortical interneurons born in the subpallium reach the cortex through tangential migration, whereas pyramidal cells reach their final position by radial migration. Purinergic signaling via P2Y1 receptors controls the migration of intermediate precursor cells from the ventricular zone to the subventricular zone. It was also reported that the blockade of A2A receptors (A2AR) controls the tangential migration of somatostatin+ interneurons. Here we found that A2AR control radial migration of cortical projection neurons. In A2AR-knockout (KO) mouse embryos or naïve mouse embryos exposed to an A2AR antagonist, we observed an accumulation of early-born migrating neurons in the lower intermediate zone at late embryogenesis. In utero knockdown of A2AR also caused an accumulation of neurons at the lower intermediate zone before birth. This entails the presently identified ability of A2AR to promote multipolar-bipolar transition and axon formation, critical for the transition of migrating neurons from the intermediate zone to the cortical plate. This effect seems to require extracellular ATP-derived adenosine since a similar accumulation of neurons at the lower intermediate zone was observed in mice lacking ecto-5'-nucleotidase (CD73-KO). These findings frame adenosine as a fine-tune regulator of the wiring of cortical inhibitory and excitatory networks.
Collapse
Affiliation(s)
- Sofia Alçada-Morais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | | | - Belén Andres
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante 03550, Spain
| | - Sofia Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Joana M Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Joana Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - João M M Rocha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Xinli Xu
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Matilde Partidário
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal
| | | | - Ricardo J Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| |
Collapse
|
19
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
20
|
Zhang Z, Nam HK, Crouch S, Hatch NE. Tissue Nonspecific Alkaline Phosphatase Function in Bone and Muscle Progenitor Cells: Control of Mitochondrial Respiration and ATP Production. Int J Mol Sci 2021; 22:ijms22031140. [PMID: 33498907 PMCID: PMC7865776 DOI: 10.3390/ijms22031140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue nonspecific alkaline phosphatase (TNAP/Alpl) is associated with cell stemness; however, the function of TNAP in mesenchymal progenitor cells remains largely unknown. In this study, we aimed to establish an essential role for TNAP in bone and muscle progenitor cells. We investigated the impact of TNAP deficiency on bone formation, mineralization, and differentiation of bone marrow stromal cells. We also pursued studies of proliferation, mitochondrial function and ATP levels in TNAP deficient bone and muscle progenitor cells. We find that TNAP deficiency decreases trabecular bone volume fraction and trabeculation in addition to decreased mineralization. We also find that Alpl−/− mice (global TNAP knockout mice) exhibit muscle and motor coordination deficiencies similar to those found in individuals with hypophosphatasia (TNAP deficiency). Subsequent studies demonstrate diminished proliferation, with mitochondrial hyperfunction and increased ATP levels in TNAP deficient bone and muscle progenitor cells, plus intracellular expression of TNAP in TNAP+ cranial osteoprogenitors, bone marrow stromal cells, and skeletal muscle progenitor cells. Together, our results indicate that TNAP functions inside bone and muscle progenitor cells to influence mitochondrial respiration and ATP production. Future studies are required to establish mechanisms by which TNAP influences mitochondrial function and determine if modulation of TNAP can alter mitochondrial respiration in vivo.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA;
| | - Hwa Kyung Nam
- School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Avenue, Ann Arbor, MI 48103, USA; (H.K.N.); (S.C.)
| | - Spencer Crouch
- School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Avenue, Ann Arbor, MI 48103, USA; (H.K.N.); (S.C.)
| | - Nan E. Hatch
- School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Avenue, Ann Arbor, MI 48103, USA; (H.K.N.); (S.C.)
- Correspondence: ; Tel.: +1-734-764-6567
| |
Collapse
|
21
|
Purinergic Receptor Blockade with Suramin Increases Survival of Postnatal Neural Progenitor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22020713. [PMID: 33445804 PMCID: PMC7828253 DOI: 10.3390/ijms22020713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Neural progenitor cells (NPCs) are self-renewing and multipotent cells that persist in the postnatal and adult brain in the subventricular zone and the hippocampus. NPCs can be expanded in vitro to be used in cell therapy. However, expansion is limited, since the survival and proliferation of adult NPCs decrease with serial passages. Many signaling pathways control NPC survival and renewal. Among these, purinergic receptor activation exerts differential effects on the biology of adult NPCs depending on the cellular context. In this study, we sought to analyze the effect of a general blockade of purinergic receptors with suramin on the proliferation and survival of NPCs isolated from the subventricular zone of postnatal rats, which are cultured as neurospheres. Treatment of neurospheres with suramin induced a significant increase in neurosphere diameter and in NPC number attributed to a decrease in apoptosis. Proliferation and multipotency were not affected. Suramin also induced an increase in the gap junction protein connexin43 and in vascular endothelial growth factor, which might be involved in the anti-apoptotic effect. Our results offer a valuable tool for increasing NPC survival before implantation in the lesioned brain and open the possibility of using this drug as adjunctive therapy to NPC transplantation.
Collapse
|
22
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
23
|
Tissue-Nonspecific Alkaline Phosphatase-A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease. Biomolecules 2020; 10:biom10121648. [PMID: 33302551 PMCID: PMC7763311 DOI: 10.3390/biom10121648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme’s role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.
