1
|
Fernandez-Berrocal MS, Reis A, Rolseth V, Suganthan R, Kuśnierczyk A, França A, Soares AYM, Kunath N, Bugaj AM, Abentung A, Eide L, Leão RN, Bjørås M, Scheffler K, Ye J. NEIL3 influences adult neurogenesis and behavioral pattern separation via WNT signaling. Cell Mol Life Sci 2025; 82:101. [PMID: 40035863 PMCID: PMC11880487 DOI: 10.1007/s00018-025-05629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Adult neurogenesis in the hippocampus, involving the generation and integration of new neurons, is essential for behavioral pattern separation, which supports accurate memory recall and cognitive plasticity. Here, we explore the role of the DNA repair protein NEIL3 in adult hippocampal neurogenesis and behavioral pattern separation. NEIL3 is required for efficient proliferation and neuronal differentiation of neonatal NSPCs and adult-born NPCs in the hippocampus following a behavioral pattern separation task. NEIL3-depleted mice exhibited a reduced preference for the novel object location, indicating a deficit in pattern separation. NEIL3-deficient adult-born neurons exhibited a significant reduction in mature-like membrane properties, indicating impaired functional maturation. Interestingly, these impairments were not associated with the decreased genomic integrity but with the altered transcriptional regulation of the Wnt signaling pathway. Given the importance of adult neurogenesis in cognitive function, targeting NEIL3 could offer therapeutic potential for addressing age-related hippocampal dysfunction and cognitive decline.
Collapse
Affiliation(s)
- Marion S Fernandez-Berrocal
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Amilcar Reis
- Department of Neuroscience, Uppsala University, 752 36, Uppsala, Sweden
| | - Veslemøy Rolseth
- Department of Microbiology, Oslo University Hospital, University of Oslo, 0424, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital, University of Oslo, 0424, Oslo, Norway
| | - Anna Kuśnierczyk
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Arthur França
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande Do Norte, Natal, 59056-450, Brazil
| | - Annara Y M Soares
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande Do Norte, Natal, 59056-450, Brazil
| | - Nicolas Kunath
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, 7030, Trondheim, Norway
| | - Anna M Bugaj
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Andreas Abentung
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo, Oslo, Norway
| | - Richardson N Leão
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande Do Norte, Natal, 59056-450, Brazil
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
- Department of Microbiology, Oslo University Hospital, University of Oslo, 0424, Oslo, Norway.
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway.
| | - Katja Scheffler
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, 7030, Trondheim, Norway.
| | - Jing Ye
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
2
|
Yılmaz E, Baltaci SB, Mogulkoc R, Baltaci AK. The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review. Nutr Neurosci 2024; 27:1025-1041. [PMID: 38151886 DOI: 10.1080/1028415x.2023.2296165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae thus, it has recently attracted considerable attention in the field of medical research. Neurogenesis is the process of formation of new neurons in the brain, including the human brain, from neural stem/progenitor cells [NS/PCs] which reside in neurogenic niches that contain the necessary substances for NS/PC proliferation, differentiation, migration, and maturation into functioning neurons which can integrate into a pre-existing neural network.Neurogenesis can be modulated by many exogenous and endogenous factors, pathological conditions. Both brain-derived neurotrophic factor, and flavonoids can modulate the neurogenic process in physiological conditions and after various pathological conditions including ischemic insults. AIM This review aims to discuss neurogenesis after ischemic insults and to determine the role of flavonoids and BDNF on neurogenesis under physiological and pathological conditions with a concentration on ischemic insults to the brain in particular. METHOD Relevant articles assessing the impact of flavonoids and BDNF on neurogenic processes in various physiological/pathological conditions including ischemic insults within the timeline of 1965 until 2023 were searched using the PubMed database. CONCLUSIONS The selected studies have shown that ischemic insults to the brain induce NS/PC proliferation, differentiation, migration, and maturation into functioning neurons integrating into a pre-existing neural network. Flavonoids and BDNF can modulate neurogenesis in the brain in various physiological/pathological conditions including ischemic insults. In conclusion, flavonoids and BDNF may be involved in post-ischemic brain repair processes through enhancing endogenous neurogenesis.
Collapse
Affiliation(s)
- Esen Yılmaz
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | | - Rasim Mogulkoc
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | |
Collapse
|
3
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
4
|
Cui K, Qi X, Liu Z, Sun W, Jiao P, Liu C, Tong J, Sun X, Sun H, Fu S, Wang J, Zheng Y, Liu T, Cui S, Liu F, Mao J, Zheng J, Wan Y, Yi M. Dominant activities of fear engram cells in the dorsal dentate gyrus underlie fear generalization in mice. PLoS Biol 2024; 22:e3002679. [PMID: 38995985 PMCID: PMC11244812 DOI: 10.1371/journal.pbio.3002679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/16/2024] [Indexed: 07/14/2024] Open
Abstract
Over-generalized fear is a maladaptive response to harmless stimuli or situations characteristic of posttraumatic stress disorder (PTSD) and other anxiety disorders. The dorsal dentate gyrus (dDG) contains engram cells that play a crucial role in accurate memory retrieval. However, the coordination mechanism of neuronal subpopulations within the dDG network during fear generalization is not well understood. Here, with the Tet-off system combined with immunostaining and two-photon calcium imaging, we report that dDG fear engram cells labeled in the conditioned context constitutes a significantly higher proportion of dDG neurons activated in a similar context where mice show generalized fear. The activation of these dDG fear engram cells encoding the conditioned context is both sufficient and necessary for inducing fear generalization in the similar context. Activities of mossy cells in the ventral dentate gyrus (vMCs) are significantly suppressed in mice showing fear generalization in a similar context, and activating the vMCs-dDG pathway suppresses generalized but not conditioned fear. Finally, modifying fear memory engrams in the dDG with "safety" signals effectively rescues fear generalization. These findings reveal that the competitive advantage of dDG engram cells underlies fear generalization, which can be rescued by activating the vMCs-dDG pathway or modifying fear memory engrams, and provide novel insights into the dDG network as the neuronal basis of fear generalization.
Collapse
Affiliation(s)
- Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zilong Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiqi Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peijie Jiao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chang Liu
- Beijing Life Science Academy, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haojie Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yawen Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianyu Liu
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
5
|
Yilmaz E, Acar G, Onal U, Erdogan E, Baltaci AK, Mogulkoc R. Effect of 2-Week Naringin Supplementation on Neurogenesis and BDNF Levels in Ischemia-Reperfusion Model of Rats. Neuromolecular Med 2024; 26:4. [PMID: 38457013 PMCID: PMC10924031 DOI: 10.1007/s12017-023-08771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae; thus, it has recently attracted a lot of attention in the field of medical study. PURPOSE The aim of this study was to determine the effect of naringin supplementation on neurogenesis and brain-derived neurotrophic factor (BDNF) levels in the brain in experimental brain ischemia-reperfusion. STUDY DESIGN The research was carried out on 40 male Wistar-type rats (10-12 weeks old) obtained from the Experimental Animals Research and Application Center of Selçuk University. Experimental groups were as follows: (1) Control group, (2) Sham group, (3) Brain ischemia-reperfusion group, (4) Brain ischemia-reperfusion + vehicle group (administered for 14 days), and (5) Brain ischemia-reperfusion + Naringin group (100 mg/kg/day administered for 14 days). METHODS In the ischemia-reperfusion groups, global ischemia was performed in the brain by ligation of the right and left carotid arteries for 30 min. Naringin was administered to experimental animals by intragastric route for 14 days following reperfusion. The training phase of the rotarod test was started 4 days before ischemia-reperfusion, and the test phase together with neurological scoring was performed the day before and 1, 7, and 14 days after the operation. At the end of the experiment, animals were sacrificed, and then hippocampus and frontal cortex tissues were taken from the brain. Double cortin marker (DCX), neuronal nuclear antigen marker (NeuN), and BDNF were evaluated in hippocampus and frontal cortex tissues by Real-Time qPCR analysis and immunohistochemistry methods. RESULTS While ischemia-reperfusion increased the neurological score values, DCX, NeuN, and BDNF levels decreased significantly after ischemia in the hippocampus and frontal cortex tissues. However, naringin supplementation restored the deterioration to a certain extent. CONCLUSION The results of the study show that 2 weeks of naringin supplementation may have protective effects on impaired neurogenesis and BDNF levels after brain ischemia and reperfusion in rats.
