1
|
Forouzanfar F, Ahmadzadeh AM, Pourbagher-Shahri AM, Gorji A. Significance of NMDA receptor-targeting compounds in neuropsychological disorders: An in-depth review. Eur J Pharmacol 2025; 999:177690. [PMID: 40315950 DOI: 10.1016/j.ejphar.2025.177690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
N-methyl-D-aspartate receptors (NMDARs), a subclass of glutamate-gated ion channels, play an integral role in the maintenance of synaptic plasticity and excitation-inhibition balance within the central nervous system (CNS). Any irregularities in NMDAR functions, whether hypo-activation or over-activation, can destabilize neural networks and impair CNS function. Several decades of experimental and clinical investigations have demonstrated that NMDAR dysfunction is implicated in the pathophysiology of various neurological disorders. Despite designing a long list of compounds that differentially modulate NMDARs, success in developing drugs that can selectively and effectively regulate various NMDAR subtypes while showing encouraging efficacy in clinical settings remains limited. A better understanding of the basic mechanism of NMDAR function, particularly its selective regulation in pathological conditions, could aid in designing effective drugs for the treatment of neurological conditions. Here, we reviewed the experimental and clinical investigations that studied the effects of available NMDAR modulators in various neurological disorders and weighed up the pros and cons of the use of these substances on the improvement of functional outcomes of these disorders. Despite numerous efforts to develop NMDAR modulatory drugs that did not produce the desired outcomes, NMDARs remain a significant target for advancing novel drugs to treat neurological disorders. This article reviews the complexity of NMDAR signaling dysfunction in different neurological diseases, the efforts taken to examine designed compounds targeting specific subtypes of NMDARs, including challenges associated with using these substances, and the potential enhancements in drug discovery for NMDAR modulatory compounds by innovative technologies.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neurosurgery, Münster University, Münster, Germany; Epilepsy Research Center, Münster University, Münster, Germany.
| |
Collapse
|
2
|
Carmi I, Zoabi S, Bittan AM, Kellner S, Oz S, Heinrich R, Berlin S. A genetically encoded secreted toxin potentiates synaptic NMDA receptors in hippocampal neurons and confers neuroprotection. PNAS NEXUS 2025; 4:pgaf041. [PMID: 39959712 PMCID: PMC11826341 DOI: 10.1093/pnasnexus/pgaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
NMDA receptors (NMDARs) play essential roles in neuronal development, survival, and synaptic plasticity, to name a few. However, dysregulation in receptors' activity can lead to neuronal and synaptic damage, contributing to the development of various brain pathologies. Current pharmacological treatments targeting NMDARs remain limited, for instance due to insufficient receptor selectivity and poor spatial targeting. Genetic approaches hold promise to overcome some of these issues; however, require genetically encodable NMDAR-modulating peptides, which are scarce. Here, we explored NMDAR-selective peptide toxins from marine cone snails, which resulted in the necessary engineering of a posttranslational modification-free variant of Conantokin-P (naked Con-P). The naked form is essential for expression in mammalian cells. We systematically explored the naked variant and discovered that naked Con-P maintains its ability to inhibit GluN2B-containing receptors, but uniquely acquired the ability to potentiate GluN2A-containing synaptic receptors. We then engineered a secreted naked Con-P that readily enhances NMDAR-mediated synaptic events in primary hippocampal neurons, and mitigates neuronal damage induced by staurosporine. We therefore provide a genetically encodable, subtype selective, and secreted bimodulator of NMDARs. This new variant and approach should pave the way for the development of additional genetic tools, specifically tailored to target NMDARs within distinct cellular populations in the brain.
Collapse
Affiliation(s)
- Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shaden Zoabi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Asaf M Bittan
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Kellner
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shimrit Oz
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
3
|
Dando O, McQueen J, Burr K, Kind PC, Chandran S, Hardingham GE, Qiu J. A comparison of basal and activity-dependent exon splicing in cortical-patterned neurons of human and mouse origin. Front Mol Neurosci 2024; 17:1392408. [PMID: 39268251 PMCID: PMC11390650 DOI: 10.3389/fnmol.2024.1392408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Rodent studies have shown that alternative splicing in neurons plays important roles in development and maturity, and is regulatable by signals such as electrical activity. However, rodent-human similarities are less well explored. We compared basal and activity-dependent exon splicing in cortical-patterned human ESC-derived neurons with that in cortical mouse ESC-derived neurons, primary mouse cortical neurons at two developmental stages, and mouse hippocampal neurons, focussing on conserved orthologous exons. Both basal exon inclusion levels and activity-dependent changes in splicing showed human-mouse correlation. Conserved activity regulated exons are enriched in RBFOX, SAM68, NOVA and PTBP targets, and centered on cytoskeletal organization, mRNA processing, and synaptic signaling genes. However, human-mouse correlations were weaker than inter-mouse comparisons of neurons from different brain regions, developmental stages and origin (ESC vs. primary), suggestive of some inter-species divergence. The set of genes where activity-dependent splicing was observed only in human neurons were dominated by those involved in lipid biosynthesis, signaling and trafficking. Study of human exon splicing in mouse Tc1 neurons carrying human chromosome-21 showed that neuronal basal exon inclusion was influenced by cis-acting sequences, although may not be sufficient to confer activity-responsiveness in an allospecific environment. Overall, these comparisons suggest that neuronal alternative splicing should be confirmed in a human-relevant system even when exon structure is evolutionarily conserved.
Collapse
Affiliation(s)
- Owen Dando
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie McQueen
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Burr
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter C Kind
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Giles E Hardingham
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Jing Qiu
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
5
|
Ousingsawat J, Talbi K, Gómez-Martín H, Koy A, Fernández-Jaén A, Tekgül H, Serdaroğlu E, Schreiber R, Ortigoza-Escobar JD, Kunzelmann K. Broadening the clinical spectrum: molecular mechanisms and new phenotypes of ANO3-dystonia. Brain 2024; 147:1982-1995. [PMID: 38079528 DOI: 10.1093/brain/awad412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 06/04/2024] Open
Abstract
Anoctamin 3 (ANO3) belongs to a family of transmembrane proteins that form phospholipid scramblases and ion channels. A large number of ANO3 variants were identified as the cause of craniocervical dystonia, but the underlying pathogenic mechanisms remain obscure. It was suggested that ANO3 variants may dysregulate intracellular Ca2+ signalling, as variants in other Ca2+ regulating proteins like hippocalcin were also identified as a cause of dystonia. In this study, we conducted a comprehensive evaluation of the clinical, radiological and molecular characteristics of four individuals from four families who carried heterozygous variants in ANO3. The median age at follow-up was 6.6 years (ranging from 3.8 to 8.7 years). Three individuals presented with hypotonia and motor developmental delay. Two patients exhibited generalized progressive dystonia, while one patient presented with paroxysmal dystonia. Additionally, another patient exhibited early dyskinetic encephalopathy. One patient underwent bipallidal deep brain stimulation (DBS) and showed a mild but noteworthy response, while another patient is currently being considered for DBS treatment. Neuroimaging analysis of brain MRI studies did not reveal any specific abnormalities. The molecular spectrum included two novel ANO3 variants (V561L and S116L) and two previously reported ANO3 variants (A599D and S651N). As anoctamins are suggested to affect intracellular Ca2+ signals, we compared Ca2+ signalling and activation of ion channels in cells expressing wild-type ANO3 and cells expressing anoctamin variants. Novel V561L and S116L variants were compared with previously reported A599D and S651N variants and with wild-type ANO3 expressed in fibroblasts isolated from patients or when overexpressed in HEK293 cells. We identified ANO3 as a Ca2+-activated phospholipid scramblase that also conducts ions. Impaired Ca2+ signalling and compromised activation of Ca2+-dependent K+ channels were detected in cells expressing ANO3 variants. In the brain striatal cells of affected patients, impaired activation of KCa3.1 channels due to compromised Ca2+ signals may lead to depolarized membrane voltage and neuronal hyperexcitability and may also lead to reduced cellular viability, as shown in the present study. In conclusion, our study reveals the association between ANO3 variants and paroxysmal dystonia, representing the first reported link between these variants and this specific dystonic phenotype. We demonstrate that ANO3 functions as a Ca2+-activated phospholipid scramblase and ion channel; cells expressing ANO3 variants exhibit impaired Ca2+ signalling and compromised activation of Ca2+-dependent K+ channels. These findings provide a mechanism for the observed clinical manifestations and highlight the importance of ANO3 for neuronal excitability and cellular viability.
