1
|
Ni R, Straumann N, Fazio S, Dean-Ben XL, Louloudis G, Keller C, Razansky D, Ametamey S, Mu L, Nombela-Arrieta C, Klohs J. Imaging increased metabolism in the spinal cord in mice after middle cerebral artery occlusion. PHOTOACOUSTICS 2023; 32:100532. [PMID: 37645255 PMCID: PMC10461215 DOI: 10.1016/j.pacs.2023.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Nadja Straumann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Serana Fazio
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Georgios Louloudis
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Vorster M. Gallium-68 Labelled Radiopharmaceuticals for Imaging Inflammatory Disorders. Semin Nucl Med 2023; 53:199-212. [PMID: 36270829 DOI: 10.1053/j.semnuclmed.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Inflammation is an important component of several chronic and debilitating diseases that result in significant morbidity and mortality. This is best evidenced within the cardiovascular system where it may manifest as atherosclerosis or myocarditis, and at the extreme end of the spectrum as myocardial infarction, ventricular remodeling, or cardiac failure. Early non-invasive detection and monitoring of inflammation in these and other settings may better guide patient management with resultant improved outcomes. Key role players in inflammation pathophysiology include chemokines, macrophages, neutrophils, fibroblasts, integrins, and reactive oxygen species, amongst others. Examples of receptor expression and over-expression include somatostatin receptors, CXCR4-, folate-, mannose-, TSPO- receptors and secretion of various vascular adhesion molecules (such as VCAM and ICAM). Gallium-68-based PET offers imaging possibilities for nearly all the major pathophysiological role players in inflammation, with mounting recent interest in macrophage differentiation, various forms of receptor expression and secretion of chemokines and vascular adhesion molecules. The advantages in terms of logistics and costs of having generator-produced PET probes available is well known, and a 68Ga-based tracer provides easily translatable theranostic possibilities to especially Lu-177. Some of the more versatile and better validated Ga-68-based inflammation probes include 68Ga-DOTA-TATE/NOC/TOC, 68Ga-NOTA-RGD, 68Ga-CXCR4, 68Ga-citrate and 68Ga-FAPI.
Collapse
Affiliation(s)
- Mariza Vorster
- Nuclear Medicine, Department of Nuclear Medicine at Inkosi Albert Luthuli Hospital, University of KwaZulu-Natal, Berea, KwaZulu-Natal, South Africa.
| |
Collapse
|
3
|
Molecular Imaging of Ultrasound-Mediated Blood-Brain Barrier Disruption in a Mouse Orthotopic Glioblastoma Model. Pharmaceutics 2022; 14:pharmaceutics14102227. [PMID: 36297663 PMCID: PMC9610067 DOI: 10.3390/pharmaceutics14102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive and malignant primary brain tumor. The blood-brain barrier (BBB) limits the therapeutic options available to tackle this incurable tumor. Transient disruption of the BBB by focused ultrasound (FUS) is a promising and safe approach to increase the brain and tumor concentration of drugs administered systemically. Non-invasive, sensitive, and reliable imaging approaches are required to better understand the impact of FUS on the BBB and brain microenvironment. In this study, nuclear imaging (SPECT/CT and PET/CT) was used to quantify neuroinflammation 48 h post-FUS and estimate the influence of FUS on BBB opening and tumor growth in vivo. BBB disruptions were performed on healthy and GBM-bearing mice (U-87 MG xenograft orthotopic model). The BBB recovery kinetics were followed and quantified by [99mTc]Tc-DTPA SPECT/CT imaging at 0.5 h, 3 h and 24 h post-FUS. The absence of neuroinflammation was confirmed by [18F]FDG PET/CT imaging 48 h post-FUS. The presence of the tumor and its growth were evaluated by [68Ga]Ga-RGD2 PET/CT imaging and post-mortem histological analysis, showing that tumor growth was not influenced by FUS. In conclusion, molecular imaging can be used to evaluate the time frame for systemic treatment combined with transient BBB opening and to test its efficacy over time.
Collapse
|
4
|
Oestreich LKL, O'Sullivan MJ. Transdiagnostic In Vivo Magnetic Resonance Imaging Markers of Neuroinflammation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:638-658. [PMID: 35051668 DOI: 10.1016/j.bpsc.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/13/2023]
Abstract
Accumulating evidence suggests that inflammation is not limited to archetypal inflammatory diseases such as multiple sclerosis, but instead represents an intrinsic feature of many psychiatric and neurological disorders not typically classified as neuroinflammatory. A growing body of research suggests that neuroinflammation can be observed in early and prodromal stages of these disorders and, under certain circumstances, may lead to tissue damage. Traditional methods to assess neuroinflammation include serum or cerebrospinal fluid markers and positron emission tomography. These methods require invasive procedures or radiation exposure and lack the exquisite spatial resolution of magnetic resonance imaging (MRI). There is, therefore, an increasing interest in noninvasive neuroimaging tools to evaluate neuroinflammation reliably and with high specificity. While MRI does not provide information at a cellular level, it facilitates the characterization of several biophysical tissue properties that are closely linked to neuroinflammatory processes. The purpose of this review is to evaluate the potential of MRI as a noninvasive, accessible, and cost-effective technology to image neuroinflammation across neurological and psychiatric disorders. We provide an overview of current and developing MRI methods used to study different aspects of neuroinflammation and weigh their strengths and shortcomings. Novel MRI contrast agents are increasingly able to target inflammatory processes directly, therefore offering a high degree of specificity, particularly if used in conjunction with multitissue, biophysical diffusion MRI compartment models. The capability of these methods to characterize several aspects of the neuroinflammatory milieu will likely push MRI to the forefront of neuroimaging modalities used to characterize neuroinflammation transdiagnostically.