Collapse
Affiliation(s)
- Esen Yilmaz
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Gozde Acar
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Ummugulsum Onal
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | - Ender Erdogan
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | | | - Rasim Mogulkoc
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey.
| |
Collapse
|
6
|
Kitazawa M. Evolution of the nervous system by acquisition of retrovirus-derived genes in mammals. Genes Genet Syst 2024; 98:321-336. [PMID: 38220159 DOI: 10.1266/ggs.23-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
In the course of evolution, the most highly developed organ is likely the brain, which has become more complex over time and acquired diverse forms and functions in different species. In particular, mammals have developed complex and high-functioning brains, and it has been reported that several genes derived from retroviruses were involved in mammalian brain evolution, that is, generating the complexity of the nervous system. Especially, the sushi-ichi-related retrotransposon homolog (SIRH)/retrotransposon gag-like (RTL) genes have been suggested to play a role in the evolutionary processes shaping brain morphology and function in mammals. Genetic mutation and altered expression of genes are linked to neurological disorders, highlighting how the acquisition of virus-derived genes in mammals has both driven brain evolution and imposed a susceptibility to diseases. This review provides an overview of the functions, diversity, evolution and diseases associated with SIRH/RTL genes in the nervous system. The contribution of retroviruses to brain evolution is an important research topic in evolutionary biology and neuroscience, and further insights are expected to be gained through future studies.
Collapse
Affiliation(s)
- Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne
| |
Collapse
|
7
|
Bird AD, Cuntz H, Jedlicka P. Robust and consistent measures of pattern separation based on information theory and demonstrated in the dentate gyrus. PLoS Comput Biol 2024; 20:e1010706. [PMID: 38377108 PMCID: PMC10906873 DOI: 10.1371/journal.pcbi.1010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/01/2024] [Accepted: 12/13/2023] [Indexed: 02/22/2024] Open
Abstract
Pattern separation is a valuable computational function performed by neuronal circuits, such as the dentate gyrus, where dissimilarity between inputs is increased, reducing noise and increasing the storage capacity of downstream networks. Pattern separation is studied from both in vivo experimental and computational perspectives and, a number of different measures (such as orthogonalisation, decorrelation, or spike train distance) have been applied to quantify the process of pattern separation. However, these are known to give conclusions that can differ qualitatively depending on the choice of measure and the parameters used to calculate it. We here demonstrate that arbitrarily increasing sparsity, a noticeable feature of dentate granule cell firing and one that is believed to be key to pattern separation, typically leads to improved classical measures for pattern separation even, inappropriately, up to the point where almost all information about the inputs is lost. Standard measures therefore both cannot differentiate between pattern separation and pattern destruction, and give results that may depend on arbitrary parameter choices. We propose that techniques from information theory, in particular mutual information, transfer entropy, and redundancy, should be applied to penalise the potential for lost information (often due to increased sparsity) that is neglected by existing measures. We compare five commonly-used measures of pattern separation with three novel techniques based on information theory, showing that the latter can be applied in a principled way and provide a robust and reliable measure for comparing the pattern separation performance of different neurons and networks. We demonstrate our new measures on detailed compartmental models of individual dentate granule cells and a dentate microcircuit, and show how structural changes associated with epilepsy affect pattern separation performance. We also demonstrate how our measures of pattern separation can predict pattern completion accuracy. Overall, our measures solve a widely acknowledged problem in assessing the pattern separation of neural circuits such as the dentate gyrus, as well as the cerebellum and mushroom body. Finally we provide a publicly available toolbox allowing for easy analysis of pattern separation in spike train ensembles.
Collapse
Affiliation(s)
- Alexander D. Bird
- Computer-Based Modelling in the field of 3R Animal Protection, ICAR3R, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt-am-Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt-am-Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, ICAR3R, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
8
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
9
|
Adams JM, Rege SV, Liu AT, Vu NV, Raina S, Kirsher DY, Nguyen AL, Harish R, Szoke B, Leone DP, Czirr E, Braithwaite S, Kerrisk Campbell M. Leukotriene A4 hydrolase inhibition improves age-related cognitive decline via modulation of synaptic function. SCIENCE ADVANCES 2023; 9:eadf8764. [PMID: 37976357 PMCID: PMC10656077 DOI: 10.1126/sciadv.adf8764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Leukotrienes, a class of inflammatory bioactive lipids, are well studied in the periphery, but less is known of their importance in the brain. We identified that the enzyme leukotriene A4 hydrolase (LTA4H) is expressed in healthy mouse neurons, and inhibition of LTA4H in aged mice improves hippocampal dependent memory. Single-cell nuclear RNA sequencing of hippocampal neurons after inhibition reveals major changes to genes important for synaptic organization, structure, and activity. We propose that LTA4H inhibition may act to improve cognition by directly inhibiting the enzymatic activity in neurons, leading to improved synaptic function. In addition, LTA4H plasma levels are increased in both aging and Alzheimer's disease and correlated with cognitive impairment. These results identify a role for LTA4H in the brain, and we propose that LTA4H inhibition may be a promising therapeutic strategy to treat cognitive decline in aging related diseases.
Collapse
Affiliation(s)
- Julia M. Adams
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | - Sanket V. Rege
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | | | - Ninh V. Vu
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | - Sharda Raina
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | | | - Amy L. Nguyen
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | | | - Balazs Szoke
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | - Dino P. Leone
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | | | | | | |
Collapse
|
10
|
Berdugo‐Vega G, Dhingra S, Calegari F. Sharpening the blades of the dentate gyrus: how adult-born neurons differentially modulate diverse aspects of hippocampal learning and memory. EMBO J 2023; 42:e113524. [PMID: 37743770 PMCID: PMC11059975 DOI: 10.15252/embj.2023113524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.
Collapse
Affiliation(s)
- Gabriel Berdugo‐Vega
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
- Present address:
Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL)LausanneSwitzerland
| | - Shonali Dhingra
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Federico Calegari
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| |
Collapse
|
11
|
Munari L, Patel V, Johnson N, Mariottini C, Prabha S, Blitzer RD, Iyengar R. Memory discrimination is promoted by the expression of the transcription repressor WT1 in the dentate gyrus. Front Behav Neurosci 2023; 17:1130840. [PMID: 37830039 PMCID: PMC10564998 DOI: 10.3389/fnbeh.2023.1130840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
The hippocampus is critical for the precise formation of contextual memories. Overlapping inputs coming from the entorhinal cortex are processed by the trisynaptic pathway to form distinct memories. Disruption in any step of the circuit flow can lead to a lack of memory precision, and to memory interference. We have identified the transcriptional repressor Wilm's Tumor 1 (WT1) as an important regulator of synaptic plasticity involved in memory discrimination in the hippocampus. In male mice, using viral and transgenic approaches, we showed that WT1 deletion in granule cells of the dentate gyrus (DG) disrupts memory discrimination. With electrophysiological methods, we then identified changes in granule cells' excitability and DG synaptic transmission indicating that WT1 knockdown in DG granule cells disrupts the inhibitory feedforward input from mossy fibers to CA3 by decreasing mIPSCs and shifting the normal excitatory/inhibitory (E/I) balance in the DG → CA3 circuit in favor of excitation. Finally, using a chemogenetic approach, we established a causal link between granule cell hyperexcitability and memory discrimination impairments. Our results suggest that WT1 enables a circuit-level computation that drives pattern discrimination behavior.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
12
|
Mugnaini M, Trinchero MF, Schinder AF, Piatti VC, Kropff E. Unique potential of immature adult-born neurons for the remodeling of CA3 spatial maps. Cell Rep 2023; 42:113086. [PMID: 37676761 PMCID: PMC11342238 DOI: 10.1016/j.celrep.2023.113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Mammalian hippocampal circuits undergo extensive remodeling through adult neurogenesis. While this process has been widely studied, the specific contribution of adult-born granule cells (aGCs) to spatial operations in the hippocampus remains unknown. Here, we show that optogenetic activation of 4-week-old (young) aGCs in free-foraging mice produces a non-reversible reconfiguration of spatial maps in proximal CA3 while rarely evoking neural activity. Stimulation of the same neuronal cohort on subsequent days recruits CA3 neurons with increased efficacy but fails to induce further remapping. In contrast, stimulation of 8-week-old (mature) aGCs can reliably activate CA3 cells but produces no alterations in spatial maps. Our results reveal a unique role of young aGCs in remodeling CA3 representations, a potential that can be depleted and is lost with maturation. This ability could contribute to generate orthogonalized downstream codes supporting pattern separation.
Collapse
Affiliation(s)
- Matías Mugnaini
- Department of Physiology, Molecular and Cellular Biology Dr. Héctor Maldonado, Faculty of Exact and Natural Science, University of Buenos Aires, Buenos Aires C1428EGA, Argentina; Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina
| | - Mariela F Trinchero
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina
| | - Alejandro F Schinder
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina.
| | - Verónica C Piatti
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina.
| | - Emilio Kropff
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
13
|
Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, Knierim JJ, Rangel LM. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci 2023; 24:502-517. [PMID: 37316588 PMCID: PMC10529488 DOI: 10.1038/s41583-023-00710-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
There has been considerable speculation regarding the function of the dentate gyrus (DG) - a subregion of the mammalian hippocampus - in learning and memory. In this Perspective article, we compare leading theories of DG function. We note that these theories all critically rely on the generation of distinct patterns of activity in the region to signal differences between experiences and to reduce interference between memories. However, these theories are divided by the roles they attribute to the DG during learning and recall and by the contributions they ascribe to specific inputs or cell types within the DG. These differences influence the information that the DG is thought to impart to downstream structures. We work towards a holistic view of the role of DG in learning and memory by first developing three critical questions to foster a dialogue between the leading theories. We then evaluate the extent to which previous studies address our questions, highlight remaining areas of conflict, and suggest future experiments to bridge these theories.
