1
|
Ribeiro-Rodrigues L, Fonseca-Gomes J, Paulo SL, Viais R, Ribeiro FF, Miranda-Lourenço C, Mouro FM, Belo RF, Ferreira CB, Tanqueiro SR, Ferreira-Manso M, Umemori J, Castrén E, Paiva VH, Sebastião AM, Aronica E, Campos AR, Bentes C, Xapelli S, Diógenes MJ. Cleavage of the TrkB-FL receptor during epileptogenesis: insights from a kainic acid-induced model of epilepsy and human samples. Pharmacol Res 2025; 215:107707. [PMID: 40118354 PMCID: PMC12033085 DOI: 10.1016/j.phrs.2025.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and plasticity. In epilepsy, BDNF exhibits a dual role, exerting both antiepileptic and pro-epileptic effects. The cleavage of its main receptor, full-length tropomyosin-related kinase B (TrkB-FL), was suggested to occur in status epilepticus (SE) in vitro. Moreover, under excitotoxic conditions, TrkB-FL was found to be cleaved, resulting in the formation of a new intracellular fragment, TrkB-ICD. Thus, we hypothesized that TrkB-FL cleavage and TrkB-ICD formation could represent an uncovered mechanism in epilepsy. We used a rat model of mesial temporal lobe epilepsy (mTLE) induced by kainic acid (KA) to investigate TrkB-FL cleavage and TrkB-ICD formation during SE (∼3 h after KA) and established epilepsy (EE) (4-5 weeks after KA). Animals treated with 10 mg/kg of KA exhibited TrkB-FL cleavage during SE, with hippocampal levels of TrkB-FL and TrkB-ICD correlating with seizure severity. Notably, TrkB-FL cleavage and TrkB-ICD formation were also detected in animals with EE, which exhibited spontaneous recurrent convulsive seizures, neuronal death, mossy fiber sprouting, and long-term memory impairment. Importantly, hippocampal samples from patients with refractory epilepsy also showed TrkB-FL cleavage with increased TrkB-ICD levels. Additionally, lentiviral-mediated overexpression of TrkB-ICD in the hippocampus of healthy mice and rats resulted in long-term memory impairment. Our findings suggest that TrkB-FL cleavage and the subsequent TrkB-ICD production occur throughout epileptogenesis, with the extent of cleavage correlating positively with seizure occurrence. Moreover, we found that TrkB-ICD overexpression impairs memory. This work uncovers a novel mechanism in epileptogenesis that could serve as a potential therapeutic target in mTLE, with implications for preserving cognitive function.
Collapse
Affiliation(s)
- Leonor Ribeiro-Rodrigues
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - João Fonseca-Gomes
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Present address: Roche Farmacêutica e Química, Amadora, Portugal
| | - Sara L Paulo
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Ricardo Viais
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | | | - Catarina Miranda-Lourenço
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | | | - Rita F Belo
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Mafalda Ferreira-Manso
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Juzoh Umemori
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Vítor H Paiva
- University of Coimbra, CFE - Centre for Functional Ecology - TERRA - Science for People & the Planet, Department of Life Sciences, Coimbra, Portugal.
| | - Ana M Sebastião
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands.
| | - Alexandre Rainha Campos
- Centro de Referência para a área da Epilepsia Refratária (ERN EpiCARE member), CHULN, Lisboa, Portugal; Serviço de Neurologia, CHULN, Lisboa, Portugal
| | - Carla Bentes
- Laboratório de EEG/Sono - Unidade de Monitorização Neurofisiológica. Serviço de Neurologia, CHULN, Lisboa, Portugal; Centro de Estudos Egas Moniz. Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Maria José Diógenes
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
2
|
Arai T, Kanazawa H, Kimura K, Munakata M, Yamakawa H, Shinmura K, Yuasa S, Sano M, Fukuda K. Upregulation of neuropeptide Y in cardiac sympathetic nerves induces stress (Takotsubo) cardiomyopathy. Front Neurosci 2022; 16:1013712. [PMID: 36408384 PMCID: PMC9669346 DOI: 10.3389/fnins.2022.1013712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 07/02/2024] Open
Abstract
Substantial emotional or physical stress may lead to an imbalance in the brain, resulting in stress cardiomyopathy (SC) and transient left ventricular (LV) apical ballooning. Even though these conditions are severe, their precise underlying mechanisms remain unclear. Appropriate animal models are needed to elucidate the precise mechanisms. In this study, we established a new animal model of epilepsy-induced SC. The SC model showed an increased expression of the acute phase reaction protein, c-Fos, in the paraventricular hypothalamic nucleus (PVN), which is the sympathetic nerve center of the brain. Furthermore, we observed a significant upregulation of neuropeptide Y (NPY) expression in the left stellate ganglion (SG) and cardiac sympathetic nerves. NPY showed neither positive nor negative inotropic and chronotropic effects. On the contrary, NPY could interrupt β-adrenergic signaling in cardiomyocytes when exposure to NPY precedes exposure to noradrenaline. Moreover, its elimination in the left SG via siRNA treatment tended to reduce the incidence of SC. Thus, our results indicated that upstream sympathetic activation induced significant upregulation of NPY in the left SG and cardiac sympathetic nerves, resulting in cardiac dysfunctions like SC.
Collapse
Affiliation(s)
- Takahide Arai
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- International Medical Center, Department of Cardiology, Saitama Medical University, Saitama, Japan
| | - Hideaki Kanazawa
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Kimura
- Department of Internal Medicine, Kimura Clinic, Kanagawa, Japan
| | - Masahito Munakata
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yamakawa
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ken Shinmura
- Department of General Internal Medicine, Hyogo College School of Medicine, Nishinomiya, Japan
| | - Shinsuke Yuasa
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Shmakova AA, Rysenkova KD, Ivashkina OI, Gruzdeva AM, Klimovich PS, Popov VS, Rubina KA, Anokhin KV, Tkachuk VA, Semina EV. Early Induction of Neurotrophin Receptor and miRNA Genes in Mouse Brain after Pentilenetetrazole-Induced Neuronal Activity. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1326-1341. [PMID: 34903157 DOI: 10.1134/s0006297921100138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
Neurotrophin receptors regulate neuronal survival and network formation, as well as synaptic plasticity in the brain via interaction with their ligands. Here, we examined early changes in the expression of neurotrophin receptor genes Ntk1 (TrkA), Ntrk2 (TrkB), Ntrk3 (TrkC), Ngfr (p75NTR) and miRNAs that target theses gens in the mouse brain after induction of seizure activity by pentylenetetrazol. We found that expression of Ntrk3 and Ngfr was upregulated in the cortex and the hippocampus 1-3 hours after the seizures, while Ntrk2 expression increased after 3-6 hours in the anterior cortex and after 1 and 6 hours in the hippocampus. At the same time, the ratio of Bcl-2/Bax signaling proteins increased in the anterior and posterior cortex, but not in the hippocampus, suggesting the activation of anti-apoptotic signaling. Expression of miRNA-9 and miRNA-29a, which were predicted to target Ntrk3, was upregulated in the hippocampus 3 hours after pentylenetetrazol injection. Therefore, early cellular response to seizures in the brain includes induction of the Ntrk2, Ntrk3, Ngfr, miRNA-9, and miRNA-29a expression, as well as activation of Bcl-2 and Bax signaling pathways, which may characterize them as important mediators of neuronal adaptation and survival upon induction of the generalized brain activity.
Collapse
Affiliation(s)
- Anna A Shmakova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Karina D Rysenkova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Olga I Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation
- Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russia
- Kurchatov Institute National Research Center, Moscow, 123182, Russia
| | - Anna M Gruzdeva
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation
| | - Polina S Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Vladimir S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Kseniya A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Konstantin V Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation.
- Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russia
| | - Vsevolod A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Ekaterina V Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
4
|
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, Liang Y, Guo J, Li L. BDNF-TrkB and proBDNF-p75NTR/Sortilin Signaling Pathways are Involved in Mitochondria-Mediated Neuronal Apoptosis in Dorsal Root Ganglia after Sciatic Nerve Transection. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:66-82. [PMID: 31957620 DOI: 10.2174/1871527319666200117110056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Brain-Derived Neurotrophic Factor (BDNF) plays critical roles during development
of the central and peripheral nervous systems, as well as in neuronal survival after injury.
