1
|
Pain S, Brot S, Gaillard A. Neuroprotective Effects of Neuropeptide Y against Neurodegenerative Disease. Curr Neuropharmacol 2022; 20:1717-1725. [PMID: 34488599 PMCID: PMC9881060 DOI: 10.2174/1570159x19666210906120302] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/31/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Neuropeptide Y (NPY), a 36 amino acid peptide, is widely expressed in the mammalian brain. Changes in NPY levels in different brain regions and plasma have been described in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, and Machado-Joseph disease. The changes in NPY levels may reflect the attempt to set up an endogenous neuroprotective mechanism to counteract the degenerative process. Accumulating evidence indicates that NPY can function as an anti-apoptotic, anti-inflammatory, and pro-phagocytic agent, which may be used effectively to halt or to slow down the progression of the disease. In this review, we will focus on the neuroprotective roles of NPY in several neuropathological conditions, with a particular focus on the anti-inflammatory properties of NPY.
Collapse
Affiliation(s)
- Stéphanie Pain
- Laboratoire de Neurosciences Expérimentales et Cliniques-LNEC INSERM U-1084, Université de Poitiers, LNEC,
F-86000 Poitiers, France; ,CHU Poitiers, Poitiers, F-86021, France
| | - Sébastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques-LNEC INSERM U-1084, Université de Poitiers, LNEC,
F-86000 Poitiers, France;
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques-LNEC INSERM U-1084, Université de Poitiers, LNEC,
F-86000 Poitiers, France; ,Address correspondence to this author at the Laboratoire de Neurosciences Expérimentales et Cliniques-LNEC INSERM U-1084, Université de Poitiers, LNEC, F-86000 Poitiers, France; E-mail:
| |
Collapse
|
2
|
Ou K, Li Y, Liu L, Li H, Cox K, Wu J, Liu J, Dick AD. Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen Res 2022; 17:1919-1928. [PMID: 35142668 PMCID: PMC8848613 DOI: 10.4103/1673-5374.335140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Retinal degeneration is a debilitating ocular complication characterized by the progressive loss of photoreceptors and other retinal neurons, which are caused by a group of retinal diseases affecting various age groups, and increasingly prevalent in the elderly. Age-related macular degeneration, diabetic retinopathy and glaucoma are among the most common complex degenerative retinal disorders, posing significant public health problems worldwide largely due to the aging society and the lack of effective therapeutics. Whilst pathoetiologies vary, if left untreated, loss of retinal neurons can result in an acquired degeneration and ultimately severe visual impairment. Irrespective of underlined etiology, loss of neurons and supporting cells including retinal pigment epithelium, microvascular endothelium, and glia, converges as the common endpoint of retinal degeneration and therefore discovery or repurposing of therapies to protect retinal neurons directly or indirectly are under intensive investigation. This review overviews recent developments of potential neuroprotectants including neuropeptides, exosomes, mitochondrial-derived peptides, complement inhibitors, senolytics, autophagy enhancers and antioxidants either still experimentally or in clinical trials. Effective treatments that possess direct or indirect neuroprotective properties would significantly lift the burden of visual handicap.
Collapse
Affiliation(s)
- Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ling Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Katherine Cox
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jiahui Wu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew D Dick
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol; Institute of Ophthalmology, University College London, London; National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
3
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Zhang Y, Liu CY, Chen WC, Shi YC, Wang CM, Lin S, He HF. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci 2021; 11:151. [PMID: 34344469 PMCID: PMC8330085 DOI: 10.1186/s13578-021-00657-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Neuropeptide Y (NPY), one of the most abundant neuropeptides in the body, is widely expressed in the central and peripheral nervous systems and acts on the cardiovascular, digestive, endocrine, and nervous systems. NPY affects the nutritional and inflammatory microenvironments through its interaction with immune cells, brain-derived trophic factor (BDNF), and angiogenesis promotion to maintain body homeostasis. Additionally, NPY has great potential for therapeutic applications against various diseases, especially as an adjuvant therapy for stem cells. In this review, we discuss the research progress regarding NPY, as well as the current evidence for the regulation of NPY in each microenvironment, and provide prospects for further research on related diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
5
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
6
|
Ou K, Copland DA, Theodoropoulou S, Mertsch S, Li Y, Liu J, Schrader S, Liu L, Dick AD. Treatment of diabetic retinopathy through neuropeptide Y-mediated enhancement of neurovascular microenvironment. J Cell Mol Med 2020; 24:3958-3970. [PMID: 32141716 PMCID: PMC7171318 DOI: 10.1111/jcmm.15016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most severe clinical manifestations of diabetes mellitus and a major cause of blindness. DR is principally a microvascular disease, although the pathogenesis also involves metabolic reactive intermediates which induce neuronal and glial activation resulting in disruption of the neurovascular unit and regulation of the microvasculature. However, the impact of neural/glial activation in DR remains controversial, notwithstanding our understanding as to when neural/glial activation occurs in the course of disease. The objective of this study was to determine a potential protective role of neuropeptide Y (NPY) using an established model of DR permissive to N-methyl-D-aspartate (NMDA)-induced excitotoxic apoptosis of retinal ganglion cells (RGC) and vascular endothelial growth factor (VEGF)-induced vascular leakage. In vitro evaluation using primary retinal endothelial cells demonstrates that NPY promotes vascular integrity, demonstrated by maintained tight junction protein expression and reduced permeability in response to VEGF treatment. Furthermore, ex vivo assessment of retinal tissue explants shows that NPY can protect RGC from excitotoxic-induced apoptosis. In vivo clinical imaging and ex vivo tissue analysis in the diabetic model permitted assessment of NPY treatment in relation to neural and endothelial changes. The neuroprotective effects of NPY were confirmed by attenuating NMDA-induced retinal neural apoptosis and able to maintain inner retinal vascular integrity. These findings could have important clinical implications and offer novel therapeutic approaches for the treatment in the early stages of DR.