Collapse
Affiliation(s)
- Lena K L Oestreich
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michael J O'Sullivan
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; Institute of Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke 2022; 53:1473-1486. [PMID: 35387495 PMCID: PMC9038693 DOI: 10.1161/strokeaha.122.036946] [Citation(s) in RCA: 390] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining blood-brain barrier (BBB) integrity is crucial for the homeostasis of the central nervous system. Structurally comprising the BBB, brain endothelial cells interact with pericytes, astrocytes, neurons, microglia, and perivascular macrophages in the neurovascular unit. Brain ischemia unleashes a profound neuroinflammatory response to remove the damaged tissue and prepare the brain for repair. However, the intense neuroinflammation occurring during the acute phase of stroke is associated with BBB breakdown, neuronal injury, and worse neurological outcomes. Here, we critically discuss the role of neuroinflammation in ischemic stroke pathology, focusing on the BBB and the interactions between central nervous system and peripheral immune responses. We highlight inflammation-driven injury mechanisms in stroke, including oxidative stress, increased MMP (matrix metalloproteinase) production, microglial activation, and infiltration of peripheral immune cells into the ischemic tissue. We provide an updated overview of imaging techniques for in vivo detection of BBB permeability, leukocyte infiltration, microglial activation, and upregulation of cell adhesion molecules following ischemic brain injury. We discuss the possibility of clinical implementation of imaging modalities to assess stroke-associated neuroinflammation with the potential to provide image-guided diagnosis and treatment. We summarize the results from several clinical studies evaluating the efficacy of anti-inflammatory interventions in stroke. Although convincing preclinical evidence suggests that neuroinflammation is a promising target for ischemic stroke, thus far, translating these results into the clinical setting has proved difficult. Due to the dual role of inflammation in the progression of ischemic damage, more research is needed to mechanistically understand when the neuroinflammatory response begins the transition from injury to repair. This could have important implications for ischemic stroke treatment by informing time- and context-specific therapeutic interventions.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville (E.C-J)
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, the Netherlands (R.M.D.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (T.M.)
| |
Collapse
|
6
|
Early Post-ischemic Brain Glucose Metabolism Is Dependent on Function of TLR2: a Study Using [ 18F]F-FDG PET-CT in a Mouse Model of Cardiac Arrest and Cardiopulmonary Resuscitation. Mol Imaging Biol 2021; 24:466-478. [PMID: 34779968 PMCID: PMC8592082 DOI: 10.1007/s11307-021-01677-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022]
Abstract
Purpose The mammalian brain glucose metabolism is tightly and sensitively regulated. An ischemic brain injury caused by cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) affects cerebral function and presumably also glucose metabolism. The majority of patients who survive CA suffer from cognitive deficits and physical disabilities. Toll-like receptor 2 (TLR2) plays a crucial role in inflammatory response in ischemia and reperfusion (I/R). Since deficiency of TLR2 was associated with increased survival after CA-CPR, in this study, glucose metabolism was measured using non-invasive [18F]F-FDG PET-CT imaging before and early after CA-CPR in a mouse model comparing wild-type (WT) and TLR2-deficient (TLR2−/−) mice. The investigation will evaluate whether FDG-PET could be useful as an additional methodology in assessing prognosis. Procedures Two PET-CT scans using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) tracer were carried out to measure dynamic glucose metabolism before and early after CPR. To achieve this, anesthetized and ventilated adult female WT and TLR2−/− mice were scanned in PET-CT. After recovery from the baseline scan, the same animals underwent 10-min KCL-induced CA followed by CPR. Approximately 90 min after CA, measurements of [18F]F-FDG uptake for 60 min were started. The [18F]F-FDG standardized uptake values (SUVs) were calculated using PMOD-Software on fused FDG-PET-CT images with the included 3D Mirrione-Mouse-Brain-Atlas. Results The absolute SUVmean of glucose in the whole brain of WT mice was increased about 25.6% after CA-CPR. In contrast, the absolute glucose SUV in the whole brain of TLR2−/− mice was not significantly different between baseline and measurements post CA-CPR. In comparison, baseline measurements of both mouse strains show a highly significant difference with regard to the absolute glucose SUV in the whole brain. Values of TLR2−/− mice revealed a 34.6% higher glucose uptake. Conclusions The altered mouse strains presented a different pattern in glucose uptake under normal and ischemic conditions, whereby the post-ischemic differences in glucose metabolism were associated with the function of key immune factor TLR2. There is evidence for using early FDG-PET-CT as an additional diagnostic tool after resuscitation. Further studies are needed to use PET-CT in predicting neurological outcomes.