Although proBDNF induces neuronal apoptosis after injury in vivo, whether it can also act as a death
factor in vitro and in vivo under physiological conditions and after nerve injury, as well as its mechanism
of inducing apoptosis, is still unclear.
Objective:
In this study, we investigated the mechanisms by which proBDNF causes apoptosis in sensory
neurons and Satellite Glial Cells (SGCs) in Dorsal Root Ganglia (DRG) After Sciatic Nerve
Transection (SNT).
Methods:
SGCs cultures were prepared and a scratch model was established to analyze the role of
proBDNF in sensory neurons and SGCs in DRG following SNT. Following treatment with proBDNF
antiserum, TUNEL and immunohistochemistry staining were used to detect the expression of Glial
Fibrillary Acidic Protein (GFAP) and Calcitonin Gene-Related Peptide (CGRP) in DRG tissue; immunocytochemistry
and Cell Counting Kit-8 (CCK8) assay were used to detect GFAP expression and
cell viability of SGCs, respectively. RT-qPCR, western blot, and ELISA were used to measure mRNA
and protein levels, respectively, of key factors in BDNF-TrkB, proBDNF-p75NTR/sortilin, and apoptosis
signaling pathways.
Results:
proBDNF induced mitochondrial apoptosis of SGCs and neurons by modulating BDNF-TrkB
and proBDNF-p75NTR/sortilin signaling pathways. In addition, neuroprotection was achieved by inhibiting
the biological activity of endogenous proBDNF protein by injection of anti-proBDNF serum. Furthermore,
the anti-proBDNF serum inhibited the activation of SGCs and promoted their proliferation.
Conclusion:
proBDNF induced apoptosis in SGCs and sensory neurons in DRG following SNT. The
proBDNF signaling pathway is a potential novel therapeutic target for reducing sensory neuron and
SGCs loss following peripheral nerve injury.
Collapse
Affiliation(s)
- Xianbin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tongtong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Zhen Wu
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Kuangpin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunfei Dai
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chenghao Zang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Barzroodi Pour M, Bayat M, Golab F, Eftekharzadeh M, Katebi M, Soleimani M, Karimzadeh F. The effect of exercise on GABA signaling pathway in the model of chemically induced seizures. Life Sci 2019; 232:116667. [PMID: 31326567 DOI: 10.1016/j.lfs.2019.116667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
Abstract
AIMS Gamma amino butyric acid (GABA) imbalance plays a critical role in most neurological disorders including epilepsy. This study assessed the involvement of mild exercise on GABA imbalance following by seizure induction in rats. MAIN METHODS Seizure was induced by pentylentetrazole (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), co-seizure-induced exercise (Co-SI EX) and Pre-SI EX groups. In the Co-SI EX group, doing exercise and seizure induction was carried out during four weeks. Animals in the Pre-SI EX group exercised in week 1 to week 8 and seizures were induced in week 5 to week 8. Seizure properties, neural viability and expressions of glutamic acid decarboxylase 65 (GAD65) and GABAA receptor α1 in the hippocampus were assessed. KEY FINDINGS Seizure severity reduced and latency increased in the Co-SI EX and Pre-SI EX groups compared to seizure group. The mean number of dark neurons decreased in all exercise groups compared to seizure group in both CA1 and CA3 areas. The gene level of GAD65 and GABAA receptor α1 was highly expressed in the Co-SI EX group in the hippocampal area. Distribution of GAD65 in the both CA1 and CA3 areas increased in the EX and Co-SI EX groups. GABAA receptor α1 was up-regulated in the CA3 area of Co-SI EX group and down-regulated in the CA1 and CA3 areas of Pre-SI EX group. SIGNIFICANCE These findings suggest that exercise develop anti-epileptic as well as neuroprotective effects by modulating of GABA disinhibition.
Collapse
Affiliation(s)
- Mitra Barzroodi Pour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Bayat
- Department of Anatomy, Arak University of Medical Sciences, Arak, Iran
| | - Freshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Baho E, Chattopadhyaya B, Lavertu-Jolin M, Mazziotti R, Awad PN, Chehrazi P, Groleau M, Jahannault-Talignani C, Vaucher E, Ango F, Pizzorusso T, Baroncelli L, Di Cristo G. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex. J Neurosci 2019; 39:4489-4510. [PMID: 30936240 PMCID: PMC6554620 DOI: 10.1523/jneurosci.2881-18.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
By virtue of their extensive axonal arborization and perisomatic synaptic targeting, cortical inhibitory parvalbumin (PV) cells strongly regulate principal cell output and plasticity and modulate experience-dependent refinement of cortical circuits during development. An interesting aspect of PV cell connectivity is its prolonged maturation time course, which is completed only by end of adolescence. The p75 neurotrophin receptor (p75NTR) regulates numerous cellular functions; however, its role on cortical circuit development and plasticity remains elusive, mainly because localizing p75NTR expression with cellular and temporal resolution has been challenging. By using RNAscope and a modified version of the proximity ligation assay, we found that p75NTR expression in PV cells decreases between the second and fourth postnatal week, at a time when PV cell synapse numbers increase dramatically. Conditional knockout of p75NTR in single PV neurons in vitro and in PV cell networks in vivo causes precocious formation of PV cell perisomatic innervation and perineural nets around PV cell somata, therefore suggesting that p75NTR expression modulates the timing of maturation of PV cell connectivity in the adolescent cortex. Remarkably, we found that PV cells still express p75NTR in adult mouse cortex of both sexes and that its activation is sufficient to destabilize PV cell connectivity and to restore cortical plasticity following monocular deprivation in vivo Together, our results show that p75NTR activation dynamically regulates PV cell connectivity, and represent a novel tool to foster brain plasticity in adults.SIGNIFICANCE STATEMENT In the cortex, inhibitory, GABA-releasing neurons control the output and plasticity of excitatory neurons. Within this diverse group, parvalbumin-expressing (PV) cells form the larger inhibitory system. PV cell connectivity develops slowly, reaching maturity only at the end of adolescence; however, the mechanisms controlling the timing of its maturation are not well understood. We discovered that the expression of the neurotrophin receptor p75NTR in PV cells inhibits the maturation of their connectivity in a cell-autonomous fashion, both in vitro and in vivo, and that p75NTR activation in adult PV cells promotes their remodeling and restores cortical plasticity. These results reveal a new p75NTR function in the regulation of the time course of PV cell maturation and in limiting cortical plasticity.
Collapse
Affiliation(s)
- Elie Baho
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Bidisha Chattopadhyaya
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Marisol Lavertu-Jolin
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Raffaele Mazziotti
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Patricia N Awad
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Pegah Chehrazi
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Marianne Groleau
- École d'Optométrie, Université de Montréal, Montréal, Québec H3T 1P1, Canada
| | - Celine Jahannault-Talignani
- Institut de Génomique Fonctionnelle, université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé Et de la Recherche Médicale, 34090 Montpellier, France, and
| | - Elvire Vaucher
- École d'Optométrie, Université de Montréal, Montréal, Québec H3T 1P1, Canada
| | - Fabrice Ango
- Institut de Génomique Fonctionnelle, université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé Et de la Recherche Médicale, 34090 Montpellier, France, and
| | - Tommaso Pizzorusso
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health Neurofarba, University of Florence, 50139 Firenze, Italy
| | - Laura Baroncelli
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Graziella Di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada,
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| |
Collapse
|
7
|
Montroull LE, Danelon V, Cragnolini AB, Mascó DH. Loss of TrkB Signaling Due to Status Epilepticus Induces a proBDNF-Dependent Cell Death. Front Cell Neurosci 2019; 13:4. [PMID: 30800056 PMCID: PMC6375841 DOI: 10.3389/fncel.2019.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023] Open
Abstract
Neurotrophins (NTs) are secretory proteins that bind to target receptors and influence many cellular functions, such as cell survival and cell death in neurons. The mammalian NT brain-derived neurotrophic factor (matBDNF) is the C-terminal mature form released by cleavage from the proBDNF precursor. The binding of matBDNF to the tyrosine kinase receptor B (TrkB) activates different signaling cascades and leads to neuron survival and plasticity, while the interaction of proBDNF with the p75 NT receptor (p75NTR)/sortilin receptor complex has been highly involved in apoptosis. Many studies have demonstrated that prolonged seizures such as status epilepticus (SE) induce changes in the expression of NT, pro-NT, and their receptors. We have previously described that the blockage of both matBDNF and proBDNF signaling reduces neuronal death after SE in vivo (Unsain et al., 2008). We used an in vitro model as well as an in vivo model of SE to determine the specific role of TrkB and proBDNF signaling during neuronal cell death. We found that the matBDNF sequestering molecule TrkB-Fc induced an increase in neuronal death in both models of SE, and it also prevented a decrease in TrkB levels. Moreover, SE triggered the interaction between proBDNF and p75NTR, which was not altered by sequestering matBDNF. The intra-hippocampal administration of TrkB-Fc, combined with an antibody against proBDNF, prevented neuronal degeneration. In addition, we demonstrated that proBDNF binding to p75NTR exacerbates neuronal death when matBDNF signaling is impaired through TrkB. Our results indicated that both the mature and the precursor forms of BDNF may have opposite effects depending on the scenario in which they function and the signaling pathways they activate.