Collapse
Affiliation(s)
| | - Khaoula Talbi
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Hilario Gómez-Martín
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Castilla y Leon, Spain
| | - Anne Koy
- Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Köln, Germany
- Department of Pediatrics, Faculty of Medicine and University, Hospital Cologne, University of Cologne, 50931 Köln, Germany
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, 28223 Pozuelo de Alarcón, Madrid, Spain
- School of Medicine, Universidad Europea De Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Hasan Tekgül
- Division of Pediatric Neurology, Ege Children's Hospital, Ege University Medical School, 35100 Bornova, Izmir, Turkey
| | - Esra Serdaroğlu
- Department of Pediatric Neurology, Gazi University, Emniyet, 06560 Yenimahalle, Ankara, Turkey
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Juan Dario Ortigoza-Escobar
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, 08003 Barcelona, Spain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), 08950 Barcelona, Spain
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
6
|
Baxter PS, Dando O, Hardingham GE. Differential splicing choices made by neurons and astrocytes and their importance when investigating signal-dependent alternative splicing in neural cells. Front Mol Neurosci 2023; 16:1214439. [PMID: 37465362 PMCID: PMC10350517 DOI: 10.3389/fnmol.2023.1214439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
A variety of proteins can be encoded by a single gene via the differential splicing of exons. In neurons this form of alternative splicing can be controlled by activity-dependent calcium signaling, leading to the properties of proteins being altered, including ion channels, neurotransmitter receptors and synaptic cell adhesion molecules. The pre-synaptic cell adhesion molecule Neurexin 1 (Nrxn1) is alternatively spliced at splice-site 4 (SS4) which governs exon 22 inclusion (SS4+) and consequently postsynaptic NMDA receptor responses. Nrxn1 was reported to be subject to a delayed-onset shift in Nrxn1 SS4 splicing resulting in increased exon 22 inclusion, involving epigenetic mechanisms which, if disrupted, reduce memory stability. Exon inclusion at SS4 represented one of hundreds of exons reported to be subject to a genome-wide shift in fractional exon inclusion following membrane depolarization with high extracellular K+ that was delayed in onset. We report that high K+ does not increase the SS4+/SS4- ratio in cortical neurons, but does induce a delayed-onset NMDA receptor-dependent neuronal death. In mixed neuronal/astrocyte cultures this neuronal death results in an increase in the astrocyte: neuron ratio, and a misleading increase in SS4+/SS4- ratio attributable to astrocytes having a far higher SS4+/SS4- ratio than neurons, rather than any change in the neurons themselves. We reassessed the previously reported genome-wide delayed-onset shift in fractional exon inclusion after high K+ exposure. This revealed that the reported changes correlated strongly with differences in exon inclusion level between astrocytes and neurons, and was accompanied by a strong decrease in the ratio of neuron-specific: astrocyte-specific gene expression. As such, these changes can be explained by the neurotoxic nature of the stimulation paradigm, underlining the importance of NMDA receptor blockade when using high K+ depolarizing stimuli.
Collapse
Affiliation(s)
- Paul S. Baxter
- Edinburgh Medical School, UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Owen Dando
- Edinburgh Medical School, UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E. Hardingham
- Edinburgh Medical School, UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Long-term plasticity of astrocytic phenotypes and their control by neurons in health and disease. Essays Biochem 2023; 67:39-47. [PMID: 36695493 PMCID: PMC10011399 DOI: 10.1042/ebc20220090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
The brain is a complex organ even when viewed from a cell biological perspective. Neuronal networks are embedded in a dense milieu of diverse and specialised cell types, including several types of vascular, immune, and macroglial cells. To view each cell as a small cog in a highly complex machine is itself an oversimplification. Not only are they functionally coupled to enable the brain to operate, each cell type's functions are themselves influenced by each other, in development, maturity, and also in disease. Astrocytes are a type of macroglia that occupy a significant fraction of the human forebrain. They play a critical role in sustaining functional neuronal circuits across the lifespan through myriad homeostatic functions including the maintenance of redox balance, ionic gradients, neurotransmitter clearance, and bioenergetic support. It is becoming apparent that astrocytes' capacity to carry out these and other neurosupportive roles is not fixed, but is regulated by signals coming from the neurons themselves, both in the healthy brain but also in response to neuron-derived disease pathology. Here, we review mechanisms by which neurons control the properties of astrocytes long term in order to alter their homeostatic capacity both in development and maturity. Our working hypothesis is that these signals are designed to change and maintain the homeostatic capacity of local astrocytes to suit the needs of nearby neurons. Knowledge of the external signals that can control core aspects of a healthy astrocytic phenotype are being uncovered, raising the question as to whether this knowledge can be harnessed to promote astrocyte-mediated neurosupport in brain disorders.
Collapse
|
8
|
Haddow K, Kind PC, Hardingham GE. NMDA Receptor C-Terminal Domain Signalling in Development, Maturity, and Disease. Int J Mol Sci 2022; 23:ijms231911392. [PMID: 36232696 PMCID: PMC9570437 DOI: 10.3390/ijms231911392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kirsty Haddow
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter C. Kind
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Correspondence:
| |
Collapse
|
9
|
Song J, Yang X, Zhang M, Wang C, Chen L. Glutamate Metabolism in Mitochondria is Closely Related to Alzheimer's Disease. J Alzheimers Dis 2021; 84:557-578. [PMID: 34602474 DOI: 10.3233/jad-210595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain, and its excitatory neurotoxicity is closely related to the occurrence and development of Alzheimer's disease. However, increasing evidence shows that in the process of Alzheimer's disease, glutamate is not only limited to its excitotoxicity as a neurotransmitter but also related to the disorder of its metabolic balance. The balance of glutamate metabolism in the brain is an important determinant of central nervous system health, and the maintenance of this balance is closely related to glutamate uptake, glutamate circulation, intracellular mitochondrial transport, and mitochondrial metabolism. In this paper, we intend to elaborate the key role of mitochondrial glutamate metabolism in the pathogenesis of Alzheimer's disease and review glutamate metabolism in mitochondria as a potential target in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiayi Song
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China.,Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuehan Yang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Ming Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Chunyan Wang
- Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Li Chen
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
10
|
Mira RG, Cerpa W. Building a Bridge Between NMDAR-Mediated Excitotoxicity and Mitochondrial Dysfunction in Chronic and Acute Diseases. Cell Mol Neurobiol 2021; 41:1413-1430. [PMID: 32700093 PMCID: PMC11448584 DOI: 10.1007/s10571-020-00924-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, and it is widely accepted to play a role in synaptic plasticity and excitotoxic cell death. Glutamate binds to several receptors, including ionotropic N-methyl-D-Aspartate receptor (NMDAR), which is essential in synaptic plasticity and excitotoxicity. This receptor is a calcium channel that is located in synaptic and extrasynaptic sites, triggering different signalling cascades in each case. The calcium entry through extrasynaptic NMDARs is linked to calcium overload in the mitochondria in neurons in vitro. The mitochondria, besides their role in ATP production in the cell, participate in calcium homeostasis, acting as a buffering organelle. Disruption of mitochondrial calcium homeostasis has been linked to neuronal death either by triggering apoptosis or driven by the opening of the mitochondrial transition pore. These cell-death mechanisms contribute to the pathophysiology of diverse diseases such as neurodegenerative Alzheimer's disease or Parkinson's disease, and acute neuropathological conditions such as stroke or traumatic brain injury. In this review, we will address the available evidence that positions the mitochondria as an essential organelle in the control of calcium-mediated toxicity, highlighting its role from the perspective of specific NMDAR signalling microdomains at the level of the central synapse.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de función y patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de función y patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
11
|
Baxter PS, Márkus NM, Dando O, He X, Al-Mubarak BR, Qiu J, Hardingham GE. Targeted de-repression of neuronal Nrf2 inhibits α-synuclein accumulation. Cell Death Dis 2021; 12:218. [PMID: 33637689 PMCID: PMC7910424 DOI: 10.1038/s41419-021-03507-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Many neurodegenerative diseases are associated with neuronal misfolded protein accumulation, indicating a need for proteostasis-promoting strategies. Here we show that de-repressing the transcription factor Nrf2, epigenetically shut-off in early neuronal development, can prevent protein aggregate accumulation. Using a paradigm of α-synuclein accumulation and clearance, we find that the classical electrophilic Nrf2 activator tBHQ promotes endogenous Nrf2-dependent α-synuclein clearance in astrocytes, but not cortical neurons, which mount no Nrf2-dependent transcriptional response. Moreover, due to neuronal Nrf2 shut-off and consequent weak antioxidant defences, electrophilic tBHQ actually induces oxidative neurotoxicity, via Nrf2-independent Jun induction. However, we find that epigenetic de-repression of neuronal Nrf2 enables them to respond to Nrf2 activators to drive α-synuclein clearance. Moreover, activation of neuronal Nrf2 expression using gRNA-targeted dCas9-based transcriptional activation complexes is sufficient to trigger Nrf2-dependent α-synuclein clearance. Thus, targeting reversal of the developmental shut-off of Nrf2 in forebrain neurons may alter neurodegenerative disease trajectory by boosting proteostasis.