Collapse
Affiliation(s)
- Kepeng Ou
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China.,Laboratory for Experimental Ophthalmology, University of Düsseldorf, Düsseldorf, Germany.,Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sonja Mertsch
- Laboratory for Experimental Ophthalmology, University of Düsseldorf, Düsseldorf, Germany.,Department of Ophthalmology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Youjian Li
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China.,Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stefan Schrader
- Laboratory for Experimental Ophthalmology, University of Düsseldorf, Düsseldorf, Germany.,Department of Ophthalmology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Lei Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital, University College London Institute of Ophthalmology, London, UK
| |
Collapse
|
7
|
Campos EJ, Martins J, Brudzewsky D, Woldbye DPD, Ambrósio AF. Neuropeptide Y system mRNA expression changes in the hippocampus of a type I diabetes rat model. Ann Anat 2019; 227:151419. [PMID: 31563570 DOI: 10.1016/j.aanat.2019.151419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) plays a crucial role in many neurobiological functions, such as cognition and memory. Cognitive and memory impairment have been described in diabetic patients. The metabolism of NPY is determined by the activity of proteases, primarily dipeptidyl-peptidase-IV (DPP-IV). Therefore, DPP-IV inhibitors, such as sitagliptin, may modulate the function of NPY. In this study, we investigated the effect of type 1 diabetes and sitagliptin treatment on the regulation of the mRNA encoding for NPY and its receptors (Y1, Y2, and Y5 receptors) in the hippocampus. METHODS Type 1 diabetes was induced in male Wistar rats by i.p. injection of streptozotocin. Starting two weeks after diabetes onset, animals were treated orally with sitagliptin (5mg/kg, daily) for two weeks. The mRNA expression of Npy and its receptors (Npy1r, Npy2r, and Npy5r) in the hippocampus was evaluated using in situ hybridization with 33P-labeled oligonucleotides. RESULTS The mRNA expression of Npy, Npy1r and Npy5r was higher in the dentate gyrus, whereas Npy2r highest level was observed in the CA3 subregion. The mRNA expression of Npy, Npy1r and Npy5r in dentate gyrus, CA1 and CA3 was not affected by diabetes and/or by sitagliptin treatment. Type 1 diabetes increased the mRNA expression of Npy2r in the CA3 subregion, which was prevented by sitagliptin treatment. CONCLUSIONS Our results show that type 1 diabetes, at early stages, induces mild changes in the NPY system in the hippocampus that were counteracted by sitagliptin treatment.
Collapse
Affiliation(s)
- Elisa J Campos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Dan Brudzewsky
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - David P D Woldbye
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
8
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
9
|
Pain S, Vergote J, Gulhan Z, Bodard S, Chalon S, Gaillard A. Inflammatory process in Parkinson disease: neuroprotection by neuropeptide Y. Fundam Clin Pharmacol 2019; 33:544-548. [PMID: 30866091 DOI: 10.1111/fcp.12464] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the nigro-striatal pathway. Interestingly, it has already been shown that an intracerebral administration of neuropeptide Y (NPY) decreases the neurodegeneration induced by 6-hydroxydopamine (6-OHDA) in rodents and prevents loss of dopamine (DA) and DA transporter density. The etiology of idiopathic PD now suggest that chronic production of inflammatory mediators by activated microglial cells mediates the majority of DA-neuronal tissue destruction. In an animal experimental model of PD, the present study shows that NPY inhibited the activation of microglia evaluated by the binding of the translocator protein (TSPO) ligand [3H]PK11195 in striatum and substantia nigra of 6-OHDA rats. These results suggest a potential role for inflammation in the pathophysiology of the disease and a potential treatment by NPY in PD.