Collapse
|
7
|
Affiliation(s)
- Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
8
|
On KC, Rho J, Yoon HY, Chang H, Yhee JY, Yoon JS, Jeong SY, Kim HK, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Image-Guided Surgery of Rabbit Orthotopic VX2 Lung Cancer. Pharmaceutics 2020; 12:E621. [PMID: 32635231 PMCID: PMC7407595 DOI: 10.3390/pharmaceutics12070621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Theranostic nanoparticles can deliver therapeutic agents as well as diverse imaging agents to tumors. The enhanced permeation and retention (EPR) effect is regarded as a crucial mechanism for the tumor-targeted delivery of nanoparticles. Although a large number of studies of the EPR effect of theranostic nanoparticles have been performed, the effect of the change in the body size of the host on the EPR effect is not fully understood. In this regard, comparative research is needed on the behavior of nanoparticles in large animals for developing the nanoparticles to the clinical stage. In this study, we prepared fluorophore (indocyanine green (ICG) or cyanine 5.5 (Cy5.5))-conjugated glycol chitosan nanoparticles (CNPs) for comparing the tumor-targeting efficacy in VX2 tumor-bearing mouse and rabbit models. As expected, the CNPs formed nano-sized spherical nanoparticles and were stable for 8 days under aqueous conditions. The CNPs also exhibited dose-dependent cellular uptake into VX2 tumor cells without cytotoxicity. The half-life of the near-infrared fluorescence (NIRF) signals in the blood were 3.25 h and 4.73 h when the CNPs were injected into mice and rabbits, respectively. Importantly, the CNPs showed excellent tumor accumulation and prolonged biodistribution profiles in both the VX2 tumor-bearing mouse and rabbit models, wherein the tumor accumulation was maximized at 48 h and 72 h, respectively. Based on the excellent tumor accumulation of the CNPs, finally, the CNPs were used in the image-guided surgery of the rabbit orthotopic VX2 lung tumor model. The lung tumor tissue was successfully removed based on the NIRF signal from the CNPs in the tumor tissue. This study shows that CNPs can be potentially used for tumor theragnosis in small animals and large animals.
Collapse
Affiliation(s)
- Kyeong Cheol On
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (K.C.O.); (J.S.Y.); (S.Y.J.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Jiyun Rho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea;
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Hyeyoun Chang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA;
| | | | - Jun Sik Yoon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (K.C.O.); (J.S.Y.); (S.Y.J.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Seo Young Jeong
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (K.C.O.); (J.S.Y.); (S.Y.J.)
| | - Hyun Koo Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea;
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
9
|
Moustapha ME, Geesi MH, Farag ZR, Anouar EH. Electrophilic Aromatic Synthesis of Radioiodinated Aripiprazole: Experimental and DFT Investigations. Curr Org Synth 2020; 17:295-303. [PMID: 32271696 DOI: 10.2174/1570179417666200409145824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aripiprazole is a quinolinone derivative. It shows a high affinity for neurotransmitters dopamine and serotonin receptors, which can overcome the blood-brain barrier (BBB) to reach the central nervous system (CNS) to exert therapeutic effects. Its radioiodination may lead to high radiochemical yield and improved its affinity. Aripiprazole radioiodination is an aromatic electrophilic substitution. OBJECTIVE Herein, we investigate the favorable atom site of the aromatic electrophilic substitution of aripiprazole by calculating the Fukui indices of heavy atoms and ESP charges of the parent molecule. METHODS The calculations have been carried out at the B3LYP/LanL2DZ level of theory. The iodinated aripiprazole structure is confirmed by comparing the experimental and the predicted 1H NMR chemical shifts of the parent molecule and its iodinated forms. RESULTS Finally, the electronic properties of aripiprazole and its iodinated form were calculated at the same level of theory. Nucleophilic Fukui indices and ESP charges calculations confirm that C8 is the most favorable site of the electrophilic substitution. The calculated electronic properties (e.g, gap energy, electron affinity, and electronegativity) of aripiprazole and its iodinated form reveal the higher reactivity of iodinated aripiprazole compared with aripiprazole. CONCLUSION This may explain the higher affinity of iodinated aripiprazole and the increase of its radiochemical yield.
Collapse
Affiliation(s)
- Moustapha E Moustapha
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed H Geesi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Zeinab R Farag
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
10
|
Zhang M, Zuo M, Wang C, Li Z, Cheng Q, Huang J, Wang Z, Liu Z. Monitoring Neuroinflammation with an HOCl-Activatable and Blood-Brain Barrier Permeable Upconversion Nanoprobe. Anal Chem 2020; 92:5569-5576. [PMID: 32189497 DOI: 10.1021/acs.analchem.0c00526] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A reliable tool for real-time tracking the neuroinflammatory progress is highly desired for interpretation and treatment of neurological disorders. Herein, a blood-brain barrier (BBB) permeable and HOCl-activatable upconversion (UC) nanoprobe with NIR emission was designed for visual study on neuroinflammation (NI) in vivo. This UC probe consists of three parts: upconversion nanoparticles (UCNPs) as signal reporter, the Cy-HOCl dye acting as energy acceptor of UCNPs as well as the recognition unit of HOCl, and amphiphilic polymers endowing the probe with biocompatibility and BBB permeability. Upon intravenous injection into mice, the probe crossed the BBB via low-density lipoprotein receptor related protein (LRP) mediated transcytosis and was then lightened up by overproduced HOCl in an NI process. This probe was able to differentiate inflammation and the normal state of the brain in LPS-induced NI and monitor the progress of NI occurring in mice with cerebral stroke, providing a practical tool for noninvasive and visual assessment of NI.
