1
|
Kong Y, Yang H, Nie R, Zhang X, Zuo F, Zhang H, Nian X. Obesity: pathophysiology and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:25. [PMID: 40278960 PMCID: PMC12031720 DOI: 10.1186/s43556-025-00264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Over the past few decades, obesity has transitioned from a localized health concern to a pressing global public health crisis affecting over 650 million adults globally, as documented by WHO epidemiological surveys. As a chronic metabolic disorder characterized by pathological adipose tissue expansion, chronic inflammation, and neuroendocrine dysregulation that disrupts systemic homeostasis and impairs physiological functions, obesity is rarely an isolated condition; rather, it is frequently complicated by severe comorbidities that collectively elevate mortality risks. Despite advances in nutritional science and public health initiatives, sustained weight management success rates and prevention in obesity remain limited, underscoring its recognition as a multifactorial disease influenced by genetic, environmental, and behavioral determinants. Notably, the escalating prevalence of obesity and its earlier onset in younger populations have intensified the urgency to develop novel therapeutic agents that simultaneously ensure efficacy and safety. This review aims to elucidate the pathophysiological mechanisms underlying obesity, analyze its major complications-including type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), non-alcoholic fatty liver disease (NAFLD), obesity-related respiratory disorders, obesity-related nephropathy (ORN), musculoskeletal impairments, malignancies, and psychological comorbidities-and critically evaluate current anti-obesity strategies. Particular emphasis is placed on emerging pharmacological interventions, exemplified by plant-derived natural compounds such as berberine (BBR), with a focus on their molecular mechanisms, clinical efficacy, and therapeutic advantages. By integrating mechanistic insights with clinical evidence, this review seeks to provide innovative perspectives for developing safe, accessible, and effective obesity treatments.
Collapse
Affiliation(s)
- Yue Kong
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Rong Nie
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|
4
|
López-González L, Martínez-de-la-Torre M, Puelles L. Populational heterogeneity and partial migratory origin of the ventromedial hypothalamic nucleus: genoarchitectonic analysis in the mouse. Brain Struct Funct 2023; 228:537-576. [PMID: 36598560 PMCID: PMC9944059 DOI: 10.1007/s00429-022-02601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/27/2022] [Indexed: 01/05/2023]
Abstract
The ventromedial hypothalamic nucleus (VMH) is one of the most distinctive hypothalamic tuberal structures, subject of numerous classic and modern functional studies. Commonly, the adult VMH has been divided in several portions, attending to differences in cell aggregation, cell type, connectivity, and function. Consensus VMH partitions in the literature comprise the dorsomedial (VMHdm), and ventrolateral (VMHvl) subnuclei, which are separated by an intermediate or central (VMHc) population (topographic names based on the columnar axis). However, some recent transcriptome analyses have identified a higher number of different cell types in the VMH, suggesting additional subdivisions, as well as the possibility of separate origins. We offer a topologic and genoarchitectonic developmental study of the mouse VMH complex using the prosomeric axis as a reference. We analyzed genes labeling specific VMH subpopulations, with particular focus upon the Nkx2.2 transcription factor, a marker of the alar-basal boundary territory of the prosencephalon, from where some cells seem to migrate dorsoventrally into VMH. We also identified separate neuroepithelial origins of a Nr2f1-positive subpopulation, and a new Six3-positive component, as well as subtle differences in origin of Nr5a1 positive versus Nkx2.2-positive cell populations entering dorsoventrally the VMH. Several of these migrating cell types are born in the dorsal tuberal domain and translocate ventralwards to reach the intermediate tuberal domain, where the adult VMH mass is located in the adult. This work provides a more detailed area map on the intrinsic organization of the postmigratory VMH complex, helpful for deeper functional studies of this basal hypothalamic entity.
Collapse
Affiliation(s)
- Lara López-González
- grid.10586.3a0000 0001 2287 8496University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120 Murcia, Spain
| | - Margaret Martínez-de-la-Torre
- grid.10586.3a0000 0001 2287 8496University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120 Murcia, Spain
| | - Luis Puelles
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120, Murcia, Spain.