Collapse
Affiliation(s)
- Paul S Baxter
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| | - Nóra M Márkus
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Xin He
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Bashayer R Al-Mubarak
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Jing Qiu
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Haque MN, Hannan MA, Dash R, Choi SM, Moon IS. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153415. [PMID: 33285471 DOI: 10.1016/j.phymed.2020.153415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet. PURPOSE The present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons. METHODS After H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2',7'-dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRβ agonistic conformation of ST. RESULT Pre-incubation of neuronal cultures with ST (20 μM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRβ agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor β (LXRβ), a known binding receptor of ST, through multiple hydrogen bonding. CONCLUSION Collectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
13
|
Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E9607. [PMID: 33348528 PMCID: PMC7766851 DOI: 10.3390/ijms21249607] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
The astrocytic glutamate transporters excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) play a key role in nervous system function to maintain extracellular glutamate levels at low levels. In physiology, this is essential for the rapid uptake of synaptically released glutamate, maintaining the temporal fidelity of synaptic transmission. However, EAAT1/2 hypo-expression or hypo-function are implicated in several disorders, including epilepsy and neurodegenerative diseases, as well as being observed naturally with aging. This not only disrupts synaptic information transmission, but in extremis leads to extracellular glutamate accumulation and excitotoxicity. A key facet of EAAT1/2 expression in astrocytes is a requirement for signals from other brain cell types in order to maintain their expression. Recent evidence has shown a prominent role for contact-dependent neuron-to-astrocyte and/or endothelial cell-to-astrocyte Notch signalling for inducing and maintaining the expression of these astrocytic glutamate transporters. The relevance of this non-cell-autonomous dependence to age- and neurodegenerative disease-associated decline in astrocytic EAAT expression is discussed, plus the implications for disease progression and putative therapeutic strategies.
Collapse
Affiliation(s)
- Alison C. Todd
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
14
|
Abstract
The NMDA subtype of ionotropic glutamate receptor is a sophisticated integrator and transducer of information. NMDAR-mediated signals control diverse processes across the life course, including synaptogenesis and synaptic plasticity, as well as contribute to excitotoxic processes in neurological disorders. At the basic biophysical level, the NMDAR is a coincidence detector, requiring the co-presence of agonist, co-agonist, and membrane depolarization in order to open. However, the NMDAR is not merely a conduit for ions to flow through; it is linked on the cytoplasmic side to a large network of signaling and scaffolding proteins, primarily via the C-terminal domain of NMDAR GluN2 subunits. These physical interactions help to organize the signaling cascades downstream of NMDAR activation. Notably, the NMDAR does not come in a single form: the subunit composition of the NMDAR, particularly the GluN2 subunit subtype (GluN2A-D), influences the biophysical properties of the channel. Moreover, a growing number of studies have illuminated the extent to which GluN2 C-terminal interactions vary according to GluN2 subtype and how this impacts on the processes that NMDAR activity controls. We will review recent advances, controversies, and outstanding questions in this active area of research.
Collapse
Affiliation(s)
- Giles Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.,Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
15
|
Qiu J, Dando O, Febery JA, Fowler JH, Chandran S, Hardingham GE. Neuronal Activity and Its Role in Controlling Antioxidant Genes. Int J Mol Sci 2020; 21:ijms21061933. [PMID: 32178355 PMCID: PMC7139385 DOI: 10.3390/ijms21061933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022] Open
Abstract
Forebrain neurons have relatively weak intrinsic antioxidant defenses compared to astrocytes, in part due to hypo-expression of Nrf2, an oxidative stress-induced master regulator of antioxidant and detoxification genes. Nevertheless, neurons do possess the capacity to auto-regulate their antioxidant defenses in response to electrical activity. Activity-dependent Ca2+ signals control the expression of several antioxidant genes, boosting redox buffering capacity, thus meeting the elevated antioxidant requirements associated with metabolically expensive electrical activity. These genes include examples which are reported Nrf2 target genes and yet are induced in a Nrf2-independent manner. Here we discuss the implications for Nrf2 hypofunction in neurons and the mechanisms underlying the Nrf2-independent induction of antioxidant genes by electrical activity. A significant proportion of Nrf2 target genes, defined as those genes controlled by Nrf2 in astrocytes, are regulated by activity-dependent Ca2+ signals in human stem cell-derived neurons. We propose that neurons interpret Ca2+ signals in a similar way to other cell types sense redox imbalance, to broadly induce antioxidant and detoxification genes.
Collapse
Affiliation(s)
- Jing Qiu
- UK Dementia Research Institute, The Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK; (J.Q.); (O.D.); (S.C.)
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
| | - Owen Dando
- UK Dementia Research Institute, The Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK; (J.Q.); (O.D.); (S.C.)
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
| | - James A. Febery
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
| | - Jill H. Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
| | - Siddharthan Chandran
- UK Dementia Research Institute, The Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK; (J.Q.); (O.D.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh Chancellor’s Building, Edinburgh, EH16 4SB, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute, The Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK; (J.Q.); (O.D.); (S.C.)
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
- Correspondence:
| |
Collapse
|
16
|
Abstract
The NMDA subtype of ionotropic glutamate receptor is a sophisticated integrator and transducer of information. NMDAR-mediated signals control diverse processes across the life course, including synaptogenesis and synaptic plasticity, as well as contribute to excitotoxic processes in neurological disorders. At the basic biophysical level, the NMDAR is a coincidence detector, requiring the co-presence of agonist, co-agonist, and membrane depolarization in order to open. However, the NMDAR is not merely a conduit for ions to flow through; it is linked on the cytoplasmic side to a large network of signaling and scaffolding proteins, primarily via the C-terminal domain of NMDAR GluN2 subunits. These physical interactions help to organize the signaling cascades downstream of NMDAR activation. Notably, the NMDAR does not come in a single form: the subunit composition of the NMDAR, particularly the GluN2 subunit subtype (GluN2A–D), influences the biophysical properties of the channel. Moreover, a growing number of studies have illuminated the extent to which GluN2 C-terminal interactions vary according to GluN2 subtype and how this impacts on the processes that NMDAR activity controls. We will review recent advances, controversies, and outstanding questions in this active area of research.