Collapse
Affiliation(s)
- Meng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Miaomiao Zuo
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Caixia Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ju Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zijun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
11
|
Acton PD. Multimodality Preclinical Imaging in Inflammatory Diseases. IMAGE FUSION IN PRECLINICAL APPLICATIONS 2019:135-160. [DOI: 10.1007/978-3-030-02973-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Ugga L, Romeo V, Tedeschi E, Brunetti A, Quarantelli M. Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation. J Neurosci Methods 2018; 310:12-23. [PMID: 29913184 DOI: 10.1016/j.jneumeth.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Iron oxide (IO) nanocolloids are being increasingly used to image cellular contribution to neuroinflammation using MRI, as these particles are capable of labeling circulating cells with phagocytic activity, allowing to assess cell trafficking from the blood to neuroinflammation sites. The use of IOs relies on the natural phagocytic properties of immune cells, allowing their labeling either in vitro or directly in vivo, following intravenous injection. Despite concerns on the specificity of the latter approach, the widespread availability and relatively low cost of these techniques, coupled to a sensitivity that allows to reach single cell detection, have promoted their use in several preclinical and clinical studies. In this review, we discuss the results of currently available preclinical and clinical IO-enhanced MRI studies of immune cell trafficking in neuroinflammation, examining the specificity of the existing findings, in view of the different possible mechanisms underlying IO accumulation in the brain. From this standpoint, we assess the implications of the temporal and spatial differences in the enhancement pattern of IOs, compared to gadolinium-based contrast agents, a clinically established MRI marker blood-brain barrier breakdown. While concerns on the specificity of cell labeling obtained using the in-vivo labeling approach still need to be fully addressed, these techniques have indeed proved able to provide additional information on neuroinflammatory phenomena, as compared to conventional Gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Lorenzo Ugga
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy.
| |
Collapse
|
13
|
Perioperative Research into Memory (PRiMe): Cognitive impairment following a severe burn injury and critical care admission, part 1. Burns 2018; 44:1167-1178. [PMID: 29752016 DOI: 10.1016/j.burns.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION An investigation into long-term cognitive impairment and Quality of Life (QoL) after severe burns. METHODS A proof of principle, cohort design, prospective, observational clinical study. Patients with severe burns (>15% TBSA) admitted to Burns ICU for invasive ventilation were recruited for psychocognitive assessment with a convenience sample of age and sex-matched controls. Participants completed psychological and QoL questionnaires, the Cogstate® electronic battery, Hopkins Verbal Learning, Verbal Fluency and Trail making tasks. RESULTS 15 patients (11M, 4F; 41±14 years; TBSA 38.4%±18.5) and comparators (11M, 4F; 40±13 years) were recruited. Burns patients reported worse QoL (Neuro-QoL Short Form v2, patient 30.1±8.2, control 38.7±3.2, p=0.0004) and cognitive function (patient composite z-score 0.01, IQR -0.11 to 0.33, control 0.13, IQR 0.47-0.73, p=0.02). Compared to estimated premorbid FSIQ, patients dropped an equivalent of 8 IQ points (p=0.002). Cognitive function negatively correlated with burn severity (rBaux score, p=0.04). QoL strongly correlated with depressive symptoms (Rho=-0.67, p=0.009) but not cognitive function. CONCLUSIONS Severe burns injuries are associated with a significant, global, cognitive deficit. Patients also report worse QoL, depression and post-traumatic stress. Perceived QoL from cognitive impairment was more closely associated with depression than cognitive impairment.
Collapse
|
14
|
Lee S, Lim W, Ryu HW, Jo D, Min JJ, Kim HS, Hyun H. ZW800-1 for Assessment of Blood-Brain Barrier Disruption in a Photothrombotic Stroke Model. Int J Med Sci 2017; 14:1430-1435. [PMID: 29200957 PMCID: PMC5707760 DOI: 10.7150/ijms.22294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Since it is known that serum albumin-bound dyes can cross the blood-brain barrier (BBB) after ischemia, Evans Blue dye is commonly used to assess BBB disruption because of its rapid binding to serum albumin. In addition, indocyanine green (ICG), a clinically available dye, binds to serum proteins that could also be used for assessment of BBB impairment. Unlike these near-infrared (NIR) dyes, zwitterionic NIR fluorophore (ZW800-1) shows no serum binding, ultralow non-specific tissue uptake, and rapid elimination from the body via renal filtration. In this study, we report the use of ZW800-1 as a NIR fluorescence imaging agent for detecting BBB disruption in rat stroke models. Methods: Three types of NIR fluorophores, Evans Blue, ICG, and ZW800-1, were administered intraperitoneally into rat photothrombotic stroke models by using 4% concentration of each NIR dye. The NIR fluorescence signals in the infarcted brain tissue and biodistribution were observed in real-time using the Mini-FLARE® imaging system up to 24 h post-injection. Results: ZW800-1 provided successful visualization of the ischemic injury site in the brain tissue, while the remaining injected dye was clearly excreted from the body within a certain period of time. Although Evans Blue and ICG provided mapping of the infarcted brain lesions, they exhibited high non-specific uptake in most of the tissues and organs and persisted in the body over 24 h post-injection. Conclusion: Our results suggest the promising application of ZW800-1 as a new strategy in BBB experiments and future therapeutic development.