| |
Collapse
|
5
|
Zhang X, Wang X, Wang S, Peng W, Ullah R, Fu J, Zhou Y, Shen Y. Trilogy Development of Proopiomelanocortin Neurons From Embryonic to Adult Stages in the Mice Retina. Front Cell Dev Biol 2021; 9:718851. [PMID: 34676208 PMCID: PMC8523858 DOI: 10.3389/fcell.2021.718851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Proopiomelanocortin-positive amacrine cells (POMC ACs) were first discovered in adult mouse retinas in 2010; however, the development of POMC-ACs has not been studied. We bred POMC-EGFP mice to label POMC-positive cells and investigated the development of POMC neurons from embryonic to adult stages. We found that POMC neuron development is mainly divided into three stages: the embryonic stage, the closed-eye stage, and the open-eye stage. Each stage has unique characteristics. In the embryonic stage, POMC neurons appeared in the retina at about E13. There was a cell number developmental peak at E15, followed by a steep decline at E16. POMC neurons showed a large soma and increased spine numbers at the closed-eye stage, and two dendritic sublaminas formed in the inner plexiform layer (IPL). The appearance and increased soma size and dendrite numbers did not occur continuously in space. We found that the soma number was asymmetric between the superior and inferior retinas according to the developmental topographic map. Density peaked in the superior retina, which existed persistently in the retinal ganglion cell layer (GCL), but disappeared from the inner nuclear layer (INL) at about P6. At the same time, the soma distribution in the INL was the most regular. At the open-eye stage, the development of POMC neurons was nearly stable only with only an increase in the IPL width, which increased the soma–dendrite distance.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.,Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Senjie Wang
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Peng
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rahim Ullah
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.,Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Tao Y, Xie Z, Shi J, Ou R, Wu H, Shi H, Huang F, Wu X. Hippocampal mRNA expression profiling in mice exposed to chronic unpredictable mild stress. Brain Res Bull 2020; 162:11-19. [PMID: 32534010 DOI: 10.1016/j.brainresbull.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 11/27/2022]
Abstract
Depression is a state of low mood and aversion to activity, affecting a person's thoughts, behavior, motivation, feelings and sense of well-being, which is associated with dramatical gene expression changes in hippocampus. Rodents induced by chronic unpredictable mild stress (CUMS) demonstrate typical depression-like behaviors similar to clinical patients, therefore, are commonly used as a model for depression and antidepressant study. In order to enhance our understanding of the molecular mechanisms of the pathogenesis of depression, in the present study, the hippocampal mRNA expression profile of mice exposed to CUMS for 5 weeks was sequenced using Illumina HiSeq 4000 platform followed by enrichment analysis, including Hierarchical Cluster, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) network. Totally, 346 differently expressed mRNAs, including 208 downregulated and 138 upregulated, were identified in the hippocampus of the CUMS mice. KEGG biological pathway analysis showed that the upregulated and downregulated mRNAs were mostly enriched in 29 pathways and 8 pathways, respectively. PPI network analysis exposed that glyceraldehyde 3-phosphate dehydrogenase was the crucial node with high connectivity degree. Additionally, most of these genes in PPI network analysis have previously been linked to energy metabolism and corticosterone responses. Overall, our results indicate the possible novel molecular targets for the therapy of depression.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zhejun Xie
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jiachen Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Rongliwen Ou
- Xiangya School of Medicine, Central South University, Changsha 410008, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
7
|
Gao Y, Li J, Zhang Z, Zhang R, Pollock A, Sun T. MicroRNA miR-7 and miR-17-92 in the Arcuate Nucleus of Mouse Hypothalamus Regulate Sex-Specific Diet-Induced Obesity. Mol Neurobiol 2019; 56:7508-7521. [DOI: 10.1007/s12035-019-1618-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
|
8
|
Schwerdtfeger LA, Tobet SA. From organotypic culture to body-on-a-chip: A neuroendocrine perspective. J Neuroendocrinol 2019; 31:e12650. [PMID: 30307079 DOI: 10.1111/jne.12650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
The methods used to study neuroendocrinology have been as diverse as the discoveries to come out of the field. Maintaining live neurones outside of a body in vitro was important from the beginning, building on methods that dated back to at least the first decade of the 20th Century. Neurosecretion defines an essential foundation of neuroendocrinology based on work that began in the 1920s and 1930s. Throughout the first half of the 20th Century, many paradigms arose for studying everything from single neurones to whole organs in vitro. Two of these survived as preeminent systems for use throughout the second half of the century: cell cultures and explant systems. Slice cultures and explants that emerged as organotypic technologies included such neuroendocrine organs such as the brain, pituitary, adrenals and intestine. The vast majority of these studies were carried out in static cultures for which media were changed over a time scale of days. Tissues were used for experimental techniques such as electrical recording of neuronal physiology in single cells and observation by live microscopy. When maintained in vitro, many of these systems only partially capture the in vivo physiology of the organ system of interest, often because of a lack of cellular diversity (eg, neuronal cultures lacking glia). Modern microfluidic methodologies show promise for organ systems, ranging from the reproductive to the gastrointestinal to the brain. Moving forward and striving to understand the mechanisms that drive neuroendocrine signalling centrally and peripherally, there will always be a need to consider the heterogeneous cellular compositions of organs in vivo.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
9
|
Abstract
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.
Collapse
Affiliation(s)
- Chitoku Toda
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520.,Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
10
|
Wu MV, Tollkuhn J. Estrogen receptor alpha is required in GABAergic, but not glutamatergic, neurons to masculinize behavior. Horm Behav 2017; 95:3-12. [PMID: 28734725 PMCID: PMC7011612 DOI: 10.1016/j.yhbeh.2017.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023]
Abstract
Masculinization of the altricial rodent brain is driven by estrogen signaling during a perinatal critical period. Genetic deletion of estrogen receptor alpha (Esr1/ERα) results in altered hypothalamic-pituitary-gonadal (HPG) axis signaling and a dramatic reduction of male sexual and territorial behaviors. However, the role of ERα in masculinizing distinct classes of neurons remains unexplored. We deleted ERα in excitatory or inhibitory neurons using either a Vglut2 or Vgat driver and assessed male behaviors. We find that Vglut2-Cre;Esr1lox/lox mutant males lack ERα in the ventrolateral region of the ventromedial hypothalamus (VMHvl) and posterior ventral portion of the medial amygdala (MePV). These mutants recapitulate the increased serum testosterone levels seen with constitutive ERα deletion, but have none of the behavioral deficits. In contrast, Vgat-Cre;Esr1lox/lox males with substantial ERα deletion in inhibitory neurons, including those of the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr), posterior dorsal MeA (MePD), and medial preoptic area (MPOA) have normal testosterone levels, but display alterations in mating and territorial behaviors. These mutants also show dysmasculinized expression of androgen receptor (AR) and estrogen receptor beta (Esr2). Our results demonstrate that ERα masculinizes GABAergic neurons that gate the display of male-typical behaviors.
