1
|
Franken TP, Joris PX, Smith PH. Distinct cell classes in the superior paraolivary nucleus (SPN) region in the gerbil auditory brainstem revealed by in vivo physiological and anatomical characterization. Hear Res 2025; 458:109202. [PMID: 39914279 PMCID: PMC12019997 DOI: 10.1016/j.heares.2025.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 03/06/2025]
Abstract
The superior para-olivary nucleus (SPN or SPON) is a prominent nucleus in the superior olivary complex of the auditory brainstem. The cellular composition of the nucleus reportedly differs between species, but a prominent recurring feature is the unusual characteristic to not respond during a sound but at its offset. Blocking glycine has shown that sound-induced inhibition is the mechanism, but the time course of the responsible synaptic events has not been directly measured in vivo. We obtained intracellular recordings in the Mongolian gerbil (meriones unguiculatus) with patch electrodes containing biocytin, and retrieved 12 labeled neurons with large dendritic trees within and around the SPN region. We found that these neurons could be categorized into three classes that show consistency along multiple dimensions like ultrastructure, spontaneous activity, and responses to current injection and a variety of ipsi- and contralateral sounds. Fast cells fire at onset of depolarizing current, generate short-latency rebound spikes to sound or hyperpolarizing current, and show dense synaptic coverage. Slow cells show sparse synaptic coverage, sustained responses to depolarization, and inhibition with a slow time course to hyperpolarizing current or sound. Uninhibited cells form a third class which profoundly differ in their responses to sound, lacking rebound spiking. We propose that fast cells project to the inferior colliculus, and slow cells to the cochlear nucleus.
Collapse
Affiliation(s)
- T P Franken
- Laboratory of Auditory Neurophysiology, University of Leuven, Herestraat 49 bus 1021, B-3000, Leuven, Belgium; Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - P X Joris
- Laboratory of Auditory Neurophysiology, University of Leuven, Herestraat 49 bus 1021, B-3000, Leuven, Belgium
| | - P H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Room 5505 WIMR-II, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Mansour Y, Kulesza R. Obliteration of a glycinergic projection to the medial geniculate in an animal model of autism. Front Cell Neurosci 2024; 18:1465255. [PMID: 39484183 PMCID: PMC11524938 DOI: 10.3389/fncel.2024.1465255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Auditory dysfunction affects the vast majority of people with autism spectrum disorder (ASD) and can range from deafness to hypersensitivity. In utero exposure to the antiepileptic valproic acid (VPA) is associated with significant risk of an ASD diagnosis in humans and timed in utero exposure to VPA is utilized as an animal model of ASD. VPA-exposed rats have significantly fewer neurons in their auditory brainstem, thalamus and cortex, reduced ascending projections to the midbrain and thalamus and reduced descending projections from the cortex to the auditory midbrain. Consistent with these anatomical changes, VPA-exposed animals also have abnormal auditory brainstem responses. We have recently described a significant ascending projection from calbindin-positive neurons in the medial nucleus of the trapezoid body (MNTB) to the ventral division of the medial geniculate (vMG) in rats that bypasses the central nucleus of the inferior colliculus (CNIC). Since we found that axonal projections to the vMG in VPA-exposed rats are reduced beyond what is predicted from neuron loss alone, we hypothesize that VPA exposure would result in a significant reduction in the MNTB projection to the vMG. We examined this hypothesis by quantifying the proportion of retrogradely-labeled neurons in the MNTB of control and VPA-exposed animals after injections of retrograde tracers in the CNIC and vMG in control and VPA-exposed animals. Our results indicate that in control animals, the MNTB forms the largest projection from the superior olivary complex to the MG and that this projection is nearly abolished by in utero VPA exposure.
Collapse
Affiliation(s)
- Yusra Mansour
- Department of Otolaryngology—Head and Neck Surgery, Detroit, MI, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| |
Collapse
|
3
|
Liu M, Wang Y, Jiang L, Zhang X, Wang C, Zhang T. Research progress of the inferior colliculus: from Neuron, neural circuit to auditory disease. Brain Res 2024; 1828:148775. [PMID: 38244755 DOI: 10.1016/j.brainres.2024.148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The auditory midbrain, also known as the inferior colliculus (IC), serves as a crucial hub in the auditory pathway. Comprising diverse cell types, the IC plays a pivotal role in various auditory functions, including sound localization, auditory plasticity, sound detection, and sound-induced behaviors. Notably, the IC is implicated in several auditory central disorders, such as tinnitus, age-related hearing loss, autism and Fragile X syndrome. Accurate classification of IC neurons is vital for comprehending both normal and dysfunctional aspects of IC function. Various parameters, including dendritic morphology, neurotransmitter synthesis, potassium currents, biomarkers, and axonal targets, have been employed to identify distinct neuron types within the IC. However, the challenge persists in effectively classifying IC neurons into functional categories due to the limited clustering capabilities of most parameters. Recent studies utilizing advanced neuroscience technologies have begun to shed light on biomarker-based approaches in the IC, providing insights into specific cellular properties and offering a potential avenue for understanding IC functions. This review focuses on recent advancements in IC research, spanning from neurons and neural circuits to aspects related to auditory diseases.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuyao Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Li Jiang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaopeng Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chunrui Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianhong Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
4
|
Asim SA, Tran S, Reynolds N, Sauve O, Zhang H. Spatial-dependent suppressive aftereffect produced by a sound in the rat’s inferior colliculus is partially dependent on local inhibition. Front Neurosci 2023; 17:1130892. [PMID: 37021140 PMCID: PMC10069703 DOI: 10.3389/fnins.2023.1130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 03/22/2023] Open
Abstract
In a natural acoustic environment, a preceding sound can suppress the perception of a succeeding sound which can lead to auditory phenomena such as forward masking and the precedence effect. The degree of suppression is dependent on the relationship between the sounds in sound quality, timing, and location. Correlates of such phenomena exist in sound-elicited activities of neurons in hearing-related brain structures. The present study recorded responses to pairs of leading-trailing sounds from ensembles of neurons in the rat’s inferior colliculus. Results indicated that a leading sound produced a suppressive aftereffect on the response to a trailing sound when the two sounds were colocalized at the ear contralateral to the site of recording (i.e., the ear that drives excitatory inputs to the inferior colliculus). The degree of suppression was reduced when the time gap between the two sounds was increased or when the leading sound was relocated to an azimuth at or close to the ipsilateral ear. Local blockage of the type-A γ-aminobutyric acid receptor partially reduced the suppressive aftereffect when a leading sound was at the contralateral ear but not at the ipsilateral ear. Local blockage of the glycine receptor partially reduced the suppressive aftereffect regardless of the location of the leading sound. Results suggest that a sound-elicited suppressive aftereffect in the inferior colliculus is partly dependent on local interaction between excitatory and inhibitory inputs which likely involves those from brainstem structures such as the superior paraolivary nucleus. These results are important for understanding neural mechanisms underlying hearing in a multiple-sound environment.
Collapse
|
5
|
Burchell A, Mansour Y, Kulesza R. Leveling up: a long-range olivary projection to the medial geniculate without collaterals to the central nucleus of the inferior colliculus in rats. Exp Brain Res 2022; 240:3217-3235. [PMID: 36271940 DOI: 10.1007/s00221-022-06489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022]
Abstract
The medial nucleus of the trapezoid body (MNTB) is one of the monaural cell groups situated within the superior olivary complex (SOC), a constellation of brainstem nuclei with numerous roles in hearing. Principal MNTB neurons are glycinergic and express the calcium-binding protein, calbindin (CB). The MNTB receives its main glutamatergic, excitatory input from the contralateral cochlear nucleus via the calyx of Held and converts this into glycinergic inhibition directed toward nuclei in the SOC and the ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL). Through this inhibition, the MNTB plays essential roles in localization of sound sources and encoding spectral and temporal features of sound. In rats, very few MNTB neurons project to the inferior colliculus. However, our recent study of SOC projections to the auditory thalamus revealed a substantial number of retrogradely labeled MNTB neurons. This observation led us to examine whether the rat MNTB provides a long-range projection to the medial geniculate body (MGB). We examined this possible projection using retrograde and anterograde tract tracing and immunohistochemistry for CB and the glycine receptor. Our results demonstrate a significant projection to the MGB from the ipsilateral MNTB that does not involve a collateral projection to the inferior colliculus.