Collapse
Affiliation(s)
- Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Wonbong Lim
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju 61452, South Korea
| | - Hye-Won Ryu
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Danbi Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
15
|
Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo Imaging of Human Neuroinflammation. ACS Chem Neurosci 2016; 7:470-83. [PMID: 26985861 DOI: 10.1021/acschemneuro.6b00056] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is implicated in the pathophysiology of a growing number of human disorders, including multiple sclerosis, chronic pain, traumatic brain injury, and amyotrophic lateral sclerosis. As a result, interest in the development of novel methods to investigate neuroinflammatory processes, for the purpose of diagnosis, development of new therapies, and treatment monitoring, has surged over the past 15 years. Neuroimaging offers a wide array of non- or minimally invasive techniques to characterize neuroinflammatory processes. The intent of this Review is to provide brief descriptions of currently available neuroimaging methods to image neuroinflammation in the human central nervous system (CNS) in vivo. Specifically, because of the relatively widespread accessibility of equipment for nuclear imaging (positron emission tomography [PET]; single photon emission computed tomography [SPECT]) and magnetic resonance imaging (MRI), we will focus on strategies utilizing these technologies. We first provide a working definition of "neuroinflammation" and then discuss available neuroimaging methods to study human neuroinflammatory processes. Specifically, we will focus on neuroimaging methods that target (1) the activation of CNS immunocompetent cells (e.g. imaging of glial activation with TSPO tracer [(11)C]PBR28), (2) compromised BBB (e.g. identification of MS lesions with gadolinium-enhanced MRI), (3) CNS-infiltration of circulating immune cells (e.g. tracking monocyte infiltration into brain parenchyma with iron oxide nanoparticles and MRI), and (4) pathological consequences of neuroinflammation (e.g. imaging apoptosis with [(99m)Tc]Annexin V or iron accumulation with T2* relaxometry). This Review provides an overview of state-of-the-art techniques for imaging human neuroinflammation which have potential to impact patient care in the foreseeable future.
Collapse
Affiliation(s)
| | - Cristina Granziera
- Neuro-Immunology,
Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier
Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
- LTS5, Ecole
Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
16
|
Pandey PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2016; 4:e1129476. [PMID: 27141418 PMCID: PMC4836458 DOI: 10.1080/21688370.2015.1129476] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022] Open
Abstract
Blood brain barrier (BBB) is a group of astrocytes, neurons and endothelial cells, which makes restricted passage of various biological or chemical entities to the brain tissue. It gives protection to brain at one hand, but at the other hand it has very selective permeability for bio-actives and other foreign materials and is one of the major challenges for the drug delivery. Nanocarriers are promising to cross BBB utilizing alternative route of administration such as intranasal and intra-carotid drug delivery which bypasses BBB. In future more optimized drug delivery system can be achieved by compiling the best routes with the best carriers. Single photon emission tomography (SPECT) and different brain-on-a-chip in vitro models are being very reliable to study live in vivo tracking of BBB and its pathophysiology, respectively. In the current review we have tried to exploit mechanistically all these to understand and manage the various BBB disruptions in diseased condition along with crossing the hurdles occurring in drug or gene delivery across BBB.
Collapse
Affiliation(s)
- Pawan Kumar Pandey
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| | - Ashok Kumar Sharma
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| | - Umesh Gupta
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| |
Collapse
|
17
|
Anrather J, Iadecola C, Hallenbeck J. Inflammation and Immune Response. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Chronic Brain Inflammation: The Neurochemical Basis for Drugs to Reduce Inflammation. Neurochem Res 2015; 41:523-33. [PMID: 26177578 DOI: 10.1007/s11064-015-1661-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Abstract
It is now recognised that the brain and the peripheral immune system have bidirectional communication in both health and neuronal diseases. Brain inflammation results after both acute injury and also with the appearance of mutated proteins or endogenous neurotoxic metabolites associated with slow neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and some psychiatric disorders. Microglia play a key role in brain inflammation by the release of pro-inflammatory cytokines and with ageing, microglia exhibit 'priming' leading to increased basal release of the pro-inflammatory cytokines. Neurochemical targets to reduce or slow chronic brain inflammation include cyclooxygenase enzymes, Nrf2 transcription factor, angiotensin AT1 receptors and sigma-1 receptors. Development of more selective drugs to act at these targets is occurring but large scale clinical trials to validate the drugs will take significant time.
Collapse
|
19
|
Su YY, Yang GF, Lu GM, Wu S, Zhang LJ. PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metab Brain Dis 2015; 30:31-45. [PMID: 25514861 DOI: 10.1007/s11011-014-9633-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
Abstract
Neurological or psychiatric abnormalities associated with hepatic encephalopathy (HE) range from subclinical findings to coma. HE is commonly accompanied with the accumulation of toxic substances in bloodstream. The toxicity effect of hyperammonemia on astrocyte, such as the alteration in neurotransmission, oxidative stress, astrocyte swelling, is considered as an important factor in the pathogenesis of HE. Besides, neuroinflammation has captured more attention in the process of HE, but the mechanism of neuroinflammation leading to HE remains unclear. Molecular imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) targeting activated microglia and/ or other mediators appear to be promising noninvasive approaches to assess HE. This review focuses on novel imaging and therapy strategies of neuroinflammation in HE.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nangjing, Jiangsu Province, 210002, China
| | | | | | | | | |
Collapse
|
20
|
Chassidim Y, Vazana U, Prager O, Veksler R, Bar-Klein G, Schoknecht K, Fassler M, Lublinsky S, Shelef I. Analyzing the blood-brain barrier: the benefits of medical imaging in research and clinical practice. Semin Cell Dev Biol 2014; 38:43-52. [PMID: 25455024 DOI: 10.1016/j.semcdb.2014.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Abstract
A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyze BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability add valuable information to standard anatomical inspections which do not take the latter into consideration.