Collapse
Affiliation(s)
- Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
11
|
Carletti R, Tacconi S, Mugnaini M, Gerrard P. Receptor distribution studies. Curr Opin Pharmacol 2017; 35:94-100. [PMID: 28803835 DOI: 10.1016/j.coph.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Receptor distribution studies have played a key role in the characterization of receptor systems (e.g. GABAB, NMDA (GluNRs), and Neurokinin 1) and in generating hypotheses to exploit these systems as potential therapeutic targets. Distribution studies can provide important information on the potential role of candidate receptors in normal physiology/disease and alert for possible adverse effects of targeting the receptors. Moreover, they can provide valuable information relating to quantitative target engagement (e.g. % receptor occupancy) to drive mechanistic pharmacokinetic/pharmacodynamic (PK/PD) hypotheses for compounds in the Drug Discovery process. Finally, receptor distribution and quantitative target engagement studies can be used to validate truly translational technologies such as PET ligands and pharmacoEEG paradigms to facilitate bridging of the preclinical/clinical interface and thus increase probability of success.
Collapse
Affiliation(s)
- Renzo Carletti
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy.
| | - Stefano Tacconi
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| | - Manolo Mugnaini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Philip Gerrard
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| |
Collapse
|
12
|
Ascenzi M, Bony G. The building of the neocortex with non-hyperpolarizing neurotransmitters. Dev Neurobiol 2017; 77:1023-1037. [PMID: 28276653 DOI: 10.1002/dneu.22495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
The development of the neocortex requires the synergic action of several secreted molecules to achieve the right amount of proliferation, differentiation, and migration of neural cells. Neurons are well known to release neurotransmitters (NTs) in adult and a growing body of evidences describes the presence of NTs already in the embryonic brain, long before the generation of synapses. NTs are classified as inhibitory or excitatory based on the physiological responses of the target neuron. However, this view is challenged by the fact that glycine and GABA NTs are excitatory during development. Many reviews have described the role of nonhyperpolarizing GABA at this stage. Nevertheless, a global consideration of the inhibitory neurotransmitters and their downstream signaling during the embryonic cortical development is still needed. For example, taurine, the most abundant neurotransmitter during development is poorly studied regarding its role during cortical development. In the light of recent discoveries, we will discuss the functions of glycine, GABA, and taurine during embryonic cortical development with an emphasis on their downstream signaling. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1023-1037, 2017.
Collapse
Affiliation(s)
| | - Guillaume Bony
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| |
Collapse
|
13
|
Huilgol D, Tole S. Cell migration in the developing rodent olfactory system. Cell Mol Life Sci 2016; 73:2467-90. [PMID: 26994098 PMCID: PMC4894936 DOI: 10.1007/s00018-016-2172-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
14
|
|
15
|
Dennison CS, King CM, Dicken MS, Hentges ST. Age-dependent changes in amino acid phenotype and the role of glutamate release from hypothalamic proopiomelanocortin neurons. J Comp Neurol 2015; 524:1222-35. [PMID: 26361382 DOI: 10.1002/cne.23900] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons are important regulators of energy balance. Recent studies indicate that in addition to their peptides, POMC neurons can release either the amino acid (AA) transmitter gamma-aminobutyric acid (GABA) or glutamate. A small subset of POMC neurons appears to have a dual AA phenotype based on coexpression of mRNA for the vesicular glutamate transporter (vGlut2) and the GABA synthetic enzyme Gad67. To determine whether the colocalization of GABAergic and glutamatergic markers may be indicative of a switch in AA transmitter phenotype, fluorescent in situ hybridization was used to detect vGlut2 and Gad mRNA in POMC neurons during early postnatal development. The percentage of POMC neurons expressing vGlut2 mRNA in POMC neurons progressively decreased from ∼40% at day 1 to less than 10% by 8 weeks of age, whereas Gad67 was only expressed in ∼10% of POMC neurons at day 1 and increased until ∼45% of POMC neurons coexpressed Gad67 at 8 weeks of age. To determine whether the expression of vGlut2 may play a role in energy balance regulation, genetic deletion of vGlut2 in POMC neurons was accomplished using Cre-lox technology. Male, but not female, mice lacking vGlut2 in POMC neurons were unable to maintain energy balance to the same extent as control mice when fed a high-fat diet. Altogether, the results indicate that POMC neurons are largely glutamatergic early in life and that the release of glutamate from these cells is involved in sex- and diet-specific regulation of energy balance.
Collapse
Affiliation(s)
- Christina S Dennison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Matthew S Dicken
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
16
|
Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 2015; 406:235-46. [PMID: 26318021 DOI: 10.1016/j.ydbio.2015.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
The mammalian arcuate nucleus (ARC) houses neurons critical for energy homeostasis and sexual maturation. Proopiomelanocortin (POMC) and Neuropeptide Y (NPY) neurons function to balance energy intake and Kisspeptin neurons are critical for the onset of puberty and reproductive function. While the physiological roles of these neurons have been well established, their development remains unclear. We have previously shown that Notch signaling plays an important role in cell fate within the ARC of mice. Active Notch signaling prevented neural progenitors from differentiating into feeding circuit neurons, whereas conditional loss of Notch signaling lead to a premature differentiation of these neurons. Presently, we hypothesized that Kisspeptin neurons would similarly be affected by Notch manipulation. To address this, we utilized mice with a conditional deletion of the Notch signaling co-factor Rbpj-κ (Rbpj cKO), or mice persistently expressing the Notch1 intracellular domain (NICD tg) within Nkx2.1 expressing cells of the developing hypothalamus. Interestingly, we found that in both models, a lack of Kisspeptin neurons are observed. This suggests that Notch signaling must be properly titrated for formation of Kisspeptin neurons. These results led us to hypothesize that Kisspeptin neurons of the ARC may arise from a different lineage of intermediate progenitors than NPY neurons and that Notch was responsible for the fate choice between these neurons. To determine if Kisspeptin neurons of the ARC differentiate similarly through a Pomc intermediate, we utilized a genetic model expressing the tdTomato fluorescent protein in all cells that have ever expressed Pomc. We observed some Kisspeptin expressing neurons labeled with the Pomc reporter similar to NPY neurons, suggesting that these distinct neurons can arise from a common progenitor. Finally, we hypothesized that temporal differences leading to premature depletion of progenitors in cKO mice lead to our observed phenotype. Using a BrdU birthdating paradigm, we determined the percentage of NPY and Kisspeptin neurons born on embryonic days 11.5, 12.5, and 13.5. We found no difference in the timing of differentiation of either neuronal subtype, with a majority occurring at e11.5. Taken together, our findings suggest that active Notch signaling is an important molecular switch involved in instructing subpopulations of progenitor cells to differentiate into Kisspeptin neurons.