Collapse
Affiliation(s)
- Alyson Burchell
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA, 16509, USA
| | - Yusra Mansour
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA, 16509, USA.,Department of Otolaryngology, Henry Ford Macomb Hospital, Clinton Township, MI, USA
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA, 16509, USA.
| |
Collapse
|
6
|
Cadenas LT, Cheng H, Weisz CJC. Synaptic plasticity of inhibitory synapses onto medial olivocochlear efferent neurons. J Physiol 2022; 600:2747-2763. [PMID: 35443073 PMCID: PMC9323901 DOI: 10.1113/jp282815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract The descending auditory system modulates the ascending system at every level. The final descending, or efferent, stage comprises lateral olivocochlear and medial olivocochlear (MOC) neurons. MOC somata in the ventral brainstem project axons to the cochlea to synapse onto outer hair cells (OHC), inhibiting OHC‐mediated cochlear amplification. MOC suppression of OHC function is implicated in cochlear gain control with changing sound intensity, detection of salient stimuli, attention and protection against acoustic trauma. Thus, sound excites MOC neurons to provide negative feedback of the cochlea. Sound also inhibits MOC neurons via medial nucleus of the trapezoid body (MNTB) neurons. However, MNTB–MOC synapses exhibit short‐term depression, suggesting reduced MNTB–MOC inhibition during sustained stimuli. Further, due to high rates of both baseline and sound‐evoked activity in MNTB neurons in vivo, MNTB–MOC synapses may be tonically depressed. To probe this, we characterized short‐term plasticity of MNTB–MOC synapses in mouse brain slices. We mimicked in vivo‐like temperature and extracellular calcium conditions, and in vivo‐like activity patterns of fast synaptic activation rates, sustained activation and prior tonic activity. Synaptic depression was sensitive to extracellular calcium concentration and temperature. During rapid MNTB axon stimulation, postsynaptic currents in MOC neurons summated but with concurrent depression, resulting in smaller, sustained currents, suggesting tonic inhibition of MOC neurons during rapid circuit activity. Low levels of baseline MNTB activity did not significantly reduce responses to subsequent rapid activity that mimics sound stimulation, indicating that, in vivo, MNTB inhibition of MOC neurons persists despite tonic synaptic depression. Key points Inhibitory synapses from the medial nucleus of the trapezoid body (MNTB) onto medial olivocochlear (MOC) neurons exhibit short‐term plasticity that is sensitive to calcium and temperature, with enhanced synaptic depression occurring at higher calcium concentrations and at room temperature. High rates of background synaptic activity that mimic the upper limits of spontaneous MNTB activity cause tonic synaptic depression of MNTB–MOC synapses that limits further synaptic inhibition. High rates of activity at MNTB–MOC synapses cause synaptic summation with concurrent depression to yield a response with an initial large amplitude that decays to a tonic inhibition.
Collapse
Affiliation(s)
- Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
de Cheveigné A. Harmonic Cancellation-A Fundamental of Auditory Scene Analysis. Trends Hear 2021; 25:23312165211041422. [PMID: 34698574 PMCID: PMC8552394 DOI: 10.1177/23312165211041422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
This paper reviews the hypothesis of harmonic cancellation according to which an interfering sound is suppressed or canceled on the basis of its harmonicity (or periodicity in the time domain) for the purpose of Auditory Scene Analysis. It defines the concept, discusses theoretical arguments in its favor, and reviews experimental results that support it, or not. If correct, the hypothesis may draw on time-domain processing of temporally accurate neural representations within the brainstem, as required also by the classic equalization-cancellation model of binaural unmasking. The hypothesis predicts that a target sound corrupted by interference will be easier to hear if the interference is harmonic than inharmonic, all else being equal. This prediction is borne out in a number of behavioral studies, but not all. The paper reviews those results, with the aim to understand the inconsistencies and come up with a reliable conclusion for, or against, the hypothesis of harmonic cancellation within the auditory system.
Collapse
Affiliation(s)
- Alain de Cheveigné
- Laboratoire des systèmes perceptifs, CNRS, Paris, France
- Département d’études cognitives, École normale supérieure, PSL
University, Paris, France
- UCL Ear Institute, London, UK
| |
Collapse
|
8
|
Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body. J Neurosci 2020; 41:674-688. [PMID: 33268542 DOI: 10.1523/jneurosci.1633-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/29/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022] Open
Abstract
The medial nucleus of trapezoid body (MNTB) is a major source of inhibition in auditory brainstem circuitry. The MNTB projects well-timed inhibitory output to principal sound-localization nuclei in the superior olive (SOC) as well as other computationally important centers. Acoustic information is conveyed to MNTB neurons through a single calyx of Held excitatory synapse arising from the cochlear nucleus. The encoding efficacy of this large synapse depends on its activity rate, which is primarily determined by sound intensity and stimulus frequency. However, MNTB activity rate is additionally influenced by inhibition and possibly neuromodulatory inputs, albeit their functional role is unclear. Happe and Morley (2004) discovered prominent expression of α7 nAChRs in rat SOC, suggesting possible engagement of ACh-mediated modulation of neural activity in the MNTB. However, the existence and nature of this putative modulation have never been physiologically demonstrated. We probed nicotinic cholinergic influences on acoustic responses of MNTB neurons from adult gerbils (Meriones unguiculatus) of either sex. We recorded tone-evoked MNTB single-neuron activity in vivo using extracellular single-unit recording. Piggyback multibarrel electrodes enabled pharmacological manipulation of nAChRs by reversibly applying antagonists to two receptor types, α7 and α4β2. We observed that tone-evoked responses are dependent on ACh modulation by both nAChR subtypes. Spontaneous activity was not affected by antagonist application. Functionally, we demonstrate that ACh contributes to sustaining high discharge rates and enhances signal encoding efficacy. Additionally, we report anatomic evidence revealing novel cholinergic projections to MNTB arising from pontine and superior olivary nuclei.SIGNIFICANCE STATEMENT This study is the first to physiologically probe how acetylcholine, a pervasive neuromodulator in the brain, influences the encoding of acoustic information by the medial nucleus of trapezoid body, the most prominent source of inhibition in brainstem sound-localization circuitry. We demonstrate that this cholinergic input enhances neural discrimination of tones from noise stimuli, which may contribute to processing important acoustic signals, such as speech. Additionally, we describe novel anatomic projections providing cholinergic input to the MNTB. Together, these findings shed new light on the contribution of neuromodulation to fundamental computational processes in auditory brainstem circuitry and to a more holistic understanding of modulatory influences in sensory processing.
Collapse
|
9
|
Yin TC, Smith PH, Joris PX. Neural Mechanisms of Binaural Processing in the Auditory Brainstem. Compr Physiol 2019; 9:1503-1575. [DOI: 10.1002/cphy.c180036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Joris PX, Trussell LO. The Calyx of Held: A Hypothesis on the Need for Reliable Timing in an Intensity-Difference Encoder. Neuron 2018; 100:534-549. [PMID: 30408442 PMCID: PMC6263157 DOI: 10.1016/j.neuron.2018.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/16/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
The calyx of Held is the preeminent model for the study of synaptic function in the mammalian CNS. Despite much work on the synapse and associated circuit, its role in hearing remains enigmatic. We propose that the calyx is one of the key adaptations that enables an animal to lateralize transient sounds. The calyx is part of a binaural circuit that is biased toward high sound frequencies and is sensitive to intensity differences between the ears. This circuit also shows marked sensitivity to interaural time differences, but only for brief sound transients ("clicks"). In a natural environment, such transients are rare except as adventitious sounds generated by other animals moving at close range. We argue that the calyx, and associated temporal specializations, evolved to enable spatial localization of sound transients, through a neural code congruent with the circuit's sensitivity to interaural intensity differences, thereby conferring a key benefit to survival.
Collapse
Affiliation(s)
- Philip X Joris
- Laboratory of Auditory Neurophysiology, Department of Neurosciences, University of Leuven, Leuven B-3000, Belgium.
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
11
|
Kopp-Scheinpflug C, Sinclair JL, Linden JF. When Sound Stops: Offset Responses in the Auditory System. Trends Neurosci 2018; 41:712-728. [DOI: 10.1016/j.tins.2018.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
12
|
Gómez-Álvarez M, Gourévitch B, Felix RA, Nyberg T, Hernández-Montiel HL, Magnusson AK. Temporal information in tones, broadband noise, and natural vocalizations is conveyed by differential spiking responses in the superior paraolivary nucleus. Eur J Neurosci 2018; 48:2030-2049. [PMID: 30019495 DOI: 10.1111/ejn.14073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/12/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022]
Abstract
Communication sounds across all mammals consist of multiple frequencies repeated in sequence. The onset and offset of vocalizations are potentially important cues for recognizing distinct units, such as phonemes and syllables, which are needed to perceive meaningful communication. The superior paraolivary nucleus (SPON) in the auditory brainstem has been implicated in the processing of rhythmic sounds. Here, we compared how best frequency tones (BFTs), broadband noise (BBN), and natural mouse calls elicit onset and offset spiking in the mouse SPON. The results demonstrate that onset spiking typically occurs in response to BBN, but not BFT stimulation, while spiking at the sound offset occurs for both stimulus types. This effect of stimulus bandwidth on spiking is consistent with two of the established inputs to the SPON from the octopus cells (onset spiking) and medial nucleus of the trapezoid body (offset spiking). Natural mouse calls elicit two main spiking peaks. The first spiking peak, which is weak or absent with BFT stimulation, occurs most consistently during the call envelope, while the second spiking peak occurs at the call offset. This suggests that the combined spiking activity in the SPON elicited by vocalizations reflects the entire envelope, that is, the coarse amplitude waveform. Since the output from the SPON is purely inhibitory, it is speculated that, at the level of the inferior colliculus, the broadly tuned first peak may improve the signal-to-noise ratio of the subsequent, more call frequency-specific peak. Thus, the SPON may provide a dual inhibition mechanism for tracking phonetic boundaries in social-vocal communication.