Collapse
|
24
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
25
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
26
|
Investigation of alpl expression and Tnap-activity in zebrafish implies conserved functions during skeletal and neuronal development. Sci Rep 2020; 10:13321. [PMID: 32770041 PMCID: PMC7414108 DOI: 10.1038/s41598-020-70152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare genetic disease with diverse symptoms and a heterogeneous severity of onset with underlying mutations in the ALPL gene encoding the ectoenzyme Tissue-nonspecific alkaline phosphatase (TNAP). Considering the establishment of zebrafish (Danio rerio) as a new model organism for HPP, the aim of the study was the spatial and temporal analysis of alpl expression in embryos and adult brains. Additionally, we determined functional consequences of Tnap inhibition on neural and skeletal development in zebrafish. We show that expression of alpl is present during embryonic stages and in adult neuronal tissues. Analyses of enzyme function reveal zones of pronounced Tnap-activity within the telencephalon and the mesencephalon. Treatment of zebrafish embryos with chemical Tnap inhibitors followed by axonal and cartilage/mineralized tissue staining imply functional consequences of Tnap deficiency on neuronal and skeletal development. Based on the results from neuronal and skeletal tissue analyses, which demonstrate an evolutionary conserved role of this enzyme, we consider zebrafish as a promising species for modeling HPP in order to discover new potential therapy strategies in the long-term.
Collapse
|
27
|
Elevated serum alkaline phosphatase as a predictor of cognitive impairment in patients with acute ischaemic stroke: A retrospective cohort study. Arch Gerontol Geriatr 2020; 89:104104. [PMID: 32460124 DOI: 10.1016/j.archger.2020.104104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND In the present study, we assessed the relationship between serum alkaline phosphatase (ALP) levels and cognitive function changes in acute ischaemic stroke patients. METHODS We retrospectively collected the demographic data and clinical information from the medical records of patients after the onset of ischaemic stroke. We used the Chinese version of the Mini-Mental State Examination to assess cognitive function. Mixed linear and logistic regression models adjusted for several factors were used to explore the relationship between ALP and cognitive impairment. RESULTS A total of 1019 patients were included in the analysis, including 523 poststroke patients with cognitive impairment (PSCI) and 496 patients with non-PSCI. The incidence of poststroke cognitive impairment was 51.3 %. The serum ALP level in the PSCI group was significantly higher than that in the non-PSCI group (86.5 ± 18.9 U/L vs 68.6 ± 15.5 U/L, P < 0.001). The mixed linear model fully adjusted for all variables indicated that the ALP level was positively associated with cognitive impairment (based on the Mini-mental State Examination score) decline, with changes from -0.54 to -0.16 per unit increase in ALP. The logistic regression revealed that the odds of cognitive impairment increased by 42 % when the ALP concentration increased by one U/L (odds ratio (OR) = 1.42, 95 %CI: 1.17-3.09, P = 0.012). The spline regression model further confirmed the dose-response relationships between ALP levels and three-month cognitive impairment (P for nonlinear trend = 0.012). CONCLUSION The present study revealed that relatively high serum ALP levels at baseline might be an independent risk factor for cognitive impairment in patients with acute ischaemic stroke.
Collapse
|
28
|
Zaher DM, El‐Gamal MI, Omar HA, Aljareh SN, Al‐Shamma SA, Ali AJ, Zaib S, Iqbal J. Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000011. [DOI: 10.1002/ardp.202000011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Dana M. Zaher
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
| | - Mohammed I. El‐Gamal
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
- College of PharmacySharjah United Arab Emirates
- Department of Medicinal ChemistryFaculty of PharmacyMansoura Egypt
| | - Hany A. Omar
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
- College of PharmacySharjah United Arab Emirates
- Department of PharmacologyFaculty of PharmacyBeni‐Suef Egypt
| | | | | | - Aya J. Ali
- College of PharmacySharjah United Arab Emirates
| | - Sumera Zaib
- Centre for Advanced Drug ResearchCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug ResearchCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| |
Collapse
|
29
|
Brichacek AL, Benkovic SA, Chakraborty S, Nwafor DC, Wang W, Jun S, Dakhlallah D, Geldenhuys WJ, Pinkerton AB, Millán JL, Brown CM. Systemic inhibition of tissue-nonspecific alkaline phosphatase alters the brain-immune axis in experimental sepsis. Sci Rep 2019; 9:18788. [PMID: 31827139 PMCID: PMC6906465 DOI: 10.1038/s41598-019-55154-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitous enzyme present in many cells and tissues, including the central nervous system. Yet its functions at the brain-immune axis remain unclear. The goal of this study was to use a novel small molecular inhibitor of TNAP, SBI-425, to interrogate the function of TNAP in neuroimmune disorders. Following intraperitoneal (IP) administration of SBI-425, mass spectrometry analysis revealed that the SBI-425 does not cross the blood-brain barrier (BBB) in healthy mice. To elucidate the role of TNAP at the brain-immune axis, mice were subjected to experimental sepsis and received either vehicle or SBI-425 (25 mg/kg, IP) daily for 7 days. While SBI-425 administration did not affect clinical severity outcomes, we found that SBI-425 administration suppressed CD4 + Foxp3+ CD25- and CD8 + Foxp3+ CD25- splenocyte T-cell populations compared to controls. Further evaluation of SBI-425's effects in the brain revealed that TNAP activity was suppressed in the brain parenchyma of SBI-425-treated mice compared to controls. When primary brain endothelial cells were treated with a proinflammatory stimulus the addition of SBI-425 treatment potentiated the loss of barrier function in BBB endothelial cells. To further demonstrate a protective role for TNAP at endothelial barriers within this axis, transgenic mice with a conditional overexpression of TNAP were subjected to experimental sepsis and found to have increased survival and decreased clinical severity scores compared to controls. Taken together, these results demonstrate a novel role for TNAP activity in shaping the dynamic interactions within the brain-immune axis.