Collapse
|
17
|
Stratton MS, Staros M, Budefeld T, Searcy BT, Nash C, Eitel C, Carbone D, Handa RJ, Majdic G, Tobet SA. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice. PLoS One 2014; 9:e106015. [PMID: 25162235 PMCID: PMC4146593 DOI: 10.1371/journal.pone.0106015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/27/2014] [Indexed: 11/18/2022] Open
Abstract
Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABAB receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABAB receptor to a 7-day critical period (E11–E17) during embryonic development. Experiments tested the role of GABAB receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABAB receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABAB receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABAB receptor antagonist. Embryonic exposure to GABAB receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABAB receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.
Collapse
Affiliation(s)
- Matthew S. Stratton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michelle Staros
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tomaz Budefeld
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Brian T. Searcy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Connor Nash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad Eitel
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Carbone
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - Robert J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - Gregor Majdic
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Stuart A. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
18
|
Xu C, Zhang W, Rondard P, Pin JP, Liu J. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Front Pharmacol 2014; 5:12. [PMID: 24575041 PMCID: PMC3920572 DOI: 10.3389/fphar.2014.00012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, cell-surface expression and localization, crosstalk with other receptors, or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
19
|
Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L. Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun 2013; 4:1800. [PMID: 23653212 DOI: 10.1038/ncomms2820] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/28/2013] [Indexed: 12/28/2022] Open
Abstract
γ-Aminobutyric acid is the principal inhibitory neurotransmitter in adults, acting through ionotropic chloride-permeable GABAA receptors (GABAARs), and metabotropic GABABRs coupled to calcium or potassium channels, and cyclic AMP signalling. During early development, γ-aminobutyric acid is the main neurotransmitter and is not hyperpolarizing, as GABAAR activation is depolarizing while GABABRs lack coupling to potassium channels. Despite extensive knowledge on GABAARs as key factors in neuronal development, the role of GABABRs remains unclear. Here we address GABABR function during rat cortical development by in utero knockdown (short interfering RNA) of GABABR in pyramidal-neuron progenitors. GABABR short interfering RNA impairs neuronal migration and axon/dendrite morphological maturation by disrupting cyclic AMP signalling. Furthermore, GABABR activation reduces cyclic AMP-dependent phosphorylation of LKB1, a kinase involved in neuronal polarization, and rescues LKB1 overexpression-induced defects in cortical development. Thus, non-hyperpolarizing activation of GABABRs during development promotes neuronal migration and morphological maturation by cyclic AMP/LKB1 signalling.
Collapse
Affiliation(s)
- Guillaume Bony
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego, 30 Genoa 16163, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Gaiarsa JL, Porcher C. Emerging neurotrophic role of GABAB receptors in neuronal circuit development. Front Cell Neurosci 2013; 7:206. [PMID: 24282395 PMCID: PMC3824957 DOI: 10.3389/fncel.2013.00206] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/18/2013] [Indexed: 12/22/2022] Open
Abstract
The proper development of highly organized structures in the central nervous system is a complex process during which key events – neurogenesis, migration, growth, differentiation, and synaptogenesis – have to take place in an appropriate manner to create functional neuronal networks. It is now well established that GABA, the main inhibitory neurotransmitter in the adult mammalian brain, plays more than a classical inhibitory role and can function as an important developmental signal early in life. GABA binds to chloride-permeable ionotropic GABAA receptors and to G-protein-coupled GABAB receptors (GABAB-Rs). Although most of the trophic actions of GABA have been attributed to the activation of GABAA receptors, recent advances show that GABAB-Rs also regulate fundamental steps of network development. This review summarizes some of the recent progress about the neurotrophic role of GABAB-Rs to neuronal development.