Collapse
Affiliation(s)
- Marcelo Gómez-Álvarez
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Boris Gourévitch
- Unité de Génétique et Physiologie de l'Audition, INSERM, Institut Pasteur, Sorbonne Université Paris, Paris, France.,CNRS, Paris, France
| | | | - Tobias Nyberg
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hebert L Hernández-Montiel
- Laboratorio de Neurobiología y Bioingeniería Celular, Clínica del Sistema Nervioso, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Felix RA, Gourévitch B, Portfors CV. Subcortical pathways: Towards a better understanding of auditory disorders. Hear Res 2018; 362:48-60. [PMID: 29395615 PMCID: PMC5911198 DOI: 10.1016/j.heares.2018.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 01/13/2023]
Abstract
Hearing loss is a significant problem that affects at least 15% of the population. This percentage, however, is likely significantly higher because of a variety of auditory disorders that are not identifiable through traditional tests of peripheral hearing ability. In these disorders, individuals have difficulty understanding speech, particularly in noisy environments, even though the sounds are loud enough to hear. The underlying mechanisms leading to such deficits are not well understood. To enable the development of suitable treatments to alleviate or prevent such disorders, the affected processing pathways must be identified. Historically, mechanisms underlying speech processing have been thought to be a property of the auditory cortex and thus the study of auditory disorders has largely focused on cortical impairments and/or cognitive processes. As we review here, however, there is strong evidence to suggest that, in fact, deficits in subcortical pathways play a significant role in auditory disorders. In this review, we highlight the role of the auditory brainstem and midbrain in processing complex sounds and discuss how deficits in these regions may contribute to auditory dysfunction. We discuss current research with animal models of human hearing and then consider human studies that implicate impairments in subcortical processing that may contribute to auditory disorders.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Boris Gourévitch
- Unité de Génétique et Physiologie de l'Audition, UMRS 1120 INSERM, Institut Pasteur, Université Pierre et Marie Curie, F-75015, Paris, France; CNRS, France
| | - Christine V Portfors
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA.
| |
Collapse
|
14
|
Oertel D, Cao XJ, Ison JR, Allen PD. Cellular Computations Underlying Detection of Gaps in Sounds and Lateralizing Sound Sources. Trends Neurosci 2017; 40:613-624. [PMID: 28867348 DOI: 10.1016/j.tins.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
In mammals, acoustic information arises in the cochlea and is transmitted to the ventral cochlear nuclei (VCN). Three groups of VCN neurons extract different features from the firing of auditory nerve fibers and convey that information along separate pathways through the brainstem. Two of these pathways process temporal information: octopus cells detect coincident firing among auditory nerve fibers and transmit signals along monaural pathways, and bushy cells sharpen the encoding of fine structure and feed binaural pathways. The ability of these cells to signal with temporal precision depends on a low-voltage-activated K+ conductance (gKL) and a hyperpolarization-activated conductance (gh). This 'tale of two conductances' traces gap detection and sound lateralization to their cellular and biophysical origins.
Collapse
Affiliation(s)
- Donata Oertel
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA.
| | - Xiao-Jie Cao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA
| | - James R Ison
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY 14627, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Allen
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
15
|
Felix Ii RA, Gourévitch B, Gómez-Álvarez M, Leijon SCM, Saldaña E, Magnusson AK. Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus. Front Neural Circuits 2017; 11:37. [PMID: 28620283 PMCID: PMC5449481 DOI: 10.3389/fncir.2017.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds.
Collapse
Affiliation(s)
- Richard A Felix Ii
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | - Boris Gourévitch
- Institut Pasteur, Unité de Génétique et Physiologie de l'AuditionParis, France.,Institut National de la Santé et de la Recherche Médicale, UMRS 1120Paris, France.,Université Pierre et Marie CurieParis, France
| | - Marcelo Gómez-Álvarez
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden.,Neuroscience Institute of Castilla y León (INCyL), Universidad de SalamancaSalamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL)Salamanca, Spain
| | - Sara C M Leijon
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León (INCyL), Universidad de SalamancaSalamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL)Salamanca, Spain
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
16
|
Modeling Responses in the Superior Paraolivary Nucleus: Implications for Forward Masking in the Inferior Colliculus. J Assoc Res Otolaryngol 2017; 18:441-456. [PMID: 28097439 DOI: 10.1007/s10162-016-0612-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
A phenomenological model of the responses of neurons in the superior paraolivary nucleus (SPON) of the rodent is presented in this study. Pure tones at the characteristic frequency (CF) and broadband noise stimuli evoke offset-type responses in these neurons. SPON neurons also phase-lock to the envelope of sinusoidally amplitude-modulated (SAM) stimuli for a range of modulation frequencies. Model SPON neuron received inhibitory input that was relayed by the ipsilateral medial nucleus of the trapezoid body from the contralateral model ventral cochlear nucleus neuron. The SPON model response was simulated by detecting the slope of its inhibitory postsynaptic potential. Responses of the proposed model to pure tones at CF and broadband noise were offset-type independent of the duration of the input stimulus. SPON model responses were also synchronized to the envelope of SAM stimuli with precise timing for a range of modulation frequencies. Modulation transfer functions (MTFs) obtained from the model response to SAM stimuli resemble the physiological MTFs. The output of the proposed SPON model provides an input for models of physiological responses at higher levels of the ascending auditory pathway and can also be utilized to infer possible mechanisms underlying gap detection and duration encoding as well as forward masking at the level of the auditory midbrain.
Collapse
|
17
|
Herrmann B, Parthasarathy A, Bartlett EL. Ageing affects dual encoding of periodicity and envelope shape in rat inferior colliculus neurons. Eur J Neurosci 2017; 45:299-311. [PMID: 27813207 PMCID: PMC5247336 DOI: 10.1111/ejn.13463] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022]
Abstract
Extracting temporal periodicities and envelope shapes of sounds is important for listening within complex auditory scenes but declines behaviorally with age. Here, we recorded local field potentials (LFPs) and spikes to investigate how ageing affects the neural representations of different modulation rates and envelope shapes in the inferior colliculus of rats. We specifically aimed to explore the input-output (LFP-spike) response transformations of inferior colliculus neurons. Our results show that envelope shapes up to 256-Hz modulation rates are represented in the neural synchronisation phase lags in younger and older animals. Critically, ageing was associated with (i) an enhanced gain in onset response magnitude from LFPs to spikes; (ii) an enhanced gain in neural synchronisation strength from LFPs to spikes for a low modulation rate (45 Hz); (iii) a decrease in LFP synchronisation strength for higher modulation rates (128 and 256 Hz) and (iv) changes in neural synchronisation strength to different envelope shapes. The current age-related changes are discussed in the context of an altered excitation-inhibition balance accompanying ageing.
Collapse
Affiliation(s)
- Björn Herrmann
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Aravindakshan Parthasarathy
- Depts. of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
- Dept. of Otology and Laryngology, Harvard Medical School, and Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
| | - Edward L. Bartlett
- Depts. of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
18
|
Leijon SC, Peyda S, Magnusson AK. Temporal processing capacity in auditory-deprived superior paraolivary neurons is rescued by sequential plasticity during early development. Neuroscience 2016; 337:315-330. [DOI: 10.1016/j.neuroscience.2016.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
|
19
|
Felix RA, Magnusson AK. Development of excitatory synaptic transmission to the superior paraolivary and lateral superior olivary nuclei optimizes differential decoding strategies. Neuroscience 2016; 334:1-12. [PMID: 27476438 DOI: 10.1016/j.neuroscience.2016.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/08/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022]
Abstract
The superior paraolivary nucleus (SPON) is a prominent structure in the mammalian auditory brainstem with a proposed role in encoding transient broadband sounds such as vocalized utterances. Currently, the source of excitatory pathways that project to the SPON and how these inputs contribute to SPON function are poorly understood. To shed light on the nature of these inputs, we measured evoked excitatory postsynaptic currents (EPSCs) in the SPON originating from the intermediate acoustic stria and compared them with the properties of EPSCs in the lateral superior olive (LSO) originating from the ventral acoustic stria during auditory development from postnatal day 5 to 22 in mice. Before hearing onset, EPSCs in the SPON and LSO are very similar in size and kinetics. After the onset of hearing, SPON excitation is refined to extremely few (2:1) fibers, with each strengthened by an increase in release probability, yielding fast and strong EPSCs. LSO excitation is recruited from more fibers (5:1), resulting in strong EPSCs with a comparatively broader stimulus-response range after hearing onset. Evoked SPON excitation is comparatively weaker than evoked LSO excitation, likely due to a larger fraction of postsynaptic GluR2-containing Ca2+-impermeable AMPA receptors after hearing onset. Taken together, SPON excitation develops synaptic properties that are suited for transmitting single events with high temporal reliability and the strong, dynamic LSO excitation is compatible with high rate-level sensitivity. Thus, the excitatory input pathways to the SPON and LSO mature to support different decoding strategies of respective coarse temporal and sound intensity information at the brainstem level.