Collapse
Affiliation(s)
- Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Stanley A Benkovic
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Divine C Nwafor
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Wei Wang
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Sujung Jun
- Department of Physiology and Pharmacology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Duaa Dakhlallah
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | | | - José Luis Millán
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
30
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
31
|
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development. Semin Cell Dev Biol 2019; 95:34-41. [DOI: 10.1016/j.semcdb.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
|
32
|
Nho K, Kueider-Paisley A, Ahmad S, MahmoudianDehkordi S, Arnold M, Risacher SL, Louie G, Blach C, Baillie R, Han X, Kastenmüller G, Trojanowski JQ, Shaw LM, Weiner MW, Doraiswamy PM, van Duijn C, Saykin AJ, Kaddurah-Daouk R. Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers. JAMA Netw Open 2019; 2:e197978. [PMID: 31365104 PMCID: PMC6669786 DOI: 10.1001/jamanetworkopen.2019.7978] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE Increasing evidence suggests an important role of liver function in the pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore, investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers would improve the understanding of the role of metabolic dysfunction in AD. OBJECTIVE To examine whether liver function markers are associated with cognitive dysfunction and the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, serum-based liver function markers were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy, brain glucose metabolism, and amyloid-β accumulation. Associations of liver function markers with AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted for confounding variables and multiple comparisons. Statistical analysis was performed from November 1, 2017, to February 28, 2019. EXPOSURES Five serum-based liver function markers (total bilirubin, albumin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging Initiative participants were used as exposure variables. MAIN OUTCOMES AND MEASURES Primary outcomes included diagnosis of AD, composite scores for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic resonance imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission tomography, and amyloid-β accumulation measured by [18F]florbetapir positron emission tomography. RESULTS Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 men; mean [SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with significant memory concern, 298 with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312 with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI, 1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive performance (AST to ALT ratio: β [SE], -0.465 [0.180]; P = .02 for memory composite score; β [SE], -0.679 [0.215]; P = .006 for executive function composite score; ALT: β [SE], 0.397 [0.128]; P = .006 for memory composite score; β [SE], 0.637 [0.152]; P < .001 for executive function composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-β 1-42 levels (β [SE], -0.170 [0.061]; P = .04) and increased amyloid-β deposition (amyloid biomarkers), higher CSF phosphorylated tau181 (β [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF total tau levels (β [SE], 0.160 [0.049]; P = .02) and reduced brain glucose metabolism (β [SE], -0.123 [0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with increased amyloid-β deposition (amyloid biomarkers), and reduced brain glucose metabolism (β [SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers). CONCLUSIONS AND RELEVANCE Consistent associations of serum-based liver function markers with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic disturbances in the pathophysiology of AD. Further studies are needed to determine if these associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues for novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | | | - Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | | | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Shannon L. Risacher
- Center for Computational Biology and Bioinformatics, Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Michael W. Weiner
- Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco
| | - P. Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, United Kingdom
| | - Andrew J. Saykin
- Center for Computational Biology and Bioinformatics, Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
33
|
Nam HK, Vesela I, Siismets E, Hatch NE. Tissue nonspecific alkaline phosphatase promotes calvarial progenitor cell cycle progression and cytokinesis via Erk1,2. Bone 2019; 120:125-136. [PMID: 30342227 PMCID: PMC6360114 DOI: 10.1016/j.bone.2018.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023]
Abstract
Bone growth is dependent upon the presence of self-renewing progenitor cell populations. While the contribution of Tissue Nonspecific Alkaline Phosphatase (TNAP) enzyme activity in promoting bone mineralization when expressed in differentiated bone forming cells is well understood, little is known regarding the role of TNAP in bone progenitor cells. We previously found diminished proliferation in the calvarial MC3T3E1 cell line upon suppression of TNAP by shRNA, and in calvarial cells and tissues of TNAP-/- mice. These findings indicate that TNAP promotes cell proliferation. Here we investigate how TNAP mediates this effect. Results show that TNAP is essential for calvarial progenitor cell cycle progression and cytokinesis, and that these effects are mediated by inorganic phosphate and Erk1/2. Levels of active Erk1/2 are significantly diminished in TNAP deficient cranial cells and tissues even in the presence of inorganic phosphate. Moreover, in the absence of TNAP, FGFR2 expression levels are high and FGF2 rescues phospho-Erk1/2 levels and cell cycle abnormalities to a significantly greater extent than inorganic phosphate. Based upon the data we propose a model in which TNAP stimulates Erk1/2 activity via both phosphate dependent and independent mechanisms to promote cell cycle progression and cytokinesis in calvarial bone progenitor cells. Concomitantly, TNAP feeds back to inhibit FGFR2 expression. These results identify a novel mechanism by which TNAP promotes calvarial progenitor cell renewal and indicate that converging pathways exist downstream of FGF signaling and TNAP activity to control craniofacial skeletal development.