Collapse
Affiliation(s)
- Giles Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.,Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
17
|
Chtita S, Larif M, Ghamali M, Bouachrine M, Lakhlifi T. Quantitative structure–activity relationship studies of dibenzo[a,d]cycloalkenimine derivatives for non-competitive antagonists of N-methyl-d-aspartate based on density functional theory with electronic and topological descriptors. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samir Chtita
- Laboratoire de la Chimie Moléculaire et des Substances Naturelles, Faculté des Sciences, Université Moulay IsmailMeknèsMaroc
| | - Majdouline Larif
- Laboratoire des Procédés de Séparation, Faculté des Sciences, Université Ibn TofailKénitraMaroc
| | - Mounir Ghamali
- Laboratoire de la Chimie Moléculaire et des Substances Naturelles, Faculté des Sciences, Université Moulay IsmailMeknèsMaroc
| | | | - Tahar Lakhlifi
- Laboratoire de la Chimie Moléculaire et des Substances Naturelles, Faculté des Sciences, Université Moulay IsmailMeknèsMaroc
| |
Collapse
|
18
|
Abstract
While stroke research represents the primary interface between circulation and brain research, the hemostasis system also carries a pivotal role in the mechanism of vascular brain injury. The complex interrelated events triggered by the energy crisis have a specific spatial and temporal pattern arching from the initial damage to the final events of brain repair. The complexity of the pathophysiology make it difficult to model this disease, therefore it is challenging to find appropriate therapeutic targets. The ever-persistent antagonism between the positive results of drug candidates in the experimental stroke models and the failures of the clinical trials prompts changes in the research strategy, especially in the field of potential neuroprotective therapies. System biology approach could initiate new directions in the future for both preclinical and clinical research. Incentive methods aimed at anti-apoptosis mechanisms and the augmentation of post-ischemic brain repair could benefit the facts, that these processes can be targeted much longer following the cell-necrosis in the hyper-acute phase. Sequential monitoring of candidate genes and proteins responsible for stroke progression and post-stroke repair seems to be useful both in therapeutic target-identification, and in clinical testing. Understanding the mechanism behind the effect of selegiline and other drugs capable of activating the anti-apoptotic gene expression could help to find new approaches to enhance the regenerative potential in the remodeling of neuronal and microvascular networks.
Collapse
Affiliation(s)
- Z Nagy
- Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Városmajor Street 68, 1122, Hungary; National Institute of Clinical Neurosciences, Budapest, Amerikai Street 57, 1145, Hungary.
| | - S Nardai
- Department Section of Vascular Neurology, Heart and Vascular Center, Semmelweis University, Budapest, Városmajor Street 68, 1122, Hungary; National Institute of Clinical Neurosciences, Budapest, Amerikai Street 57, 1145, Hungary
| |
Collapse
|
19
|
Martín-Aragón Baudel MAS, Poole AV, Darlison MG. Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 2016; 140:195-209. [PMID: 27861901 DOI: 10.1111/jnc.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of death and disability worldwide. The major type of stroke is an ischaemic one, which is caused by a blockage that interrupts blood flow to the brain. There are currently very few pharmacological strategies to reduce the damage and social burden triggered by this pathology. The harm caused by the interruption of blood flow to the brain unfolds in the subsequent hours and days, so it is critical to identify new therapeutic targets that could reduce neuronal death associated with the spread of the damage. Here, we review some of the key molecular mechanisms involved in the progression of neuronal death, focusing on some new and promising studies. In particular, we focus on the potential of the chloride co-transporter (CCC) family of proteins, mediators of the GABAergic response, both during the early and later stages of stroke, to promote neuroprotection and recovery. Different studies of CCCs during the chronic and recovery phases post-stroke reveal the importance of timing when considering CCCs as potential neuroprotective and/or neuromodulator targets. The molecular regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are further discussed as an indirect approach for promoting neuroprotection and neurorehabilitation following an ischaemic insult. Finally, we mention the likely importance of combining different strategies in order to achieve more effective therapies.
Collapse
Affiliation(s)
| | - Amy V Poole
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Mark G Darlison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| |
Collapse
|
20
|
Changes in synaptic plasticity and expression of glutamate receptor subunits in the CA1 and CA3 areas of the hippocampus after transient global ischemia. Neuroscience 2016; 327:64-78. [PMID: 27090818 DOI: 10.1016/j.neuroscience.2016.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/26/2022]
Abstract
Excess glutamate release from the presynaptic membrane has been thought to be the major cause of ischemic neuronal death. Although both CA1 and CA3 pyramidal neurons receive presynaptic glutamate input, transient cerebral ischemia induces CA1 neurons to die while CA3 neurons remain relatively intact. This suggests that changes in the properties of pyramidal cells may be the main cause related to ischemic neuronal death. Our previous studies have shown that the densities of dendritic spines and asymmetric synapses in the CA1 area are increased at 12h and 24h after ischemia. In the present study, we investigated changes in synaptic structures in the CA3 area and compared the expression of glutamate receptors in the CA1 and CA3 hippocampal regions of rats after ischemia. Our results demonstrated that the NR2B/NR2A ratio became larger after ischemia although the expression of both the NR2B subunit (activation of apoptotic pathway) and NR2A subunit (activation of survival pathway) decreased in the CA1 area from 6h to 48h after reperfusion. Furthermore, expression of the GluR2 subunit (calcium impermeable) of the AMPA receptor class significantly decreased while the GluR1 subunit (calcium permeable) remained unchanged at the same examined reperfusion times, which subsequently caused an increase in the GluR1/GluR2 ratio. Despite these notable differences in subunit expression, there were no obvious changes in the density of synapses or expression of NMDAR and AMPAR subunits in the CA3 area after ischemia. These results suggest that delayed CA1 neuronal death may be related to the dramatic fluctuation in the synaptic structure and relative upregulation of NR2B and GluR1 subunits induced by transient global ischemia.
Collapse
|
21
|
Márkus NM, Hasel P, Qiu J, Bell KFS, Heron S, Kind PC, Dando O, Simpson TI, Hardingham GE. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling. PLoS One 2016; 11:e0148164. [PMID: 26828201 PMCID: PMC4734683 DOI: 10.1371/journal.pone.0148164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/13/2016] [Indexed: 02/02/2023] Open
Abstract
Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs), however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes), differing neuronal subtype (CA3 vs. CA1 hippocampus) and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms.
Collapse
Affiliation(s)
- Nóra M. Márkus
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Philip Hasel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Jing Qiu
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Karen F. S. Bell
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Samuel Heron
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| | - Peter C. Kind
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, 560065, India
| | - Owen Dando
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, 560065, India
| | - T. Ian Simpson
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| | - Giles E. Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Bell KFS, Al-Mubarak B, Martel MA, McKay S, Wheelan N, Hasel P, Márkus NM, Baxter P, Deighton RF, Serio A, Bilican B, Chowdhry S, Meakin PJ, Ashford MLJ, Wyllie DJA, Scannevin RH, Chandran S, Hayes JD, Hardingham GE. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat Commun 2015; 6:7066. [PMID: 25967870 PMCID: PMC4441249 DOI: 10.1038/ncomms8066] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/30/2015] [Indexed: 12/13/2022] Open
Abstract
Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development.
Collapse
Affiliation(s)
- Karen F S Bell
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Bashayer Al-Mubarak
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marc-André Martel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sean McKay
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nicola Wheelan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Philip Hasel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nóra M Márkus
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Paul Baxter
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ruth F Deighton
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Andrea Serio
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bilada Bilican
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sudhir Chowdhry
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Paul J Meakin
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Michael L J Ashford
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - David J A Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - John D Hayes
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
23
|
Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nat Commun 2015; 6:6761. [PMID: 25854456 PMCID: PMC4403319 DOI: 10.1038/ncomms7761] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
How the brain’s antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked. How the brain’s antioxidant defenses adapt to changing demand is not well understood. Here the authors demonstrate that synaptic activity is coupled to transcriptional control of the glutathione antioxidant system via NMDA receptors, enabling neurons to tune their antioxidant defenses.
Collapse
|
24
|
Brassai A, Suvanjeiev RG, Bán EG, Lakatos M. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 2015; 112:1-6. [DOI: 10.1016/j.brainresbull.2014.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022]
|
25
|
Hasel P, Mckay S, Qiu J, Hardingham GE. Selective dendritic susceptibility to bioenergetic, excitotoxic and redox perturbations in cortical neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2066-76. [PMID: 25541281 PMCID: PMC4547083 DOI: 10.1016/j.bbamcr.2014.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022]
Abstract
Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca2+. Interestingly, while mitochondrial Ca2+ uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca2+ uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Dendrites exhibit a greater shift in redox potential than the soma, following an oxidative insult. Dendritic mitochondria depolarise less than somatic ones during excitotoxicity. Nevertheless ATP falls faster in dendritic regions during excitotoxicity. Energetically demanding AP bursting induces adaptive metabolic responses. These responses are weaker in dendrites, and ATP levels are suppressed more strongly.