Collapse
Affiliation(s)
- Richard A Felix
- Unit of Audiology, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Gao F, Kadner A, Felix RA, Chen L, Berrebi AS. Forward masking in the superior paraolivary nucleus of the rat. Brain Struct Funct 2016; 222:365-379. [PMID: 27089883 DOI: 10.1007/s00429-016-1222-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Abstract
In natural acoustic environments, perception of acoustic stimuli depends on the recent contextual history. Forward masking describes a phenomenon whereby the detection threshold of a probe stimulus is markedly increased when it is preceded by a masking stimulus. The aim of this study was to characterize the offset response of single units in the superior paraolivary nucleus (SPON) to a forward masking paradigm. We observed two distinct response types to forward-masked stimuli, namely inhibited and facilitated responses. In the presence of a default masking stimulus, inhibited responses to probe stimuli were characterized by elevated thresholds and/or diminished spike counts, whereas facilitated responses were characterized by reduced thresholds and increased spike counts. In units with inhibited responses to the probe stimuli, probe thresholds increased and spike counts decreased as masker intensity was raised or the masker-to-probe delay was shortened. Conversely, in units with facilitated responses to the probe stimuli, probe thresholds decreased and spike counts increased as masker intensity was raised or the masker-to-probe delay was shortened. Neither inhibited nor facilitated responses to the forward masking paradigm were significantly dependent on masker frequency. These findings suggest that SPON responses are not themselves consistently subject to the same forward masking properties observed in other nuclei along the ascending auditory pathway. The potential neural mechanisms of the forward masking responses observed in the SPON are discussed.
Collapse
Affiliation(s)
- Fei Gao
- Departments of Otolaryngology, Head and Neck Surgery, Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Alexandra Kadner
- Departments of Otolaryngology, Head and Neck Surgery, Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Richard A Felix
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Liang Chen
- Department of Electrical Engineering and Computer Science, Russ College of Engineering and Technology, Ohio University, Athens, OH, 45701, USA
| | - Albert S Berrebi
- Departments of Otolaryngology, Head and Neck Surgery, Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
21
|
Gessele N, Garcia-Pino E, Omerbašić D, Park TJ, Koch U. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber). PLoS One 2016; 11:e0146428. [PMID: 26760498 PMCID: PMC4711988 DOI: 10.1371/journal.pone.0146428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
Collapse
Affiliation(s)
- Nikodemus Gessele
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Elisabet Garcia-Pino
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Damir Omerbašić
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thomas J. Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ursula Koch
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
22
|
Sudhakar SK, Torben-Nielsen B, De Schutter E. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses. PLoS Comput Biol 2015; 11:e1004641. [PMID: 26630202 PMCID: PMC4668013 DOI: 10.1371/journal.pcbi.1004641] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/03/2015] [Indexed: 11/29/2022] Open
Abstract
Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. Neurons can transmit information by two different coding strategies: Rate coding, where the firing rate of the neuron is vital, and time coding where timing of individual spikes carries relevant information. In this study we analyze the importance of brief cessations in firing of the presynaptic neuron (pauses) on the spiking of the postsynaptic neuron. We perform this analysis on the inhibitory synaptic connection between Purkinje neurons (presynaptic) and nuclear neurons (postsynaptic) of the cerebellum. We employ a computational model of nuclear neurons and “synthetic” Purkinje neuron spike trains to study the effect of synchronous pauses on the spiking responses of nuclear neurons. We find that synchronous pauses can cause both well-timed spikes and increased firing rate in the nuclear neuron. In addition, we characterize the effect of pause length, amount and type of pause synchrony, and spike jitter. As such, we conclude that nuclear cells use both rate and time coding to relay upstream spiking information.
Collapse
Affiliation(s)
- Shyam Kumar Sudhakar
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
| | - Benjamin Torben-Nielsen
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Biocomputation Research Group, University of Hertfordshire, Hertfordshire, United Kingdom
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
23
|
Felix RA, Magnusson AK, Berrebi AS. The superior paraolivary nucleus shapes temporal response properties of neurons in the inferior colliculus. Brain Struct Funct 2015; 220:2639-52. [PMID: 24973970 PMCID: PMC4278952 DOI: 10.1007/s00429-014-0815-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
The mammalian superior paraolivary nucleus (SPON) is a major source of GABAergic inhibition to neurons in the inferior colliculus (IC), a well-studied midbrain nucleus that is the site of convergence and integration for the majority ascending auditory pathways en route to the cortex. Neurons in the SPON and IC exhibit highly precise responses to temporal sound features, which are important perceptual cues for naturally occurring sounds. To determine how inhibitory input from the SPON contributes to the encoding of temporal information in the IC, a reversible inactivation procedure was conducted to silence SPON neurons, while recording responses to amplitude-modulated tones and silent gaps between tones in the IC. The results show that SPON-derived inhibition shapes responses of onset and sustained units in the IC via different mechanisms. Onset neurons appear to be driven primarily by excitatory inputs and their responses are shaped indirectly by SPON-derived inhibition, whereas sustained neurons are heavily influenced directly by transient offset inhibition from the SPON. The findings also demonstrate that a more complete dissection of temporal processing pathways is critical for understanding how biologically important sounds are encoded by the brain.
Collapse
Affiliation(s)
- Richard A. Felix
- Department of Otolaryngology–Head and Neck Surgery and the Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia 26506 USA
| | - Anna K. Magnusson
- Center for Hearing and Communication Research, Karolinska Institutet and Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Albert S. Berrebi
- Department of Otolaryngology–Head and Neck Surgery and the Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia 26506 USA
| |
Collapse
|
24
|
Gao F, Berrebi AS. Forward masking in the medial nucleus of the trapezoid body of the rat. Brain Struct Funct 2015; 221:2303-17. [PMID: 25921974 DOI: 10.1007/s00429-015-1044-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Perception of acoustic stimuli is modulated by the temporal and spectral relationship between sound components. Forward masking experiments show that the perception threshold for a probe tone is significantly impaired by a preceding masker stimulus. Forward masking has been systematically studied at the level of the auditory nerve, cochlear nucleus, inferior colliculus and auditory cortex, but not yet in the superior olivary complex. The medial nucleus of the trapezoid body (MNTB), a principal cell group of the superior olive, plays an essential role in sound localization. The MNTB receives excitatory input from the contralateral cochlear nucleus via the calyces of Held and innervates the ipsilateral lateral and medial superior olives, as well as the superior paraolivary nucleus. Here, we performed single-unit extracellular recordings in the MNTB of rats. Using a forward masking paradigm previously employed in studies of the inferior colliculus and auditory nerve, we determined response thresholds for a 20-ms characteristic frequency pure tone (the probe), and then presented it in conjunction with another tone (the masker) that was varied in intensity, duration, and frequency; we also systematically varied the masker-to-probe delay. Probe response thresholds increased and response magnitudes decreased when a masker was presented. The forward suppression effects were greater when masker level and masker duration were increased, when the masker frequency approached the MNTB unit's characteristic frequency, and as the masker-to-probe delay was shortened. Probe threshold shifts showed an exponential decay as the masker-to-probe delay increased.
Collapse
Affiliation(s)
- Fei Gao
- Departments of Otolaryngology, Head and Neck Surgery, Neurobiology and Anatomy, Sensory Neuroscience Research Center, Health Sciences Center, West Virginia University School of Medicine, PO Box 9303, Morgantown, WV, 26506, USA
| | - Albert S Berrebi
- Departments of Otolaryngology, Head and Neck Surgery, Neurobiology and Anatomy, Sensory Neuroscience Research Center, Health Sciences Center, West Virginia University School of Medicine, PO Box 9303, Morgantown, WV, 26506, USA.
| |
Collapse
|
25
|
Kulesza RJ, Grothe B. Yes, there is a medial nucleus of the trapezoid body in humans. Front Neuroanat 2015; 9:35. [PMID: 25873865 PMCID: PMC4379933 DOI: 10.3389/fnana.2015.00035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 01/20/2023] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) is a collection of brainstem neurons that function within the ascending auditory pathway. MNTB neurons are associated with a number of anatomical and physiological specializations which make these cells especially well-equipped to provide extremely fast and precise glycinergic inhibition to its target neurons in the superior olivary complex and ventral nucleus of the lateral lemniscus. The inhibitory influence of MNTB neurons plays essentials roles in the localization of sound sources and encoding temporal features of complex sounds. The morphology, afferent and efferent connections and physiological response properties of MNTB neurons have been well-characterized in a number of laboratory rodents and some carnivores. Furthermore, the MNTB has been positively identified in all mammals examined, ranging from opossum and mice to chimpanzees. From the early 1970s through 2009, a number of studies denied the existence of the MNTB in humans and consequentially, the existence of this nucleus in the human brain has been debated for nearly 50 years. The absence of the MNTB from the human brain would negate current principles of sound localization and would require a number of novel adaptations, entirely unique to humans. However, a number of recent studies of human post-mortem tissue have provided evidence supporting the existence of the MNTB in humans. It therefore seems timely to review the structure and function of the MNTB, critically review the literature which led to the denial of the human MNTB and then review recent investigations supporting the existence of the MNTB in the human brain.