Collapse
Affiliation(s)
- Yoash Chassidim
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Udi Vazana
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofer Prager
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronel Veksler
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Guy Bar-Klein
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Karl Schoknecht
- Department of Neurophysiology, Charite University of Medicine, Berlin, Germany
| | - Michael Fassler
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Lublinsky
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Medical Imaging Institute, Soroka Medical Center, Beer-Sheva, Israel
| |
Collapse
|
21
|
Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 2014; 8:388. [PMID: 25477782 PMCID: PMC4238323 DOI: 10.3389/fncel.2014.00388] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a particularly severe type of stroke for which no specific treatment has been established yet. Although preclinical models of ICH have substantial methodological limitations, important insight into the pathophysiology has been gained. Mounting evidence suggests an important contribution of inflammatory mechanisms to brain damage and potential repair. Neuroinflammation evoked by intracerebral blood involves the activation of resident microglia, the infiltration of systemic immune cells and the production of cytokines, chemokines, extracellular proteases and reactive oxygen species (ROS). Previous studies focused on innate immunity including microglia, monocytes and granulocytes. More recently, the role of adaptive immune cells has received increasing attention. Little is currently known about the interactions among different immune cell populations in the setting of ICH. Nevertheless, immunomodulatory strategies are already being explored in ICH. To improve the chances of translation from preclinical models to patients, a better characterization of the neuroinflammation in patients is desirable.
Collapse
Affiliation(s)
- Eva Mracsko
- Department of Neurology, University Heidelberg Heidelberg, Germany
| | - Roland Veltkamp
- Department of Neurology, University Heidelberg Heidelberg, Germany ; Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
22
|
Amhaoul H, Staelens S, Dedeurwaerdere S. Imaging brain inflammation in epilepsy. Neuroscience 2014; 279:238-52. [DOI: 10.1016/j.neuroscience.2014.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023]
|
23
|
Williams LM, Morandi F, Osborne DR, Narak J, LeBlanc AK. Kinetic analysis of 2-([(18)F]fluoro)-2-deoxy-d-glucose uptake in brains of anesthetized healthy dogs. Am J Vet Res 2014; 75:588-94. [PMID: 24866515 DOI: 10.2460/ajvr.75.6.588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess kinetic 2-([(18)F]fluoro)-2-deoxy-d-glucose ((18)FDG) uptake in the brain of anesthetized healthy adult dogs by use of positron emission tomography (PET) and to determine whether (18)FDG uptake differs among anatomic regions of the brain. ANIMALS 5 healthy Beagles. PROCEDURES Each isoflurane-anesthetized dog was administered (18)FDG IV (dose range, 3.0 to 5.2 mCi), and PET data were acquired for 2 hours. A CT scan (without contrast agent administration) was performed to allow more precise neuroanatomic localization. Defined regions of interest within the brain were drawn on reconstructed image data. Standard uptake values (SUVs) for (18)FDG were calculated to generate time-activity curves and determine time to peak uptake. RESULTS Time-activity curve analysis identified 4 regional uptake patterns: olfactory, gray matter, white matter, and other (brainstem, cerebellum, and occipital and frontal regions). The highest maximum SUVs were identified in the olfactory bulbs and cerebral gray matter, and the lowest maximum SUV was identified in cerebral white matter. Mean time to peak uptake ranged from 37.8 minutes in white matter to 82.7 minutes in the olfactory bulbs. CONCLUSIONS AND CLINICAL RELEVANCE Kinetic analysis of (18)FDG uptake revealed differences in uptake values among anatomic areas of the brain in dogs. These data provide a baseline for further investigation of (18)FDG uptake in dogs with immune-mediated inflammatory brain disease and suggest that (18)FDG-PET scanning has potential use for antemortem diagnosis without histologic analysis and for monitoring response to treatment. In clinical cases, a 1-hour period of PET scanning should provide sufficient pertinent data.
Collapse
Affiliation(s)
- Lindsay M Williams
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996
| | | | | | | | | |
Collapse
|
24
|
Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease. Front Aging Neurosci 2014; 6:32. [PMID: 24659966 PMCID: PMC3952109 DOI: 10.3389/fnagi.2014.00032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023] Open
Abstract
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Derya R Shimshek
- Autoimmunity, Transplantation and Inflammation/Neuroinflammation Department, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Nicolau Beckmann
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research Basel, Switzerland
| |
Collapse
|
25
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
26
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|
27
|
Harhausen D, Sudmann V, Khojasteh U, Müller J, Zille M, Graham K, Thiele A, Dyrks T, Dirnagl U, Wunder A. Specific imaging of inflammation with the 18 kDa translocator protein ligand DPA-714 in animal models of epilepsy and stroke. PLoS One 2013; 8:e69529. [PMID: 23936336 PMCID: PMC3732268 DOI: 10.1371/journal.pone.0069529] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Inflammation is a pathophysiological hallmark of many diseases of the brain. Specific imaging of cells and molecules that contribute to cerebral inflammation is therefore highly desirable, both for research and in clinical application. The 18 kDa translocator protein (TSPO) has been established as a suitable target for the detection of activated microglia/macrophages. A number of novel TSPO ligands have been developed recently. Here, we evaluated the high affinity TSPO ligand DPA-714 as a marker of brain inflammation in two independent animal models. For the first time, the specificity of radiolabeled DPA-714 for activated microglia/macrophages was studied in a rat model of epilepsy (induced using Kainic acid) and in a mouse model of stroke (transient middle cerebral artery occlusion, tMCAO) using high-resolution autoradiography and immunohistochemistry. Additionally, cold-compound blocking experiments were performed and changes in blood-brain barrier (BBB) permeability were determined. Target-to-background ratios of 2 and 3 were achieved in lesioned vs. unaffected brain tissue in the epilepsy and tMCAO models, respectively. In both models, ligand uptake into the lesion corresponded well with the extent of Ox42- or Iba1-immunoreactive activated microglia/macrophages. In the epilepsy model, ligand uptake was almost completely blocked by pre-injection of DPA-714 and FEDAA1106, another high-affinity TSPO ligand. Ligand uptake was independent of the degree of BBB opening and lesion size in the stroke model. We provide further strong evidence that DPA-714 is a specific ligand to image activated microglia/macrophages in experimental models of brain inflammation.