Collapse
Affiliation(s)
- Jean-Luc Gaiarsa
- Institut National de la Santé et de la Recherche Médicale U-901 Marseille, France ; Aix-Marseille Université, UMR S901 Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | | |
Collapse
|
21
|
Kilb W, Kirischuk S, Luhmann HJ. Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits 2013; 7:139. [PMID: 24027498 PMCID: PMC3760143 DOI: 10.3389/fncir.2013.00139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 11/13/2022] Open
Abstract
In the last three decades it became evident that the GABAergic system plays an essential role for the development of the central nervous system, by influencing the proliferation of neuronal precursors, neuronal migration and differentiation, as well as by controlling early activity patterns and thus formation of neuronal networks. GABA controls neuronal development via depolarizing membrane responses upon activation of ionotropic GABA receptors. However, many of these effects occur before the onset of synaptic GABAergic activity and thus require the presence of extrasynaptic tonic currents in neuronal precursors and immature neurons. This review summarizes our current knowledge about the role of tonic GABAergic currents during early brain development. In this review we compare the temporal sequence of the expression and functional relevance of different GABA receptor subunits, GABA synthesizing enzymes and GABA transporters. We also refer to other possible endogenous agonists of GABAA receptors. In addition, we describe functional consequences mediated by the GABAergic system during early developmental periods and discuss current models about the origin of extrasynaptic GABA and/or other endogenous GABAergic agonists during early developmental states. Finally, we present evidence that tonic GABAergic activity is also critically involved in the generation of physiological as well as pathophysiological activity patterns before and after the establishment of functional GABAergic synaptic connections.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology and Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | | | | |
Collapse
|
22
|
Tobet SA, Handa RJ, Goldstein JM. Sex-dependent pathophysiology as predictors of comorbidity of major depressive disorder and cardiovascular disease. Pflugers Arch 2013; 465:585-94. [PMID: 23503726 PMCID: PMC3654035 DOI: 10.1007/s00424-013-1248-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
Abstract
There is a strong and growing literature showing that key aspects of brain development may be critical antecedents of adult physiology and behavior or may lead to physiological and psychiatric disorders in adulthood. Many are significantly influenced by sex-dependent factors. Neurons of the paraventricular nucleus (PVN) of the hypothalamus occupy a key position in regulating homeostatic, neuroendocrine, and behavioral functions. This brain area is a critical link for our understanding of the etiology of a number of disorders with components ranging from mood to feeding and energy balance and to autonomic nervous system regulation. Thus, based on common brain circuitry, the PVN may be a critical anatomical intersection for understanding comorbidities among depression, obesity, and cardiovascular risk. Historically, the majority of approaches to brain development examine neuronal, glial, and vascular factors independently, with notably less emphasis on vascular contributions. The realization that the PVN undergoes a unique vascular developmental process places added value on discerning the cellular and molecular mechanisms that drive its late-onset angiogenesis and further implications for neuronal differentiation and function. This has ramifications in humans for understanding chronic, and sometimes fatal, comorbidities that share sex-dependent biological bases in development through functional and anatomical intersections with the hypothalamus.
Collapse
Affiliation(s)
- S A Tobet
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
23
|
Di Giorgio NP, Catalano PN, López PV, González B, Semaan SJ, López GC, Kauffman AS, Rulli SB, Somoza GM, Bettler B, Libertun C, Lux-Lantos VA. Lack of functional GABAB receptors alters Kiss1 , Gnrh1 and Gad1 mRNA expression in the medial basal hypothalamus at postnatal day 4. Neuroendocrinology 2013; 98:212-23. [PMID: 24080944 PMCID: PMC3915412 DOI: 10.1159/000355631] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIMS Adult mice lacking functional GABAB receptors (GABAB1KO) show altered Gnrh1 and Gad1 expressions in the preoptic area-anterior hypothalamus (POA-AH) and females display disruption of cyclicity and fertility. Here we addressed whether sexual differentiation of the brain and the proper wiring of the GnRH and kisspeptin systems were already disturbed in postnatal day 4 (PND4) GABAB1KO mice. METHODS PND4 wild-type (WT) and GABAB1KO mice of both sexes were sacrificed; tissues were collected to determine mRNA expression (qPCR), amino acids (HPLC), and hormones (RIA and/or IHC). RESULTS GnRH neuron number (IHC) did not differ among groups in olfactory bulbs or OVLT-POA. Gnrh1 mRNA (qPCR) in POA-AH was similar among groups. Gnrh1 mRNA in medial basal hypothalamus (MBH) was similar in WTs but was increased in GABAB1KO females compared to GABAB1KO males. Hypothalamic GnRH (RIA) was sexually different in WTs (males > females), but this sex difference was lost in GABAB1KOs; the same pattern was observed when analyzing only the MBH, but not in the POA-AH. Arcuate nucleus Kiss1 mRNA (micropunch-qPCR) was higher in WT females than in WT males and GABAB1KO females. Gad1 mRNA in MBH was increased in GABAB1KO females compared to GABAB1KO males. Serum LH and gonadal estradiol content were also increased in GABAB1KOs. CONCLUSION We demonstrate that GABABRs participate in the sexual differentiation of the ARC/MBH, because sex differences in several reproductive genes, such as Gad1, Kiss1 and Gnrh1, are critically disturbed in GABAB1KO mice at PND4, probably altering the organization and development of neural circuits governing the reproductive axis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arcuate Nucleus of Hypothalamus/growth & development
- Arcuate Nucleus of Hypothalamus/metabolism
- Female
- Gene Expression Regulation, Developmental
- Glutamate Decarboxylase/deficiency
- Glutamate Decarboxylase/genetics
- Gonadotropin-Releasing Hormone/deficiency
- Gonadotropin-Releasing Hormone/genetics
- Hypothalamus, Middle/growth & development
- Hypothalamus, Middle/metabolism
- Kisspeptins/deficiency
- Kisspeptins/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Protein Precursors/deficiency
- Protein Precursors/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, GABA-B/deficiency
- Receptors, GABA-B/genetics
- Sex Differentiation/genetics
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Moreno N, Domínguez L, Morona R, González A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol 2012; 520:453-78. [PMID: 21935937 DOI: 10.1002/cne.22762] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The patterns of distribution of a set of conserved brain developmental regulatory transcription factors and neuronal markers were analyzed in the hypothalamus of the juvenile turtle, Pseudemys scripta. Combined immunohistochemical techniques were used for the identification of the main boundaries and subdivisions in the optic, paraventricular, tuberal, and mammillary hypothalamic regions. The combination of Tbr1 and Pax6 with Nkx2.1 allowed identification of the boundary between the telencephalic preoptic area, rich in Nkx2.1 expression, and the prethalamic eminence, rich in Tbr1 expression. In addition, at this level Nkx2.2 expression defined the boundary between the telencephalon and the hypothalamus. The dorsalmost hypothalamic domain was the supraoptoparaventricular region that was defined by the expression of Otp/Pax6 and the lack of Nkx2.1/Isl1. It is subdivided into rostral, rich in Otp and Nkx2.2, and caudal, only Otp-positive, portions. Ventrally, the suprachiasmatic area was identified by its catecholaminergic groups and the lack of Otp, and could be further divided into a rostral portion, rich in Nkx2.1 and Nkx2.2, and a caudal portion, rich in Isl1 and devoid of Nkx2.1 expression. The expressions of Nkx2.1 and Isl1 defined the tuberal hypothalamus, whereas only the rostral portion expressed Otp. Its caudal boundary was evident by the lack of Isl1 in the adjacent mammillary area, which expressed Nkx2.1 and Otp. All these results provide an important set of data on the interpretation of the hypothalamic organization in a reptile, and hence make a useful contribution to the understanding of hypothalamic evolution.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
25
|
Abstract
Steroidogenic factor 1 (SF-1; officially designated NR5a1) is a member of a nuclear receptor superfamily with important roles in the development of endocrine systems. Studies with global and tissue-specific (i.e. central nervous system) knockout mice have revealed several roles of SF-1 in brain. These include morphological effects on the development of the ventromedial nucleus of the hypothalamus and functional effects on body weight regulation through modulation of physical activity, anxiety-like behaviours and female sexual behaviours. Although such defects are almost certainly a result of the absence of SF-1 acting as a transcription factor in the hypothalamus, global SF-1 knockout mice also represent a model for studying the sex differences in the brain that develop in the absence of exposure to foetal sex steroid hormones as a result of the absence of gonads. In the present review, current knowledge of the roles of SF-1 protein in the central nervous system is discussed.