Collapse
Affiliation(s)
- Randy J Kulesza
- Department of Anatomy, Auditory Research Center, Lake Erie College of Osteopathic Medicine Erie, PA, USA
| | - Benedikt Grothe
- Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München Munich, Germany
| |
Collapse
|
26
|
Malone BJ, Scott BH, Semple MN. Diverse cortical codes for scene segmentation in primate auditory cortex. J Neurophysiol 2015; 113:2934-52. [PMID: 25695655 DOI: 10.1152/jn.01054.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022] Open
Abstract
The temporal coherence of amplitude fluctuations is a critical cue for segmentation of complex auditory scenes. The auditory system must accurately demarcate the onsets and offsets of acoustic signals. We explored how and how well the timing of onsets and offsets of gated tones are encoded by auditory cortical neurons in awake rhesus macaques. Temporal features of this representation were isolated by presenting otherwise identical pure tones of differing durations. Cortical response patterns were diverse, including selective encoding of onset and offset transients, tonic firing, and sustained suppression. Spike train classification methods revealed that many neurons robustly encoded tone duration despite substantial diversity in the encoding process. Excellent discrimination performance was achieved by neurons whose responses were primarily phasic at tone offset and by those that responded robustly while the tone persisted. Although diverse cortical response patterns converged on effective duration discrimination, this diversity significantly constrained the utility of decoding models referenced to a spiking pattern averaged across all responses or averaged within the same response category. Using maximum likelihood-based decoding models, we demonstrated that the spike train recorded in a single trial could support direct estimation of stimulus onset and offset. Comparisons between different decoding models established the substantial contribution of bursts of activity at sound onset and offset to demarcating the temporal boundaries of gated tones. Our results indicate that relatively few neurons suffice to provide temporally precise estimates of such auditory "edges," particularly for models that assume and exploit the heterogeneity of neural responses in awake cortex.
Collapse
Affiliation(s)
- Brian J Malone
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California;
| | - Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health/National Institutes of Health, Bethesda, Maryland; and
| | - Malcolm N Semple
- Center for Neural Science at New York University, New York, New York
| |
Collapse
|
27
|
Karcz A, Allen PD, Walton J, Ison JR, Kopp-Scheinpflug C. Auditory deficits of Kcna1 deletion are similar to those of a monaural hearing impairment. Hear Res 2015; 321:45-51. [PMID: 25602577 DOI: 10.1016/j.heares.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
Abstract
Kv1.1 subunits of low voltage-activated (Kv) potassium channels are encoded by the Kcna1 gene and crucially determine the synaptic integration window to control the number and temporal precision of action potentials in the auditory brainstem of mammals and birds. Prior electrophysiological studies showed that auditory signaling is compromised in monaural as well as in binaural neurons of the auditory brainstem in Kv1.1 knockout mice (Kcna1(-/-)). Here we examine the behavioral effects of Kcna1 deletion on sensory tasks dependent on either binaural processing (detecting the movement of a sound source across the azimuth), monaural processing (detecting a gap in noise), as well as binaural summation of the acoustic startle reflex (ASR). Hearing thresholds measured by auditory brainstem responses (ABR) do not differ between genotypes, but our data show a much stronger performance of wild type mice (+/+) in each test during binaural hearing which was lost by temporarily inducing a unilateral hearing loss (through short term blocking of one ear) thus remarkably, leaving no significant difference between binaural and monaural hearing in Kcna1(-/-) mice. These data suggest that the behavioral effect of Kv1.1 deletion is primarily to impede binaural integration and thus to mimic monaural hearing.
Collapse
Affiliation(s)
- Anita Karcz
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Medical School, Germany
| | - Paul D Allen
- Department of Neurobiology and Anatomy, School of Medicine & Dentistry, University of Rochester, NY, USA
| | - Joseph Walton
- Department of Communication Sciences and Disorders, University of South Florida, 4202 Fowler Av., Tampa, Fl 32620, USA
| | - James R Ison
- Department of Neurobiology and Anatomy, School of Medicine & Dentistry, University of Rochester, NY, USA; Department of Brain & Cognitive Sciences, University of Rochester, NY, USA
| | | |
Collapse
|
28
|
Zhao Y, Xu X, He J, Xu J, Zhang J. Age-related changes in neural gap detection thresholds in the rat auditory cortex. Eur J Neurosci 2014; 41:285-92. [PMID: 25388865 DOI: 10.1111/ejn.12791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022]
Abstract
The ability of the auditory system to resolve sound temporal information is crucial for the understanding of human speech and other species-specific communications. Gap detection threshold, i.e. the ability to detect the shortest duration of a silent interval in a sound, is commonly used to study the auditory temporal resolution. Behavioral studies in humans and rats have shown that normal developing infants have higher gap detection thresholds than adults; however, the underlying neural mechanism is not fully understood. In the present study, we determined and compared the neural gap detection thresholds in the primary auditory cortex of three age groups of rats: the juvenile group (postnatal day 20-30), adult group I (8-10 weeks), and adult group II (28-30 weeks). We found age-related changes in auditory temporal acuity in the auditory cortex, i.e. the proportion of cortical units with short neural gap detection thresholds (< 5 ms) was much lower in juvenile groups compared with that in both adult groups at a constant sound level, and no significant differences in neural gap detection thresholds were found between the two adult groups. In addition, units in the auditory cortex of each group generally showed better gap detection thresholds at higher sound levels than at lower sound levels, exhibiting a level-dependent temporal acuity. These results provided evidence for neural correlates of age-related changes in behavioral gap detection ability during postnatal hearing development.
Collapse
Affiliation(s)
- Yin Zhao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | | | | | | | | |
Collapse
|
29
|
Altieri SC, Zhao T, Jalabi W, Maricich SM. Development of glycinergic innervation to the murine LSO and SPN in the presence and absence of the MNTB. Front Neural Circuits 2014; 8:109. [PMID: 25309335 PMCID: PMC4162373 DOI: 10.3389/fncir.2014.00109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/21/2014] [Indexed: 11/13/2022] Open
Abstract
Neurons in the superior olivary complex (SOC) integrate excitatory and inhibitory inputs to localize sounds in space. The majority of these inhibitory inputs have been thought to arise within the SOC from the medial nucleus of the trapezoid body (MNTB). However, recent work demonstrates that glycinergic innervation of the SOC persists in Egr2; En1CKO mice that lack MNTB neurons, suggesting that there are other sources of this innervation (Jalabi et al., 2013). To study the development of MNTB- and non-MNTB-derived glycinergic SOC innervation, we compared immunostaining patterns of glycine transporter 2 (GlyT2) at several postnatal ages in control and Egr2; En1CKO mice. GlyT2 immunostaining was present at birth (P0) in controls and reached adult levels by P7 in the superior paraolivary nucleus (SPN) and by P12 in the lateral superior olive (LSO). In Egr2; En1CKO mice, glycinergic innervation of the LSO developed at a similar rate but was delayed by one week in the SPN. Conversely, consistent reductions in the number of GlyT2+ boutons located on LSO somata were seen at all ages in Egr2; En1CKO mice, while these numbers reached control levels in the SPN by adulthood. Dendritic localization of GlyT2+ boutons was unaltered in both the LSO and SPN of adult Egr2; En1CKO mice. On the postsynaptic side, adult Egr2; En1CKO mice had reduced glycine receptor α1 (GlyRα1) expression in the LSO but normal levels in the SPN. GlyRα2 was not expressed by LSO or SPN neurons in either genotype. These findings contribute important information for understanding the development of MNTB- and non-MNTB-derived glycinergic pathways to the mouse SOC.