Collapse
Affiliation(s)
- Laura Ester Montroull
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Víctor Danelon
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Beatriz Cragnolini
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel Hugo Mascó
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
8
|
Porcher C, Medina I, Gaiarsa JL. Mechanism of BDNF Modulation in GABAergic Synaptic Transmission in Healthy and Disease Brains. Front Cell Neurosci 2018; 12:273. [PMID: 30210299 PMCID: PMC6121065 DOI: 10.3389/fncel.2018.00273] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
In the mature healthy mammalian neuronal networks, γ-aminobutyric acid (GABA) mediates synaptic inhibition by acting on GABAA and GABAB receptors (GABAAR, GABABR). In immature networks and during numerous pathological conditions the strength of GABAergic synaptic inhibition is much less pronounced. In these neurons the activation of GABAAR produces paradoxical depolarizing action that favors neuronal network excitation. The depolarizing action of GABAAR is a consequence of deregulated chloride ion homeostasis. In addition to depolarizing action of GABAAR, the GABABR mediated inhibition is also less efficient. One of the key molecules regulating the GABAergic synaptic transmission is the brain derived neurotrophic factor (BDNF). BDNF and its precursor proBDNF, can be released in an activity-dependent manner. Mature BDNF operates via its cognate receptors tropomyosin related kinase B (TrkB) whereas proBDNF binds the p75 neurotrophin receptor (p75NTR). In this review article, we discuss recent finding illuminating how mBDNF-TrkB and proBDNF-p75NTR signaling pathways regulate GABA related neurotransmission under physiological conditions and during epilepsy.
Collapse
Affiliation(s)
- Christophe Porcher
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Igor Medina
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Jean-Luc Gaiarsa
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| |
Collapse
|
9
|
Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev 2018; 90:70-83. [PMID: 29626490 DOI: 10.1016/j.neubiorev.2018.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.
Collapse
|
10
|
de Almeida AA, Gomes da Silva S, Lopim GM, Vannucci Campos D, Fernandes J, Cabral FR, Arida RM. Physical exercise alters the activation of downstream proteins related to BDNF-TrkB signaling in male Wistar rats with epilepsy. J Neurosci Res 2017; 96:911-920. [DOI: 10.1002/jnr.24196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Alexandre Aparecido de Almeida
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
- Instituto Federal Goiano (IF Goiano), Campus Ceres; Ceres Brazil
| | - Sérgio Gomes da Silva
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Universidade de Mogi das Cruzes; Mogi das Cruzes Brazil
| | | | | | - Jansen Fernandes
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
| | - Francisco Romero Cabral
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Faculdade de Ciências Médicas da Santa Casa de São Paulo; São Paulo Brazil
| | - Ricardo Mario Arida
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
11
|
Danelon V, Montroull L, Vallejo M, Cabrera J, Agnese A, Ortega MG, Mascó D. An alkaloid extract obtained from Phlegmariurus Saururus induces neuroprotection after status epilepticus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:212-218. [PMID: 28899505 DOI: 10.1016/j.phymed.2017.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/16/2016] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The brain is exposed to many excitotoxic insults that can lead to neuronal damage. Among these, Epilepsy is a neurological disease that affects a large percentage of world population and is commonly associated with cognitive disorders and excitotoxic neuronal death. Most experimental strategies are focused on preventing Status Epilepticus (SE), but once it has already occurred, the key question is whether it is possible to save neurons. PURPOSE The aim of this study was to determine if a purified alkaloid extract (AE) obtained from Phlegmariurus saururus, a genus of Lycophyte plants (sometimes known as firmossesor fir club mosses) could induce neuroprotection following SE. METHODS In vitro and in vivo techniques were applied for this purpose. Protein levels were measured by western blotting procedures. Neuronal death analysis was performed by calcein-ethidium staining and the presence of the NeuN protein as a marker for presence or absence of cells (in vitro experiments) and by Fluoro Jade B staining for the in vivo experiments. RESULTS The effect of AE in the hippocampal neurons culture was the first determination, where we found an increase in neuronal survival and in the level of pErk and TrkB activation, 24 h after the addition of AE. In a well-established in vitro model of SE, we found that 24 h after being added to the hippocampal neuron-astrocyte co-culture, the AE induces a significant increase in neuronal survival. In addition to this, in the in vivo Li-pilocarpine model of SE, the AE induced a remarkable neuroprotection in areas such as the entorhinal cortex and hippocampal CA1 area. CONCLUSION These results make the AE an excellent candidate for potential clinical use in neurological disorders where memory impairment and neuronal death occurs.
Collapse
Affiliation(s)
- Víctor Danelon
- Laboratorio de Neurobiología, Instituto de Investigaciones Biológicas y Tecnológicas (CONICET-FCEFyN, UNC), Av. Vélez Sarsfield 1611, X5016 GCA Córdoba, Argentina
| | - Laura Montroull
- Laboratorio de Neurobiología, Instituto de Investigaciones Biológicas y Tecnológicas (CONICET-FCEFyN, UNC), Av. Vélez Sarsfield 1611, X5016 GCA Córdoba, Argentina
| | - Mariana Vallejo
- Instituto Multidisciplinario de Biología Vegetal, CONICET and Dpto. de Farmacia, Fac. de Cs. Químicas, UNC, Córdoba, Argentina
| | - José Cabrera
- Instituto Multidisciplinario de Biología Vegetal, CONICET and Dpto. de Farmacia, Fac. de Cs. Químicas, UNC, Córdoba, Argentina
| | - Alicia Agnese
- Instituto Multidisciplinario de Biología Vegetal, CONICET and Dpto. de Farmacia, Fac. de Cs. Químicas, UNC, Córdoba, Argentina
| | - María Gabriela Ortega
- Instituto Multidisciplinario de Biología Vegetal, CONICET and Dpto. de Farmacia, Fac. de Cs. Químicas, UNC, Córdoba, Argentina
| | - Daniel Mascó
- Laboratorio de Neurobiología, Instituto de Investigaciones Biológicas y Tecnológicas (CONICET-FCEFyN, UNC), Av. Vélez Sarsfield 1611, X5016 GCA Córdoba, Argentina.
| |
Collapse
|
12
|
Moore YE, Kelley MR, Brandon NJ, Deeb TZ, Moss SJ. Seizing Control of KCC2: A New Therapeutic Target for Epilepsy. Trends Neurosci 2017; 40:555-571. [PMID: 28803659 DOI: 10.1016/j.tins.2017.06.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022]
Abstract
Deficits in GABAergic inhibition result in the abnormal neuronal activation and synchronization that underlies seizures. However, the molecular mechanisms responsible for transforming a normal brain into an epileptic one remain largely unknown. Hyperpolarizing inhibition mediated by type A GABA (GABAA) receptors is dependent on chloride extrusion by the neuron-specific type 2K+-Cl- cotransporter (KCC2). Loss-of-function mutations in KCC2 are a known cause of infantile epilepsy in humans and KCC2 dysfunction is present in patients with both idiopathic and acquired epilepsy. Here we discuss the growing evidence that KCC2 dysfunction has a central role in the development and severity of the epilepsies.