Collapse
Affiliation(s)
- T Büdefeld
- Centre for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
26
|
Stratton MS, Searcy BT, Tobet SA. GABA regulates corticotropin releasing hormone levels in the paraventricular nucleus of the hypothalamus in newborn mice. Physiol Behav 2011; 104:327-33. [PMID: 21236282 PMCID: PMC3108002 DOI: 10.1016/j.physbeh.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/21/2010] [Accepted: 01/03/2011] [Indexed: 01/26/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is a major regulator of stress responses via release of corticotropin releasing hormone (CRH) to the pituitary gland. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is characteristic of individuals with major depressive disorder (MDD). Postmortem data from individuals diagnosed with MDD show increased levels of CRH mRNA and CRH immunoreactive neurons in the PVN. In the current study, an immunohistochemical (IHC) analysis revealed increased levels of CRH in the PVN of newborn mice lacking functional GABA(B) receptors. There was no difference in the total number of CRH immunoreactive cells. By contrast, there was a significant increase in the amount of CRH immunoreactivity per cell. Interestingly, this increase in CRH levels in the GABA(B) receptor R1 subunit knockout was limited to the rostral PVN. While GABAergic regulation of the HPA axis has been previously reported in adult animals, this study provides evidence of region-specific GABA modulation of immunoreactive CRH in newborns.
Collapse
Affiliation(s)
- Matthew S Stratton
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
27
|
Altered GABA signaling in early life epilepsies. Neural Plast 2011; 2011:527605. [PMID: 21826277 PMCID: PMC3150203 DOI: 10.1155/2011/527605] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/04/2011] [Accepted: 05/27/2011] [Indexed: 01/13/2023] Open
Abstract
The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAA signaling by reshuffling the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAA receptor currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAA signaling in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation, and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and sex-appropriate development of the brain.
Collapse
|
28
|
Contribution of metabotropic GABA(B) receptors to neuronal network construction. Pharmacol Ther 2011; 132:170-9. [PMID: 21718720 DOI: 10.1016/j.pharmthera.2011.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/05/2023]
Abstract
In the 1980s, Bowery and colleagues discovered the presence of a novel, bicuculline-resistant and baclofen-sensitive type of GABA receptor on peripheral nerve terminals, the GABA(B) receptor. Since this pioneering work, GABA(B) receptors have been identified in the Central Nervous System (CNS), where they provide an important inhibitory control of postsynaptic excitability and presynaptic transmitter release. GABA(B) receptors have been implicated in a number of important processes in the adult brain such as the regulation of synaptic plasticity and modulation of rhythmic activity. As a result of these studies, several potential therapeutic applications of GABA(B) receptor ligands have been identified. Recent advances have further shown that GABA(B) receptors play more than a classical inhibitory role in adult neurotransmission, and can in fact function as an important developmental signal early in life. Here we summarize current knowledge on the contribution of GABA(B) receptors to the construction and function of developing neuronal networks.
Collapse
|
29
|
Aujla PK, Bora A, Monahan P, Sweedler JV, Raetzman LT. The Notch effector gene Hes1 regulates migration of hypothalamic neurons, neuropeptide content and axon targeting to the pituitary. Dev Biol 2011; 353:61-71. [PMID: 21354131 PMCID: PMC3077720 DOI: 10.1016/j.ydbio.2011.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Proper development of the hypothalamic-pituitary axis requires precise neuronal signaling to establish a network that regulates homeostasis. The developing hypothalamus and pituitary utilize similar signaling pathways for differentiation in embryonic development. The Notch signaling effector gene Hes1 is present in the developing hypothalamus and pituitary and is required for proper formation of the pituitary, which contains axons of arginine vasopressin (AVP) neurons from the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). We hypothesized that Hes1 is necessary for the generation, placement and projection of AVP neurons. We found that Hes1 null mice show no significant difference in cell proliferation or death in the developing diencephalon at embryonic day 10.5 (e10.5) or e11.5. By e16.5, AVP cell bodies are formed in the SON and PVN, but are abnormally placed, suggesting that Hes1 may be necessary for the migration of AVP neurons. GAD67 immunoreactivity is ectopically expressed in Hes1 null mice, which may contribute to cell body misplacement. Additionally, at e18.5 Hes1 null mice show continued misplacement of AVP cell bodies in the PVN and SON and additionally exhibit abnormal axonal projection. Using mass spectrometry to characterize peptide content, we found that Hes1 null pituitaries have aberrant somatostatin (SS) peptide, which correlates with abnormal SS cells in the pituitary and misplaced SS axon tracts at e18.5. Our results indicate that Notch signaling facilitates the migration and guidance of hypothalamic neurons, as well as neuropeptide content.