Collapse
Affiliation(s)
- Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Iva Vesela
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Erica Siismets
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
34
|
Grković I, Drakulić D, Martinović J, Mitrović N. Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications. Curr Neuropharmacol 2019; 17:84-98. [PMID: 28521702 PMCID: PMC6341498 DOI: 10.2174/1570159x15666170518151541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'- nucleotidase (eN). METHODS Studies related to the expression patterns of ectonucleotidases and their known features during brain development are reviewed, highlighting involvement of these enzymes in synapse formation and maturation in physiological as well as in pathological states. RESULTS During brain development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. NPPs are expressed at early embryonic days, but the expression of NPP3 is reduced and restricted to ependymal area in adult brain. NTPDase2 is dominant ectonucleotidase existing in the progenitor cells as well as main astrocytic NTPDase in the adult brain, while NTPDase3 is fully expressed after third postnatal week, almost exclusively on varicose fibers. Specific brain AP is functionally associated with synapse formation and this enzyme is sufficient for adenosine production during neurite growth and peak of synaptogenesis. eN is transiently associated with synapses during synaptogenesis, however in adult brain it is more glial than neuronal enzyme. CONCLUSION Control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
35
|
Zhang S, Ye D, Ma L, Ren Y, Dirksen RT, Liu X. Purinergic Signaling Modulates Survival/Proliferation of Human Dental Pulp Stem Cells. J Dent Res 2018; 98:242-249. [PMID: 30383477 DOI: 10.1177/0022034518807920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) reside in postnatal dental pulp and exhibit the potential to differentiate into odontoblasts as well as neurons. However, the intercellular signaling niches necessary for hDPSC survival and self-renewal remain largely unknown. The objective of this study is to demonstrate the existence of intercellular purinergic signaling in hDPSCs and to assess the impact of purinergic signaling on hDPSC survival and proliferation. hDPSCs were isolated from extracted third molars and cultured in minimum essential medium. To demonstrate responsiveness to ATP application and inhibitions by purinergic receptor antagonists, whole cell patch-clamp recordings of ATP-induced currents were recorded from cultured hDPSCs. Immunofluorescence and enzymatic histochemistry staining were performed to assess purinergic receptor expression and ectonucleotidase activity in hDPSCs, respectively. To determine the effects of purinergic signaling on hDPSC, purinergic receptor antagonists and an ectonucleotidase inhibitor were applied in culture medium, and hDPSC survival and proliferation were assessed with DAPI staining and Ki67 immunofluorescence staining, respectively. We demonstrated that ATP application induced inward currents in hDPSCs. P2X and P2Y receptors are involved in the generation of ATP-induced inward currents. We also detected expression of NTPDase3 and ectonucleotidase activity in hDPSCs. We further demonstrated that purinergic receptors were tonically activated in hDPSCs and that inhibition of ectonucleotidase activity enhanced ATP-induced inward currents. Furthermore, we found that blocking P2Y and P2X receptors reduced-and inhibition of ecto-ATPase activity enhanced-the survival and proliferation of hDPSCs, while blocking P2X receptors alone affected only hDPSC proliferation. Autocrine/paracrine purinergic signaling is essential for hDPSC survival and proliferation. These results reveal potential targets to manipulate hDPSCs to promote tooth/dental pulp repair and regeneration.
Collapse
Affiliation(s)
- S Zhang
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - D Ye
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - L Ma
- 2 Department of Dentistry, School of Stomatology, Zhengzhou University, Zhengzhou, China, China
| | - Y Ren
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R T Dirksen
- 3 Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - X Liu
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,3 Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,4 Department of Dentistry, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
36
|
Fumagalli M, Lecca D, Abbracchio MP, Ceruti S. Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: Unveiling New Pharmacological Approaches to Congenital Brain Diseases. Front Pharmacol 2017; 8:941. [PMID: 29375373 PMCID: PMC5770749 DOI: 10.3389/fphar.2017.00941] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, a substantial body of evidence has emerged demonstrating that purine and pyrimidine synthesis and metabolism play major roles in controlling embryonic and fetal development and organogenesis. Dynamic and time-dependent changes in the expression of purine metabolizing enzymes (such as ectonucleotidases and adenosine deaminase) represent a key checkpoint for the correct sequential generation of the different signaling molecules, that in turn activate their specific membrane receptors. In neurodevelopment, Ca2+ release from radial glia mediated by P2Y1 purinergic receptors is fundamental to allow neuroblast migration along radial glia processes, and their correct positioning in the different layers of the developing neocortex. Moreover, ATP is involved in the development of synaptic transmission and contributes to the establishment of functional neuronal networks in the developing brain. Additionally, several purinergic receptors (spanning from adenosine to P2X and P2Y receptor subtypes) are differentially expressed by neural stem cells, depending on their maturation stage, and their activation tightly regulates cell proliferation and differentiation to either neurons or glial cells, as well as their correct colonization of the developing telencephalon. The purinergic control of neurodevelopment is not limited to prenatal life, but is maintained in postnatal life, when it plays fundamental roles in controlling oligodendrocyte maturation from precursors and their terminal differentiation to fully myelinating cells. Based on the above-mentioned and other literature evidence, it is now increasingly clear that any defect altering the tight regulation of purinergic transmission and of purine and pyrimidine metabolism during pre- and post-natal brain development may translate into functional deficits, which could be at the basis of severe pathologies characterized by mental retardation or other disturbances. This can