Collapse
Affiliation(s)
- Philip Hasel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sean Mckay
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jing Qiu
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
26
|
Xie H, Zhang YQ, Pan XL, Wu SH, Chen X, Wang J, Liu H, Qian XZ, Liu ZG, Liu LJ. Decreased calcium-activated potassium channels by hypoxia causes abnormal firing in the spontaneous firing medial vestibular nuclei neurons. Eur Arch Otorhinolaryngol 2014; 272:2703-11. [PMID: 25173490 DOI: 10.1007/s00405-014-3158-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 06/15/2014] [Indexed: 12/20/2022]
Abstract
Vertebrobasilar insufficiency (VBI) presents complex varied clinical symptoms, including vertigo and hearing loss. Little is known, however, about how Ca(2+)-activated K(+) channel attributes to the medial vestibular nucleus (MVN) neural activity in VBI. To address this issue, we performed whole-cell patch clamp and quantitative polymerase chain reaction (qPCR) to examine the effects of hypoxia on neural activity and the changes of the large conductance Ca(2+) activated K(+) channels (BKCa channels) in the MVN neurons in brain slices of male C57BL/6 mice. Brief hypoxic stimuli of the brain slices containing MVN were administrated by switching the normoxic artificial cerebrospinal fluid (ACSF) equilibrated with 21% O2/5% CO2 to hypoxic ACSF equilibrated with 5% O2/5% CO2 (balance N2). 3-min hypoxia caused a depolarization in the resting membrane potential (RM) in 8/11 non-spontaneous firing MVN neurons. 60/72 spontaneous firing MVN neurons showed a dramatic increase in firing frequency and a depolarization in the RM following brief hypoxia. The amplitude of the afterhyperpolarization (AHPA) was significantly decreased in both type A and type B spontaneous firing MVN neurons. Hypoxia-induced firing response was alleviated by pretreatment with NS1619, a selective BKCa activator. Furthermore, brief hypoxia caused a decrease in the amplitude of iberiotoxin-sensitive outward currents and mRNA level of BKCa in MVN neurons. These results suggest that BKCa channels protect against abnormal MVN neuronal activity induced by hypoxia, and might be a key target for treatment of vertigo and hearing loss in VBI.
Collapse
Affiliation(s)
- Hong Xie
- Jingzhou Central Hospital, Jingzhou, 434020, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Parsons M, Raymond L. Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron 2014; 82:279-93. [DOI: 10.1016/j.neuron.2014.03.030] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/21/2022]
|
28
|
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2013; 115:157-88. [PMID: 24361499 DOI: 10.1016/j.pneurobio.2013.11.006] [Citation(s) in RCA: 826] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.
Collapse
Affiliation(s)
- Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, 40402 Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan.
| | - Shu Zhang
- Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan; Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada
| | - Yu Tian Wang
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada.
| |
Collapse
|
29
|
Xuan Z, Barthet G, Shioi J, Xu J, Georgakopoulos A, Bruban J, Robakis NK. Presenilin-1/γ-secretase controls glutamate release, tyrosine phosphorylation, and surface expression of N-methyl-D-aspartate receptor (NMDAR) subunit GluN2B. J Biol Chem 2013; 288:30495-30501. [PMID: 24025330 DOI: 10.1074/jbc.m113.499004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormally high concentrations of extracellular glutamate in the brain may cause neuronal damage via excitotoxicity. Thus, tight regulation of glutamate release is critical to neuronal function and survival. Excitotoxicity is caused mainly by overactivation of the extrasynaptic NMDA receptor (NMDAR) and results in specific cellular changes, including calcium-induced activation of calpain proteases. Here, we report that presenilin-1 (PS1) null mouse cortical neuronal cultures have increased amounts of calpain-dependent spectrin breakdown products (SBDPs) compared with WT cultures. NMDAR antagonists blocked accumulation of SBDPs, suggesting abnormal activation of this receptor in PS1 null cultures. Importantly, an increase in SBDPs was detected in cultures of at least 7 days in vitro but not in younger cultures. Conditioned medium from PS1 null neuronal cultures at 8 days in vitro contained higher levels of glutamate than medium from WT cultures and stimulated production of SBDPs when added to WT cultures. Use of glutamate reuptake inhibitors indicated that accumulation of this neurotransmitter in the media of PS1 null cultures was due to increased rates of release. PS1 null neurons showed decreased cell surface expression and phosphorylation of the GluN2B subunit of NMDAR, indicating decreased amounts of extrasynaptic NMDAR in the absence of PS1. Inhibition of γ-secretase activity in WT neurons caused changes similar to those observed in PS1 null neurons. Together, these data indicate that the PS1/γ-secretase system regulates release of glutamate, tyrosine phosphorylation, and surface expression of GluN2B-containing NMDARs.
Collapse
Affiliation(s)
- Zhao Xuan
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Gael Barthet
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Junichi Shioi
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jindong Xu
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Anastasios Georgakopoulos
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Julien Bruban
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nikolaos K Robakis
- From the Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029.
| |
Collapse
|
30
|
Alvarado S, Tajerian M, Millecamps M, Suderman M, Stone LS, Szyf M. Peripheral nerve injury is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Mol Pain 2013; 9:21. [PMID: 23597049 PMCID: PMC3640958 DOI: 10.1186/1744-8069-9-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/22/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury can have long-term consequences including pain-related manifestations, such as hypersensitivity to cutaneous stimuli, as well as affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. Changes in brain structure and cortical function associated with many chronic pain conditions have been reported in the prefrontal cortex (PFC). The PFC is implicated in pain-related co-morbidities such as depression, anxiety and impaired emotional decision-making ability. We recently reported that this region is subject to significant epigenetic reprogramming following peripheral nerve injury, and normalization of pain-related structural, functional and epigenetic abnormalities in the PFC are all associated with effective pain reduction. In this study, we used the Spared Nerve Injury (SNI) model of neuropathic pain to test the hypothesis that peripheral nerve injury triggers persistent long-lasting changes in gene expression in the PFC, which alter functional gene networks, thus providing a possible explanation for chronic pain associated behaviors. RESULTS SNI or sham surgery where performed in male CD1 mice at three months of age. Six months after injury, we performed transcriptome-wide sequencing (RNAseq), which revealed 1147 differentially regulated transcripts in the PFC in nerve-injured vs. control mice. Changes in gene expression occurred across a number of functional gene clusters encoding cardinal biological processes as revealed by Ingenuity Pathway Analysis. Significantly altered biological processes included neurological disease, skeletal muscular disorders, behavior, and psychological disorders. Several of the changes detected by RNAseq were validated by RT-QPCR and included transcripts with known roles in chronic pain and/or neuronal plasticity including the NMDA receptor (glutamate receptor, ionotropic, NMDA; grin1), neurite outgrowth (roundabout 3; robo3), gliosis (glial fibrillary acidic protein; gfap), vesicular release (synaptotagmin 2; syt2), and neuronal excitability (voltage-gated sodium channel, type I; scn1a). CONCLUSIONS This study used an unbiased approach to document long-term alterations in gene expression in the brain following peripheral nerve injury. We propose that these changes are maintained as a memory of an insult that is temporally and spatially distant from the initial injury.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Pharmacology and Therapeutics, McGill University, Faculty of Medicine, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
31
|
McKay S, Bengtson CP, Bading H, Wyllie DJA, Hardingham GE. Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure. Neuropharmacology 2013; 74:119-25. [PMID: 23402996 PMCID: PMC3778432 DOI: 10.1016/j.neuropharm.2013.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/07/2013] [Accepted: 01/27/2013] [Indexed: 11/29/2022]
Abstract
MK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to ‘pre-block’ a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg2+ is also present. In the presence of Mg2+, 50% recovery from MK-801 blockade is achieved after 10′ of 100 μM NMDA, or 30′ of 15 μM NMDA exposure. In Mg2+-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg2+ in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg2+ or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 μM NMDA in the presence of Mg2+ for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 ‘pre-block’ protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation. This article is part of the Special Issue entitled ‘Glutamate Receptor-Dependent Synaptic Plasticity’.