Collapse
Affiliation(s)
- Mia Borzello
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Helen Scharfman
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology and Psychiatry and the Neuroscience Institute, New York University Langone Health, New York, NY, USA
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Craig Stark
- Department of Neurobiology and Behaviour, University of California, Irvine, Irvine, CA, USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Lara M Rangel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Sheintuch L, Geva N, Deitch D, Rubin A, Ziv Y. Organization of hippocampal CA3 into correlated cell assemblies supports a stable spatial code. Cell Rep 2023; 42:112119. [PMID: 36807137 PMCID: PMC9989830 DOI: 10.1016/j.celrep.2023.112119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Hippocampal subfield CA3 is thought to stably store memories in assemblies of recurrently connected cells functioning as a collective. However, the collective hippocampal coding properties that are unique to CA3 and how such properties facilitate the stability or precision of the neural code remain unclear. Here, we performed large-scale Ca2+ imaging in hippocampal CA1 and CA3 of freely behaving mice that repeatedly explored the same, initially novel environments over weeks. CA3 place cells have more precise and more stable tuning and show a higher statistical dependence with their peers compared with CA1 place cells, uncovering a cell assembly organization in CA3. Surprisingly, although tuning precision and long-term stability are correlated, cells with stronger peer dependence exhibit higher stability but not higher precision. Overall, our results expose the three-way relationship between tuning precision, long-term stability, and peer dependence, suggesting that a cell assembly organization underlies long-term storage of information in the hippocampus.
Collapse
Affiliation(s)
- Liron Sheintuch
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Geva
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Deitch
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Rubin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Yaniv Ziv
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Silva NF, Mascarenhas FNADP, Ribeiro DL, Zanon RG. Alterations in the dentate gyrus of the offspring of rats treated with alprazolam during gestation. J Chem Neuroanat 2023; 129:102253. [PMID: 36841439 DOI: 10.1016/j.jchemneu.2023.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Benzodiazepine (BZD) abuse is a global problem, including pregnant women. For this population, the drug of choice is usually alprazolam, which acts as a GABAergic agonist and may compromise the development of integrative areas of the nervous system, such as the dentate gyrus (DG) of the hippocampus. In this context, we studied the changes in the DG of the offspring of rats treated with alprazolam during gestation: control, treatment 1 (T1: 1.25 mg/animal), and an overdose group (T2: 30 mg/animal). Alprazolam was administered orally ten days before mating and during the gestational period. After birth, newborns were counted, sexed, and the body mass of each pup was measured. The newborns' brains were extracted and processed for morphological study of the DG or for total protein extraction of the hippocampus. The results showed that alprazolam can affect the cell number and area, and increased euchromatin in both granular and molecular layers of the DG, especially in the overdose group. Also, alprazolam upregulated the NF-κB and reduced GFAP and caspase-3. Based on our findings, we conclude that the DG is a plausible region of influence by BZDs during embryogenesis. An overdose during gestation may cause structural changes in the DG.
Collapse
|
16
|
Ash AM, Regele-Blasco E, Seib DR, Chahley E, Skelton PD, Luikart BW, Snyder JS. Adult-born neurons inhibit developmentally-born neurons during spatial learning. Neurobiol Learn Mem 2023; 198:107710. [PMID: 36572174 DOI: 10.1016/j.nlm.2022.107710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Ongoing neurogenesis in the dentate gyrus (DG) subregion of the hippocampus results in a heterogenous population of neurons. Immature adult-born neurons (ABNs) have physiological and anatomical properties that may give them a unique role in learning. For example, compared to older granule neurons, they have greater somatic excitability, which could facilitate their recruitment into memory traces. However, recruitment is also likely to depend on interactions with other DG neurons through processes such as lateral inhibition. Immature ABNs target inhibitory interneurons and, compared to older neurons, they receive less GABAergic inhibition. Thus, they may induce lateral inhibition of mature DG neurons while being less susceptible to inhibition themselves. To test this we used a chemogenetic approach to silence immature ABNs as rats learned a spatial water maze task, and measured activity (Fos expression) in ABNs and developmentally-born neurons (DBNs). A retrovirus expressing the inhibitory DREADD receptor, hM4Di, was injected into the dorsal DG of male rats at 6w to infect neurons born in adulthood. Animals were also injected with BrdU to label DBNs or ABNs. DBNs were significantly more active than immature 4-week-old ABNs. Silencing 4-week-old ABNs did not alter learning but it increased activity in DBNs. However, silencing ABNs did not affect activation in other ABNs within the DG. Silencing ABNs also did not alter Fos expression in parvalbumin- and somatostatin-expressing interneurons. Collectively, these results suggest that ABNs may directly inhibit DBN activity during hippocampal-dependent learning, which may be relevant for maintaining sparse hippocampal representations of experienced events.
Collapse
Affiliation(s)
- Alyssa M Ash
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Elena Regele-Blasco
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Désirée R Seib
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Erin Chahley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Patrick D Skelton
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Zhang TR, Askari B, Kesici A, Guilherme E, Vila-Rodriguez F, Snyder JS. Intermittent theta burst transcranial magnetic stimulation induces hippocampal mossy fibre plasticity in male but not female mice. Eur J Neurosci 2023; 57:310-323. [PMID: 36484786 DOI: 10.1111/ejn.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Transcranial magnetic stimulation (TMS) induces electric fields that depolarise or hyperpolarise neurons. Intermittent theta burst stimulation (iTBS), a patterned form of TMS that is delivered at the theta frequency (~5 Hz), induces neuroplasticity in the hippocampus, a brain region that is implicated in memory and learning. One form of plasticity that is unique to the hippocampus is adult neurogenesis; however, little is known about whether TMS or iTBS in particular affects newborn neurons. Here, we therefore applied repeated sessions of iTBS to male and female mice and measured the extent of adult neurogenesis and the morphological features of immature neurons. We found that repeated sessions of iTBS did not significantly increase the amount of neurogenesis or affect the gross dendritic morphology of new neurons, and there were no sex differences in neurogenesis rates or aspects of afferent morphology. In contrast, efferent properties of newborn neurons varied as a function of sex and stimulation. Chronic iTBS increased the size of mossy fibre terminals, which synapse onto Cornu Ammonis 3 (CA3) pyramidal neurons, but only in males. iTBS also increased the number of terminal-associated filopodia, putative synapses onto inhibitory interneurons but only in male mice. This efferent plasticity could result from a general trophic effect, or it could reflect accelerated maturation of immature neurons. Given the important role of mossy fibre synapses in hippocampal learning, our results identify a neurobiological effect of iTBS that might be associated with sex-specific changes in cognition.
Collapse
Affiliation(s)
- Tian Rui Zhang
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Baran Askari
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aydan Kesici
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evelyn Guilherme
- Department of Physiotherapy, Federal University of Sao Carlos, Sao Carlo, Brazil
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Wei K, Liu Y, Yang X, Liu J, Li Y, Deng M, Wang Y. Bumetanide attenuates sevoflurane-induced neuroapoptosis in the developing dentate gyrus and impaired behavior in the contextual fear discrimination learning test. Brain Behav 2022; 12:e2768. [PMID: 36184814 PMCID: PMC9660414 DOI: 10.1002/brb3.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Sevoflurane acts as a gamma-aminobutyric acid subtype A receptor agonist and can induce widespread apoptosis of immature dentate granule cells in postnatal day 21 mice. The dentate granule cells of postnatal day 21 mice undergo a developmental stage when gamma-aminobutyric acid (GABA) shifts from inducing the depolarization of neurons to causing hyperpolarization. However, it is unclear whether sevoflurane induces apoptosis of immature granule cells by facilitating the depolarization or hyperpolarization of neurons. METHODS We utilized bumetanide, an Na+ -K+ -2Cl- cotransporter isoform 1 (NKCC1) antagonist, to determine whether the NKCC1-mediated GABA depolarization of neurons plays a role in sevoflurane-induced neuroapoptosis. We also investigated whether sevoflurane exposure is related to long-term cognitive dysfunction in postnatal day 21 mice and explored the possible protective effects of bumetanide. RESULTS Bumetanide attenuated the sevoflurane-induced apoptosis of dentate granule cells in postnatal day 21 mice. Exposure to sevoflurane at postnatal day 21 mice did not affect their motor ability or anxiety level, and it had no effect on spatial learning or memory functions. However, sevoflurane exposure at postnatal day 21 impaired the pattern separation ability in the contextual fear discrimination test; bumetanide mitigated this effect of sevoflurane as well. CONCLUSION Bumetanide attenuates sevoflurane-induced apoptosis and is a promising prospect for protecting against anesthesia-induced neurotoxicity in the developing brain.