occur either at the level of the recruitment and/or signaling of specific nucleotide or nucleoside receptors or through genetic alterations in key steps of the purine salvage pathway. In this review, we have provided a critical analysis of what is currently known on the pathophysiological role of purines and pyrimidines during brain development with the aim of unveiling new future strategies for pharmacological intervention in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Görögh T, Quabius ES, Georgitsis A, Hoffmann M, Lippross S. Sequential activation of the AKT pathway in human osteoblasts treated with Oscarvit: a bioactive product with positive effect both on skeletal pain and mineralization in osteoblasts. BMC Musculoskelet Disord 2017; 18:500. [PMID: 29183350 PMCID: PMC5706336 DOI: 10.1186/s12891-017-1860-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Oscarvit (OSC) is an in-house preparation consisting of calcium, magnesium, phosphorus, strontium, Vitamin D, and eggshell membrane hydrolysate containing naturally occurring glycosaminoglycans and sulfated glycoproteins. OSC has been used both in an open-label human study and in vitro in osteoblasts. Methods Fifteen patients divided into three groups received oral OSC 0.6 g three times daily for 20 days. The main outcome measures were regional skeletal pain over the treatment period. For the in vitro experiments eight primary human osteoblasts cultures were established from trabecular bone, six of them from the femoral head, and two from the tibia. Cells were cultured for five to 20 days in the presence of 20 μg/ml OSC. Immunocytochemistry and RT-PCR were used to detect molecular alterations involved in the mineralization process. Calcium concentration was measured by means of a colorimetric assay and cell viability was analyzed using the LDH cytotoxicity assay. To investigate whether the osteoblasts response to OSC is associated with signaling processes the ERK1/2 and AKT signal transduction pathways were analyzed. Results Open label human study: OSC, 0.6 g three times daily, resulted in a significant positive effect on pain alleviation of 42% after 5 days (p < 0.001), 57% after 10 days and 68% after 20 days (p < 0.0001; for both time points), with no side-effects being reported. In vitro analysis: In osteoblasts, growing in OSC-supplemented media significant overexpression of bone γ-carboxylglutamic acid-containing protein, secreted phosphoprotein-1, integrin binding sialoprotein, and dentin matrix phosphoprotein genes could be detected when compared to control osteoblasts grown in the absence of OSC. Moreover, OSC-treated osteoblasts produced over the study period vast extracellular calcium deposits without any loss of cellular integrity or signs of cellular toxicity. In addition OSC promotes osteoblast differentiation and activates the AKT signaling pathway. Conclusion This open label study provides preliminary evidence of the efficacy of OSC. Despite the limitations (small heterogeneous patient group) the findings can be viewed as a necessary investigation that supports further clinical trials with a double-blind controlled design. Experiments at cellular and molecular level provide supplementary information about OSC that increases mineralization in osteoblasts and activation of the AKT pathway. Trial registration DRKS00013233, 06th November 2017, retrospectively registered.
Collapse
Affiliation(s)
- Tibor Görögh
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 27, 24105, Kiel, Germany.
| | - Elgar S Quabius
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 27, 24105, Kiel, Germany.,Institute of Immunology, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 17, 24105, Kiel, Germany
| | - Alexander Georgitsis
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 27, 24105, Kiel, Germany
| | - Markus Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 27, 24105, Kiel, Germany
| | - Sebastian Lippross
- Department of Orthopaedic Trauma Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 18, 24105, Kiel, Germany
| |
Collapse
|
38
|
Hau KL, Ranzoni AM, Vlahova F, Hawkins K, De Coppi P, David AL, Guillot PV. TGFβ-induced osteogenic potential of human amniotic fluid stem cells via CD73-generated adenosine production. Sci Rep 2017; 7:6601. [PMID: 28747757 PMCID: PMC5529586 DOI: 10.1038/s41598-017-06780-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
The human amniotic fluid stem cell (hAFSC) population consists of two morphologically distinct subtypes, spindle-shaped and round-shaped cells (SS-hAFSCs and RS-hAFSCs). Whilst SS-hAFSCs are routinely expanded in mesenchymal-type (MT) conditions, we previously showed that they acquire broader differentiation potential when cultured under embryonic-type (ET) conditions. However, the effects of culture conditions on RS-hAFSCs have not been determined. Here, we show that culturing RS-hAFSCs under ET conditions confers faster proliferation and enhances the efficiency of osteogenic differentiation of the cells. We show that this occurs via TGFβ-induced activation of CD73 and the associated increase in the generation of extracellular adenosine. Our data demonstrate that culture conditions are decisive for the expansion of hAFSCs and that TGFβ present in ET conditions causes the phenotype of RS-hAFSCs to revert to an earlier state of stemness. Cultivating RS-hAFSCs in ET conditions with TGFβ may therefore increase their therapeutic potential for clinical applications.
Collapse
Affiliation(s)
- Kwan-Leong Hau
- National Heart & Lung Institute, Hammersmith Campus, Du Cane Road, Imperial College London, London, W12 0NN, UK.,Institute for Women's Health, Research Department of Maternal and Fetal Medicine, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Anna Maria Ranzoni
- Institute for Women's Health, Research Department of Maternal and Fetal Medicine, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Filipa Vlahova
- Institute for Women's Health, Research Department of Maternal and Fetal Medicine, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Kate Hawkins
- Institute for Women's Health, Research Department of Maternal and Fetal Medicine, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Anna L David
- Institute for Women's Health, Research Department of Maternal and Fetal Medicine, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Pascale V Guillot
- Institute for Women's Health, Research Department of Maternal and Fetal Medicine, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
39
|
Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 2017; 140:919-940. [PMID: 28072448 DOI: 10.1111/jnc.13950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.