Collapse
Affiliation(s)
- Stéphanie Pain
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC)-INSERM U1084, Pôle Biologie-Santé, Université de Poitiers, Poitiers, France
| | - Jackie Vergote
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Zuhal Gulhan
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Bodard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC)-INSERM U1084, Pôle Biologie-Santé, Université de Poitiers, Poitiers, France
| |
Collapse
|
10
|
Christiansen AT, Sørensen NB, Haanes KA, Blixt FW, la Cour M, Warfvinge K, Klemp K, Woldbye DPD, Kiilgaard JF. Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model. Acta Ophthalmol 2018; 96:812-820. [PMID: 30218483 DOI: 10.1111/aos.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of intravitreal neuropeptide Y (NPY) treatment following acute retinal ischaemia in an in vivo porcine model. In addition, we evaluated the vasoconstrictive potential of NPY on porcine retinal arteries ex vivo. METHODS Twelve pigs underwent induced retinal ischaemia by elevated intraocular pressure clamping the ocular perfusion pressure at 5 mmHg for 2 hr followed by intravitreal injection of NPY or vehicle. After 4 weeks, retinas were evaluated functionally by standard and global-flash multifocal electroretinogram (mfERG) and histologically by thickness of retinal layers and number of ganglion cells. Additionally, the vasoconstrictive effects of NPY and its involved receptors were tested using wire myographs and NPY receptor antagonists on porcine retinal arteries. RESULTS Intravitreal injection of NPY after induced ischaemia caused a significant reduction in the mean induced component (IC) amplitude ratio (treated/normal eye) compared to vehicle-treated eyes. This reduction was accompanied by histological damage, where NPY treatment reduced the mean thickness of inner retinal layers and number of ganglion cells. In retinal arteries, NPY-induced vasoconstriction to a plateau of approximately 65% of potassium-induced constriction. This effect appeared to be mediated via Y1 and Y2, but not Y5. CONCLUSION In seeming contrast to previous in vitro studies, intravitreal NPY treatment caused functional and histological damage compared to vehicle after a retinal ischaemic insult. Furthermore, we showed for the first time that NPY induces Y1- and Y2- but not Y5-mediated vasoconstriction in retinal arteries. This constriction could explain the worsening in vivo effect induced by NPY treatment following an ischaemic insult and suggests that future studies on exploring the neuroprotective effects of NPY might focus on other receptors than Y1 and Y2.
Collapse
Affiliation(s)
- Anders T. Christiansen
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Nina B. Sørensen
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian A. Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Frank W. Blixt
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - Morten la Cour
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
11
|
Campos EJ, Martins J, Brudzewsky D, Correia S, Santiago AR, Woldbye DP, Ambrósio AF. Impact of type 1 diabetes mellitus and sitagliptin treatment on the neuropeptide Y system of rat retina. Clin Exp Ophthalmol 2018; 46:783-795. [PMID: 29442423 DOI: 10.1111/ceo.13176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) is a neuromodulator that is expressed in the retina. Increasing evidence suggests that NPY has pronounced anti-inflammatory effects, which might depend on the inhibition of dipeptidyl-peptidase-IV (DPP-IV). The aim of this study was to investigate the impact of type 1 diabetes mellitus (DM) and sitagliptin, a DPP-IV inhibitor, on the NPY system in the retina using an animal model. METHODS Type 1 DM was induced in male Wistar rats by an intraperitoneal injection of streptozotocin. Starting 2 weeks after DM onset, animals were treated orally with sitagliptin (5 mg/kg.day) for 2 weeks. The expression of NPY and NPY receptors (Y1 , Y2 and Y5 receptors) was measured by quantitative polymerase chain reaction, Western blot and/or enzyme-linked immunosorbent assay. The immunoreactivity of NPY and NPY receptors was evaluated by immunohistochemistry, and the [35 S]GTPγS binding assay was used to assess the functional binding of NPY receptors. RESULTS DM decreased the mRNA levels of NPY in the retina, as well as the protein levels of NPY and Y5 receptor. No changes were detected in the localization of NPY and NPY receptors in the retina and in the functional binding of NPY to all receptors. Sitagliptin alone reduced retinal NPY mRNA levels. The effects of DM on the NPY system were not affected by sitagliptin. CONCLUSION DM modestly affects the NPY system in the retina and these effects are not prevented by sitagliptin treatment. These observations suggest that DPP-IV enzyme is not underlying the NPY changes detected in the retina induced by type 1 DM.
Collapse
Affiliation(s)
- Elisa J Campos
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Dan Brudzewsky
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Sandra Correia
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana R Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - David Pd Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - António F Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| |
Collapse
|
12
|
Caolo V, Roblain Q, Lecomte J, Carai P, Peters L, Cuijpers I, Robinson EL, Derks K, Sergeys J, Noël A, Jones EAV, Moons L, Heymans S. Resistance to retinopathy development in obese, diabetic and hypertensive ZSF1 rats: an exciting model to identify protective genes. Sci Rep 2018; 8:11922. [PMID: 30093686 PMCID: PMC6085379 DOI: 10.1038/s41598-018-29812-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e. Npy and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR.
Collapse
Affiliation(s)
- Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.