Collapse
Affiliation(s)
- Yvonne E Moore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Matt R Kelley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, R&D Boston, Waltham, MA 024515, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA.
| |
Collapse
|
13
|
PROneurotrophins and CONSequences. Mol Neurobiol 2017; 55:2934-2951. [DOI: 10.1007/s12035-017-0505-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
14
|
Riffault B, Kourdougli N, Dumon C, Ferrand N, Buhler E, Schaller F, Chambon C, Rivera C, Gaiarsa JL, Porcher C. Pro-Brain-Derived Neurotrophic Factor (proBDNF)-Mediated p75NTR Activation Promotes Depolarizing Actions of GABA and Increases Susceptibility to Epileptic Seizures. Cereb Cortex 2016; 28:510-527. [DOI: 10.1093/cercor/bhw385] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/17/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Baptiste Riffault
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Nazim Kourdougli
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Camille Dumon
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Nadine Ferrand
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Emmanuelle Buhler
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- Plateforme Post-Génomique, INMED, 13273 Marseille, France
| | - Fabienne Schaller
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- Plateforme Post-Génomique, INMED, 13273 Marseille, France
| | - Caroline Chambon
- Aix-Marseille University, Département de Biologie, NIA, UMR 7260 CNRS, 13331 cedex 03, Marseille, France
| | - Claudio Rivera
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Jean-Luc Gaiarsa
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Christophe Porcher
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| |
Collapse
|
15
|
Calpain-dependent truncated form of TrkB-FL increases in neurodegenerative processes. Mol Cell Neurosci 2016; 75:81-92. [PMID: 27449758 DOI: 10.1016/j.mcn.2016.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022] Open
Abstract
Recent findings indicate that the mechanisms that drive reshaping of the nervous system are aberrantly activated in epilepsy and several neurodegenerative diseases. The recurrent seizures in epilepsy, particularly in the condition called status epilepticus, can cause permanent neurological damage, resulting in cognitive dysfunction and other serious neurological conditions. In this study, we used an in vitro model of status epilepticus to examine the role of calpain in the degeneration of hippocampal neurons. We grew neurons on a culture system that allowed studying the dendritic and axonal domains separately from the cell bodies. We found that a recently characterized calpain substrate, the neurotrophin receptor TrkB, is cleaved in the dendritic and axonal domain of neurons committed to die, and this constitutes an early step in the neuronal degeneration process. While the full-length TrkB (TrkB-FL) levels decreased, the truncated form of TrkB (Tc TrkB-FL) concurrently increased, leading to a TrkB-FL/Tc TrkB-FL imbalance, which is thought to be causally linked to neurodegeneration. We further show that the treatment with N-acetyl-Leu-Leu-norleucinal, a specific calpain activity blocker, fully protects the neuronal processes from degeneration, prevents the TrkB-FL/Tc TrkB-FL imbalance, and provides full neuroprotection. Moreover, the use of the TrkB antagonist ANA 12 at the time when the levels of TrkB-FL were significantly decreased, totally blocked neuronal death, suggesting that Tc TrkB-FL may have a role in neuronal death. These results indicate that the imbalance of these neurotrophins receptors plays a key role in neurite degeneration induced by seizures.
Collapse
|
16
|
Zanin JP, Abercrombie E, Friedman WJ. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor. eLife 2016; 5:e16654. [PMID: 27434667 PMCID: PMC4975574 DOI: 10.7554/elife.16654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.
Collapse
Affiliation(s)
- Juan Pablo Zanin
- Department of Biological Sciences, Rutgers University, Newark, United States
| | - Elizabeth Abercrombie
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, United States
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, United States
| |
Collapse
|
17
|
Tanaka K, Kelly CE, Goh KY, Lim KB, Ibáñez CF. Death Domain Signaling by Disulfide-Linked Dimers of the p75 Neurotrophin Receptor Mediates Neuronal Death in the CNS. J Neurosci 2016; 36:5587-95. [PMID: 27194337 PMCID: PMC6601771 DOI: 10.1523/jneurosci.4536-15.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The p75 neurotrophin receptor (p75(NTR)) mediates neuronal death in response to neural insults by activating a caspase apoptotic pathway. The oligomeric state and activation mechanism that enable p75(NTR) to mediate these effects have recently been called into question. Here, we have investigated mutant mice lacking the p75(NTR) death domain (DD) or a highly conserved transmembrane (TM) cysteine residue (Cys(259)) implicated in receptor dimerization and activation. Neuronal death induced by proneurotrophins or epileptic seizures was assessed and compared with responses in p75(NTR) knock-out mice and wild-type animals. Proneurotrophins induced apoptosis of cultured hippocampal and cortical neurons from wild-type mice, but mutant neurons lacking p75(NTR), only the p75(NTR) DD, or just Cys(259) were all equally resistant to proneurotrophin-induced neuronal death. Homo-FRET anisotropy experiments demonstrated that both NGF and proNGF induce conformational changes in p75(NTR) that are dependent on the TM cysteine. In vivo, neuronal death induced by pilocarpine-mediated seizures was significantly reduced in the hippocampus and somatosensory, piriform, and entorhinal cortices of all three strains of p75(NTR) mutant mice. Interestingly, the levels of protection observed in mice lacking the DD or only Cys(259) were identical to those of p75(NTR) knock-out mice even though the Cys(259) mutant differed from the wild-type receptor in only one amino acid residue. We conclude that, both in vitro and in vivo, neuronal death induced by p75(NTR) requires the DD and TM Cys(259), supporting the physiological relevance of DD signaling by disulfide-linked dimers of p75(NTR) in the CNS. SIGNIFICANCE STATEMENT A detailed understanding of the physiological significance of distinct structural determinants in the p75 neurotrophin receptor (p75(NTR)) is crucial for the identification of suitable drug targets in this receptor. We have tested the relevance of the p75(NTR) death domain (DD) and the highly conserved transmembrane residue Cys(259) for the ability of p75(NTR) to induce apoptosis in neurons of the CNS using gene-targeted mutant mice. The physiological importance of these determinants had been contested in some recent in vitro studies. Our results indicate a requirement for DD signaling by disulfide-linked dimers of p75(NTR) for neuronal death induced by proneurotrophins and epileptic seizures. These new mouse models will be useful for clarifying different aspects of p75(NTR) physiology.
Collapse
Affiliation(s)
- Kazuhiro Tanaka
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Claire E Kelly
- Department of Neuroscience, Karolinska Institute, Stockholm S-17177, Sweden, and
| | - Ket Yin Goh
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Kim Buay Lim
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Carlos F Ibáñez
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore, Department of Neuroscience, Karolinska Institute, Stockholm S-17177, Sweden, and Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
18
|
Rapid Increases in proBDNF after Pilocarpine-Induced Status Epilepticus in Mice Are Associated with Reduced proBDNF Cleavage Machinery. eNeuro 2016; 3:eN-NWR-0020-15. [PMID: 27057559 PMCID: PMC4814566 DOI: 10.1523/eneuro.0020-15.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/23/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) levels are elevated after status epilepticus (SE), leading to activation of multiple signaling pathways, including the janus kinase/signal transducer and activator of transcription pathway that mediates a decrease in GABAA receptor α1 subunits in the hippocampus (Lund et al., 2008). While BDNF can signal via its pro or mature form, the relative contribution of these forms to signaling after SE is not fully known. In the current study, we investigate changes in proBDNF levels acutely after SE in C57BL/6J mice. In contrast to previous reports (Unsain et al., 2008; Volosin et al., 2008; VonDran et al., 2014), our studies found that levels of proBDNF in the hippocampus are markedly elevated as early as 3 h after SE onset and remain elevated for 7 d. Immunohistochemistry studies indicate that seizure-induced BDNF localizes to all hippocampal subfields, predominantly in principal neurons and also in astrocytes. Analysis of the proteolytic machinery that cleaves proBDNF to produce mature BDNF demonstrates that acutely after SE there is a decrease in tissue plasminogen activator and an increase in plasminogen activator inhibitor-1 (PAI-1), an inhibitor of extracellular and intracellular cleavage, which normalizes over the first week after SE. In vitro treatment of hippocampal slices from animals 24 h after SE with a PAI-1 inhibitor reduces proBDNF levels. These findings suggest that rapid proBDNF increases following SE are due in part to reduced cleavage, and that proBDNF may be part of the initial neurotrophin response driving intracellular signaling during the acute phase of epileptogenesis.