Collapse
Affiliation(s)
- Thomas Cruz
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Marie Gleizes
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle Prénatale et Postnatale, Service de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Grégory Marsal
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| |
Collapse
|
40
|
Pelletier J, Agonsanou H, Delvalle N, Fausther M, Salem M, Gulbransen B, Sévigny J. Generation and characterization of polyclonal and monoclonal antibodies to human NTPDase2 including a blocking antibody. Purinergic Signal 2017; 13:293-304. [PMID: 28409324 DOI: 10.1007/s11302-017-9561-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) is an ectonucleotidase that modulates P2 receptor activation by hydrolyzing ATP to ADP. In rodents, NTPDase2 is expressed by several specialized cell types such as vascular adventitial cells, neuroglial cells, hepatic portal fibroblasts, gustatory type I cells, and cells within the connective tissues of reproductive and gastrointestinal organs. Much less is known regarding the expression and function of NTPDase2 in humans. Here, we developed specific research tools to study human NTPDase2. We generated mouse monoclonal antibodies and rabbit polyclonal antibodies specific to human NTPDase2 and validated their specificity by western blot, immunocytochemistry, immunohistochemistry, and flow cytometry. In addition, one monoclonal antibody named hN2-D5 s specifically inhibits human NTPDase2 enzymatic activity but not mouse nor rat NTPDase2. Using these antibodies, NTPDase2 immunoreactivity was detected on glial cells of the human enteric nervous system suggesting a function of the enzyme in intestinal motility. In conclusion, the new antibodies described in our work are novel tools that will enhance future studies of NTPDase2 expression and function in humans.
Collapse
Affiliation(s)
- Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada
| | - Hervé Agonsanou
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada
| | - Ninotchska Delvalle
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michel Fausther
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mabrouka Salem
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada
| | - Brian Gulbransen
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada. .,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.
| |
Collapse
|
41
|
Nam HK, Sharma M, Liu J, Hatch NE. Tissue Nonspecific Alkaline Phosphatase (TNAP) Regulates Cranial Base Growth and Synchondrosis Maturation. Front Physiol 2017; 8:161. [PMID: 28377728 PMCID: PMC5359511 DOI: 10.3389/fphys.2017.00161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/02/2017] [Indexed: 12/27/2022] Open
Abstract
Hypophosphatasia is a rare heritable disorder caused by inactivating mutations in the gene (Alpl) that encodes tissue nonspecific alkaline phosphatase (TNAP). Hypophosphatasia with onset in infants and children can manifest as rickets. How TNAP deficiency leads to bone hypomineralization is well explained by TNAP's primary function of pyrophosphate hydrolysis when expressed in differentiated bone forming cells. How TNAP deficiency leads to abnormalities within endochondral growth plates is not yet known. Previous studies in hypophosphatemic mice showed that phosphate promotes chondrocyte maturation and apoptosis via MAPK signaling. Alpl-/- mice are not hypophosphatemic but TNAP activity does increase local levels of inorganic phosphate. Therefore, we hypothesize that TNAP influences endochondral bone development via MAPK. In support of this premise, here we demonstrate cranial base bone growth deficiency in Alpl-/- mice, utilize primary rib chondrocytes to show that TNAP influences chondrocyte maturation, apoptosis, and MAPK signaling in a cell autonomous manner; and demonstrate that similar chondrocyte signaling and apoptosis abnormalities are present in the cranial base synchondroses of Alpl-/- mice. Micro CT studies revealed diminished anterior cranial base bone and total cranial base lengths in Alpl-/- mice, that were prevented upon injection with mineral-targeted recombinant TNAP (strensiq). Histomorphometry of the inter-sphenoidal synchondrosis (cranial base growth plate) demonstrated significant expansion of the hypertrophic chondrocyte zone in Alpl-/- mice that was minimized upon treatment with recombinant TNAP. Alpl-/- primary rib chondrocytes exhibited diminished chondrocyte proliferation, aberrant mRNA expression, diminished hypertrophic chondrocyte apoptosis and diminished MAPK signaling. Diminished apoptosis and VEGF expression were also seen in 15 day-old cranial base synchondroses of Alpl-/- mice. MAPK signaling was significantly diminished in 5 day-old cranial base synchondroses of Alpl-/- mice. Together, our data suggests that TNAP is essential for the later stages of endochondral bone development including hypertrophic chondrocyte apoptosis and VEGF mediated recruitment of blood vessels for replacement of cartilage with bone. These changes may be mediated by diminished MAPK signaling in TNAP deficient chondrocytes due to diminished local inorganic phosphate production.