Collapse
Affiliation(s)
- Kai Wei
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiheng Liu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiamin Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Liu
- Happy Life Tech, Shanghai, China
| | - Yuan Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Deng
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Monday HR, Kharod SC, Yoon YJ, Singer RH, Castillo PE. Presynaptic FMRP and local protein synthesis support structural and functional plasticity of glutamatergic axon terminals. Neuron 2022; 110:2588-2606.e6. [PMID: 35728596 PMCID: PMC9391299 DOI: 10.1016/j.neuron.2022.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Learning and memory rely on long-lasting, synapse-specific modifications. Although postsynaptic forms of plasticity typically require local protein synthesis, whether and how local protein synthesis contributes to presynaptic changes remain unclear. Here, we examined the mouse hippocampal mossy fiber (MF)-CA3 synapse, which expresses both structural and functional presynaptic plasticity and contains presynaptic fragile X messenger ribonucleoprotein (FMRP), an RNA-binding protein involved in postsynaptic protein-synthesis-dependent plasticity. We report that MF boutons contain ribosomes and synthesize protein locally. The long-term potentiation of MF-CA3 synaptic transmission (MF-LTP) was associated with the translation-dependent enlargement of MF boutons. Remarkably, increasing in vitro or in vivo MF activity enhanced the protein synthesis in MFs. Moreover, the deletion of presynaptic FMRP blocked structural and functional MF-LTP, suggesting that FMRP is a critical regulator of presynaptic MF plasticity. Thus, presynaptic FMRP and protein synthesis dynamically control presynaptic structure and function in the mature mammalian brain.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA.
| | - Shivani C Kharod
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Young J Yoon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA.
| |
Collapse
|
20
|
Blackstad JS, Osen KK, Leergaard TB. The fibro- and cyto-architecture demarcating the border between the dentate gyrus and CA3 in sheep (Ovis aries) and domestic pig (Sus scrofa domesticus). Hippocampus 2022; 32:639-659. [PMID: 35913094 PMCID: PMC9546232 DOI: 10.1002/hipo.23457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/28/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
The hippocampal formation is essential for spatial navigation and episodic memory. The anatomical structure is largely similar across mammalian species, apart from the deep polymorphic layer of the dentate gyrus and the adjacent part of cornu ammonis 3 (CA3) which feature substantial variations. In rodents, the polymorphic layer has a triangular cross‐section abutting on the end of the CA3 pyramidal layer, while in primates it is long and band‐shaped capping the expanded CA3 end, which here lacks a distinct pyramidal layer. This structural variation has resulted in a confusing nomenclature and unclear anatomical criteria for the definition of the dentate‐ammonic border. Seeking to clarify the border, we present here a light microscopic investigation based on Golgi‐impregnated and Timm–thionin‐stained sections of the Artiodactyla sheep and domestic pig, in which the dentate gyrus and CA3 end have some topographical features in common with primates. In short, the band‐shaped polymorphic layer coincides with the Timm‐positive mossy fiber collateral plexus and the Timm‐negative subgranular zone. While the soma and excrescence‐covered proximal dendrites of the mossy cells are localized within the plexus, the peripheral mossy cell dendrites extend outside the plexus, both into the granular and molecular layers, and the CA3. The main mossy fibers leave the collateral plexus in a scattered formation to converge gradually through the CA3 end in between the dispersed pyramidal cells, which are of three subtypes, as in monkey, with the classical apical subtype dominating near the hidden blade, the nonapical subtype near the exposed blade, and the dentate subtype being the only pyramidal cells that extend dendrites into the dentate gyrus. In agreement with our previous study in mink, the findings show that the border between the dentate gyrus and the CA3 end can be more accurately localized by the mossy fiber system than by cyto‐architecture alone.
Collapse
Affiliation(s)
- Jan Sigurd Blackstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Kavli Institute for Systems Neuroscience and Center for Biology of Memory, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirsten K Osen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Xu P, Yue Y, Su J, Sun X, Du H, Liu Z, Simha R, Zhou J, Zeng C, Lu H. Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2. Nat Commun 2022; 13:3899. [PMID: 35794118 PMCID: PMC9259602 DOI: 10.1038/s41467-022-31578-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Sociability is crucial for survival, whereas social avoidance is a feature of disorders such as Rett syndrome, which is caused by loss-of-function mutations in MECP2. To understand how a preference for social interactions is encoded, we used in vivo calcium imaging to compare medial prefrontal cortex (mPFC) activity in female wild-type and Mecp2-heterozygous mice during three-chamber tests. We found that mPFC pyramidal neurons in Mecp2-deficient mice are hypo-responsive to both social and nonsocial stimuli. Hypothesizing that this limited dynamic range restricts the circuit's ability to disambiguate coactivity patterns for different stimuli, we suppressed the mPFC in wild-type mice and found that this eliminated both pattern decorrelation and social preference. Conversely, stimulating the mPFC in MeCP2-deficient mice restored social preference, but only if it was sufficient to restore pattern decorrelation. A loss of social preference could thus indicate impaired pattern decorrelation rather than true social avoidance.
Collapse
Affiliation(s)
- Pan Xu
- The GW Institute for Neuroscience, The George Washington University, Washington, DC, 20037, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
- Institute of Basic Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Yuanlei Yue
- The GW Institute for Neuroscience, The George Washington University, Washington, DC, 20037, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Juntao Su
- The GW Institute for Neuroscience, The George Washington University, Washington, DC, 20037, USA
| | - Xiaoqian Sun
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC, 20037, USA
| | - Hongfei Du
- Department of Statistics, Columbian College of Art and Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Zhichao Liu
- Department of Physics, Columbian College of Art and Sciences, The George Washington University, Washington, DC, 20037, USA
- School of Biological Information, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Rahul Simha
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC, 20037, USA
| | - Jianhui Zhou
- Department of Statistics, School of Arts and Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| | - Chen Zeng
- Department of Statistics, Columbian College of Art and Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Hui Lu
- The GW Institute for Neuroscience, The George Washington University, Washington, DC, 20037, USA.
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
22
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
23
|
Kempermann G. What Is Adult Hippocampal Neurogenesis Good for? Front Neurosci 2022; 16:852680. [PMID: 35495058 PMCID: PMC9051245 DOI: 10.3389/fnins.2022.852680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Adult hippocampal neurogenesis is a unique and exceptional process in the mammalian brain that in a lifelong and activity-dependent way generates new excitatory principal neurons. A comprehensive view on their function in greater contexts has now emerged, revealing to which extent the hippocampus (and hence brain and mind) depend on these neurons. Due to a postmitotic period of heightened synaptic plasticity they bias incoming excitation to the dentate gyrus to non-overlapping subnetworks, resulting in pattern separation and the avoidance of catastrophic interference. Temporally, this promotes the flexible integration of novel information into familiar contexts and contributes to episodic memory, which in humans would be critical for autobiographic memory. Together these local effects represent a unique strategy to solve the plasticity-stability dilemma that all learning neuronal networks are facing. Neurogenesis-dependent plasticity also improves memory consolidation. This relates to the surprising involvement of adult neurogenesis in forgetting, which is also hypothesized to be critically relevant for negative plasticity, for example in post-traumatic stress disorder. In addition, adult-born neurons also directly mediate stress-resilience and take part in affective behaviors. Finally, the activity- and experience-dependent plasticity that is contributed by adult neurogenesis is associated with an individualization of the hippocampal circuitry. While a solid and largely consensual understanding of how new neurons contribute to hippocampal function has been reached, an overarching unifying theory that embeds neurogenesis-dependent functionality and effects on connectomics is still missing. More sophisticated multi-electrode electrophysiology, advanced ethologically relevant behavioral tests, and next-generation computational modeling will let us take the next steps.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Gerd Kempermann, ;
| |
Collapse
|
24
|
Early Life Events and Maturation of the Dentate Gyrus: Implications for Neurons and Glial Cells. Int J Mol Sci 2022; 23:ijms23084261. [PMID: 35457079 PMCID: PMC9031216 DOI: 10.3390/ijms23084261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The dentate gyrus (DG), an important part of the hippocampus, plays a significant role in learning, memory, and emotional behavior. Factors potentially influencing normal development of neurons and glial cells in the DG during its maturation can exert long-lasting effects on brain functions. Early life stress may modify maturation of the DG and induce lifelong alterations in its structure and functioning, underlying brain pathologies in adults. In this paper, maturation of neurons and glial cells (microglia and astrocytes) and the effects of early life events on maturation processes in the DG have been comprehensively reviewed. Early postnatal interventions affecting the DG eventually result in an altered number of granule neurons in the DG, ectopic location of neurons and changes in adult neurogenesis. Adverse events in early life provoke proinflammatory changes in hippocampal glia at cellular and molecular levels immediately after stress exposure. Later, the cellular changes may disappear, though alterations in gene expression pattern persist. Additional stressful events later in life contribute to manifestation of glial changes and behavioral deficits. Alterations in the maturation of neuronal and glial cells induced by early life stress are interdependent and influence the development of neural nets, thus predisposing the brain to the development of cognitive and psychiatric disorders.