Collapse
Affiliation(s)
- Denise Harhausen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Trapani A, Palazzo C, de Candia M, Lasorsa FM, Trapani G. Targeting of the Translocator Protein 18 kDa (TSPO): A Valuable Approach for Nuclear and Optical Imaging of Activated Microglia. Bioconjug Chem 2013; 24:1415-28. [DOI: 10.1021/bc300666f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy and Drug
Sciences, University of Bari, Bari, 70125,
Italy
| | - Claudio Palazzo
- Department of Pharmacy and Drug
Sciences, University of Bari, Bari, 70125,
Italy
| | - Modesto de Candia
- Department of Pharmacy and Drug
Sciences, University of Bari, Bari, 70125,
Italy
| | | | - Giuseppe Trapani
- Department of Pharmacy and Drug
Sciences, University of Bari, Bari, 70125,
Italy
| |
Collapse
|
29
|
Moustapha ME, Motaleb MA, Ibrahim IT, Moustafa ME. Oxidative radioiodination of aripiprazole by chloramine-T as a route to a potential brain imaging agent: a mechanistic approach. RADIOCHEMISTRY 2013. [DOI: 10.1134/s1066362213010232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Lagraoui M, Latoche JR, Cartwright NG, Sukumar G, Dalgard CL, Schaefer BC. Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics. Front Neurol 2012; 3:155. [PMID: 23118733 PMCID: PMC3484408 DOI: 10.3389/fneur.2012.00155] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/09/2012] [Indexed: 11/13/2022] Open
Abstract
An immediate consequence of traumatic brain injury (TBI) is the induction of an inflammatory response. Mounting data suggest that inflammation is a major contributor to TBI-induced brain damage. However, much remains unknown regarding the induction and regulation of the inflammatory response to TBI. In this study we compared the TBI-induced inflammatory response to severe parenchymal injury (controlled cortical impact) vs. mild brain injury (craniotomy) over a 21-day period. Our data show that both severe and mild brain injury induce a qualitatively similar inflammatory response, involving highly overlapping sets of effector molecules. However, kinetic analysis revealed that the inflammatory response to mild brain injury is of much shorter duration than the response to severe TBI. Specifically, the inflammatory response to severe brain injury persists for at least 21 days, whereas the response to mild brain injury returns to near baseline values within 10 days post-injury. Our data therefore imply that the development of accurate diagnostic tests of TBI severity that are based on imaging or biomarker analysis of the inflammatory response may require repeated measures over at least a 10-day period, post-injury.
Collapse
Affiliation(s)
- Mouna Lagraoui
- Department of Microbiology and Immunology, Uniformed Services University Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
31
|
Xiao L, Zhang Y, Berr SS, Chordia MD, Pramoonjago P, Pu L, Pan D. A Novel Near-Infrared Fluorescence Imaging Probe for in Vivo Neutrophil Tracking. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Li Xiao
- From the Departments of Radiology, Chemistry, and Pathology, The University of Virginia, Charlottesville, VA
| | - Yi Zhang
- From the Departments of Radiology, Chemistry, and Pathology, The University of Virginia, Charlottesville, VA
| | - Stuart S. Berr
- From the Departments of Radiology, Chemistry, and Pathology, The University of Virginia, Charlottesville, VA
| | - Mahendra D. Chordia
- From the Departments of Radiology, Chemistry, and Pathology, The University of Virginia, Charlottesville, VA
| | - Patcharin Pramoonjago
- From the Departments of Radiology, Chemistry, and Pathology, The University of Virginia, Charlottesville, VA
| | - Lin Pu
- From the Departments of Radiology, Chemistry, and Pathology, The University of Virginia, Charlottesville, VA
| | - Dongfeng Pan
- From the Departments of Radiology, Chemistry, and Pathology, The University of Virginia, Charlottesville, VA
| |
Collapse
|
32
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|
33
|
Affiliation(s)
- S. Anna Sargsyan
- From the Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Joshua M. Thurman
- From the Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
34
|
Abstract
Neuroimaging allows researchers and clinicians to noninvasively assess structure and function of the brain. With the advances of imaging modalities such as magnetic resonance, nuclear, and optical imaging; the design of target-specific probes; and/or the introduction of reporter gene assays, these technologies are now capable of visualizing cellular and molecular processes in vivo. Undoubtedly, the system biological character of molecular neuroimaging, which allows for the study of molecular events in the intact organism, will enhance our understanding of physiology and pathophysiology of the brain and improve our ability to diagnose and treat diseases more specifically. Technical/scientific challenges to be faced are the development of highly sensitive imaging modalities, the design of specific imaging probe molecules capable of penetrating the CNS and reporting on endogenous cellular and molecular processes, and the development of tools for extracting quantitative, biologically relevant information from imaging data. Today, molecular neuroimaging is still an experimental approach with limited clinical impact; this is expected to change within the next decade. This article provides an overview of molecular neuroimaging approaches with a focus on rodent studies documenting the exploratory state of the field. Concepts are illustrated by discussing applications related to the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, ETH & University of Zürich, Switzerland
| | | |
Collapse
|
35
|