Collapse
Affiliation(s)
- Hwa K Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, MI, USA
| | - Monika Sharma
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, MI, USA
| | - Jin Liu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, MI, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
42
|
Yagi S, Shiojiri N. Identification of novel genetic markers for mouse yolk sac cells by using microarray analyses. Placenta 2017; 49:68-71. [DOI: 10.1016/j.placenta.2016.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022]
|
43
|
Ma L, Trinh T, Ren Y, Dirksen RT, Liu X. Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway. PLoS One 2016; 11:e0164028. [PMID: 27706204 PMCID: PMC5051867 DOI: 10.1371/journal.pone.0164028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023] Open
Abstract
ATP induces pain via activation of purinergic receptors in nociceptive sensory nerves. ATP signaling is terminated by ATP hydrolysis mediated by cell surface-localized ecto-nucleotidases. Using enzymatic histochemical staining, we show that ecto-ATPase activity is present in mouse trigeminal nerves. Using immunofluorescence staining, we found that ecto-NTPDase3 is expressed in trigeminal nociceptive neurons and their projections to the brainstem. In addition, ecto-ATPase activity and ecto-NTPDase3 are also detected in the nociceptive outermost layer of the trigeminal subnucleus caudalis. Furthermore, we demonstrate that incubation with anti-NTPDase3 serum reduces extracellular ATP degradation in the nociceptive lamina of both the trigeminal subnucleus caudalis and the spinal cord dorsal horn. These results are consistent with neuronal NTPDase3 activity modulating pain signal transduction and transmission by affecting extracellular ATP hydrolysis within the trigeminal nociceptive pathway. Thus, disruption of trigeminal neuronal NTPDase3 expression and localization to presynaptic terminals during chronic inflammation, local constriction and injury may contribute to the pathogenesis of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Lihua Ma
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Department of Dentistry, School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Thu Trinh
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Yanfang Ren
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Xiuxin Liu
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
44
|
Inada E, Saitoh I, Kubota N, Soda M, Matsueda K, Murakami T, Sawami T, Kagoshima A, Yamasaki Y, Sato M. Alkaline phosphatase and OCT-3/4 as useful markers for predicting susceptibility of human deciduous teeth-derived dental pulp cells to reprogramming factor-induced iPS cells. ACTA ACUST UNITED AC 2016; 8. [PMID: 27641728 DOI: 10.1111/jicd.12236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/03/2016] [Indexed: 01/08/2023]
Abstract
AIM The aim of the present study was to prove that primary cells enriched with stem cells are more easily reprogrammed to generate induced pluripotent stem (iPS) cells than those with scarce numbers of stem cells. METHODS We surveyed the alkaline phosphatase (ALP) activity in five primarily-isolated human deciduous teeth-derived dental pulp cells (HDDPC) with cytochemical staining to examine the possible presence of stem cells. Next, the expression of stemness-specific factors, such as OCT(Octumer-binding transcription factor)3/4, NANOG, SOX2(SRY (sex determining region Y)-box 2), CD90, muscle segment homeodomain homeobox (MSX) 1, and MSX2, was assessed with a reverse transcription polymerase chain reaction method. Finally, these isolated HDDPC were transfected with plasmids carrying genes coding Yamanaka factors to determine whether these cells could be reprogrammed to generate iPS cells. RESULTS Of the five primarily-isolated HDDPC, two (HDDPC-1 and -5) exhibited higher degrees of ALP activity. OCT-3/4 expression was also prominent in those two lines. Furthermore, these two lines proliferated faster than the other three lines. The transfection of HDDPC with Yamanaka factors resulted in the generation of iPS cells from HDDPC-1 and -5. CONCLUSION The number of cells with the stemness property of HDDPC differs among individuals, which suggests that HDDPC showing an increased expression of both ALP and OCT-3/4 can be more easily reprogrammed to generate iPS cells after the forced expression of reprogramming factors.
Collapse
Affiliation(s)
- Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Soda
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Kazunari Matsueda
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tomoya Murakami
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tadashi Sawami
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Akiko Kagoshima
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Youichi Yamasaki
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Sato
- Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
45
|
Tang Y, Illes P. Regulation of adult neural progenitor cell functions by purinergic signaling. Glia 2016; 65:213-230. [PMID: 27629990 DOI: 10.1002/glia.23056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023]
Abstract
Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| |
Collapse
|
46
|
Sebastián-Serrano Á, Engel T, de Diego-García L, Olivos-Oré LA, Arribas-Blázquez M, Martínez-Frailes C, Pérez-Díaz C, Millán JL, Artalejo AR, Miras-Portugal MT, Henshall DC, Díaz-Hernández M. Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Hum Mol Genet 2016; 25:4143-4156. [PMID: 27466191 PMCID: PMC5291194 DOI: 10.1093/hmg/ddw248] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 01/14/2023] Open
Abstract
Hypomorphic mutations in the gene encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme, ALPL in human or Akp2 in mice, cause hypophosphatasia (HPP), an inherited metabolic bone disease also characterized by spontaneous seizures. Initially, these seizures were attributed to the impairment of GABAergic neurotransmission caused by altered vitamin B6 (vit-B6) metabolism. However, clinical cases in human newborns and adults whose convulsions are refractory to pro-GABAergic drugs but controlled by the vit-B6 administration, suggest that other factors are involved. Here, to evaluate whether neurodevelopmental alterations are underlying the seizures associated to HPP, we performed morphological and functional characterization of postnatal homozygous TNAP null mice, a model of HPP. These analyses revealed that TNAP deficient mice present an increased proliferation of neural precursors, an altered neuronal morphology, and an augmented neuronal activity. We found that these alterations were associated with a partial downregulation of the purinergic P2X7 receptor (P2X7R). Even though deficient P2X7R mice present similar neurodevelopmental alterations, they do not develop neonatal seizures. Accordingly, we found that the additional blockage of P2X7R prevent convulsions and extend the lifespan of mice lacking TNAP. In agreement with these findings, we also found that exogenous administration of ATP or TNAP antagonists induced seizures in adult wild-type mice by activating P2X7R. Finally, our results also indicate that the anticonvulsive effects attributed to vit-B6 may be due to its capacity to block P2X7R. Altogether, these findings suggest that the purinergic signalling regulates the neurodevelopmental alteration and the neonatal seizures associated to HPP.