| | - Quentin Roblain
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Paolo Carai
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
| | - Linsey Peters
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ilona Cuijpers
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Emma Louise Robinson
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jurgen Sergeys
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| |
Collapse
|
13
|
Christiansen AT, Kiilgaard JF, Klemp K, Woldbye DPD, Hannibal J. Localization, distribution, and connectivity of neuropeptide Y in the human and porcine retinas-A comparative study. J Comp Neurol 2018; 526:1877-1895. [DOI: 10.1002/cne.24455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jens Folke Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital, Rigshospitalet; Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital, Rigshospitalet; Denmark
| | - David Paul Drucker Woldbye
- Laboratory of Neural Plasticity; Center for Neuroscience, Faculty of Health Sciences, University of Copenhagen; Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry; Copenhagen University Hospital, Bispebjerg Hospital; Copenhagen Denmark
| |
Collapse
|
14
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
15
|
Bu W, Zhao WQ, Li WL, Dong CZ, Zhang Z, Li QJ. Neuropeptide Y suppresses epileptiform discharges by regulating AMPA receptor GluR2 subunit in rat hippocampal neurons. Mol Med Rep 2017; 16:387-395. [DOI: 10.3892/mmr.2017.6567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
16
|
Wu J, Liu S, Meng H, Qu T, Fu S, Wang Z, Yang J, Jin D, Yu B. Neuropeptide Y enhances proliferation and prevents apoptosis in rat bone marrow stromal cells in association with activation of the Wnt/β-catenin pathway in vitro. Stem Cell Res 2017; 21:74-84. [PMID: 28411439 DOI: 10.1016/j.scr.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 01/03/2023] Open
Abstract
Neuropeptide Y (NPY) exhibits a critical but poorly understood regulatory signaling function and has been shown to promote proliferation, vascularization and migration in several types of cells and tissues. However, little is known about the specific role of NPY in the proliferation and apoptosis of bone marrow stromal cells (also known as bone marrow-derived mesenchymal stem cells, BMSCs), which contain a subpopulation of multipotent skeletal stem cells. Based on BrdU incorporation tests, Cell Counting Kit-8, flow cytometry, quantitative polymerase chain reaction and western blotting, we showed that NPY significantly promoted the proliferation of BMSCs in a concentration-dependent manner, with a maximal effect observed at a concentration of 10-10M for pro-proliferative and 10-12M for anti-apoptotic activities. Furthermore, NPY significantly increased the percentage of cells in S and G2/M phases. In addition, NPY exhibited a protective effect after 24h of serum starvation as illustrated by a reduction in the apoptosis rate, degree of nuclear condensation, and expression of apoptosis markers, including caspase-3, caspase-9 and Bax mRNA expression. NPY also increased the mRNA and protein expression levels of canonical Wnt signaling pathway proteins, including β-catenin and c-myc, during the induced proliferative and anti-apoptotic processes. However, the proliferative and anti-apoptotic activities of NPY were partially blocked by both PD160170 (1μM) and DKK1 (0.2μg/mL). These compounds also blocked the mRNA and protein expression of β-catenin, p-GSK-3β and c-myc. Therefore, the results of the present study demonstrated that NPY exerts a proliferative and protective effect on BMSCs in a dose- and time-dependent manner in vitro, and importantly, these effects may be mediated via its Y1 receptor and involved in activation of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Jianqun Wu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Song Liu
- Department of Orthopedics, The Third Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province 510515, China; Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Huan Meng
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Tianyu Qu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Su Fu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Zhao Wang
- Department of Orthopedics, The Third Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province 510515, China; Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jianguo Yang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Orthopaedics, The First Hospital Huhhot, Huhhot, Inner Mongolia 010020, China
| | - Dan Jin
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Bin Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
17
|
Silva S, Carvalho F, Fernandes E, Antunes MJ, Cotrim MD. Contractile effects of 3,4-methylenedioxymethamphetamine on the human internal mammary artery. Toxicol In Vitro 2016; 34:187-193. [PMID: 27079619 DOI: 10.1016/j.tiv.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 11/26/2022]
Abstract
Since the late 1980s numerous reports have detailed adverse reactions to the use of 3,4-methylenedioxymethamphetamine (MDMA) associated with cardiovascular collapse and sudden death, following ventricular tachycardia and hypertension. For a better understanding of the effects of MDMA on the cardiovascular system, it is critical to determine their effects at the vasculature level, including the transporter or neurotransmitter systems that are most affected at the whole range of drug doses. With this purpose in mind, the aim of our study was to evaluate the contractile effect of MDMA in the human internal mammary artery, the contribution of SERT for this effect and the responsiveness of this artery to 5-HT in the presence of MDMA. We have also studied the possible involvement of 5-HT2 receptors on the MDMA contractile effect in this human blood vessel using ketanserin. Our results showed that MDMA contracted the studied human's internal mammary artery in a SERT-independent form, through activation of 5-HT2A receptors. Considering the high plasma concentrations achieved in heavy users or in situations of acute exposure to drugs, this effect is probably involved in the cardiovascular risk profile of this psychostimulant, especially in subjects with pre-existing cardiovascular disease.
Collapse
Affiliation(s)
- Sónia Silva
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemistry, Faculty of Pharmacy, University of Porto, Portugal
| | - Manuel J Antunes
- Cardiothoracic Surgery, University Hospital of Coimbra, Coimbra, Portugal
| | - Maria Dulce Cotrim
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Portugal
| |
Collapse
|
18
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
19
|
Gonçalves J, Martins J, Baptista S, Ambrósio AF, Silva AP. Effects of drugs of abuse on the central neuropeptide Y system. Addict Biol 2016; 21:755-65. [PMID: 25904345 DOI: 10.1111/adb.12250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropeptide Y (NPY), which is widely expressed in the central nervous system is involved in several neuropathologies including addiction. Here we comprehensively and systematically review alterations on the central NPY system induced by several drugs. We report on the effects of psychostimulants [cocaine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and nicotine], ethanol, and opioids on NPY protein levels and expression of different NPY receptors. Overall, expression and function of NPY and its receptors are changed under conditions of drug exposure, thus affecting several physiologic behaviors, such as feeding, stress and anxiety. Drugs of abuse differentially affect the components of the NPY system. For example methamphetamine and nicotine lead to a consistent increase in NPY mRNA and protein levels in different brain sites whereas ethanol and opioids decrease NPY mRNA and protein expression. Drug-induced alterations on the different NPY receptors show more complex regulation pattern. Manipulation of the NPY system can have opposing effects on reinforcing and addictive properties of drugs of abuse. NPY can produce pro-addictive effects (nicotine and heroin), but can also exert inhibitory effects on addictive behavior (AMPH, ethanol). Furthermore, NPY can act as a neuroprotective agent in chronically methamphetamine and MDMA-treated rodents. In conclusion, manipulation of the NPY system seems to be a potential target to counteract neural alterations, addiction-related behaviors and cognitive deficits induced by these drugs.