Collapse
Affiliation(s)
- Stefanie C Altieri
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA ; Department of Otolaryngology, University of Pittsburgh Pittsburgh, PA, USA
| | - Tianna Zhao
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA
| | - Walid Jalabi
- Department of Pediatrics, Case Western Reserve University Cleveland, OH, USA
| | - Stephen M Maricich
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
30
|
Yassin L, Radtke-Schuller S, Asraf H, Grothe B, Hershfinkel M, Forsythe ID, Kopp-Scheinpflug C. Nitric oxide signaling modulates synaptic inhibition in the superior paraolivary nucleus (SPN) via cGMP-dependent suppression of KCC2. Front Neural Circuits 2014; 8:65. [PMID: 24987336 PMCID: PMC4060731 DOI: 10.3389/fncir.2014.00065] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/28/2014] [Indexed: 11/13/2022] Open
Abstract
Glycinergic inhibition plays a central role in the auditory brainstem circuitries involved in sound localization and in the encoding of temporal action potential firing patterns. Modulation of this inhibition has the potential to fine-tune information processing in these networks. Here we show that nitric oxide (NO) signaling in the auditory brainstem (where activity-dependent generation of NO is documented) modulates the strength of inhibition by changing the chloride equilibrium potential. Recent evidence demonstrates that large inhibitory postsynaptic currents (IPSCs) in neurons of the superior paraolivary nucleus (SPN) are enhanced by a very low intracellular chloride concentration, generated by the neuronal potassium chloride co-transporter (KCC2) expressed in the postsynaptic neurons. Our data show that modulation by NO caused a 15 mV depolarizing shift of the IPSC reversal potential, reducing the strength of inhibition in SPN neurons, without changing the threshold for action potential firing. Regulating inhibitory strength, through cGMP-dependent changes in the efficacy of KCC2 in the target neuron provides a postsynaptic mechanism for rapidly controlling the inhibitory drive, without altering the timing or pattern of the afferent spike train. Therefore, this NO-mediated suppression of KCC2 can modulate inhibition in one target nucleus (SPN), without influencing inhibitory strength of other target nuclei (MSO, LSO) even though they are each receiving collaterals from the same afferent nucleus (a projection from the medial nucleus of the trapezoid body, MNTB).
Collapse
Affiliation(s)
- Lina Yassin
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University MunichPlanegg-Martinsried, Germany
| | - Susanne Radtke-Schuller
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University MunichPlanegg-Martinsried, Germany
| | - Hila Asraf
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University MunichPlanegg-Martinsried, Germany
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Ian D. Forsythe
- Department of Cell Physiology and Pharmacology, University of LeicesterLeicester, UK
| | - Cornelia Kopp-Scheinpflug
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University MunichPlanegg-Martinsried, Germany
| |
Collapse
|
31
|
Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nat Commun 2014; 5:3790. [PMID: 24804642 PMCID: PMC4024823 DOI: 10.1038/ncomms4790] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/02/2014] [Indexed: 11/30/2022] Open
Abstract
Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing. Coincidence detector neurons in the mammalian brainstem encode interaural time differences (ITDs) that are implicated in auditory processing. Myoga et al. study a previously developed neuronal model and find that inhibition is crucial for sound localization, but more dynamically than previously thought.
Collapse
|
32
|
Neuronal adaptation translates stimulus gaps into a population code. PLoS One 2014; 9:e95705. [PMID: 24759970 PMCID: PMC3997522 DOI: 10.1371/journal.pone.0095705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/29/2014] [Indexed: 11/19/2022] Open
Abstract
Neurons in sensory pathways exhibit a vast multitude of adaptation behaviors, which are assumed to aid the encoding of temporal stimulus features and provide the basis for a population code in higher brain areas. Here we study the transition to a population code for auditory gap stimuli both in neurophysiological recordings and in a computational network model. Independent component analysis (ICA) of experimental data from the inferior colliculus of Mongolian gerbils reveals that the network encodes different gap sizes primarily with its population firing rate within 30 ms after the presentation of the gap, where longer gap size evokes higher network activity. We then developed a computational model to investigate possible mechanisms of how to generate the population code for gaps. Phenomenological (ICA) and functional (discrimination performance) analyses of our simulated networks show that the experimentally observed patterns may result from heterogeneous adaptation, where adaptation provides gap detection at the single neuron level and neuronal heterogeneity ensures discriminable population codes for the whole range of gap sizes in the input. Furthermore, our work suggests that network recurrence additionally enhances the network's ability to provide discriminable population patterns.
Collapse
|
33
|
Abstract
AbstractOffset neurons which respond to the termination of the sound stimulation may play important roles in auditory temporal information processing, sound signal recognition, and complex distinction. Two additional possible mechanisms were reviewed: neural inhibition and the intrinsic conductance property of offset neuron membranes. The underlying offset response was postulated to be located in the superior paraolivary nucleus of mice. The biological significance of the offset neurons was discussed as well.
Collapse
|
34
|
Felix RA, Vonderschen K, Berrebi AS, Magnusson AK. Development of on-off spiking in superior paraolivary nucleus neurons of the mouse. J Neurophysiol 2013; 109:2691-704. [PMID: 23515791 DOI: 10.1152/jn.01041.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The superior paraolivary nucleus (SPON) is a prominent cell group in the auditory brain stem that has been increasingly implicated in representing temporal sound structure. Although SPON neurons selectively respond to acoustic signals important for sound periodicity, the underlying physiological specializations enabling these responses are poorly understood. We used in vitro and in vivo recordings to investigate how SPON neurons develop intrinsic cellular properties that make them well suited for encoding temporal sound features. In addition to their hallmark rebound spiking at the stimulus offset, SPON neurons were characterized by spiking patterns termed onset, adapting, and burst in response to depolarizing stimuli in vitro. Cells with burst spiking had some morphological differences compared with other SPON neurons and were localized to the dorsolateral region of the nucleus. Both membrane and spiking properties underwent strong developmental regulation, becoming more temporally precise with age for both onset and offset spiking. Single-unit recordings obtained in young mice demonstrated that SPON neurons respond with temporally precise onset spiking upon tone stimulation in vivo, in addition to the typical offset spiking. Taken together, the results of the present study demonstrate that SPON neurons develop sharp on-off spiking, which may confer sensitivity to sound amplitude modulations or abrupt sound transients. These findings are consistent with the proposed involvement of the SPON in the processing of temporal sound structure, relevant for encoding communication cues.
Collapse
Affiliation(s)
- Richard A Felix
- Center for Hearing and Communication Research, Karolinska Institutet and Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
35
|
Deficits in responding to brief noise offsets in Kcna1 -/- mice reveal a contribution of this gene to precise temporal processing seen previously only for stimulus onsets. J Assoc Res Otolaryngol 2012; 13:351-8. [PMID: 22302114 DOI: 10.1007/s10162-011-0312-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022] Open
Abstract
The voltage-gated potassium channel subunit Kv1.1 encoded by the Kcna1 gene is expressed in many brainstem nuclei, and electrophysiological studies of Kcna1-null mutant (-/-) single neurons suggest that channels containing this subunit are critical for precise processing of rapid acoustic perturbations. We tested the hypothesis that brief offsets of a background noise are behaviorally less salient for Kcna1 -/- mice, measured by changes in noise offset inhibition of acoustic startle reflexes (ASR). In experiment 1, noise offset was followed by ASR-eliciting sound bursts either after 1-10 ms quiet intervals or after the return of noise for 10-290 ms following 10-ms quiet gaps. ASR inhibition to offset and gaps was initially higher in +/+ mice but persisted longer in -/- mice. Experiment 2 contrasted brief abrupt offsets with ramped offsets of the same duration up to 10 ms, the ramps intended to simulate progressively slower internal decays of afferent processing. Both groups had greater inhibition for abrupt offsets at asymptote, and this difference was evident at the 1-ms interval in +/+ but not -/- mice. Further, the asymptotic effect of ramped offsets in +/+ mice was equal to that produced by abrupt offsets in null mutants, suggesting more perseveration of internal afferent activity following noise offset in -/- mice. Overall, these data are consistent with prior electrophysiological studies showing that the neural mechanisms for processing acoustic transients are less effective in Kcna1 -/- mice and support previous proposals that Kv1.1 contributes to the perception of animal vocalizations and human speech.