Collapse
|
25
|
Mattis J, Somarowthu A, Goff KM, Jiang E, Yom J, Sotuyo N, Mcgarry LM, Feng H, Kaneko K, Goldberg EM. Corticohippocampal circuit dysfunction in a mouse model of Dravet syndrome. eLife 2022; 11:e69293. [PMID: 35212623 PMCID: PMC8920506 DOI: 10.7554/elife.69293] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dravet syndrome (DS) is a neurodevelopmental disorder due to pathogenic variants in SCN1A encoding the Nav1.1 sodium channel subunit, characterized by treatment-resistant epilepsy, temperature-sensitive seizures, developmental delay/intellectual disability with features of autism spectrum disorder, and increased risk of sudden death. Convergent data suggest hippocampal dentate gyrus (DG) pathology in DS (Scn1a+/-) mice. We performed two-photon calcium imaging in brain slice to uncover a profound dysfunction of filtering of perforant path input by DG in young adult Scn1a+/- mice. This was not due to dysfunction of DG parvalbumin inhibitory interneurons (PV-INs), which were only mildly impaired at this timepoint; however, we identified enhanced excitatory input to granule cells, suggesting that circuit dysfunction is due to excessive excitation rather than impaired inhibition. We confirmed that both optogenetic stimulation of entorhinal cortex and selective chemogenetic inhibition of DG PV-INs lowered seizure threshold in vivo in young adult Scn1a+/- mice. Optogenetic activation of PV-INs, on the other hand, normalized evoked responses in granule cells in vitro. These results establish the corticohippocampal circuit as a key locus of pathology in Scn1a+/- mice and suggest that PV-INs retain powerful inhibitory function and may be harnessed as a potential therapeutic approach toward seizure modulation.
Collapse
Affiliation(s)
- Joanna Mattis
- Department of Neurology, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Kevin M Goff
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Evan Jiang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Jina Yom
- College of Arts and Sciences, The University of PennsylvaniaPhiladelphiaUnited States
| | - Nathaniel Sotuyo
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Laura M Mcgarry
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Huijie Feng
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Ethan M Goldberg
- Department of Neurology, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Neuroscience, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
26
|
Stress-induced generalization of negative memories is mediated by an extended hippocampal circuit. Neuropsychopharmacology 2022; 47:516-523. [PMID: 34493828 PMCID: PMC8674250 DOI: 10.1038/s41386-021-01174-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Memories of negative experiences exert important control of behavior in the face of actual or anticipated threat. Sometimes, however, this control extends to non-threatening situations, a phenomenon known as overgeneralization of negative memories. Overgeneralization is a reliable cognitive phenotype of major depressive disorder, generalized anxiety disorder, and post-traumatic stress disorder. We therefore sought to develop an animal model to study stress-induced generalization of negative memories (SIG) and determine its dependence on the episodic-like memory circuit. We found that male and female mice, which were trained to differentiate a threatening from neutral context, exhibited robust SIG in response to subsequent social stress. Using chemogenetic circuit manipulations during memory retrieval, we demonstrated that both excitatory afferents to the dorsal hippocampus (DH) from the ventral tegmental area (VTA), and excitatory efferents from the DH to the retrosplenial cortex (RSC) contribute to SIG. Based on the known roles of these projections, we suggest that (1) by targeting subcortical VTA circuits that provide valence signals to the DH, stress prioritizes the retrieval of negative over neutral memories, and (2) by forwarding such information to the RSC, stress engages cortical mechanisms that support the retrieval of general relative to specific memory features. Altogether, these results suggest that various components of the extended hippocampal circuit can serve as treatment targets for memory overgeneralization.
Collapse
|
27
|
Asuquo OR, Edet PE, Eluwa MA, Kennedy OOO. Teratogenic Effect of Aqueous Leaf Extract of Aspilia africana on The Dentate Gyrus of Wistar Rat Fetuses. Niger J Physiol Sci 2021; 36:237-240. [PMID: 35947732 DOI: 10.54548/njps.v36i2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Aspilia africana is an herbal plant widespread in Africa used for medicinal purposes and also used by pregnant women for health related issues. This study was aimed at investigating the teratogenic effect of aqueous leaf extract of Aspilia africana on the dentate gyrus of albino wistar rat fetuses. Twenty (20) female adult rats weighing between 190-205g were used for this study. The rats were divided into four groups; control, low dose, medium dose and high dose with each group containing five rats. Pregnancy was induced by caging the female rats with sexually matured males. The presence of vaginal plug and tail structure in the vaginal smear the following morning confirmed coition, and it was regarded as day 0 of pregnancy. The control group was given distilled water. The low dose, medium dose, and the high dose groups received 750mg/kg, 1000mg/kg, and 1250mg/kg body weight of aqueous leaf extract of Aspilia africana through an orogastric tube from day 7-11 of gestation. On the 20th day of gestation, the animals were sacrificed using chloroform-inhalation method. Their fetuses were harvested via uterectomy, the brain was excised and fixed in 10% buffered formalin, and then routine histological processes were carried out. Staining was done using Haematoxylin and Eosin method. Histological observation of the dentate gyri of experimental groups revealed marked distortion, reduction of the polymorphic layer, hyperplasia and hypertrophy of cells in the molecular and granular layer especially in the high dose group whose mothers received 1250mg/kg of the extracts. The result suggests high doses of aqueous leaf extract of Aspilia africana may be teratogenic to the dentate gyrus of Wistar rat fetuses.
Collapse
|
28
|
Loureiro-Campos E, Mateus-Pinheiro A, Patrício P, Soares-Cunha C, Silva J, Sardinha VM, Mendes-Pinheiro B, Silveira-Rosa T, Domingues AV, Rodrigues AJ, Oliveira J, Sousa N, Alves ND, Pinto L. Constitutive deficiency of the neurogenic hippocampal modulator AP2γ promotes anxiety-like behavior and cumulative memory deficits in mice from juvenile to adult periods. eLife 2021; 10:70685. [PMID: 34859784 PMCID: PMC8709574 DOI: 10.7554/elife.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.
Collapse
Affiliation(s)
- Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - João Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal.,IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
29
|
Blankers SA, Galea LA. Androgens and Adult Neurogenesis in the Hippocampus. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:203-215. [PMID: 35024692 PMCID: PMC8744005 DOI: 10.1089/andro.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis in the hippocampus is modulated by steroid hormones, including androgens, in male rodents. In this review, we summarize research showing that chronic exposure to androgens, such as testosterone and dihydrotestosterone, enhances the survival of new neurons in the dentate gyrus of male, but not female, rodents, via the androgen receptor. However, the neurogenesis promoting the effect of androgens in the dentate gyrus may be limited to younger adulthood as it is not evident in middle-aged male rodents. Although direct exposure to androgens in adult or middle age does not significantly influence neurogenesis in female rodents, the aromatase inhibitor letrozole enhances neurogenesis in the hippocampus of middle-aged female mice. Unlike other androgens, androgenic anabolic steroids reduce neurogenesis in the hippocampus of male rodents. Collectively, the research indicates that the ability of androgens to enhance hippocampal neurogenesis in adult rodents is dependent on dose, androgen type, sex, duration, and age. We discuss these findings and how androgens may be influencing neuroprotection, via neurogenesis in the hippocampus, in the context of health and disease.
Collapse
Affiliation(s)
- Samantha A. Blankers
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Liisa A.M. Galea
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Fiedler J, De Leonibus E, Treves A. Has the hippocampus really forgotten about space? Curr Opin Neurobiol 2021; 71:164-169. [PMID: 34847486 DOI: 10.1016/j.conb.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
Several lines of evidence, including the discovery of place cells, have contributed to the notion that the hippocampus serves primarily to navigate the environment, as a repository of spatial memories, like a drawer full of charts; and that in some species it has exapted on this original one an episodic memory function. We argue that recent evidence questions the primacy of space, and points at memory load, whether spatial or not, as the challenge that mammalian hippocampal circuitry has evolved to meet.
Collapse
Affiliation(s)
| | | | - Alessandro Treves
- SISSA - Cognitive Neuroscience, Trieste, Italy; Kavli Centre for Neural Computation, NTNU, Trondheim, Norway.
| |
Collapse
|
31
|
Deficits in Behavioral and Neuronal Pattern Separation in Temporal Lobe Epilepsy. J Neurosci 2021; 41:9669-9686. [PMID: 34620720 PMCID: PMC8612476 DOI: 10.1523/jneurosci.2439-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.