Collapse
Affiliation(s)
- Joana Gonçalves
- Institute of Nuclear Sciences Applied to Health (ICNAS); University of Coimbra; Portugal
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
| | - João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Centre of Ophthalmology and Vision Sciences; Faculty of Medicine; University of Coimbra; Portugal
| | - Sofia Baptista
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Laboratory of Pharmacology and Experimental Therapeutics; Faculty of Medicine; University of Coimbra; Portugal
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Centre of Ophthalmology and Vision Sciences; Faculty of Medicine; University of Coimbra; Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI); Portugal
| | - Ana Paula Silva
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Laboratory of Pharmacology and Experimental Therapeutics; Faculty of Medicine; University of Coimbra; Portugal
| |
Collapse
|
20
|
Palavra F, Almeida L, Ambrósio AF, Reis F. Obesity and brain inflammation: a focus on multiple sclerosis. Obes Rev 2016; 17:211-24. [PMID: 26783119 DOI: 10.1111/obr.12363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/25/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
The increase in prevalence of obesity in industrialized societies is an indisputable fact. However, the apparent passive role played by adipocytes, in pathophysiological terms, has been gradually substituted by a metabolically active performance, relevant to many biochemical mechanisms that may contribute to a chronic low-grade inflammatory status, which increasingly imposes itself as a key feature of obesity. This chronic inflammatory status will have to be integrated into the complex equation of many diseases in which inflammation plays a crucial role. Multiple sclerosis (MS) is a chronic inflammatory condition typically confined to the central nervous system, and many work has been produced to find possible points of contact between the biology of this immune-mediated disease and obesity. So far, clinical data are not conclusive, but many biochemical features have been recently disclosed. Brain inflammation has been implicated in some of the mechanisms that lead to obesity, which has also been recognized as an important player in inducing some degree of immune dysfunction. In this review, we collected evidence that allows establishing bridges between obesity and MS. After considering epidemiological controversies, we will focus on possible shared mechanisms, as well as on the potential contributions that disease-modifying drugs may have on this apparent relationship of mutual interference.
Collapse
Affiliation(s)
- F Palavra
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| | - L Almeida
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - A F Ambrósio
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - F Reis
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Martins J, Elvas F, Brudzewsky D, Martins T, Kolomiets B, Tralhão P, Gøtzsche CR, Cavadas C, Castelo-Branco M, Woldbye DPD, Picaud S, Santiago AR, Ambrósio AF. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro. ASN Neuro 2015; 7:7/4/1759091415598292. [PMID: 26311075 PMCID: PMC4552225 DOI: 10.1177/1759091415598292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.
Collapse
Affiliation(s)
- João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - Filipe Elvas
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Dan Brudzewsky
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Tânia Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal
| | - Bogdan Kolomiets
- Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, UMR_S968, 75012 Paris, France
| | - Pedro Tralhão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - Casper R Gøtzsche
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cláudia Cavadas
- CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, UMR_S968, 75012 Paris, France
| | - Ana R Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - António F Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal CNC.IBILI, University of Coimbra, 3004-548 Coimbra, Portugal AIBILI, 3000-548 Coimbra, Portugal Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
22
|
Duarte-Neves J, Gonçalves N, Cunha-Santos J, Simões AT, den Dunnen WF, Hirai H, Kügler S, Cavadas C, Pereira de Almeida L. Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado–Joseph disease. Hum Mol Genet 2015. [DOI: 10.1093/hmg/ddv271] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Santos-Carvalho A, Ambrósio AF, Cavadas C. Neuropeptide Y system in the retina: From localization to function. Prog Retin Eye Res 2015; 47:19-37. [DOI: 10.1016/j.preteyeres.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
|
24
|
Papathanassoglou EDE, Mpouzika MDA, Giannakopoulou M, Bozas E, Middleton N, Boti S, Karabinis A. Pilot Investigation of the Association Between Serum Stress Neuropeptide Levels and Lymphocyte Expression of Fas and Fas Ligand in Critical Illness. Biol Res Nurs 2014; 17:285-94. [DOI: 10.1177/1099800414542871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: In critical illness, apoptotic loss of immunocytes is associated with immunosuppression. Aim: To explore expression of Fas/Fas ligand (FasL) on B and T cells from critically ill patients without sepsis compared to matched controls and associations with disease severity and neuropeptide Y (NPY), cortisol, adrenocorticotropic hormone (ACTH), and prolactin (PRL) levels. Methods: Repeated-measures correlational design with 36 critically ill patients (14-day follow-up) and 36 controls. Disease severity was assessed using the Multiple Organ Dysfunction Score (MODS) and Multi Organ Failure scale. Fas/FasL values were standardized for viable cell counts. An enzyme-linked immunosorbent assay (NPY) and electrochemiluminescence immunoassay (cortisol, ACTH, and PRL) were employed. Results: Fas and FasL expression on T-helper ( p < .0001–.03) and T-cytotoxic cells ( p < .0001–.002) and Fas expression on B cells ( p < .0001–.03) were higher in patients. MODS severity was associated with FasL expression on cytotoxic T cells ( r = .752–.902, p = .023–.037). There was an inverse association between Day 1 NPY levels and Fas expression on T-helper cells ( r = −.447, p = .019). On the day of maximum severity, we report for the first time an inverse association between NPY levels and FasL expression on helper ( r = −.733, p = .016) and cytotoxic ( r = −.862, p = .003) T cells. Cortisol levels were positively associated with counts of FasL-positive helper ( r = .828) and cytotoxic ( r = .544, p < .05) T cells. Conclusion: Results suggest a potential role for stress neuropeptides in lymphocyte survival and activation in critical illness.