Collapse
Affiliation(s)
- Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Luis A Olivos-Oré
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - Marina Arribas-Blázquez
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - Carlos Martínez-Frailes
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Carmen Pérez-Díaz
- Department of Medicine and Animal Surgery, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain .,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| |
Collapse
|
47
|
Ademiluyi AO, Ogunsuyi OB, Oboh G. Alkaloid extracts from Jimson weed (Datura stramonium L.) modulate purinergic enzymes in rat brain. Neurotoxicology 2016; 56:107-117. [PMID: 27450719 DOI: 10.1016/j.neuro.2016.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/27/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Although some findings have reported the medicinal properties of Jimson weed (Datura stramonium L.), there exist some serious neurological effects such as hallucination, loss of memory and anxiety, which has been reported in folklore. Consequently, the modulatory effect of alkaloid extracts from leaf and fruit of Jimson weed on critical enzymes of the purinergic [ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-NTDase), alkaline phosphatase (ALP) and Na+/K+ ATPase] system of neurotransmission was the focus of this study. Alkaloid extracts were prepared by solvent extraction method and their interaction with the activities of these enzymes were assessed (in vitro) in rat brain tissue homogenate and in vivo in rats administered 100 and 200mg/kg body weight (p.o) of the extracts for thirty days, while administration of single dose (1mg/kg body weight; i.p.) of scopolamine served as the positive control. The extracts were also investigated for their Fe2+ and Cu2+ chelating abilities and GC-MS characterization of the extracts was also carried out. The results revealed that the extracts inhibited activates of E-NTPDase, E-NTDase and ALP in a concentration dependent manner, while stimulating the activity of Na+/K+ ATPase (in vitro). Both extracts also exhibited Fe2+ and Cu2+ chelating abilities. Considering the EC50 values, the fruit extract had significantly higher (P<0.05) modulatory effect on the enzymes' activity as well as metal chelating abilities, compared to the leaf extract; however, there was no significant difference (P>0.05) in both extracts' inhibitory effects on E-NTDase. The in vivo study revealed reduction in the activities of ENTPDase, E-NTDase, and Na+/K+ ATPase in the extract-administered rat groups compared to the control group, while an elevation in ALP activity was observed in the extract-administered rat groups compared to the control group. GC-MS characterization revealed the presence of atropine, scopolamine, amphetamine, 3-methyoxyamphetamine, 3-ethoxyamhetamine cathine, spermine, phenlyephirine and 3-piperidinemethanol, among others in the extracts. Hence, alterations of activities of critical enzymes of purinergic signaling (in vitro and in vivo) by alkaloid extracts from leaf and fruit of Jimson weed suggest one of the mechanisms behind its neurological effects as reported in folklore.
Collapse
Affiliation(s)
- Adedayo O Ademiluyi
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure 340001, Nigeria.
| | - Opeyemi B Ogunsuyi
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure 340001, Nigeria.
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure 340001, Nigeria
| |
Collapse
|
48
|
Diaz-Hernandez M, Hernandez F, Miras-Portugal MT, Avila J. TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders. Subcell Biochem 2016. [PMID: 26219721 DOI: 10.1007/978-94-017-7197-9_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New evidences have been reported that point to the ecto-enzyme, tissue-nonspecific alkaline phosphatase (TNAP), as a key element at the origin of two opposite phenomena, neuronal differentiation and neuronal degeneration. During brain development, TNAP plays an essential role for establishing neuronal circuits. The pro-neuritic effect induced by TNAP, which results in axonal length increase, is due to its enzymatic hydrolysis of extracellular ATP at the surrounding area of the axonal growth cone . In this way, the activation of P2X7 receptor is prevented and as a consequence there is no inhibition of axonal growth. The existence of a close functional interrelation between both purinergic elements is finally supported by the fact that both elements may control, in a reciprocal way, the expression level of the other. On the opposite stage, recent evidences indicate that TNAP plays a key role in spreading the neurotoxicity effect induced by extracellular hyperphosphorylated tau protein, the main component of intracellular neurofibrillary tangles present in the brain of Alzheimer disease patients. TNAP exhibits a broad substrate specificity and in addition to nucleotides it is able to dephosphorylate extracellular proteins, such as the hyperphosphorylated tau protein once it is released to the extracellular medium. Dephosphorylated tau protein behaves as an agonist of muscarinic M1 and M3 receptors, provoking a robust and sustained intracellular calcium increase that finally triggering neuronal death. Besides, activation of muscarinic receptors by dephosphorylated tau increases the expression of TNAP, which could explain the increase in TNAP activity and protein levels detected in Alzheimer disease.
Collapse
Affiliation(s)
- Miguel Diaz-Hernandez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain,
| | | | | | | |
Collapse
|
49
|
Development of a cell line from the American eel brain expressing endothelial cell properties. In Vitro Cell Dev Biol Anim 2015; 52:395-409. [DOI: 10.1007/s11626-015-9986-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
|
50
|
Multiple Functions of MSCA-1/TNAP in Adult Mesenchymal Progenitor/Stromal Cells. Stem Cells Int 2015; 2016:1815982. [PMID: 26839555 PMCID: PMC4709781 DOI: 10.1155/2016/1815982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/30/2015] [Indexed: 01/09/2023] Open
Abstract
Our knowledge about mesenchymal stem cells has considerably grown in the last years. Since the proof of concept of the existence of such cells in the 70s by Friedenstein et al., a growing mass of reports were conducted for a better definition of these cells and for the reevaluation from the term “mesenchymal stem cells” to the term “mesenchymal stromal cells (MSCs).” Being more than a semantic shift, concepts behind this new terminology reveal the complexity and the heterogeneity of the cells grouped in MSC family especially as these cells are present in nearly all adult tissues. Recently, mesenchymal stromal cell antigen-1 (MSCA-1)/tissue nonspecific alkaline phosphatase (TNAP) was described as a new cell surface marker of MSCs from different tissues. The alkaline phosphatase activity of this protein could be involved in wide range of MSC features described below from cell differentiation to immunomodulatory properties, as well as occurrence of pathologies. The present review aims to decipher and summarize the role of TNAP in progenitor cells from different tissues focusing preferentially on brain, bone marrow, and adipose tissue.
Collapse
|