Collapse
|
19
|
Tovar-y-Romo LB, Penagos-Puig A, Ramírez-Jarquín JO. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate. J Neurochem 2015; 136:13-27. [PMID: 26376102 DOI: 10.1111/jnc.13362] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Abstract
Neuronal survival depends on multiple factors that comprise a well-fueled energy metabolism, trophic input, clearance of toxic substances, appropriate redox environment, integrity of blood-brain barrier, suppression of programmed cell death pathways and cell cycle arrest. Disturbances of brain homeostasis lead to acute or chronic alterations that might ultimately cause neuronal death with consequent impairment of neurological function. Although we understand most of these processes well when they occur independently from one another, we still lack a clear grasp of the concerted cellular and molecular mechanisms activated upon neuronal damage that intervene in protecting damaged neurons from death. In this review, we summarize a handful of endogenously activated mechanisms that balance molecular cues so as to determine whether neurons recover from injury or die. We center our discussion on mechanisms that have been identified to participate in stroke, although we consider different scenarios of chronic neurodegeneration as well. We discuss two central processes that are involved in endogenous repair and that, when not regulated, could lead to tissue damage, namely, trophic support and neuroinflammation. We emphasize the need to construct integrated models of neuronal degeneration and survival that, in the end, converge in neuronal fate after injury. Under neurodegenerative conditions, endogenously activated mechanisms balance out molecular cues that determine whether neurons contend toxicity or die. Many processes involved in endogenous repair may as well lead to tissue damage depending on the strength of stimuli. Signaling mediated by trophic factors and neuroinflammation are examples of these processes as they regulate different mechanisms that mediate neuronal demise including necrosis, apoptosis, necroptosis, pyroptosis and autophagy. In this review, we discuss recent findings on balanced regulation and their involvement in neuronal death.
Collapse
Affiliation(s)
- Luis B Tovar-y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | - Andrés Penagos-Puig
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | - Josué O Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| |
Collapse
|
20
|
Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors. J Neurosci 2015; 34:13516-34. [PMID: 25274828 DOI: 10.1523/jneurosci.2069-14.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.
Collapse
|
21
|
Hyperglycemia accentuates and ketonemia attenuates hypoglycemia-induced neuronal injury in the developing rat brain. Pediatr Res 2015; 77:84-90. [PMID: 25279990 DOI: 10.1038/pr.2014.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/04/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Prolonged hypoglycemia leads to brain injury, despite treatment with 10% dextrose. Whether induction of hyperglycemia or ketonemia achieves better neuroprotection is unknown. Hyperglycemia is neuroprotective in other brain injuries during development; however, it worsens hypoglycemia-induced injury in the adult brain via poly(ADP-ribose)polymerase-1 (PARP-1) overactivation. METHODS Three-week-old rats were subjected to insulin-induced hypoglycemia and treated with 10% dextrose or 50% dextrose. Neuronal injury, PARP-1, and brain-derived neurotrophic factor (BDNF) III/TrkB/p75(NTR) expressions were determined. In the second experiment, ketonemia was induced by administering β-hydroxybutyrate during hypoglycemia and its effect on neuronal injury was compared with those conventionally treated using 10% dextrose. RESULTS Both 10 and 50% dextrose administration led to hyperglycemia (50% dextrose > 10% dextrose). Compared with the 10% dextrose group, neuronal injury was greater in the 50% dextrose group and was accompanied by PARP-1 overactivation. BDNF III and p75(NTR), but not TrkBFL, mRNA expressions were upregulated. Neuronal injury was less severe in the rats subjected to ketonemia, compared with those conventionally treated using 10% dextrose. CONCLUSION Hyperglycemia accentuated hypoglycemia-induced neuronal injury, likely via PARP-1 overactivation. Although BDNF was upregulated, it was not neuroprotective and potentially exaggerated injury by binding to p75(NTR) receptor. Conversely, ketonemia during hypoglycemia attenuated neuronal injury.
Collapse
|
22
|
Smiljanic K, Pesic V, Mladenovic Djordjevic A, Pavkovic Z, Brkic M, Ruzdijic S, Kanazir S. Long-term dietary restriction differentially affects the expression of BDNF and its receptors in the cortex and hippocampus of middle-aged and aged male rats. Biogerontology 2014; 16:71-83. [PMID: 25344640 DOI: 10.1007/s10522-014-9537-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/20/2014] [Indexed: 12/17/2022]
Abstract
Dietary restriction (DR) exerts significant beneficial effects in terms of aging and age-related diseases in many organisms including humans. The present study aimed to examine the influence of long-term DR on the BDNF system at the transcriptional and translational levels in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. The obtained results revealed that the DR upregulated the expression of exon-specific BDNF transcripts in both regions, followed by elevated levels of mBDNF only in the cortex in middle-aged animals. In aged animals, DR modulated BDNF protein levels by increasing proBDNF and by declining mBDNF levels. Additionally, elevated levels of the full-length TrkB accompanied by a decreased level of the less-glycosylated TrkB protein were observed in middle-aged rats following DR, while in aged rats, DR amplified only the expression of the less-glycosylated form of TrkB. The levels of phosphorylated TrkB(Y816) were stable during aging regardless of feeding. Reduced levels of p75(NTR) were detected in both regions of middle-aged DR-fed animals, while a significant increase was measured in the cortex of aged DR-fed rats. These findings shed additional light on DR as a modulator of BDNF system revealing its disparate effects in middle-aged and aged animals. Given the importance of the proBDNF/BDNF circuit-level expression in different brain functions and various aspects of behavior, it is necessary to further elucidate the optimal duration of the applied dietary regimen with regard to the animal age in order to achieve its most favorable effects.
Collapse
Affiliation(s)
- Kosara Smiljanic
- Laboratory of Molecular Neurobiology, Department of Neurobiology, Institute for Biological Research ''Sinisa Stankovic'', University of Belgrade, Bul D.Stefana 142, 11060, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
23
|
VonDran MW, LaFrancois J, Padow VA, Friedman WJ, Scharfman HE, Milner TA, Hempstead BL. p75NTR, but not proNGF, is upregulated following status epilepticus in mice. ASN Neuro 2014; 6:6/5/1759091414552185. [PMID: 25290065 PMCID: PMC4187006 DOI: 10.1177/1759091414552185] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ProNGF and p75(NTR) are upregulated and induce cell death following status epilepticus (SE) in rats. However, less is known about the proneurotrophin response to SE in mice, a more genetically tractable species where mechanisms can be more readily dissected. We evaluated the temporal- and cell-specific induction of the proneurotrophins and their receptors, including p75(NTR), sortilin, and sorCS2, following mild SE induced with kainic acid (KA) or severe SE induced by pilocarpine. We found that mature NGF, p75(NTR), and proBDNF were upregulated following SE, while proNGF was not altered, indicating potential mechanistic differences between rats and mice. ProBDNF was localized to mossy fibers and microglia following SE. p75(NTR) was transiently induced primarily in axons and axon terminals following SE, as well as in neuron and astrocyte cell bodies. ProBDNF and p75(NTR) increased independently of cell death and their localization was different depending on the severity of SE. We also examined the expression of proneurotrophin co-receptors, sortilin and sorCS2. Following severe SE, sorCS2, but not sortilin, was elevated in neurons and astrocytes. These data indicate that important differences exist between rat and mouse in the proneurotrophin response following SE. Moreover, the proBDNF and p75(NTR) increase after seizures in the absence of significant cell death suggests that proneurotrophin signaling may play other roles following SE.