Collapse
Affiliation(s)
| | - Meropi D. A. Mpouzika
- Department of Nursing B, Faculty of Health and Caring Professions, Technological Educational Institute of Athens, Egaleo, Greece
| | | | - Evangelos Bozas
- University of Athens, School of Nursing, Athens, Hellas, Greece
| | - Nicos Middleton
- Department of Nursing, Cyprus University of Technology, Limassol, Cyprus
| | - Sofia Boti
- Department of Pathophysiology, University of Athens, School of Medicine, Athens, Greece
| | | |
Collapse
|
25
|
Angelucci F, Gelfo F, Fiore M, Croce N, Mathé AA, Bernardini S, Caltagirone C. The effect of neuropeptide Y on cell survival and neurotrophin expression in in-vitro models of Alzheimer's disease. Can J Physiol Pharmacol 2014; 92:621-30. [PMID: 25026432 DOI: 10.1139/cjpp-2014-0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a disorder characterized by the accumulation of abnormally folded protein fragments in neurons, i.e., β-amyloid (Aβ) and tau protein, leading to cell death. Several neuropeptides present in the central nervous system (CNS) are believed to be involved in the pathophysiology of AD. Among them, neuropeptide Y (NPY), a small peptide widely distributed throughout the brain, has generated interest because of its role in neuroprotection against excitotoxicity in animal models of AD. In addition, it has been shown that NPY modulates neurogenesis. Interestingly, these latter effects are similar to those elicited by neurotrophins, which are critical molecules for the function and survival of neurons that degenerate during the course of AD. In this review we summarize the evidence for the involvement of NPY and neurotrophins in AD pathogenesis, and the similarity between them in CNS neurons. Finally, we recapitulate our recent in-vitro evidence for the involvement of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the neuroprotective effect elicited by NPY in AD neuron-like models (neuroblastoma cells or primary cultures exposed to toxic concentrations of Aβ's pathogenic fragment 25-35), and propose a putative mechanism based on NPY-induced inhibition of voltage-dependent Ca(2+) influx in pre- and post-synaptic neurons.
Collapse
Affiliation(s)
- Francesco Angelucci
- a Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00142 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Hanumunthadu D, Dehabadi MH, Cordeiro MF. Neuroprotection in glaucoma: current and emerging approaches. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2014.892415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Santos-Carvalho A, Álvaro AR, Martins J, Ambrósio AF, Cavadas C. Emerging novel roles of neuropeptide Y in the retina: from neuromodulation to neuroprotection. Prog Neurobiol 2013; 112:70-9. [PMID: 24184719 DOI: 10.1016/j.pneurobio.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the central nervous system, including the retina. Retinal cells, in particular neurons, astrocytes, and Müller, microglial and endothelial cells express this peptide and its receptors (Y1, Y2, Y4 and/or Y5). Several studies have shown that NPY is expressed in the retina of various mammalian and non-mammalian species. However, studies analyzing the distribution of NPY receptors in the retina are still scarce. Although the physiological roles of NPY in the retina have not been completely elucidated, its early expression strongly suggests that NPY may be involved in the development of retinal circuitry. NPY inhibits the increase in [Ca(2+)]i triggered by elevated KCl in retinal neurons, protects retinal neural cells against toxic insults and induces the proliferation of retinal progenitor cells. In this review, we will focus on the roles of NPY in the retina, specifically proliferation, neuromodulation and neuroprotection. Alterations in the NPY system in the retina might contribute to the pathogenesis of retinal degenerative diseases, such as diabetic retinopathy and glaucoma, and NPY and its receptors might be viewed as potentially novel therapeutic targets.
Collapse
Affiliation(s)
- Ana Santos-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
| | - João Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - António Francisco Ambrósio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal; AIBILI-Association for Innovation and Biomedical Research on Light and Image, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
28
|
Dias da Silva D, Silva E, Carmo H. Cytotoxic effects of amphetamine mixtures in primary hepatocytes are severely aggravated under hyperthermic conditions. Toxicol In Vitro 2013; 27:1670-8. [DOI: 10.1016/j.tiv.2013.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 11/15/2022]
|
29
|
Yan J, Liu Q, Dou Y, Hsieh Y, Liu Y, Tao R, Zhu D, Lou Y. Activating glucocorticoid receptor-ERK signaling pathway contributes to ginsenoside Rg1 protection against β-amyloid peptide-induced human endothelial cells apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:456-466. [PMID: 23538162 DOI: 10.1016/j.jep.2013.03.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
The deposition of β-amyloid (Aβ) in neurons and vascular cells of the brain has been characterized in Alzheimer's disease. Ginsenoside Rg1 (Rg1) is an active components in Panax ginseng, a famous traditional Chinese medicines recorded in Compendium of Materia Medica. Present study attempted to evaluate the potential mechanisms of Aβ-mediated insult and the protective effects of Rg1 on human endothelial cells. Rg1 attenuated the Aβ25-35-associated mitochondrial apoptotic events, accompanied by inhibiting HIF-1α expression followed by intracellular reactive nitrogen species generation, and protein nitrotyrosination. These protective effects were abolished by glucocorticoid receptor (GR) antagonist RU486 or p-ERK inhibitor U0126 rather than estrogen receptor α antagonist ICI 82,780. Taken together, our results suggested that Rg1 protected against Aβ25-35-induced apoptosis at least in part by two complementary GR-dependent ERK phosphorylation pathways: (1) down-regulating HIF-1α initiated protein nitrotyrosination, and (2) inhibiting mitochondrial apoptotic cascades. These data provided a novel insight to the mechanisms of Rg1protective effects on Aβ25-35-induced endothelial cells apoptosis, suggesting that GR-ERK signaling pathway might play an important role in it.