Collapse
|
36
|
Tabor KM, Coleman WL, Rubel EW, Burger RM. Tonotopic organization of the superior olivary nucleus in the chicken auditory brainstem. J Comp Neurol 2012; 520:1493-508. [PMID: 22102107 DOI: 10.1002/cne.22807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Topographic maps are salient features of neuronal organization in sensory systems. Inhibitory components of neuronal circuitry are often embedded within this organization, making them difficult to isolate experimentally. The auditory system provides opportunities to study the topographic organization of inhibitory long-range projection nuclei, such as the superior olivary nucleus (SON). We analyzed the topographic organization of response features of neurons in the SON of chickens. Quantitative methods were developed to assess and communicate this organization. These analyses led to three main conclusions: 1) sound frequency is linearly arranged from dorsal (low frequencies) to ventral (high frequencies) in SON; 2) this tonotopic organization is less precise than the organization of the excitatory nuclei in the chicken auditory brainstem; and 3) neurons with different response patterns to pure tone stimuli are interspersed throughout the SON and show similar tonotopic organizations. This work provides a predictive model to determine the optimal stimulus frequency for a neuron from its spatial location in the SON.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery and Neurobiology and Behavior Graduate Program, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
37
|
Kasai M, Ono M, Ohmori H. Distinct neural firing mechanisms to tonal stimuli offset in the inferior colliculus of mice in vivo. Neurosci Res 2012; 73:224-37. [PMID: 22579573 DOI: 10.1016/j.neures.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/09/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
Offset neurons, which fire at the termination of sound, likely encode sound duration and serve to process temporal information. Offset neurons are found in most ascending auditory nuclei; however, the neural mechanisms that evoke offset responses are not well understood. In this study, we examined offset neural responses to tonal stimuli in the inferior colliculus (IC) in vivo with extracellular and intracellular recording techniques in mice. Based on peristimulus time histogram (PSTH) patterns, we classified extracellular offset responses into four types: Offset, Onset-Offset, Onset-Sustained-Offset and Inhibition-Offset types. Moreover, using in vivo whole-cell recording techniques, we found that offset responses were generated in most cells through the excitatory and inhibitory synaptic inputs. However, in a small number of cells, the offset responses were generated as a rebound to hyperpolarization during tonal stimulation. Many offset neurons fired robustly at a preferred duration of tonal stimulus, which corresponded with the timing of rich excitatory synaptic inputs. We concluded that most IC offset neurons encode the termination of the tone stimulus by responding to inherited ascending synaptic information, which is tuned to sound duration. The remainder generates offset spikes de novo through a post-inhibitory rebound mechanism.
Collapse
Affiliation(s)
- Masatoshi Kasai
- Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
38
|
|
39
|
Felix RA, Kadner A, Berrebi AS. Effects of ketamine on response properties of neurons in the superior paraolivary nucleus of the mouse. Neuroscience 2011; 201:307-19. [PMID: 22123167 DOI: 10.1016/j.neuroscience.2011.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022]
Abstract
The superior paraolivary nucleus (SPON; alternative abbreviation: SPN for the same nucleus in certain species) is a prominent brainstem structure that provides strong inhibitory input to the auditory midbrain. Previous studies established that SPON neurons encode temporal sound features with high precision. These earlier characterizations of SPON responses were recorded under the influence of ketamine, a dissociative anesthetic agent and known antagonist of N-methyl-d-aspartate glutamate (NMDA) receptors. Because NMDA alters neural responses from the auditory brainstem, single unit extracellular recordings of SPON neurons were performed in the presence and absence of ketamine. In doing so, this study represents the first in vivo examination of the SPON of the mouse. Herein, independent data sets of SPON neurons are characterized that did or did not receive ketamine, as well as neurons that were recorded both prior to and following ketamine administration. In all conditions, SPON neurons exhibited contralaterally driven spikes triggered by the offset of pure tone stimuli. Ketamine lowered both evoked and spontaneous spiking, decreased the sharpness of frequency tuning, and increased auditory thresholds and first-spike latencies. In addition, ketamine limited the range of modulation frequencies to which neurons phase-locked to sinusoidally amplitude-modulated tones.
Collapse
Affiliation(s)
- R A Felix
- Department of Otolaryngology-Head and Neck Surgery, and the Sensory Neuroscience Research Center, PO Box 9303 Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
40
|
Daly KC, Galán RF, Peters OJ, Staudacher EM. Detailed Characterization of Local Field Potential Oscillations and Their Relationship to Spike Timing in the Antennal Lobe of the Moth Manduca sexta. FRONTIERS IN NEUROENGINEERING 2011; 4:12. [PMID: 22046161 PMCID: PMC3200547 DOI: 10.3389/fneng.2011.00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/30/2011] [Indexed: 11/13/2022]
Abstract
The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike-LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25-55 Hz; odor-driven = 55-85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABA(A) receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are incongruent with the transient oscillatory model.
Collapse
Affiliation(s)
- Kevin C. Daly
- Department of Biology, West Virginia UniversityMorgantown, WV, USA
| | - Roberto F. Galán
- Department of Neurosciences, Case Western ReserveCleveland, OH, USA
| | | | | |
Collapse
|
41
|
Abstract
The calyx of Held is an axosomatic terminal in the auditory brainstem that has attracted anatomists because of its giant size and physiologists because of its accessibility to patch-clamp recordings. The calyx allows the principal neurons in the medial nucleus of the trapezoid body (MNTB) to provide inhibition that is both well timed and sustained to many other auditory nuclei. The special adaptations that allow the calyx to drive its principal neuron even when frequencies are high include a large number of release sites with low release probability, a large readily releasable pool, fast presynaptic calcium clearance and little delayed release, a large quantal size, and fast AMPA-type glutamate receptors. The transformation from a synapse that is unremarkable except for its giant size into a fast and reliable auditory relay happens in just a few days. In rodents this transformation is essentially ready when hearing starts.
Collapse
Affiliation(s)
- J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center, 3015 GE Rotterdam, The Netherlands.
| | | |
Collapse
|
42
|
Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J Neurosci 2011; 31:12566-78. [PMID: 21880918 DOI: 10.1523/jneurosci.2450-11.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The I(h) current determines the timing of the rebound, whereas the T-type Ca(2+) current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1-15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals.
Collapse
|
43
|
Kopp-Scheinpflug C, Tozer AJB, Robinson SW, Tempel BL, Hennig MH, Forsythe ID. The sound of silence: ionic mechanisms encoding sound termination. Neuron 2011; 71:911-25. [PMID: 21903083 DOI: 10.1016/j.neuron.2011.06.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2011] [Indexed: 11/30/2022]
Abstract
Offset responses upon termination of a stimulus are crucial for perceptual grouping and gap detection. These gaps are key features of vocal communication, but an ionic mechanism capable of generating fast offsets from auditory stimuli has proven elusive. Offset firing arises in the brainstem superior paraolivary nucleus (SPN), which receives powerful inhibition during sound and converts this into precise action potential (AP) firing upon sound termination. Whole-cell patch recording in vitro showed that offset firing was triggered by IPSPs rather than EPSPs. We show that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential (E(Cl)), combined with a large hyperpolarization-activated nonspecific cationic current (I(H)), with a secondary contribution from a T-type calcium conductance (I(TCa)). On activation by the IPSP, I(H) potently accelerates the membrane time constant, so when the sound ceases, a rapid repolarization triggers multiple offset APs that match onset timing accuracy.
Collapse
|
44
|
Johnston J, Forsythe ID, Kopp-Scheinpflug C. Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 2010; 588:3187-200. [PMID: 20519310 PMCID: PMC2976014 DOI: 10.1113/jphysiol.2010.191973] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/28/2010] [Indexed: 12/20/2022] Open
Abstract
In this review we take a physiological perspective on the role of voltage-gated potassium channels in an identified neuron in the auditory brainstem. The large number of KCN genes for potassium channel subunits and the heterogeneity of the subunit combination into K(+) channels make identification of native conductances especially difficult. We provide a general pharmacological and biophysical profile to help identify the common voltage-gated K(+) channel families in a neuron. Then we consider the physiological role of each of these conductances from the perspective of the principal neuron in the medial nucleus of the trapezoid body (MNTB). The MNTB is an inverting relay, converting excitation generated by sound from one cochlea into inhibition of brainstem nuclei on the opposite side of the brain; this information is crucial for binaural comparisons and sound localization. The important features of MNTB action potential (AP) firing are inferred from its inhibitory projections to four key target nuclei involved in sound localization (which is the foundation of auditory scene analysis in higher brain centres). These are: the medial superior olive (MSO), the lateral superior olive (LSO), the superior paraolivary nucleus (SPN) and the nuclei of the lateral lemniscus (NLL). The Kv families represented in the MNTB each have a distinct role: Kv1 raises AP firing threshold; Kv2 influences AP repolarization and hyperpolarizes the inter-AP membrane potential during high frequency firing; and Kv3 accelerates AP repolarization. These actions are considered in terms of fidelity of transmission, AP duration, firing rates and temporal jitter. An emerging theme is activity-dependent phosphorylation of Kv channel activity and suggests that intracellular signalling has a dynamic role in refining neuronal excitability and homeostasis.