Collapse
Affiliation(s)
- Paven K Aujla
- University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
30
|
Dickerson SM, Cunningham SL, Gore AC. Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus. Toxicol Appl Pharmacol 2011; 252:36-46. [PMID: 21277884 PMCID: PMC3060304 DOI: 10.1016/j.taap.2011.01.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 11/22/2022]
Abstract
Neonatal exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) can interfere with hormone-sensitive developmental processes, including brain sexual differentiation. We hypothesized that disruption of these processes by gestational PCB exposure would be detectable as early as the day after birth (postnatal day (P) 1) through alterations in hypothalamic gene and protein expression. Pregnant Sprague-Dawley rats were injected twice, once each on gestational days 16 and 18, with one of the following: DMSO vehicle; the industrial PCB mixture Aroclor 1221 (A1221); a reconstituted mixture of the three most prevalent congeners found in humans, PCB138, PCB153, and PCB180; or estradiol benzoate (EB). On P1, litter composition, anogenital distance (AGD), and body weight were assessed. Pups were euthanized for immunohistochemistry of estrogen receptor α (ERα) or TUNEL labeling of apoptotic cells or quantitative PCR of 48 selected genes in the preoptic area (POA). We found that treatment with EB or A1221 had a sex-specific effect on developmental apoptosis in the neonatal anteroventral periventricular nucleus (AVPV), a sexually dimorphic hypothalamic region involved in the regulation of reproductive neuroendocrine function. In this region, exposed females had increased numbers of apoptotic nuclei, whereas there was no effect of treatment in males. For ERα, EB treatment increased immunoreactive cell numbers and density in the medial preoptic nucleus (MPN) of both males and females, while A1221 and the PCB mixture had no effect. PCR analysis of gene expression in the POA identified nine genes that were significantly altered by prenatal EDC exposure, in a manner that varied by sex and treatment. These genes included brain-derived neurotrophic factor, GABA(B) receptors-1 and -2, IGF-1, kisspeptin receptor, NMDA receptor subunits NR2b and NR2c, prodynorphin, and TGFα. Collectively, these results suggest that the disrupted sexual differentiation of the POA by prenatal EDC exposures is already evident as early as the day after birth, effects that may change the trajectory of postnatal development and compromise adult reproductive function.
Collapse
Affiliation(s)
- Sarah M. Dickerson
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Andrea C. Gore
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
31
|
McClellan KM, Stratton MS, Tobet SA. Roles for gamma-aminobutyric acid in the development of the paraventricular nucleus of the hypothalamus. J Comp Neurol 2010; 518:2710-28. [PMID: 20506472 PMCID: PMC2879086 DOI: 10.1002/cne.22360] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of the hypothalamic paraventricular nucleus (PVN) involves several factors that work together to establish a cell group that regulates neuroendocrine functions and behaviors. Several molecular markers were noted within the developing PVN, including estrogen receptors (ER), neuronal nitric oxide synthase (nNOS), and brain-derived neurotrophic factor (BDNF). By contrast, immunoreactive gamma-aminobutyric acid (GABA) was found in cells and fibers surrounding the PVN. Two animal models were used to test the hypothesis that GABA works through GABA(A) and GABA(B) receptors to influence the development of the PVN. Treatment with bicuculline to decrease GABA(A) receptor signaling from embryonic day (E) 10 to E17 resulted in fewer cells containing immunoreactive (ir) ERalpha in the region of the PVN vs. control. GABA(B)R1 receptor subunit knockout mice were used to examine the PVN at P0 without GABA(B) signaling. In female but not male GABA(B)R1 subunit knockout mice, the positions of cells containing ir ERalpha shifted from medial to lateral compared with wild-type controls, whereas the total number of ir ERalpha-containing cells was unchanged. In E17 knockout mice, ir nNOS cells and fibers were spread over a greater area. There was also a significant decrease in ir BDNF in the knockout mice in a region-dependent manner. Changes in cell position and protein expression subsequent to disruption of GABA signaling may be due, in part, to changes in nNOS and BDNF signaling. Based on the current study, the PVN can be added as another site where GABA exerts morphogenetic actions in development.