Collapse
Affiliation(s)
- Jieping Yan
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Neuropeptide Y receptors activation protects rat retinal neural cells against necrotic and apoptotic cell death induced by glutamate. Cell Death Dis 2013; 4:e636. [PMID: 23681231 PMCID: PMC3674367 DOI: 10.1038/cddis.2013.160] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It has been claimed that glutamate excitotoxicity might have a role in the pathogenesis of several retinal degenerative diseases, including glaucoma and diabetic retinopathy. Neuropeptide Y (NPY) has neuroprotective properties against excitotoxicity in the hippocampus, through the activation of Y1, Y2 and/or Y5 receptors. The principal objective of this study is to investigate the potential protective role of NPY against glutamate-induced toxicity in rat retinal cells (in vitro and in an animal model), unraveling the NPY receptors and intracellular mechanisms involved. Rat retinal neural cell cultures were prepared from newborn Wistar rats (P3-P5) and exposed to glutamate (500 μM) for 24 h. Necrotic cell death was evaluated by propidium iodide (PI) assay and apoptotic cell death using TUNEL and caspase-3 assays. The cell types present in culture were identified by immunocytochemistry. The involvement of NPY receptors was assessed using selective agonists and antagonists. Pre-treatment of cells with NPY (100 nM) inhibited both necrotic cell death (PI-positive cells) and apoptotic cell death (TUNEL-positive cells and caspase 3-positive cells) triggered by glutamate, with the neurons being the cells most strongly affected. The activation of NPY Y2, Y4 and Y5 receptors inhibited necrotic cell death, while apoptotic cell death was only prevented by the activation of NPY Y5 receptor. Moreover, NPY neuroprotective effect was mediated by the activation of PKA and p38K. In the animal model, NPY (2.35 nmol) was intravitreally injected 2 h before glutamate (500 nmol) injection into the vitreous. The protective role of NPY was assessed 24 h after glutamate (or saline) injection by TUNEL assay and Brn3a (marker of ganglion cells) immunohistochemistry. NPY inhibited the increase in the number of TUNEL-positive cells and the decrease in the number of Brn3a-positive cells induced by glutamate. In conclusion, NPY and NPY receptors can be considered potential targets to treat retinal degenerative diseases, such as glaucoma and diabetic retinopathy.
Collapse
|
31
|
Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva AP. Multifaces of neuropeptide Y in the brain--neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 2012; 46:299-308. [PMID: 23116540 DOI: 10.1016/j.npep.2012.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) has been implicated in the modulation of important features of neuronal physiology, including calcium homeostasis, neurotransmitter release and excitability. Moreover, NPY has been involved as an important modulator of hippocampal and thalamic circuits, receiving particular attention as an endogenous antiepileptic peptide and as a potential master regulator of feeding behavior. NPY not only inhibits excessive glutamate release (decreasing circuitry hyperexcitability) but also protects neurons from excitotoxic cell death. Furthermore, NPY has been involved in the modulation of the dynamics of dentate gyrus and subventricular zone neural stem cell niches. In both regions, NPY is part of the chemical resource of the neurogenic niche and acts through NPY Y1 receptors to promote neuronal differentiation. Interestingly, NPY is also considered a neuroimmune messenger. In this review, we highlight recent evidences concerning paracrine/autocrine actions of NPY involved in neuroprotection, neurogenesis and neuroinflammation. In summary, the three faces of NPY, discussed in the present review, may contribute to better understand the dynamics and cell fate decision in the brain parenchyma and in restricted areas of neurogenic niches, in health and disease.