Collapse
Affiliation(s)
- Jamie Johnston
- MRC Toxicology Unit, University of Leicester, Leicester, LE1 9HN, UK
| | | | | |
Collapse
|
45
|
Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. J Neurosci 2010; 30:10263-71. [PMID: 20685971 DOI: 10.1523/jneurosci.1125-10.2010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates synaptic plasticity by repressing translation of specific mRNAs. We found that FMRP binds mRNA encoding the voltage-gated potassium channel Kv3.1b in brainstem synaptosomes. To explore the regulation of Kv3.1b by FMRP, we investigated Kv3.1b immunoreactivity and potassium currents in the auditory brainstem sound localization circuit of male mice. The unique features of this circuit allowed us to control neuronal activity in vivo by exposing animals to high-frequency, amplitude-modulated stimuli, which elicit predictable and stereotyped patterns of input to the anterior ventral cochlear nucleus (AVCN) and medial nucleus of the trapezoid body (MNTB). In wild-type (WT) animals, Kv3.1b is expressed along a tonotopic gradient in the MNTB, with highest levels in neurons at the medial, high-frequency end. At baseline, Fmr1(-/-) mice, which lack FMRP, displayed dramatically flattened tonotopicity in Kv3.1b immunoreactivity and K(+) currents relative to WT controls. Moreover, after 30 min of acoustic stimulation, levels of Kv3.1b immunoreactivity were significantly elevated in both the MNTB and AVCN of WT, but not Fmr1(-/-), mice. These results suggest that FMRP is necessary for maintenance of the gradient in Kv3.1b protein levels across the tonotopic axis of the MNTB, and are consistent with a role for FMRP as a repressor of protein translation. Using numerical simulations, we demonstrate that Kv3.1b tonotopicity may be required for accurate encoding of stimulus features such as modulation rate, and that disruption of this gradient, as occurs in Fmr1(-/-) animals, degrades processing of this information.
Collapse
|
46
|
Strumbos JG, Polley DB, Kaczmarek LK. Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat. Neuroscience 2010; 167:567-72. [PMID: 20219640 PMCID: PMC2854512 DOI: 10.1016/j.neuroscience.2010.02.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
Abstract
Recent studies have demonstrated that total cellular levels of voltage-gated potassium channel subunits can change on a time scale of minutes in acute slices and cultured neurons, raising the possibility that rapid changes in the abundance of channel proteins contribute to experience-dependent plasticity in vivo. In order to investigate this possibility, we took advantage of the medial nucleus of the trapezoid body (MNTB) sound localization circuit, which contains neurons that precisely phase-lock their action potentials to rapid temporal fluctuations in the acoustic waveform. Previous work has demonstrated that the ability of these neurons to follow high-frequency stimuli depends critically upon whether they express adequate amounts of the potassium channel subunit Kv3.1. To test the hypothesis that net amounts of Kv3.1 protein would be rapidly upregulated when animals are exposed to sounds that require high frequency firing for accurate encoding, we briefly exposed adult rats to acoustic environments that varied according to carrier frequency and amplitude modulation (AM) rate. Using an antibody directed at the cytoplasmic C-terminus of Kv3.1b (the adult splice isoform of Kv3.1), we found that total cellular levels of Kv3.1b protein-as well as the tonotopic distribution of Kv3.1b-labeled cells-was significantly altered following 30 min of exposure to rapidly modulated (400 Hz) sounds relative to slowly modulated (0-40 Hz, 60 Hz) sounds. These results provide direct evidence that net amounts of Kv3.1b protein can change on a time scale of minutes in response to stimulus-driven synaptic activity, permitting auditory neurons to actively adapt their complement of ion channels to changes in the acoustic environment.
Collapse
Affiliation(s)
- John G. Strumbos
- Departments of Pharmacology, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT. 06520., Tel: 203-785-4500, Fax: 203-785-5494
| | - Daniel B. Polley
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leonard K. Kaczmarek
- Departments of Pharmacology, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT. 06520., Tel: 203-785-4500, Fax: 203-785-5494
| |
Collapse
|
47
|
Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: a comparison of bats with other mammals. Hear Res 2010; 273:134-44. [PMID: 20451594 DOI: 10.1016/j.heares.2010.03.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/21/2022]
Abstract
This review considers four auditory brainstem nuclear groups and shows how studies of both bats and other mammals have provided insights into their response properties and the impact of their convergence in the inferior colliculus (IC). The four groups are octopus cells in the cochlear nucleus, their connections with the ventral nucleus of the lateral lemniscus (VNLL) and the superior paraolivary nucleus (SPON), and the connections of the VNLL and SPON with the IC. The theme is that the response properties of neurons in the SPON and VNLL map closely onto the synaptic response features of a unique subpopulation of cells in the IC of bats whose inputs are dominated by inhibition. We propose that the convergence of VNLL and SPON inputs generates the tuning of these IC cells, their unique temporal responses to tones, and their directional selectivities for frequency modulated (FM) sweeps. Other IC neurons form directional properties in other ways, showing that selective response properties are formed in multiple ways. In the final section we discuss why multiple formations of common response properties could amplify differences in population activity patterns evoked by signals that have similar spectrotemporal features.
Collapse
|
48
|
Saldaña E, Aparicio MA, Fuentes-Santamaría V, Berrebi AS. Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience 2009; 163:372-87. [PMID: 19539725 PMCID: PMC2778228 DOI: 10.1016/j.neuroscience.2009.06.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
GABAergic neurotransmission contributes to shaping the response properties of inferior colliculus (IC) neurons. In rodents, the superior paraolivary nucleus (SPON) is a prominent and well-defined cell group of the superior olivary complex that sends significant but often neglected GABAergic projections to the IC. To investigate the trajectory, distribution and morphology of these projections, we injected the neuroanatomical tracer biotinylated dextran amine into the SPON of albino rats. Our results demonstrate that: (1) the SPON innervates densely all three subdivisions of the ipsilateral IC: central nucleus (CNIC), dorsal cortex (DCIC) and external cortex (ECIC). The SPON also sends a sparse projection to the contralateral DCIC via the commissure of the IC. (2) SPON axons are relatively thick (diameter >1.2 microm), ascend to the midbrain tectum in the medial aspect of the lateral lemniscus, and, for the most part, do not innervate the nuclei of the lateral lemniscus. (3) SPON fibers ramify profusely within the IC and bear abundant en passant and terminal boutons. (4) The axons of neurons in discrete regions of the SPON form two laminar terminal plexuses in the ipsilateral IC: a medial plexus that spans the CNIC and DCIC parallel to the known fibrodendritic laminae of the CNIC, and a lateral plexus located in the ECIC and oriented more or less parallel to the surface of the IC. (5) The projection from SPON to the ipsilateral IC is topographic: medial SPON neurons innervate the ventromedial region of the CNIC and DCIC and the ventrolateral region of the ECIC, whereas more laterally situated SPON neurons innervate more dorsolateral regions of the CNIC and DCIC and more dorsomedial regions of the ECIC. Thus, SPON fibers follow a pattern of distribution within the IC similar to that previously reported for intracollicular and corticocollicular projections.
Collapse
Affiliation(s)
- E Saldaña
- Laboratory for the Neurobiology of Hearing, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, 37007-Salamanca, Spain.
| | | | | | | |
Collapse
|
49
|
Balaguer-Ballester E, Clark NR, Coath M, Krumbholz K, Denham SL. Understanding pitch perception as a hierarchical process with top-down modulation. PLoS Comput Biol 2009; 5:e1000301. [PMID: 19266015 PMCID: PMC2639722 DOI: 10.1371/journal.pcbi.1000301] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 01/23/2009] [Indexed: 11/18/2022] Open
Abstract
Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing.
Collapse
Affiliation(s)
- Emili Balaguer-Ballester
- Centre for Theoretical and Computational Neuroscience, University of Plymouth, Plymouth, United Kingdom.
| | | | | | | | | |
Collapse
|
50
|
Kopp-Scheinpflug C, Dehmel S, Tolnai S, Dietz B, Milenkovic I, Rübsamen R. Glycine-mediated changes of onset reliability at a mammalian central synapse. Neuroscience 2008; 157:432-45. [PMID: 18840508 DOI: 10.1016/j.neuroscience.2008.08.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/18/2022]
Abstract
Glycine is an inhibitory neurotransmitter activating a chloride conductance in the mammalian CNS. In vitro studies from brain slices revealed a novel presynaptic site of glycine action in the medial nucleus of the trapezoid body (MNTB) which increases the release of the excitatory transmitter glutamate from the calyx of Held. Here, we investigate the action of glycine on action potential firing of single MNTB neurons from the gerbil under acoustic stimulation in vivo. Iontophoretic application of the glycine receptor antagonist strychnine caused a significant decrease in spontaneous and sound-evoked firing rates throughout the neurons' excitatory response areas, with the largest changes at the respective characteristic frequency (CF). The decreased firing rate was accompanied by longer and more variable onset latencies of sound-evoked responses. Outside the neurons' excitatory response areas, firing rates increased during the application of strychnine due to a reduction of inhibitory sidebands, causing a broadening of frequency tuning. These results indicate that glycine enhances the efficacy for on-CF stimuli, while simultaneously suppressing synaptic transmission for off-CF stimuli. These in vivo results provide evidence of multiple excitatory and inhibitory glycine effects on the same neuronal population in the mature mammalian CNS.
Collapse
Affiliation(s)
- C Kopp-Scheinpflug
- Institute of Biology II, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|