Collapse
Affiliation(s)
- Sean McKay
- Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | | | | | | | |
Collapse
|
32
|
Wyllie DJA, Livesey MR, Hardingham GE. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 2013; 74:4-17. [PMID: 23376022 PMCID: PMC3778433 DOI: 10.1016/j.neuropharm.2013.01.016] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 10/30/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are ligand-gated ion channels ('ionotropic' receptors) activated by the major excitatory neurotransmitter, l-glutamate. While the term 'the NMDAR' is often used it obscures the fact that this class of receptor contains within it members whose properties are as different as they are similar. This heterogeneity was evident from early electrophysiological, pharmacological and biochemical assessments of the functional properties of NMDARs and while the molecular basis of this heterogeneity has taken many years to elucidate, it indicated from the outset that the diversity of NMDAR phenotypes could allow this receptor family to subserve a variety of functions in the mammalian central nervous system. In this review we highlight some recent studies that have identified structural elements within GluN2 subunits that contribute to the heterogeneous biophysical properties of NMDARs, consider why some recently described novel pharmacological tools may permit better identification of native NMDAR subtypes, examine the evidence that NMDAR subtypes differentially contribute to the induction of long-term potentiation and long-term depression and discuss how through the use of chimeric proteins additional insights have been obtained that account for NMDAR subtype-dependency of physiological and pathophysiological signalling. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
Affiliation(s)
- D J A Wyllie
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | | | | |
Collapse
|
33
|
Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. Brain Res Bull 2012; 93:32-8. [PMID: 23089362 DOI: 10.1016/j.brainresbull.2012.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 12/19/2022]
Abstract
In acute ischaemic brain injury and chronic neurodegeneration, the primary step leading to excitotoxicity and cell death is the excessive and/or prolonged activation of glutamate (Glu) receptors, followed by intracellular calcium (Ca(2+)) overload. These steps lead to several effects: a persistent depolarisation of neurons, mitochondrial dysfunction resulting in energy failure, an increased production of reactive oxygen species (ROS), an increase in the concentration of cytosolic Ca(2+) [Ca(2+)]i, increased mitochondrial Ca(2+) uptake, and the activation of self-destructing enzymatic mechanisms. Antagonists for NMDA receptors (NMDARs) are expected to display neuroprotective effects, but no evidence to support this hypothesis has yet been reported. A number of clinical trials using NMDAR antagonists have failed to demonstrate neuroprotective effects, either by reducing brain injury or by preventing neurodegeneration. Recent advances in NMDAR research have provided an explanation for this phenomenon. Synaptic and extrasynaptic NMDARs are composed of different subunits (GluN2A and GluN2B) that demonstrate opposing effects. Synaptic GluN2A-containing and extrasynaptic GluN2B-containing NMDARs have different co-agonists: d-serine for synaptic NMDARs and glycine for extrasynaptic NMDARs. Both co-agonists are of glial origin. The mechanisms of cell destruction or cell survival in response to the activation of NMDAR receptors depend in part on [Ca(2+)]i and the route of entry of this ion and more significantly on the subunit composition and localisation of the NMDARs. While synaptic NMDAR activation is involved in neuroprotection, the stimulation of extrasynaptic NMDARs, which are composed of GluN2B subunits, triggers cell destruction pathways and may play a key role in the neurodegeneration associated with Glu-induced excitotoxicity. In addition, it has been found that synaptic and extrasynaptic NMDA receptors have opposing effects in determining the fate of neurons. This result has led to the targeting of nonsynaptic GluN2B-containing NMDARs as promising candidates for drug research. Under hypoxic conditions, it is likely that the failure of synaptic glutamatergic transmission, the impairment of the GluN2A-activated neuroprotective cascade, and the persistent over-activation of extrasynaptic GluN2B-containing NMDARs lead to excitotoxicity. Fluoxetine, a drug widely used in clinical practice as an antidepressant, has been found to selectively block GluNR2B-containing NMDARs. Therefore, it seems to be a potential candidate for neuroprotection.
Collapse
|
34
|
Gavello D, Rojo-Ruiz J, Marcantoni A, Franchino C, Carbone E, Carabelli V. Leptin counteracts the hypoxia-induced inhibition of spontaneously firing hippocampal neurons: a microelectrode array study. PLoS One 2012; 7:e41530. [PMID: 22848520 PMCID: PMC3405131 DOI: 10.1371/journal.pone.0041530] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/26/2012] [Indexed: 01/24/2023] Open
Abstract
Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage (2 hours, 3% O(2)). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring hippocampal neurons activity from 11 to 18 days in vitro (DIV). Under normoxic conditions, hippocampal neurons were spontaneously firing, either with prevailing isolated and randomly distributed spikes (11 DIV), or with patterns characterized by synchronized bursts (18 DIV). Exposure to hypoxia severely impaired the spontaneous activity of hippocampal neurons, reducing their firing frequency by 54% and 69%, at 11 and 18 DIV respectively, and synchronized their firing activity. Pretreatment with 50 nM leptin reduced the firing frequency of normoxic neurons and contrasted the hypoxia-induced depressive action, either by limiting the firing frequency reduction (at both ages) or by increasing it to 126% (in younger neurons). In order to find out whether leptin exerts its effect by activating large conductance Ca(2+)-activated K(+) channels (BK), as shown on rat hippocampal neurons, we applied the BK channel blocker paxilline (1 µM). Our data show that paxilline reversed the effects of leptin, both on normoxic and hypoxic neurons, suggesting that the adipokine counteracts hypoxia through BK channels activation in mouse hippocampal neurons.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, NIS Center, CNISM, University of Torino, Torino, Italy
| | - Jonathan Rojo-Ruiz
- Department of Drug Science and Technology, NIS Center, CNISM, University of Torino, Torino, Italy
| | - Andrea Marcantoni
- Department of Drug Science and Technology, NIS Center, CNISM, University of Torino, Torino, Italy
| | - Claudio Franchino
- Department of Drug Science and Technology, NIS Center, CNISM, University of Torino, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, NIS Center, CNISM, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, NIS Center, CNISM, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
35
|
G-protein-coupled receptor 30 mediates rapid neuroprotective effects of estrogen via depression of NR2B-containing NMDA receptors. J Neurosci 2012; 32:4887-900. [PMID: 22492045 DOI: 10.1523/jneurosci.5828-11.2012] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
17-β-estradiol (E2) is a steroid hormone involved in neuroprotection against excitotoxicity and other forms of brain injury. Through genomic and nongenomic mechanisms, E2 modulates neuronal excitability and signal transmission by regulating NMDA and non-NMDA receptors. However, the mechanisms and identity of the receptors involved remain unclear, even though studies have suggested that estrogen G-protein-coupled receptor 30 (GPR30) is linked to protection against ischemic injury. In the culture cortical neurons, treatment with E2 and the GPR30 agonist G1 for 45 min attenuated the excitotoxicity induced by NMDA exposure. The acute neuroprotection mediated by GPR30 is dependent on G-protein-coupled signals and ERK1/2 activation, but independent on transcription or translation. Knockdown of GPR30 using short hairpin RNAs (shRNAs) significantly reduced the E2-induced rapid neuroprotection. Patch-clamp recordings revealed that GPR30 activation depressed exogenous NMDA-elicited currents. Short-term GPR30 activation did not affect the expression of either NR2A- or NR2B-containing NMDARs; however, it depressed NR2B subunit phosphorylation at Ser-1303 by inhibiting the dephosphorylation of death-associated protein kinase 1 (DAPK1). DAPK1 knockdown using shRNAs significantly blocked NR2B subunit phosphorylation at Ser-1303 and abolished the GPR30-mediated depression of exogenous NMDA-elicited currents. Lateral ventricle injection of the GPR30 agonist G1 (0.2 μg) provided significant neuroprotection in the ovariectomized female mice subjected to middle cerebral artery occlusion. These findings provide direct evidence that fast neuroprotection by estradiol is partially mediated by GPR30 and the subsequent downregulation of NR2B-containing NMDARs. The modulation of DAPK1 activity by GPR30 may be an important mediator of estradiol-dependent neuroprotection.