Collapse
Affiliation(s)
- Melissa W VonDran
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - John LaFrancois
- Center of Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Victoria A Padow
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers Life Sciences Center, Rutgers University, Newark, NJ, USA
| | - Helen E Scharfman
- Center of Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Teresa A Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Barbara L Hempstead
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
24
|
Kandratavicius L, Hallak JE, Carlotti CG, Assirati JA, Leite JP. Neurotrophin receptors expression in mesial temporal lobe epilepsy with and without psychiatric comorbidities and their relation with seizure type and surgical outcome. Acta Neuropathol Commun 2014; 2:81. [PMID: 25027171 PMCID: PMC4149196 DOI: 10.1186/s40478-014-0081-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/29/2014] [Indexed: 12/30/2022] Open
Abstract
Epilepsy and psychiatric comorbidities are frequently associated, but their common biological substrate is unknown. We have previously reported altered structural elements and neurotrophins (NTs) expression in mesial temporal lobe epilepsy (MTLE) patients with psychiatric comorbidities. NTs receptors can regulate neurotransmission and promote neuroplasticity, being important candidates in the regulation and manifestation of psychopatological states and seizure-related events. MTLE hippocampi of subjects without psychiatric history, MTLE + major depression, MTLE + interictal psychosis derived from epilepsy surgery, and control necropsies were investigated for p75NTR, TrkB, TrkA, and TrkC immunohistochemistry. Increased expression of p75NTR, decreased TrkA, unaltered TrkC, and complex alterations involving TrkB expression were seen in MTLE groups. Increased TrkB expression in patients without complete seizure remission and in those with secondarily generalized seizures was seen. Decreased p75NTR expression associated with interictal psychosis, and increased TrkB in those with psychosis or major depression was also reported, although their p75NTR/TrkB ratios were lower than in MTLE without psychiatric comorbidities. Our results provide evidence of alterations in expression of NTs receptors in the epileptogenic hippocampus that are differentially modulated in presence of psychiatric comorbidities. As already explored in animal models, even in chronic human MTLE increased TrkB expression, among other NT receptors alterations, may play a major role in seizure type, frequency and surgery outcome.
Collapse
|
25
|
Xie W, Song YJ, Li D, Pan LP, Wu QJ, Tian X. The suppression of epileptiform discharges in cultured hippocampal neurons is regulated via alterations in full-length tropomyosin-related kinase type B receptors signalling activity. Eur J Neurosci 2014; 40:2564-75. [PMID: 24830751 DOI: 10.1111/ejn.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Xie
- School of Biomedical Engineering; Tianjin Medical University; Tianjin China
| | - Yi-Jun Song
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Dai Li
- Senior Officials Inpatient Ward; Tianjin Medical University General Hospital and Tianjin Neurological Institute; Tianjin China
| | - Li-Ping Pan
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Qiu-Jing Wu
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Xin Tian
- School of Biomedical Engineering; Tianjin Medical University; Tianjin China
| |
Collapse
|
26
|
Grabenstatter HL, Carlsen J, Raol YH, Yang T, Hund D, Cruz Del Angel Y, White AM, Gonzalez MI, Longo FM, Russek SJ, Brooks-Kayal AR. Acute administration of the small-molecule p75(NTR) ligand does not prevent hippocampal neuron loss or development of spontaneous seizures after pilocarpine-induced status epilepticus. J Neurosci Res 2014; 92:1307-18. [PMID: 24801281 DOI: 10.1002/jnr.23402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 02/02/2023]
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are initially expressed in a precursor form (e.g., pro-BDNF) and cleaved to form mature BDNF (mBDNF). After pilocarpine-induced status epilepticus (SE), increases in neurotrophins regulate a wide variety of cell-signaling pathways, including prosurvival and cell-death machinery in a receptor-specific manner. Pro-BDNF preferentially binds to the p75 neurotrophin receptor (p75(NTR) ), whereas mBDNF is the major ligand of the tropomyosin-related kinase receptor. To elucidate a potential role for p75(NTR) in acute stages of epileptogenesis, rats were injected prior to and at onset of SE with LM11A-31, a small-molecule ligand that binds to p75(NTR) to promote survival signaling and inhibit neuronal cell death. Modulation of early p75(NTR) signaling and its effects on electrographic SE, SE-induced neurodegeneration, and subsequent spontaneous seizures were examined after LM11A-31 administration. Despite an established neuroprotective effect of LM11A-31 in several animal models of neurodegenerative disorders (e.g., Alzheimer's disease, traumatic brain injury, and spinal cord injury), high-dose LM11A-31 administration prior to and at onset of SE did not reduce the intensity of electrographic SE, prevent SE-induced neuronal cell injury, or inhibit the progression of epileptogenesis. Further studies are required to understand the role of p75(NTR) activation during epileptogenesis and in seizure-induced cell injury in the hippocampus, among other potential cellular pathologies contributing to the onset of spontaneous seizures. Additional studies utilizing more prolonged treatment with LM11A-31 are required to reach a definite conclusion on its potential neuroprotective role in epilepsy.
Collapse
Affiliation(s)
- H L Grabenstatter
- Department of Pediatrics, Division of Neurology, and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 2013; 63:405-12. [DOI: 10.1016/j.neuint.2013.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/14/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
|
28
|
Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 2013; 12:507-25. [PMID: 23977697 DOI: 10.1038/nrd4024] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotrophins and their receptors modulate multiple signalling pathways to regulate neuronal survival and to maintain axonal and dendritic networks and synaptic plasticity. Neurotrophins have potential for the treatment of neurological diseases. However, their therapeutic application has been limited owing to their poor plasma stability, restricted nervous system penetration and, importantly, the pleiotropic actions that derive from their concomitant binding to multiple receptors. One strategy to overcome these limitations is to target individual neurotrophin receptors — such as tropomyosin receptor kinase A (TRKA), TRKB, TRKC, the p75 neurotrophin receptor or sortilin — with small-molecule ligands. Such small molecules might also modulate various aspects of these signalling pathways in ways that are distinct from the programmes triggered by native neurotrophins. By departing from conventional neurotrophin signalling, these ligands might provide novel therapeutic options for a broad range of neurological indications.
Collapse
|
29
|
Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies. Cell Death Dis 2013; 4:e595. [PMID: 23598407 PMCID: PMC3641339 DOI: 10.1038/cddis.2013.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroprotective therapies based on brain-derived neurotrophic factor (BDNF) administration have been proposed for Huntington's disease (HD) treatment. However, our group has recently reported reduced levels of TrkB in HD mouse models and HD human brain suggesting that besides a decrease on BDNF levels a reduction of TrkB expression could also contribute to diminished neurotrophic support in HD. BDNF can also bind to p75 neurotrophin receptor (p75NTR) modulating TrkB signaling. Therefore, in this study we have analyzed the levels of p75NTR in several HD models, as well as in HD human brain. Our data demonstrates a p75NTR/TrkB imbalance in the striatum of two different HD mouse models, HdhQ111/111 homozygous knockin mice and R6/1 mice that was also manifested in the putamen of HD patients. The imbalance between TrkB and p75NTR levels in a HD cellular model did not affect BDNF-mediated TrkB activation of prosurvival pathways but induced activation of apoptotic cascades as demonstrated by increased JNK phosphorylation. Moreover, BDNF failed to protect mutant huntingtin striatal cells transfected with p75NTR against NMDA-mediated excitotoxicity, which was associated with decreased Akt phosphorylation. Interestingly, lack of Akt activation following BDNF and NMDA treatment correlated with increased PP1 levels. Accordingly, pharmacological inhibition of PP1 by okadaic acid (OA) prevented mutant huntingtin striatal cell death induced by NMDA and BDNF. Altogether, our findings demonstrate that the p75NTR/TrkB imbalance induced by mutant huntingtin in striatal cells associated with the aberrant activity of PP1 disturbs BDNF neuroprotection likely contributing to increasing striatal vulnerability in HD. On the basis of this data we hypothesize that normalization of p75NTR and/or TrkB expression or their signaling will improve BDNF neuroprotective therapies in HD.