Collapse
|
32
|
Seo DO, Zhang ET, Piantadosi SC, Marcus DJ, Motard LE, Kan BK, Gomez AM, Nguyen TK, Xia L, Bruchas MR. A locus coeruleus to dentate gyrus noradrenergic circuit modulates aversive contextual processing. Neuron 2021; 109:2116-2130.e6. [PMID: 34081911 PMCID: PMC8754261 DOI: 10.1016/j.neuron.2021.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
Dysregulation in contextual processing is believed to affect several forms of psychopathology, such as post-traumatic stress disorder (PTSD). The dentate gyrus (DG), a subregion of the hippocampus, is thought to be an important brain region for disambiguating new experiences from prior experiences. Noradrenergic (NE) neurons in the locus coeruleus (LC) are more tonically active during stressful events and send dense projections to the DG, yet an understanding of their function in DG-dependent contextual discrimination has not been established. Here, we isolate a key function of the LC-NE-DG circuit in contextual aversive generalization using selective manipulations and in vivo single-cell calcium imaging. We report that activation of LC-NE neurons and terminal activity results in contextual generalization. We found that these effects required β-adrenergic-mediated modulation of hilar interneurons to ultimately promote aversive generalization, suggesting that disruption of noradrenergic tone may serve as an important avenue for treating stress-induced disorders.
Collapse
Affiliation(s)
- Dong-Oh Seo
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric T Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - David J Marcus
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Laura E Motard
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bryce K Kan
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adrian M Gomez
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tammy K Nguyen
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Li Xia
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Uemura M, Blankvoort S, Tok SSL, Yuan L, Cobar LF, Lit KK, Tashiro A. A neurogenic microenvironment defined by excitatory-inhibitory neuronal circuits in adult dentate gyrus. Cell Rep 2021; 36:109324. [PMID: 34233196 DOI: 10.1016/j.celrep.2021.109324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022] Open
Abstract
Adult neurogenesis in the dentate gyrus plays a role in adaptive brain functions such as memory formation. Adding new neurons to a specific locus of a neural circuit with functional needs is an efficient way to achieve such an adaptive function. However, it is unknown whether neurogenesis is linked to local functional demands potentially specified by the activity of neuronal circuits. By examining the distribution of neurogenesis and different types of neuronal activity in the dentate gyrus of freely moving adult rats, we find that neurogenesis is positionally associated with active excitatory neurons, some of which show place-cell activity, but is positionally dissociated from a type of interneuron with high-burst tendency. Our finding suggests that the behaviorally relevant activity of excitatory-inhibitory neuronal circuits can define a microenvironment stimulating/inhibiting neurogenesis. Such local regulation of neurogenesis may contribute to strategic recruitment of new neurons to modify functionally relevant neural circuits.
Collapse
Affiliation(s)
- Masato Uemura
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Stefan Blankvoort
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Sean Shui Liang Tok
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Li Yuan
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Luis Fernando Cobar
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Kwok Keung Lit
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ayumu Tashiro
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7030 Trondheim, Norway; School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
34
|
Collitti-Klausnitzer J, Hagena H, Dubovyk V, Manahan-Vaughan D. Preferential frequency-dependent induction of synaptic depression by the lateral perforant path and of synaptic potentiation by the medial perforant path inputs to the dentate gyrus. Hippocampus 2021; 31:957-981. [PMID: 34002905 DOI: 10.1002/hipo.23338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The encoding of spatial representations is enabled by synaptic plasticity. The entorhinal cortex sends information to the hippocampus via the lateral (LPP) and medial perforant (MPP) paths that transfer egocentric item-related and allocentric spatial information, respectively. To what extent LPP and MPP information-relay results in different homosynaptic synaptic plasticity responses is unclear. We examined the frequency dependency (at 1, 5, 10, 50, 100, 200 Hz) of long-term potentiation (LTP) and long-term depression (LTD) at MPP and LPP synapses in the dentate gyrus (DG) of freely behaving adult rats. We report that whereas the MPP-DG synapses exhibit a predisposition toward the expression of LTP, LPP-DG synapses prefer to express synaptic depression. The divergence of synaptic plasticity responses is most prominent at afferent frequencies of 5, 100, Hz and 200 Hz. Priming with 10 or 50 Hz significantly modified the subsequent plasticity response in a frequency-dependent manner, but failed to change the preferred direction of change in synaptic strength of MPP and LPP synapses. Evaluation of the expression of GluN1, GluN2A, or GluN2B subunits of the NMDA receptor revealed equivalent expression in the outer and middle thirds of the molecular layer where LPP and MPP inputs convene, respectively, thus excluding NMDA receptors as a substrate for the frequency-dependent differences in bidirectional plasticity. These findings demonstrate that the LPP and MPP inputs to the DG enable differentiated and distinct forms of synaptic plasticity in response to the same afferent frequencies. Effects are extremely robust and resilient to metaplastic priming. These properties may support the functional differentiation of allocentric and item information provided to the DG by the MPP and LPP, respectively, that has been proposed by others. We propose that allocentric spatial information, conveyed by the MPP is encoded through hippocampal LTP in a designated synaptic network. This network is refined and optimized to include egocentric contextual information through LTD triggered by LPP inputs.
Collapse
Affiliation(s)
| | - Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany
| | - Valentyna Dubovyk
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany
| | | |
Collapse
|
35
|
Caramello A, Galichet C, Rizzoti K, Lovell-Badge R. Dentate gyrus development requires a cortical hem-derived astrocytic scaffold. eLife 2021; 10:63904. [PMID: 33393905 PMCID: PMC7806271 DOI: 10.7554/elife.63904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/01/2021] [Indexed: 01/01/2023] Open
Abstract
During embryonic development, radial glial cells give rise to neurons, then to astrocytes following the gliogenic switch. Timely regulation of the switch, operated by several transcription factors, is fundamental for allowing coordinated interactions between neurons and glia. We deleted the gene for one such factor, SOX9, early during mouse brain development and observed a significantly compromised dentate gyrus (DG). We dissected the origin of the defect, targeting embryonic Sox9 deletion to either the DG neuronal progenitor domain or the adjacent cortical hem (CH). We identified in the latter previously uncharacterized ALDH1L1+ astrocytic progenitors, which form a fimbrial-specific glial scaffold necessary for neuronal progenitor migration toward the developing DG. Our results highlight an early crucial role of SOX9 for DG development through regulation of astroglial potential acquisition in the CH. Moreover, we illustrate how formation of a local network, amidst astrocytic and neuronal progenitors originating from adjacent domains, underlays brain morphogenesis.
Collapse
Affiliation(s)
- Alessia Caramello
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | - Christophe Galichet
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | - Karine Rizzoti
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
36
|
Numerical Analysis of the Cerebral Cortex in Diprotodontids (Marsupialia; Australidelphia) and Comparison with Eutherian Brains. ZOOLOGY 2020; 143:125845. [DOI: 10.1016/j.zool.2020.125845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
|
37
|
Genetic Alzheimer’s Disease Risk Affects the Neural Mechanisms of Pattern Separation in Hippocampal Subfields. Curr Biol 2020; 30:4201-4212.e3. [DOI: 10.1016/j.cub.2020.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
|
38
|
Rattner A, Terrillion CE, Jou C, Kleven T, Hu SF, Williams J, Hou Z, Aggarwal M, Mori S, Shin G, Goff LA, Witter MP, Pletnikov M, Fenton AA, Nathans J. Developmental, cellular, and behavioral phenotypes in a mouse model of congenital hypoplasia of the dentate gyrus. eLife 2020; 9:e62766. [PMID: 33084572 PMCID: PMC7577738 DOI: 10.7554/elife.62766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
In the hippocampus, a widely accepted model posits that the dentate gyrus improves learning and memory by enhancing discrimination between inputs. To test this model, we studied conditional knockout mice in which the vast majority of dentate granule cells (DGCs) fail to develop - including nearly all DGCs in the dorsal hippocampus - secondary to eliminating Wntless (Wls) in a subset of cortical progenitors with Gfap-Cre. Other cells in the Wlsfl/-;Gfap-Cre hippocampus were minimally affected, as determined by single nucleus RNA sequencing. CA3 pyramidal cells, the targets of DGC-derived mossy fibers, exhibited normal morphologies with a small reduction in the numbers of synaptic spines. Wlsfl/-;Gfap-Cre mice have a modest performance decrement in several complex spatial tasks, including active place avoidance. They were also modestly impaired in one simpler spatial task, finding a visible platform in the Morris water maze. These experiments support a role for DGCs in enhancing spatial learning and memory.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia Jou
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
| | - Tina Kleven
- Kavli Institute for Systems Neuroscience and Center for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Shun Felix Hu
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zhipeng Hou
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susumu Mori
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gloria Shin
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Center for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Mikhail Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - André A Fenton
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
- Neuroscience Institute at the New York University Langone Medical Center, New York UniversityNew YorkUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
39
|
Hui CW, Vecchiarelli HA, Gervais É, Luo X, Michaud F, Scheefhals L, Bisht K, Sharma K, Topolnik L, Tremblay MÈ. Sex Differences of Microglia and Synapses in the Hippocampal Dentate Gyrus of Adult Mouse Offspring Exposed to Maternal Immune Activation. Front Cell Neurosci 2020; 14:558181. [PMID: 33192308 PMCID: PMC7593822 DOI: 10.3389/fncel.2020.558181] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a psychiatric disorder affecting ∼1% of humans worldwide. It is earlier and more frequently diagnosed in men than woman, and men display more pronounced negative symptoms together with greater gray matter reductions. Our previous findings utilizing a maternal immune activation (mIA) mouse model of schizophrenia revealed exacerbated anxiety-like behavior and sensorimotor gating deficits in adult male offspring that were associated with increased microglial reactivity and inflammation in the hippocampal dentate gyrus (DG). However, both male and female adult offspring displayed stereotypy and impairment of sociability. We hypothesized that mIA may lead to sex-specific alterations in microglial pruning activity, resulting in abnormal synaptic connectivity in the DG. Using the same mIA model, we show in the current study sex-specific differences in microglia and synapses within the DG of adult offspring. Specifically, microglial levels of cluster of differentiation (CD)68 and CD11b were increased in mIA-exposed females. Sex-specific differences in excitatory and inhibitory synapse densities were also observed following mIA. Additionally, inhibitory synaptic tone was increased in DG granule cells of both males and females, while changes in excitatory synaptic transmission occurred only in females with mIA. These findings suggest that phagocytic and complement pathways may together contribute to a sexual dimorphism in synaptic pruning and neuronal dysfunction in mIA, and may propose sex-specific therapeutic targets to prevent schizophrenia-like behaviors.