Collapse
Affiliation(s)
- J O Malva
- Laboratory of Biochemistry and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
32
|
Martins J, Castelo-Branco M, Batista A, Oliveiros B, Santiago AR, Galvão J, Fernandes E, Carvalho F, Cavadas C, Ambrósio AF. Effects of 3,4-methylenedioxymethamphetamine administration on retinal physiology in the rat. PLoS One 2011; 6:e29583. [PMID: 22216322 PMCID: PMC3246479 DOI: 10.1371/journal.pone.0029583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 11/30/2011] [Indexed: 01/28/2023] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is known to produce euphoric states, but may also cause adverse consequences in humans, such as hyperthermia and neurocognitive deficits. Although MDMA consumption has been associated with visual problems, the effects of this recreational drug in retinal physiology have not been addressed hitherto. In this work, we evaluated the effect of a single MDMA administration in the rat electroretinogram (ERG). Wistar rats were administered MDMA (15 mg/kg) or saline and ERGs were recorded before (Baseline ERG), and 3 h, 24 h, and 7 days after treatment. A high temperature (HT) saline-treated control group was also included. Overall, significantly augmented and shorter latency ERG responses were found in MDMA and HT groups 3 h after treatment when compared to Baseline. Twenty-four hours after treatment some of the alterations found at 3 h, mainly characterized by shorter latency, tended to return to Baseline values. However, MDMA-treated animals still presented increased scotopic a-wave and b-wave amplitudes compared to Baseline ERGs, which were independent of temperature elevation though the latter might underlie the acute ERG alterations observed 3 h after MDMA administration. Seven days after MDMA administration recovery from these effects had occurred. The effects seem to stem from specific changes observed at the a-wave level, which indicates that MDMA affects subacutely (at 24 h) retinal physiology at the outer retinal (photoreceptor/bipolar) layers. In conclusion, we have found direct evidence that MDMA causes subacute enhancement of the outer retinal responses (most prominent in the a-wave), though ERG alterations resume within one week. These changes in photoreceptor/bipolar cell physiology may have implications for the understanding of the subacute visual manifestations induced by MDMA in humans.
Collapse
Affiliation(s)
- João Martins
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Batista
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bárbara Oliveiros
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Galvão
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Eduarda Fernandes
- REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- REQUIMTE - Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - António F. Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- AIBILI, Coimbra, Portugal
| |
Collapse
|
33
|
Decressac M, Pain S, Chabeauti PY, Frangeul L, Thiriet N, Herzog H, Vergote J, Chalon S, Jaber M, Gaillard A. Neuroprotection by neuropeptide Y in cell and animal models of Parkinson's disease. Neurobiol Aging 2011; 33:2125-37. [PMID: 21816512 DOI: 10.1016/j.neurobiolaging.2011.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 11/26/2022]
Abstract
This study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinson's disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD.
Collapse
Affiliation(s)
- Mickael Decressac
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, Centre National de la Recherche Scientifique (CNRS), Poitiers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Decressac M, Wright B, Tyers P, Gaillard A, Barker RA. Neuropeptide Y modifies the disease course in the R6/2 transgenic model of Huntington's disease. Exp Neurol 2010; 226:24-32. [PMID: 20673761 DOI: 10.1016/j.expneurol.2010.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/24/2010] [Accepted: 07/20/2010] [Indexed: 01/25/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by progressive neuronal dysfunction and cell loss, especially striatal GABAergic neurons, generating motor, cognitive and affective problems. Although the disease-causing gene is known, the exact mechanism by which it induces its pathological effect remains unknown, and no cure is currently available for this disease. Interestingly, striatal neurons that express neuropeptide Y (NPY) are preferentially spared in HD and the number of such cells is increased in the striatum of HD patients. Furthermore, neurogenesis in the subventricular zone (SVZ) also appears to be up-regulated in HD patients, and previously we also demonstrated in wild-type mice that intracerebroventricular (ICV) NPY promotes SVZ neurogenesis with migration of the newborn cells towards the striatum where they differentiate into GABAergic neurons. Therefore, we sought to determine whether NPY could be of therapeutic benefit in a transgenic mouse model of HD (R6/2) through an action on SVZ neurogenesis. We found that a single ICV injection of NPY in R6/2 mice increased survival time through reduced weight loss as well as having a beneficial effect on motor function as evidenced by improving rotarod performance and reducing paw-clasping. We also demonstrated that the degree of cerebral and striatal atrophy was reduced following such a single NPY injection and that whilst the peptide also increased the number of BrdU-positive cells in the SVZ (but not in the dentate gyrus) of R6/2 mice, this was not sufficient to account for the changes in anatomy and function that we found.. These results suggest that NPY may be of some therapeutic interest in patients with HD, although further work is needed to ascertain exactly how it mediates its beneficial effects.
Collapse
Affiliation(s)
- M Decressac
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge CB2 2PY, UK.
| | | | | | | | | |
Collapse
|
35
|
Pontes H, Sousa C, Silva R, Fernandes E, Carmo H, Remião F, Carvalho F, Bastos ML. Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes. Toxicology 2008; 254:42-50. [PMID: 18848861 DOI: 10.1016/j.tox.2008.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 01/19/2023]
Abstract
Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 degrees C) and hyperthermic (40.5 degrees C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent.
Collapse
Affiliation(s)
- Helena Pontes
- REQUIMTE, Toxicology Department, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ye R, Han J, Kong X, Zhao L, Cao R, Rao Z, Zhao G. Protective Effects of Ginsenoside Rd on PC12 Cells against Hydrogen Peroxide. Biol Pharm Bull 2008; 31:1923-7. [DOI: 10.1248/bpb.31.1923] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ruidong Ye
- Department of Neurology, Xijing Hospital, Fourth Military Medical University
| | - Junliang Han
- Department of Neurology, Xijing Hospital, Fourth Military Medical University
| | - Xiangwei Kong
- College of Stomatology, Fourth Military Medical University
| | - Lingzhou Zhao
- College of Stomatology, Fourth Military Medical University
| | - Rong Cao
- PLA Institute of Neurosciences, Fourth Military Medical University
| | - Zhiren Rao
- PLA Institute of Neurosciences, Fourth Military Medical University
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University
| |
Collapse
|