Collapse
|
30
|
Effect of different mild hypoxia manipulations on kainic acid-induced seizures in the hippocampus of rats. Neurochem Res 2012; 38:123-32. [PMID: 23065181 DOI: 10.1007/s11064-012-0899-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/20/2012] [Accepted: 10/03/2012] [Indexed: 02/01/2023]
Abstract
The protective effect of the mild hypoxia to the epilepsy has been widely tested. Although it is found that the hypoxia protects the brain by up-regulation of hypoxia-inducible factor-1α, few focused on systematic comparisons between different mild hypoxia manipulations and their effects. The male Sprague-Dawley rats were observed following exposure to hypoxia before and after epilepsy for 3 days with 90 min per day. The effects of different mild hypoxia manipulations on kainic acid-induced epilepsy were compared from the perspective of morphology, molecular biology and behavioral test. Results showed that different mild hypoxia manipulations could inhibit the cell apoptosis of kainic acid-induced rat hippocampus and improve their physiological functions. The effect of preconditioning group was better than that of postconditioning group and that of preconditioning and postconditioning with mild hypoxia group was the best among all the groups. The result showed that the preconditioning and postconditioning of mild hypoxia was recommended pre- and post-epilepsy and exposure to mild hypoxia should be prolonged. These findings might provide new ideas and methods for the clinical treatment of epilepsy.
Collapse
|
31
|
Wang C, Wu H, He F, Jing X, Liang Q, Heng G, Wang L, Gao G, Zhang H. Alleviation of Ferric Chloride-Induced Seizures and Retarded Behaviour in Epileptic Rats by Cortical Electrical Stimulation Treatment. J Int Med Res 2012; 40:266-81. [PMID: 22429366 DOI: 10.1177/147323001204000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE: To study the effects of low-frequency cortical electrical stimulation (CES) on seizures and behaviour in a rat model of epilepsy induced by ferric chloride (FeCl3). METHODS: Rats were randomly assigned into four groups ( n = 8 per group): normal healthy rats; saline-treated control rats; FeCl3-induced epileptic rats; CES-treated FeCl3-induced epileptic rats. Behavioural tests, analysis of the levels of brain-derived neurotrophic factor (BDNF) protein in brain tissue, and ultrastructural studies using transmission electron microscopy (TEM) were undertaken. RESULTS: CES significantly decreased the number and grade of seizures, and improved rat behaviour, compared with untreated epileptic rats. CES reduced levels of BDNF protein in the forebrain and increased levels of BDNF protein in the hippocampus compared with untreated epileptic rats. TEM showed less damage and ultrastructural changes in the neurons of CES-treated epileptic rats. CONCLUSIONS: CES inhibited seizures in FeCl3-induced epileptic rats and improved their behaviour. These effects might be mediated by altering BDNF protein levels in the brain.
Collapse
Affiliation(s)
- C Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - H Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - F He
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - X Jing
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - Q Liang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - G Heng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - L Wang
- Department of Biomedical Engineering, Fourth Military Medical University, ShanXi, Xi'an, China
| | - G Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - H Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| |
Collapse
|
32
|
Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 2011; 31:12963-71. [PMID: 21900575 DOI: 10.1523/jneurosci.3118-11.2011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recurrent seizure activity has been shown to induce a variety of permanent structural changes in the brain. Matrix metalloproteinases (MMPs) function to promote neuronal plasticity, primarily through cleavage of extracellular matrix proteins. Here, we investigated the role of MMP-9 in the development of pentylenetetrazole (PTZ)-induced kindled seizure in mice. Repeated treatment with PTZ (40 mg/kg) produced kindled seizure, which was accompanied by enhanced MMP-9 activity and expression in the hippocampus. No change in MMP-9 activity was observed in the hippocampi of mice with generalized tonic seizure following single administration of PTZ (60 mg/kg). MMP-9 colocalized with the neuronal marker NeuN and the glial marker GFAP in the dentate gyrus of the kindled mouse hippocampus. Coadministration of diazepam or MK-801 with PTZ inhibited the development of kindling and the increased MMP-9 levels in the hippocampus. Marked suppression of kindled seizure progression in response to repeated PTZ treatment was observed in MMP-9((-/-)) mice compared with wild-type mice, an observation that was accompanied by decreased hippocampal levels of mature brain-derived neurotrophic factor. Microinjecting the BDNF scavenger TrkB-Fc into the right ventricle before each PTZ treatment significantly suppressed the development of kindling in wild-type mice, whereas no effect was observed in MMP-9((-/-)) mice. On the other hand, bilateral injections of pro-BDNF into the hippocampal dentate gyrus significantly enhanced kindling in wild-type mice but not MMP-9((-/-)) mice. These findings suggest that MMP-9 is involved in the progression of behavioral phenotypes in kindled mice because of conversion of pro-BDNF to mature BDNF in the hippocampus.
Collapse
|
33
|
Hippocampal enlargement in Bassoon-mutant mice is associated with enhanced neurogenesis, reduced apoptosis, and abnormal BDNF levels. Cell Tissue Res 2011; 346:11-26. [PMID: 21935677 DOI: 10.1007/s00441-011-1233-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/24/2011] [Indexed: 01/20/2023]
Abstract
Mice mutant for the presynaptic protein Bassoon develop epileptic seizures and an altered pattern of neuronal activity that is accompanied by abnormal enlargement of several brain structures, with the strongest size increase in hippocampus and cortex. Using manganese-enhanced magnetic resonance imaging, an abnormal brain enlargement was found, which is first detected in the hippocampus 1 month after birth and amounts to an almost 40% size increase of this structure after 3 months. Stereological quantification of cell numbers revealed that enlargement of the dentate gyrus and the hippocampus proper is associated with larger numbers of principal neurons and of astrocytes. In search for the underlying mechanisms, an approximately 3-fold higher proportion of proliferation and survival of new-born cells in the dentate gyrus was found to go hand in hand with similarly larger numbers of doublecortin-positive cells and reduced numbers of apoptotic cells in the dentate gyrus and the hippocampus proper. Enlargement of the hippocampus and of other forebrain structures was accompanied by increased levels of brain-derived neurotrophic factor (BDNF). These data show that hippocampal overgrowth in Bassoon-mutant mice arises from a dysregulation of neurogenesis and apoptosis that might be associated with unbalanced BDNF levels.
Collapse
|
34
|
Gillies SG, Haddley K, Vasiliou SA, Jacobson GM, von Mentzer B, Bubb VJ, Quinn JP. Distinct gene expression profiles directed by the isoforms of the transcription factor neuron-restrictive silencer factor in human SK-N-AS neuroblastoma cells. J Mol Neurosci 2011; 44:77-90. [PMID: 20652837 DOI: 10.1007/s12031-010-9420-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/25/2010] [Indexed: 11/28/2022]
Abstract
Neuron-restrictive silencer factor (NRSF) and its isoforms are differentially regulated in rodent models of self-sustaining status epilepticus (SSSE). NRSF isoforms regulate genes associated with SSSE, including the proconvulsant tachykinins, brain-derived neurotrophic factor and multiple ion channels. NRSF isoforms may direct distinct gene expression patterns during SSSE, and the ratio of each isoform may be a causative factor in traumatic damage to the central nervous system. Here, we analysed global gene expression changes by microarray in human SK-N-AS neuroblastoma cells following the over-expression of NRSF and a truncated isoform, HZ4. We used bioinformatics software to analyse the microarray dataset and correlated these data with epilepsy candidate gene pathways. Findings were validated by reverse transcriptase-polymerase chain reaction. We demonstrated that NRSF and HZ4 direct overlapping as well as distinct gene expression patterns, and that they differentially modulated gene expression patterns associated with epilepsy. Finally, we revealed that NRSF gene expression may be modulated by the anticonvulsant, phenytoin. We have interpreted our data to reflect altered gene expression directed by NRSF that might be relevant for SSSE.