Collapse
|
36
|
Martel MA, Ryan T, Bell K, Fowler J, McMahon A, Al-Mubarak B, Komiyama N, Horsburgh K, Kind P, Grant S, Wyllie D, Hardingham G. The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron 2012; 74:543-56. [PMID: 22578505 PMCID: PMC3398391 DOI: 10.1016/j.neuron.2012.03.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2012] [Indexed: 02/07/2023]
Abstract
It is currently unclear whether the GluN2 subtype influences NMDA receptor (NMDAR) excitotoxicity. We report that the toxicity of NMDAR-mediated Ca(2+) influx is differentially controlled by the cytoplasmic C-terminal domains of GluN2B (CTD(2B)) and GluN2A (CTD(2A)). Studying the effects of acute expression of GluN2A/2B-based chimeric subunits with reciprocal exchanges of their CTDs revealed that CTD(2B) enhances NMDAR toxicity, compared to CTD(2A). Furthermore, the vulnerability of forebrain neurons in vitro and in vivo to NMDAR-dependent Ca(2+) influx is lowered by replacing the CTD of GluN2B with that of GluN2A by targeted exon exchange in a mouse knockin model. Mechanistically, CTD(2B) exhibits stronger physical/functional coupling to the PSD-95-nNOS pathway, which suppresses protective CREB activation. Dependence of NMDAR excitotoxicity on the GluN2 CTD subtype can be overcome by inducing high levels of NMDAR activity. Thus, the identity (2A versus 2B) of the GluN2 CTD controls the toxicity dose-response to episodes of NMDAR activity.
Collapse
Affiliation(s)
- Marc-André Martel
- Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Tomás J. Ryan
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Wolfson College, University of Cambridge, Barton Road, Cambridge CB3 9BB, UK
| | - Karen F.S. Bell
- Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jill H. Fowler
- Centre for Neuroregeneration, University of Edinburgh Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Aoife McMahon
- Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Bashayer Al-Mubarak
- Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Noboru H. Komiyama
- Centre for Clinical Brain Sciences and Centre for Neuroregeneration, University of Edinburgh Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Peter C. Kind
- Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Seth G.N. Grant
- Centre for Clinical Brain Sciences and Centre for Neuroregeneration, University of Edinburgh Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - David J.A. Wyllie
- Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- Centre for Integrative Physiology, University of Edinburgh School of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
37
|
Cimarosti H, Ashikaga E, Jaafari N, Dearden L, Rubin P, Wilkinson KA, Henley JM. Enhanced SUMOylation and SENP-1 protein levels following oxygen and glucose deprivation in neurones. J Cereb Blood Flow Metab 2012; 32:17-22. [PMID: 21989481 PMCID: PMC3308141 DOI: 10.1038/jcbfm.2011.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here, we show that oxygen and glucose deprivation (OGD) causes increased small ubiquitin-like modifier (SUMO)-1 and SUMO-2/3 conjugation to substrate proteins in cultured hippocampal neurones. Surprisingly, the SUMO protease SENP-1, which removes SUMO from conjugated proteins, was also increased by OGD, suggesting that the neuronal response to OGD involves a complex interplay between SUMOylation and deSUMOylation. Importantly, decreasing global SUMOylation in cultured hippocampal neurones by overexpression of the catalytic domain of SENP-1 increased neuronal vulnerability to OGD-induced cell death. Taken together, these results suggest a neuroprotective role for neuronal SUMOylation after OGD.
Collapse
Affiliation(s)
- Helena Cimarosti
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Efthimiadi L, Farso M, Quirion R, Krantic S. Cyclin D1 Induction Preceding Neuronal Death via the Excitotoxic NMDA Pathway Involves Selective Stimulation of Extrasynaptic NMDA Receptors and JNK Pathway. NEURODEGENER DIS 2012; 10:80-91. [DOI: 10.1159/000335911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 12/18/2011] [Indexed: 02/02/2023] Open
|
39
|
Wondimu A, Weir L, Robertson D, Mezentsev A, Kalachikov S, Panteleyev AA. Loss of Arnt (Hif1β) in mouse epidermis triggers dermal angiogenesis, blood vessel dilation and clotting defects. J Transl Med 2012; 92:110-24. [PMID: 21946855 DOI: 10.1038/labinvest.2011.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Targeted ablation of Aryl hydrocarbon receptor nuclear translocator (Arnt) in the mouse epidermis results in severe abnormalities in dermal vasculature reminiscent of petechia induced in human skin by anticoagulants or certain genetic disorders. Lack of Arnt leads to downregulation of Egln3/Phd3 hydroxylase and concomitant hypoxia-independent stabilization of hypoxia-induced factor 1α (Hif1α) along with compensatory induction of Arnt2. Ectopic induction of Arnt2 results in its heterodimerization with stabilized Hif1α and is associated with activation of genes coding for secreted proteins implicated in control of angiogenesis, coagulation, vasodilation and blood vessel permeability such as S100a8/S100a9, S100a10, Serpine1, Defb3, Socs3, Cxcl1 and Thbd. Since ARNT and ARNT2 heterodimers with HIF1α are known to have different (yet overlapping) downstream targets our findings suggest that loss of Arnt in the epidermis activates an aberrant paracrine regulatory pathway responsible for dermal vascular phenotype in K14-Arnt KO mice. This assumption is supported by a significant decline of von Willebrand factor in dermal vasculature of these mice where Arnt level remains normal. Given the essential role of ARNT in the adaptive response to environmental stress and striking similarity between skin vascular phenotype in K14-Arnt KO mice and specific vascular features of tumour stroma and psoriatic skin, we believe that further characterization of Arnt-dependent epidermal-dermal signalling may provide insight into the role of macro- and micro-environmental factors in control of skin vasculature and in pathogenesis of environmentally modulated skin disorders.
Collapse
Affiliation(s)
- Assefa Wondimu
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
40
|
The role of PSD-95 and cypin in morphological changes in dendrites following sublethal NMDA exposure. J Neurosci 2011; 31:15468-80. [PMID: 22031893 DOI: 10.1523/jneurosci.2442-11.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Focal swelling or varicosity formation in dendrites and loss of dendritic spines are the earliest indications of glutamate-induced excitotoxicity. Although it is known that microtubule dynamics play a role in varicosity formation, very little is known about the proteins that directly impact microtubules during focal swelling and dendritic spine loss. Our laboratory has recently reported that the postsynaptic protein PSD-95 and its cytosolic interactor (cypin) regulate the patterning of dendrites in hippocampal neurons. Cypin promotes microtubule assembly, and PSD-95 disrupts microtubule organization. Thus, we hypothesized that cypin and PSD-95 may play a role in altering dendrite morphology and spine number in response to sublethal NMDA-induced excitotoxicity. Using an in vitro model of glutamate-induced toxicity in rat hippocampal cultures, we found that cypin overexpression or PSD-95 knockdown increases the percentage of neurons with varicosities and the number of varicosities along dendrites, decreases the size of varicosities after sublethal NMDA exposure, and protects neurons from NMDA-induced death. In contrast, cypin knockdown or PSD-95 overexpression results in opposite effects. We further show that cypin regulates the density of spines/filopodia: cypin overexpression decreases the number of protrusions per micrometer of dendrite while cypin knockdown results in an opposite effect. Cypin overexpression and PSD-95 knockdown attenuate NMDA-promoted decreases in protrusion density. Thus, we have identified a novel pathway by which the microtubule cytoskeleton is regulated during sublethal changes to dendrites.