Collapse
Affiliation(s)
- Chin Wai Hui
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | | | - Étienne Gervais
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Xiao Luo
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Félix Michaud
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Lisa Scheefhals
- Master Neuroscience and Cognition, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Kanchan Bisht
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Kaushik Sharma
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Lisa Topolnik
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada.,Department of Biochemistry, Microbiology, and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Fuller OK, Whitham M, Mathivanan S, Febbraio MA. The Protective Effect of Exercise in Neurodegenerative Diseases: The Potential Role of Extracellular Vesicles. Cells 2020; 9:cells9102182. [PMID: 32998245 PMCID: PMC7599526 DOI: 10.3390/cells9102182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical activity has systemic effects on the body, affecting almost every organ. It is important not only for general health and wellbeing, but also in the prevention of diseases. The mechanisms behind the therapeutic effects of physical activity are not completely understood; however, studies indicate these benefits are not confined to simply managing energy balance and body weight. They also include systemic factors which are released into the circulation during exercise and which appear to underlie the myriad of benefits exercise can elicit. It was shown that along with a number of classical cytokines, active tissues also engage in inter-tissue communication via extracellular vesicles (EVs), specifically exosomes and other small EVs, which are able to deliver biomolecules to cells and alter their metabolism. Thus, EVs may play a role in the acute and systemic adaptations that take place during and after physical activity, and may be therapeutically useful in the treatment of a range of diseases, including metabolic disorders such as type 2 diabetes and obesity; and the focus of this review, neurological disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Oliver K Fuller
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia;
| | - Martin Whitham
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK;
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia;
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia;
- Correspondence:
| |
Collapse
|
41
|
Lazarov O, Minshall RD, Bonini MG. Harnessing neurogenesis in the adult brain-A role in type 2 diabetes mellitus and Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:235-269. [PMID: 32854856 DOI: 10.1016/bs.irn.2020.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Some metabolic disorders, such as type 2 diabetes mellitus (T2DM) are risk factors for the development of cognitive deficits and Alzheimer's disease (AD). Epidemiological studies suggest that in people with T2DM, the risk of developing dementia is 2.5 times higher than that in the non-diabetic population. The signaling pathways that underlie the increased risk and facilitate cognitive deficits are not fully understood. In fact, the cause of memory deficits in AD is not fully elucidated. The dentate gyrus of the hippocampus plays an important role in memory formation. Hippocampal neurogenesis is the generation of new neurons and glia in the adult brain throughout life. New neurons incorporate in the granular cell layer of the dentate gyrus and play a role in learning and memory and hippocampal plasticity. A large body of studies suggests that hippocampal neurogenesis is impaired in mouse models of AD and T2DM. Recent evidence shows that hippocampal neurogenesis is also impaired in human patients exhibiting mild cognitive impairment or AD. This review discusses the role of hippocampal neurogenesis in the development of cognitive deficits and AD, and considers inflammatory and endothelial signaling pathways in T2DM that may compromise hippocampal neurogenesis and cognitive function, leading to AD.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL, United States.
| | - Richard D Minshall
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, United States; Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL, United States
| | - Marcelo G Bonini
- Department of Medicine (Hematology/Oncology), Feinberg School of Medicine of Northwestern University and Basic Sciences Research, Robert H. Lurie Comprehensive Cancer Centre, Chicago, IL, United States
| |
Collapse
|
42
|
Seki T. Understanding the Real State of Human Adult Hippocampal Neurogenesis From Studies of Rodents and Non-human Primates. Front Neurosci 2020; 14:839. [PMID: 32848586 PMCID: PMC7432251 DOI: 10.3389/fnins.2020.00839] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The concept of adult hippocampal neurogenesis (AHN) has been widely accepted, and a large number of studies have been performed in rodents using modern experimental techniques, which have clarified the nature and developmental processes of adult neural stem/progenitor cells, the functions of AHN, such as memory and learning, and its association with neural diseases. However, a fundamental problem is that it remains unclear as to what extent AHN actually occurs in humans. The answer to this is indispensable when physiological and pathological functions of human AHN are deduced from studies of rodent AHN, but there are controversial data on the extent of human AHN. In this review, studies on AHN performed in rodents and humans will be briefly reviewed, followed by a discussion of the studies in non-human primates. Then, how data of rodent and non-human primate AHN should be applied for understanding human AHN will be discussed.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
43
|
LaDage LD. Broadening the functional and evolutionary understanding of postnatal neurogenesis using reptilian models. ACTA ACUST UNITED AC 2020; 223:223/15/jeb210542. [PMID: 32788272 DOI: 10.1242/jeb.210542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The production of new neurons in the brains of adult animals was first identified by Altman and Das in 1965, but it was not until the late 20th century when methods for visualizing new neuron production improved that there was a dramatic increase in research on neurogenesis in the adult brain. We now know that adult neurogenesis is a ubiquitous process that occurs across a wide range of taxonomic groups. This process has largely been studied in mammals; however, there are notable differences between mammals and other taxonomic groups in how, why and where new neuron production occurs. This Review will begin by describing the processes of adult neurogenesis in reptiles and identifying the similarities and differences in these processes between reptiles and model rodent species. Further, this Review underscores the importance of appreciating how wild-caught animals vary in neurogenic properties compared with laboratory-reared animals and how this can be used to broaden the functional and evolutionary understanding of why and how new neurons are produced in the adult brain. Studying variation in neural processes across taxonomic groups provides an evolutionary context to adult neurogenesis while also advancing our overall understanding of neurogenesis and brain plasticity.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| |
Collapse
|
44
|
Zotow E, Bisby JA, Burgess N. Behavioral evidence for pattern separation in human episodic memory. ACTA ACUST UNITED AC 2020; 27:301-309. [PMID: 32669385 PMCID: PMC7365015 DOI: 10.1101/lm.051821.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 01/02/2023]
Abstract
An essential feature of episodic memory is the ability to recall the multiple elements relating to one event from the multitude of elements relating to other, potentially similar events. Hippocampal pattern separation is thought to play a fundamental role in this process, by orthogonalizing the representations of overlapping events during encoding, to reduce interference between them during the process of pattern completion by which one or other is recalled. We introduce a new paradigm to test the hypothesis that similar memories, but not unrelated memories, are actively separated at encoding. Participants memorized events which were either unique or shared a common element with another event (paired “overlapping” events). We used a measure of dependency, originally devised to measure pattern completion, to quantify how much the probability of successfully retrieving associations from one event depends on successful retrieval of associations from the same event, an unrelated event or the overlapping event. In two experiments, we saw that within event retrievals were highly dependent, indicating pattern completion; retrievals from unrelated events were independent; and retrievals from overlapping events were antidependent (i.e., less than independent), indicating pattern separation. This suggests that representations of similar (overlapping) memories are actively separated, resulting in lowered dependency of retrieval performance between them, as would be predicted by the pattern separation account.
Collapse
Affiliation(s)
- Ewa Zotow
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - James A Bisby
- Division of Psychiatry, University College London, London W1T 7BN, United Kingdom
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.,Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
45
|
Li Y, Bao H, Luo Y, Yoan C, Sullivan HA, Quintanilla L, Wickersham I, Lazarus M, Shih YYI, Song J. Supramammillary nucleus synchronizes with dentate gyrus to regulate spatial memory retrieval through glutamate release. eLife 2020; 9:e53129. [PMID: 32167473 PMCID: PMC7069722 DOI: 10.7554/elife.53129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
The supramammillary nucleus (SuM) provides substantial innervation to the dentate gyrus (DG). It remains unknown how the SuM and DG coordinate their activities at the circuit level to regulate spatial memory. Additionally, SuM co-releases GABA and glutamate to the DG, but the relative role of GABA versus glutamate in regulating spatial memory remains unknown. Here we report that SuM-DG Ca2+ activities are highly correlated during spatial memory retrieval as compared to the moderate correlation during memory encoding when mice are performing a location discrimination task. Supporting this evidence, we demonstrate that the activity of SuM neurons or SuM-DG projections is required for spatial memory retrieval. Furthermore, we show that SuM glutamate transmission is necessary for both spatial memory retrieval and highly-correlated SuM-DG activities during spatial memory retrieval. Our studies identify a long-range SuM-DG circuit linking two highly correlated subcortical regions to regulate spatial memory retrieval through SuM glutamate release.