Collapse
Affiliation(s)
- Stuart G Gillies
- Division of Human Anatomy & Cell Biology and Division of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Levetiracetam suppresses development of spontaneous EEG seizures and aberrant neurogenesis following kainate-induced status epilepticus. Brain Res 2010; 1352:187-99. [PMID: 20599805 DOI: 10.1016/j.brainres.2010.06.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 01/14/2023]
Abstract
Electroencephalographic (EEG) seizures and behavioral convulsions begin to appear spontaneously a few weeks after chemoconvulsant-induced status epilepticus (SE) and thereafter become more intense. This indicates the progressive development of a long-lasting epileptic focus. In addition, chemoconvulsant-induced SE increases neuronal proliferation in the dentate subgranular zone (SGZ) and ectopic migration of newborn neurons into the dentate hilus of adult animals. These seizure-induced newborn neurons, especially ectopic granule cells in the dentate hilus, are believed to facilitate the development of epileptic foci in animal models of temporal lobe epilepsy. In the present study, we examined the effects of a novel antiepileptic drug, levetiracetam, on the appearance of spontaneous EEG seizures and on the generation of newborn neurons, especially of ectopic granule cells in the dentate hilus, following kainate-induced SE. Levetiracetam treatment for 25 days, initiated 24 hours after induction of kainate-induced SE, significantly decreased the mean duration of spontaneous EEG seizures 58 days later. Levetiracetam treatment also prevented an SE-induced increase in the number of ectopic granule cells observed 58 days after kainate administration by suppressing neuronal proliferation in the dentate SGZ and abnormal migration of newborn neurons from the dentate SGZ to the hilus. These results are in accord with a previous report that an antimitotic agent that reduced the number of newborn neurons significantly decreased the frequency of spontaneous convulsions 1 month after pilocarpine-induced SE. This evidence from the kainate model of temporal lobe epilepsy suggests that levetiracetam may exert antiepileptogenic effects through the suppression of seizure-induced neurogenesis.
Collapse
|
36
|
Abstract
Neurons respond to numerous factors in their environment that influence their survival and function during development and in the mature brain. Among these factors, the neurotrophins have been shown to support neuronal survival and function, acting primarily through the Trk family of receptor tyrosine kinases. However, recent studies have established that the uncleaved neurotrophin precursors, the proneurotrophins, can be secreted and induce apoptosis via the p75 neurotrophin receptor, suggesting that the balance of secreted mature and proneurotrophins has a critical impact on neuronal survival or death. Epileptic seizures elicit increases in both proneurotrophin secretion and p75(NTR) expression, shifting the balance of these factors toward signaling cell death. This review will discuss the evidence that this ligand-receptor system plays an important role in neuronal loss following seizures.
Collapse
Affiliation(s)
- Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA.
| |
Collapse
|
37
|
Miltiadous P, Stamatakis A, Stylianopoulou F. Neuroprotective effects of IGF-I following kainic acid-induced hippocampal degeneration in the rat. Cell Mol Neurobiol 2010; 30:347-60. [PMID: 19777341 PMCID: PMC11498853 DOI: 10.1007/s10571-009-9457-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor I (IGF-I) has been shown to act as a neuroprotectant both in in vitro studies and in in vivo animal models of ischemia, hypoxia, trauma in the brain or the spinal cord, multiple and amyotrophic lateral sclerosis, Alzheimer's and Parkinson's disease. In the present study, we investigated the neuroprotective potential of IGF-I in the "kainic acid-induced degeneration of the hippocampus" model of temporal lobe epilepsy. Increased cell death--as detected by FluoroJade B staining--and extensive cell loss--as determined by cresyl violet staining--were observed mainly in the CA3 and CA4 areas of the ipsilateral and contralateral hippocampus, 7 days following intrahippocampal administration of kainic acid. Kainic acid injection also resulted in intense astrogliosis--as assessed by the number of glial fibrillary acidic protein (GFAP) immunopositive cells--in both hemispheres, forming a clear astroglial scar ipsilaterally to the injection site. Heat-shock protein 70 (Hsp70) immunopositive cells were also observed in the ipsilateral dentate gyrus (DG) following kainic acid injection. When IGF-I was administered together with kainic acid, practically no signs of degeneration were detected in the contralateral hemisphere, while in the ipsilateral, there was a smaller degree of cell loss, reduced number of FluoroJade B-stained cells, decreased reactive gliosis and fewer Hsp70-positive cells. Our present results extend further the cases in which IGF-I is shown to exhibit neuroprotective properties in neurodegenerative processes in the CNS.
Collapse
Affiliation(s)
- Panagiota Miltiadous
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, 11527 Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, 11527 Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, 11527 Greece
| |
Collapse
|
38
|
Bairam A, Kinkead R, Lajeunesse Y, Joseph V. Neonatal caffeine treatment does not induce long-term consequences on TrkB receptors or BDNF expression in chemosensory organs of adult rats. Neurosci Lett 2009; 468:292-6. [PMID: 19914342 DOI: 10.1016/j.neulet.2009.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/21/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022]
Abstract
Chronic treatment with caffeine during the neonatal period (neonatal caffeine treatment, NCT, 15mg/kg/day from P3 to P12, oral gavage) has long-lasting consequences on respiratory control development. In adult male (but not female) rats, prior exposure to NCT results in a greater respiratory frequency response to hypoxia. This sex-specific effect of NCT was accompanied by an augmented expression of adenosine A(2A) receptors (A(2A)R) in the carotid body (CB) but not in the nucleus tractus solitarius (NTS). Since activation of adenosine A(2A)R can directly stimulate synthesis of tyrosine kinase B receptor (TrkBR) and brain-derived neurotrophic factor (BDNF), we determined whether NCT increases TrkBR and BDNF expression levels in the CB and NTS using both RT-PCR and western blot analyses. CB, NTS, and superior cervical ganglion were collected from adult male and female rats (10-12 weeks old) previously subjected to NCT or to control (neonatal water treatment, NWT). In male rats, when NCT tended to decrease TrkBR mRNA transcript levels by about 32% in the CB and to reduce BDNF transcripts in the NTS by 22%, western blot analyses showed no parallel changes in final protein expression. NCT had no effects on TrkBR or BDNF mRNA and protein levels in the CB and NTS of female rats. Neither gene was altered by NCT in the superior cervical ganglion of male and female rats. These data suggest that NCT has no long-term effects on trophic factor BDNF and TrkBR expression at peripheral and central level of chemosensory organs involved in respiratory control.
Collapse
Affiliation(s)
- Aida Bairam
- Unité de recherche en périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
39
|
Unsain N, Montroull LE, Mascó DH. Brain-derived neurotrophic factor facilitates TrkB down-regulation and neuronal injury after status epilepticus in the rat hippocampus. J Neurochem 2009; 111:428-40. [PMID: 19686240 DOI: 10.1111/j.1471-4159.2009.06342.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in many aspects of neuronal biology and hippocampal physiology. Status epilepticus (SE) is a condition in which prolonged seizures lead to neuronal degeneration. SE-induced in rodents serves as a model of Temporal Lobe Epilepsy with hippocampal sclerosis, the most frequent epilepsy in humans. We have recently described a strong correlation between TrkB decrease and p75ntr increase with neuronal degeneration (Neuroscience 154:978, 2008). In this report, we report that local, acute intra-hippocampal infusion of function-blocking antibodies against BDNF prevented both early TrkB down-regulation and neuronal degeneration after SE. Conversely, the infusion of recombinant human BDNF protein after SE greatly increased neuronal degeneration. The inhibition of BDNF mRNA translation by the infusion of antisense oligonucleotides induced a rapid decrease of BDNF protein levels, and a delayed increase. If seizures were induced at the time endogenous BDNF was decreased, SE-induced neuronal damage was prevented. On the other hand, if seizures were induced at the time endogenous BDNF was increased, SE-induced neuronal damage was exacerbated. These results indicate that under a pathological condition BDNF exacerbates neuronal injury.
Collapse
Affiliation(s)
- Nicolás Unsain
- Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Neurobiología, Centro de Biología Celular y Molecular, Cátedra de Biología Celular, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|