Collapse
|
41
|
Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011; 198:252-73. [PMID: 21907762 PMCID: PMC3221774 DOI: 10.1016/j.neuroscience.2011.08.052] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/31/2011] [Accepted: 08/22/2011] [Indexed: 01/27/2023]
Abstract
Huntington's disease (HD) is a progressive, fatal neurological condition caused by an expansion of CAG (glutamine) repeats in the coding region of the Huntington gene. To date, there is no cure but great strides have been made to understand pathophysiological mechanisms. In particular, genetic animal models of HD have been instrumental in elucidating the progression of behavioral and physiological alterations, which had not been possible using classic neurotoxin models. Our groups have pioneered the use of transgenic HD mice to examine the excitotoxicity hypothesis of striatal neuronal dysfunction and degeneration, as well as alterations in excitation and inhibition in striatum and cerebral cortex. In this review, we focus on synaptic and receptor alterations of striatal medium-sized spiny (MSNs) and cortical pyramidal neurons in genetic HD mouse models. We demonstrate a complex series of alterations that are region-specific and time-dependent. In particular, many changes are bidirectional depending on the degree of disease progression, that is, early vs. late, and also on the region examined. Early synaptic dysfunction is manifested by dysregulated glutamate release in striatum followed by progressive disconnection between cortex and striatum. The differential effects of altered glutamate release on MSNs originating the direct and indirect pathways is also elucidated, with the unexpected finding that cells of the direct striatal pathway are involved early in the course of the disease. In addition, we review evidence for early N-methyl-D-aspartate receptor (NMDAR) dysfunction leading to enhanced sensitivity of extrasynaptic receptors and a critical role of GluN2B subunits. Some of the alterations in late HD could be compensatory mechanisms designed to cope with early synaptic and receptor dysfunctions. The main findings indicate that HD treatments need to be designed according to the stage of disease progression and should consider regional differences.
Collapse
Affiliation(s)
- Lynn A. Raymond
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Véronique M. André
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Clare M. Gladding
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Austen J. Milnerwood
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Michael S. Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
42
|
Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J Neurosci 2011; 31:13710-21. [PMID: 21957234 DOI: 10.1523/jneurosci.3544-11.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stimulation of synaptic NMDA receptors (NMDARs) induces neuroprotection, while extrasynaptic NMDARs promote excitotoxic cell death. Neuronal expression of cyclooxygenase-2 (COX-2) is enhanced by synaptic NMDARs, and although this enzyme mediates neuronal functions, COX-2 is also regarded as a key modulator of neuroinflammation and is thought to exacerbate excitotoxicity via overproduction of prostaglandins. This raises an apparent paradox: synaptic NMDARs are pro-survival yet are essential for robust neuronal COX-2 expression. We hypothesized that stimulation of extrasynaptic NMDARs converts COX-2 signaling from a physiological to a potentially pathological process. We combined HPLC-electrospray ionization-tandem MS-based mediator lipidomics and unbiased image analysis in mouse dissociated and organotypic cortical cultures to uncover that synaptic and extrasynaptic NMDARs differentially modulate neuronal COX-2 expression and activity. We show that synaptic NMDARs enhance neuronal COX-2 expression, while sustained synaptic stimulation limits COX-2 activity by suppressing cellular levels of the primary COX-2 substrate, arachidonic acid (AA). In contrast, extrasynaptic NMDARs suppress COX-2 expression while activating phospholipase A₂, which enhances AA levels by hydrolysis of membrane phospholipids. Thus, sequential activation of synaptic then extrasynaptic NMDARs maximizes COX-2-dependent prostaglandin synthesis. We also show that excitotoxic events only drive induction of COX-2 expression through abnormal synaptic network excitability. Finally, we show that nonenzymatic lipid peroxidation of arachidonic and other polyunsaturated fatty acids is a function of network activity history. A new paradigm emerges from our results suggesting that pathological COX-2 signaling associated with models of stroke, epilepsy, and neurodegeneration requires specific spatiotemporal NMDAR stimulation.
Collapse
|
43
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
44
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
45
|
Liu Z, Zhao W, Xu T, Pei D, Peng Y. Alterations of NMDA receptor subunits NR1, NR2A and NR2B mRNA expression and their relationship to apoptosis following transient forebrain ischemia. Brain Res 2010; 1361:133-9. [DOI: 10.1016/j.brainres.2010.09.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 02/06/2023]
|
46
|
Cross JL, Meloni BP, Bakker AJ, Lee S, Knuckey NW. Modes of Neuronal Calcium Entry and Homeostasis following Cerebral Ischemia. Stroke Res Treat 2010; 2010:316862. [PMID: 21052549 PMCID: PMC2968719 DOI: 10.4061/2010/316862] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/29/2010] [Indexed: 01/14/2023] Open
Abstract
One of the major instigators leading to neuronal cell death and brain damage following cerebral ischemia is calcium dysregulation. The neuron's inability to maintain calcium homeostasis is believed to be a result of increased calcium influx and impaired calcium extrusion across the plasma membrane. The need to better understand the cellular and biochemical mechanisms of calcium dysregulation contributing to neuronal loss following stroke/cerebral ischemia is essential for the development of new treatments in order to reduce ischemic brain injury. The aim of this paper is to provide a concise overview of the various calcium influx pathways in response to ischemia and how neuronal cells attempts to overcome this calcium overload.
Collapse
Affiliation(s)
- J L Cross
- Centre for Neuromuscular and Neurological Disorders, Australian Neuromuscular Research Institute, University of Western Australia, WA 6009, Australia
| | | | | | | | | |
Collapse
|
47
|
Abstract
The Ca(2+)-dependent release of aspartate from hippocampal preparations was first reported 35 years ago, but the functional significance of this process remains uncertain. Aspartate satisfies all the criteria normally required for identification of a CNS transmitter. It is synthesized in nerve terminals, is accumulated and stored in synaptic vesicles, is released by exocytosis upon nerve terminal depolarization, and activates postsynaptic NMDA receptors. Aspartate may be employed as a neuropeptide-like co-transmitter by pathways that release either glutamate or GABA as their principal transmitter. Aspartate mechanisms include vesicular transport by sialin, vesicular content sensitive to glucose concentration, release mainly outside the presynaptic active zones, and selective activation of extrasynaptic NR1-NR2B NMDA receptors. Possible neurobiological functions of aspartate in immature neurons include activation of cAMP-dependent gene transcription and in mature neurons inhibition of CREB function, reduced BDNF expression, and induction of excitotoxic neuronal death. Recent findings suggest new experimental approaches toward resolving the functional significance of aspartate release.
Collapse
Affiliation(s)
- J Victor Nadler
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11:682-96. [PMID: 20842175 PMCID: PMC2948541 DOI: 10.1038/nrn2911] [Citation(s) in RCA: 1213] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a long-standing paradox that NMDA (N-methyl-D-aspartate) receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signalling, leads to the build-up of a neuroprotective 'shield', whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and from opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington's disease, and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling.
Collapse
Affiliation(s)
- Giles E. Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
49
|
Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci 2010; 33:513-23. [PMID: 20850189 DOI: 10.1016/j.tins.2010.08.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/26/2010] [Accepted: 08/11/2010] [Indexed: 01/22/2023]
Abstract
Investigations of synaptic transmission and plasticity in mouse models of Huntington's disease (HD) demonstrate neuronal dysfunction long before the onset of classical disease indicators. Similarly, recent human studies reveal synaptic dysfunction decades before predicted clinical diagnosis in HD gene carriers. These studies guide premanifest tracking of disease and the development of treatment assessment tools. New discoveries of mechanisms underlying early neuronal dysfunction, including elevated pathogenic extrasynaptic NMDA receptor signaling, reduced synaptic connectivity and loss of brain-derived neurotrophic factor (BDNF) support have led to pharmacological interventions that can reverse or delay phenotype onset and disease progression in HD mice. Further understanding the primary effects of gene mutations associated with late-onset neurodegeneration should translate to novel treatments for HD families and guide therapeutic strategies for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Austen J Milnerwood
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
50
|
Yang Q, Yang ZF, Liu SB, Zhang XN, Hou Y, Li XQ, Wu YM, Wen AD, Zhao MG. Neuroprotective Effects of Hydroxysafflor Yellow A Against Excitotoxic Neuronal Death Partially Through Down-Regulation of NR2B-Containing NMDA Receptors. Neurochem Res 2010; 35:1353-60. [DOI: 10.1007/s11064-010-0191-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2010] [Indexed: 11/29/2022]
|