Collapse
Affiliation(s)
- Yadong Li
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| | - Hechen Bao
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| | - Yanjia Luo
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| | - Cherasse Yoan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaTsukubaJapan
| | - Heather Anne Sullivan
- The McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Luis Quintanilla
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
- Neurobiology Curriculum, University of North CarolinaChapel HillUnited States
| | - Ian Wickersham
- The McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaTsukubaJapan
| | - Yen-Yu Ian Shih
- Department of Neurology and Biomedical Research Imaging Center, University of North CarolinaChapel HillUnited States
| | - Juan Song
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| |
Collapse
|
46
|
Spalla D, Dubreuil A, Rosay S, Monasson R, Treves A. Can Grid Cell Ensembles Represent Multiple Spaces? Neural Comput 2019; 31:2324-2347. [DOI: 10.1162/neco_a_01237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The way grid cells represent space in the rodent brain has been a striking discovery, with theoretical implications still unclear. Unlike hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low-dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute, using two alternative mathematical models, the storage capacity of a population of grid-like units, embedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the potential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple noncongruent metric relationships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.
Collapse
Affiliation(s)
| | - Alexis Dubreuil
- Laboratoire de Physique Théorique de l'ENS, 75231 Paris Cedex 05, France
| | - Sophie Rosay
- SISSA, Cognitive Neuroscience, 34136 Trieste, Italy
| | - Remi Monasson
- Laboratoire de Physique Théorique de l'ENS, 75231 Paris Cedex 05, France
| | | |
Collapse
|
47
|
Abstract
The dentate gyrus continually produces new neurons throughout life. Behavioral studies in rodents and network models show that new neurons contribute to normal dentate functions, but there are many unanswered questions about how the relatively small population of new neurons alters network activity. Here we discuss experimental evidence that supports multiple cellular mechanisms by which adult-born neurons contribute to circuit function. Whereas past work focused on the unique intrinsic properties of young neurons, more recent studies also suggest that adult-born neurons alter the excitability of the mature neuronal population via unexpected circuit interactions.
Collapse
Affiliation(s)
- Cristina V Dieni
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jose Carlos Gonzalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | |
Collapse
|
48
|
Kozareva DA, Cryan JF, Nolan YM. Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell 2019; 18:e13007. [PMID: 31298475 PMCID: PMC6718573 DOI: 10.1111/acel.13007] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022] Open
Abstract
The capability of the mammalian brain to generate new neurons through the lifespan has gained much attention for the promise of new therapeutic possibilities especially for the aging brain. One of the brain regions that maintains a neurogenesis-permissive environment is the dentate gyrus of the hippocampus. Here, new neurons are generated from a pool of multipotent neural progenitor cells to become fully functional neurons that are integrated into the brain circuitry. A growing body of evidence points to the fact that neurogenesis in the adult hippocampus is necessary for certain memory processes, and in mood regulation, while alterations in hippocampal neurogenesis have been associated with a myriad of neurological and psychiatric disorders. More recently, evidence has come to light that new neurons may differ in their vulnerability to environmental and disease-related influences depending on the time during the life course at which they are exposed. Thus, it has been the topic of intense research in recent years. In this review, we will discuss the complex process and associated functional relevance of hippocampal neurogenesis during the embryonic/postnatal period and in adulthood. We consider the implications of hippocampal neurogenesis during the developmentally critical periods of adolescence and older age. We will further consider the literature surrounding hippocampal neurogenesis and its functional role during these critical periods with a view to providing insight into the potential of harnessing neurogenesis for health and therapeutic benefit.
Collapse
Affiliation(s)
- Danka A. Kozareva
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
| | - John F. Cryan
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Yvonne M. Nolan
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
| |
Collapse
|
49
|
Haładaj R. Anatomical variations of the dentate gyrus in normal adult brain. Surg Radiol Anat 2019; 42:193-199. [PMID: 31372742 PMCID: PMC6981104 DOI: 10.1007/s00276-019-02298-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Recent scientific papers indicate the clinical significance of the dentate gyrus. However, a detailed knowledge of the anatomical variations of this structure in normal adult brain is still lacking. An understanding of the variable morphology of the dentate gyrus may be important for diagnostic neuroimaging. Thus, the purpose of this macroscopic cadaveric study was to describe the anatomical variations of the dentate gyrus. Forty formalin-fixed human cerebral hemispheres, obtained from bodies of donors without the history of neuropathological diseases, were included in the study. The dentate gyrus was classified as well-developed, when it protruded completely from under the fimbria of the hippocampus. The gyrus was classified as underdeveloped, when it was covered by the fimbria of the hippocampus (but clearly visible at the coronal section of the hippocampal formation), while the hypoplastic gyrus was not visible macroscopically under the fimbria of the hippocampus. The well-developed type was observed in 27 cases (67.5%). The thickness of well-developed type of the dentate gyrus, measured between the fimbriodentate sulcus and hippocampal sulcus, varied from 2.74 to 5.21 mm (mean = 3.67 mm, median = 5.54 mm, SD 0.65 mm). In the next nine cases (22.5%), the dentate gyrus was underdeveloped. The thickness of underdeveloped type of the dentate gyrus varied from 1.75 to 2.37 mm (mean = 2.02 mm, median = 2.16 mm, SD 0.33 mm). In the remaining four cases (10%), the dentate gyrus was hypoplastic and could not be distinguished macroscopically. In all injected hemispheres, arterial supply of the dentate gyrus was provided by the branches of the posterior cerebral artery. Awareness of normal variations of the dentate gyrus may allow for better correlation of anatomical knowledge with radiological data and for use this knowledge to describe abnormal conditions.
Collapse
Affiliation(s)
- Robert Haładaj
- Department of Normal and Clinical Anatomy, Interfaculty Chair of Anatomy and Histology, Medical University of Lodz, ul. Żeligowskiego 7/9, 90-752, Lodz, Poland.
| |
Collapse
|
50
|
Interplay of Entorhinal Input and Local Inhibitory Network in the Hippocampus at the Origin of Slow Inhibition in Granule Cells. J Neurosci 2019; 39:6399-6413. [PMID: 31182636 DOI: 10.1523/jneurosci.2976-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity from the entorhinal cortex propagates through the perforant path (PP) to the molecular layer of the dentate gyrus (DG) where information is filtered and converted into sparse hippocampal code. Nearly simultaneous signaling to both granule cells (GC) and local interneurons (INs) engages network interactions that will modulate input integration and output generation. When triggered, GABA release from interneurons counteracts the glutamatergic signals of PP terminals, scaling down the overall DG activation. Inhibition occurs at fast or slow timescales depending on the activation of ionotropic GABAA-R or metabotropic GABAB-R. Although postsynaptic GABAA and GABAB-R differ in their location at the synapse, mixed GABAA/B-R IPSPs can also occur. Here we describe a slow inhibition mechanism in mouse GCs recorded from either sex, mediated by GABAA/B-R in combination with metabotropic glutamate receptors. Short burst PP stimulation in the gamma frequency range lead to a long-lasting hyperpolarization (LLH) of the GCs with a duration that exceeds GABAB-R IPSPs. As a result, LLH alters GC firing patterns and the responses to concomitant excitatory signals are also affected. Synaptic recruitment of feedforward inhibition and subsequent GABA release from interneurons, also successfully trigger mixed GABA responses in GCs. Together these results suggest that slow inhibition through LLH leads to reduced excitability of GCs during entorhinal input integration. The implication of LLH in regulation of neuronal excitability suggests it also contributes to the sparse population coding in DG.SIGNIFICANCE STATEMENT Our study describes a long-lasting hyperpolarization (LLH) in hippocampal granule cells. We used whole-cell patch-clamp recordings and an optogenetic approach to characterize this event. LLH is a slow inhibitory mechanism that occurs following the stimulation of the perforant pathway in the molecular layer of the dentate gyrus. We found that it is mediated via postsynaptic ionotropic and metabotropic GABA and metabotropic glutamate receptors. The duration of LLH exceeds previously described IPSPs mediated by any of these receptors. The activation of LLH requires presynaptic gamma frequency bursts and recruitment of the local feedforward inhibition. LLH defines prolonged periods of low excitability of GCs and a restrained neuronal discharge. Our results suggest that LLH can contribute to sparse activation of GCs.
Collapse
|