Collapse
Affiliation(s)
- Kristy M. McClellan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
- School of Science, Buena Vista University, Storm Lake, IA 50588
| | - Matthew S. Stratton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Stuart A. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
32
|
Catalano PN, Di Giorgio N, Bonaventura MM, Bettler B, Libertun C, Lux-Lantos VA. Lack of functional GABA(B) receptors alters GnRH physiology and sexual dimorphic expression of GnRH and GAD-67 in the brain. Am J Physiol Endocrinol Metab 2010; 298:E683-96. [PMID: 20009027 DOI: 10.1152/ajpendo.00532.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GABA, the main inhibitory neurotransmitter, acts through GABA(A/C) and GABA(B) receptors (GABA(B)Rs); it is critical for gonadotropin regulation. We studied whether the lack of functional GABA(B)Rs in GABA(B1) knockout (GABA(B1)KO) mice affected the gonadotropin axis physiology. Adult male and female GABA(B1)KO and wild-type (WT) mice were killed to collect blood and tissue samples. Gonadotropin-releasing hormone (GnRH) content in whole hypothalami (HT), olfactory bulbs (OB), and frontoparietal cortexes (CT) were determined (RIA). GnRH expression by quantitative real-time PCR (qRT-PCR) was evaluated in preoptic area-anterior hypothalamus (POA-AH), medial basal-posterior hypothalamus (MBH-PH), OB, and CT. Pulsatile GnRH secretion from hypothalamic explants was measured by RIA. GABA, glutamate, and taurine contents in HT and CT were determined by HPLC. Glutamic acid decarboxylase-67 (GAD-67) mRNA was measured by qRT-PCR in POA-AH, MBH-PH, and CT. Gonadotropin content, serum levels, and secretion from adenohypophyseal cell cultures (ACC) were measured by RIA. GnRH mRNA expression was increased in POA-AH of WT males compared with females; this pattern of expression was inversed in GABA(B1)KO mice. MBH-PH, OB, and CT did not follow this pattern. In GABA(B1)KO females, GnRH pulse frequency was increased and GABA and glutamate contents were augmented. POA-AH GAD-67 mRNA showed the same expression pattern as GnRH mRNA in this area. Gonadotropin pituitary contents and serum levels showed no differences between genotypes. Increased basal LH secretion and decreased GnRH-stimulated gonadotropin response were observed in GABA(B1)KO female ACCs. These results support the hypothesis that the absence of functional GABA(B)Rs alters GnRH physiology and critically affects sexual dimorphic expression of GnRH and GAD-67 in POA-AH.
Collapse
Affiliation(s)
- Paolo N Catalano
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
33
|
Zhao T, Szabó N, Ma J, Luo L, Zhou X, Alvarez-Bolado G. Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus. Eur J Neurosci 2009; 28:1941-55. [PMID: 19046377 PMCID: PMC2777254 DOI: 10.1111/j.1460-9568.2008.06503.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hypothalamus is a brain region with vital functions, and alterations in its development can cause human disease. However, we still do not have a complete description of how this complex structure is put together during embryonic and early postnatal stages. Radially oriented, outside-in migration of cells is prevalent in the developing hypothalamus. In spite of this, cell contingents from outside the hypothalamus as well as tangential hypothalamic migrations also have an important role. Here we study migrations in the hypothalamic primordium by genetically labeling the Foxb1 diencephalic lineage. Foxb1 is a transcription factor gene expressed in the neuroepithelium of the developing neural tube with a rostral expression boundary between caudal and rostral diencephalon, and therefore appropriate for marking migrations from caudal levels into the hypothalamus. We have found a large, longitudinally oriented migration stream apparently originating in the thalamic region and following an axonal bundle to end in the anterior portion of the lateral hypothalamic area. Additionally, we have mapped a specific expansion of the neuroepithelium into the rostral diencephalon. The expanded neuroepithelium generates abundant neurons for the medial hypothalamus at the tuberal level. Finally, we have uncovered novel diencephalon-to-telencephalon migrations into septum, piriform cortex and amygdala.
Collapse
Affiliation(s)
- Tianyu Zhao
- Department of Genes and Behavior, Brain Development Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Tobet S, Knoll JG, Hartshorn C, Aurand E, Stratton M, Kumar P, Searcy B, McClellan K. Brain sex differences and hormone influences: a moving experience? J Neuroendocrinol 2009; 21:387-92. [PMID: 19207813 PMCID: PMC2669491 DOI: 10.1111/j.1365-2826.2009.01834.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sex differences in the nervous system come in many forms. Although a majority of sexually dimorphic characteristics in the brain have been described in older animals, mechanisms that determine sexually differentiated brain characteristics often operate during critical perinatal periods. Both genetic and hormonal factors likely contribute to physiological mechanisms in development to generate the ontogeny of sexual dimorphisms in brain. Relevant mechanisms may include neurogenesis, cell migration, cell differentiation, cell death, axon guidance and synaptogenesis. On a molecular level, there are several ways to categorize factors that drive brain development. These range from the actions of transcription factors in cell nuclei that regulate the expression of genes that control cell development and differentiation, to effector molecules that directly contribute to signalling from one cell to another. In addition, several peptides or proteins in these and other categories might be referred to as 'biomarkers' of sexual differentiation with undetermined functions in development or adulthood. Although a majority of sex differences are revealed as a direct consequence of hormone actions, some may only be revealed after genetic or environmental disruption. Sex differences in cell positions in the developing hypothalamus, and steroid hormone influences on cell movements in vitro, suggest that cell migration may be one target for early molecular actions that impact brain development and sexual differentiation.
Collapse
Affiliation(s)
- S Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The hormonal control of cell death is currently the best-established mechanism for creating sex differences in cell number in the brain and spinal cord. For example, males have more cells than do females in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp) and spinal nucleus of the bulbocavernosus (SNB), whereas females have a cell number advantage in the anteroventral periventricular nucleus (AVPV). In each case, the difference in cell number in adulthood correlates with a sex difference in the number of dying cells at some point in development. Mice with over- or under-expression of cell death genes have been used to test more directly the contribution of cell death to neural sex differences, to identify molecular mechanisms involved, and to determine the behavioural consequences of suppressing developmental cell death. Bax is a pro-death gene of the Bcl-2 family that is singularly important for apoptosis in neural development. In mice lacking bax, the number of cells in the BNSTp, SNB and AVPV are significantly increased, and sex differences in total cell number in each of these regions are eliminated. Cells rescued by bax gene deletion in the BNSTp express markers of differentiated neurones and the androgen receptor. On the other hand, sex differences in other phenotypically identified populations, such as vasopressin-expressing neurones in the BNSTp or dopaminergic neurones in AVPV, are not affected by either bax deletion or bcl-2 over-expression. Possible mechanisms by which testosterone may regulate cell death in the nervous system are discussed, as are the behavioural effects of eliminating sex differences in neuronal cell number.
Collapse
Affiliation(s)
- N G Forger
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|