Ryu JH, Lee A, Chu JU, Koo H, Ko CY, Kim HS, Yoon SY, Kim BS, Choi K, Kwon IC, Kim K, Youn I. Early diagnosis of arthritis in mice with collagen-induced arthritis, using a fluorogenic matrix metalloproteinase 3-specific polymeric probe. ACTA ACUST UNITED AC 2012; 63:3824-32. [PMID: 22127700 DOI: 10.1002/art.30628] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Early treatment based on an early diagnosis of rheumatoid arthritis (RA) could halt progression of the disease, but early diagnosis is often difficult. Matrix metalloproteinase 3 (MMP-3) is thought to be particularly important in the pathogenesis of RA. The aim of this study was to investigate whether an MMP-3-specific polymeric probe could be used for early diagnosis and for visualizing the progression of arthritis, using a near-infrared fluorescence (NIRF) imaging system. METHODS The MMP-3-specific polymeric probe was developed by conjugating NIRF dye, MMP substrate peptide, and dark quencher to self-assembled chitosan nanoparticles. One hour after intravenous administration of the probe, fluorescent images of mice with collagen-induced arthritis at different stages of disease development were obtained. The correlation between the fluorescence recovered in in vivo imaging when using an MMP-3-specific polymeric probe and up-regulated MMP-3 activity in the joint tissues was evaluated by Western blotting and immunohistochemical staining. Histologic analysis and micro-computed tomography (micro-CT) were also used to assess arthritis progression. RESULTS A significantly higher NIRF signal was recovered from arthritic joints compared with normal joints at 14 days after the first immunization, before any erythema or swelling could be observed with the naked eye or any erosion was detected by histologic analysis or micro-CT. The results of immunohistochemical analysis and Western blotting confirmed that the fluorescence recovered in the in vivo imaging was related to up-regulated MMP-3 activity in the joint tissues. CONCLUSION An MMP-3-specific polymeric probe provided clear early diagnosis of arthritis and visualization of arthritis progression using an NIRF imaging system. This approach could be used for early diagnosis and for monitoring drug and surgical therapies in individual cases.
Collapse
Affiliation(s)
- Ju Hee Ryu
- Korea Institute of Science and Technology, Seoul, and Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Madeira JM, Beloukhina N, Boudreau K, Boettcher TA, Gurley L, Walker DG, McNeil WS, Klegeris A. Cobalt(II) β-ketoaminato complexes as novel inhibitors of neuroinflammation. Eur J Pharmacol 2011; 676:81-8. [PMID: 22173130 DOI: 10.1016/j.ejphar.2011.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 01/27/2023]
Abstract
Neuroinflammation contributes to the pathogenesis of neurological disorders including stroke, head trauma, multiple sclerosis, amyotrophic lateral sclerosis as well as age-associated neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Therefore, anti-inflammatory drugs could be used to slow the progression of these diseases. We studied the anti-neuroinflammatory activity of four novel square planar cobalt(II) compounds bearing tetradentate β-ketoaminato ligands with variation in the number of CF(3) ligand substituents, as well as their corresponding unmetallated organic ligands. Cobalt (Co) complexes were consistently more active than their corresponding ligands. One of the complexes, L(3)Co at concentrations (1-10 μM) that were not toxic to cells, significantly reduced cytotoxic secretions by human monocytic THP-1 cells, astrocytoma U-373 MG cells, and primary human microglia. This anti-neurotoxic action of L(3)Co was reduced by SP600125 and PD98059, selective inhibitors of c-Jun NH2-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) kinase (MEK)1/2 respectively. L(3)Co had no effect on secretion of monocyte chemotactic protein-1 (MCP-1) by THP-1 cells, but it inhibited the NADPH oxidase-dependent respiratory burst activity of differentiated human HL-60 cells. L(3)Co upregulated heme oxygenase-1 (HOX-1) expression by THP-1 cells, which may be one of the molecular mechanisms responsible for its anti-inflammatory properties. Two of the Co compounds tested showed activity only at high concentrations (50 μM), but L(2)Co was highly toxic to all cell types used. Select Co complexes, such as L(3)Co, may exhibit pharmacological properties beneficial in human diseases involving neuroinflammatory processes. Further studies of the in vivo efficacy, safety and pharmacokinetics of L(3)Co are warranted.
Collapse
Affiliation(s)
- Jocelyn M Madeira
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Andrews JA, Neises KD. Cells, biomarkers, and post-traumatic stress disorder: evidence for peripheral involvement in a central disease. J Neurochem 2011; 120:26-36. [PMID: 22017326 DOI: 10.1111/j.1471-4159.2011.07545.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a complicated CNS syndrome. Looking beyond the CNS, recent studies suggest that peripheral blood mononuclear cells could cause and/or exacerbate PTSD. This review summarizes the literature, describes associations between circulating peripheral blood cells and PTSD, proposes a novel mechanism, and analyzes several biomarkers that appear to associate with PTSD symptoms. Several experimental animal models have shown that peripheral blood mononuclear cell activity can cause hippocampal volume loss and PTSD-like symptoms. Data from these models suggest that a traumatic event and/or traumatic events can trigger peripheral cells to migrate, mediate inflammation, and decrease neurogenesis, potentially leading to CNS volume loss. Biomarkers that associate with PTSD symptoms have the potential to differentiate PTSD from traumatic brain injury, but more work needs to be done. Research examining the mechanism of how traumatic events are linked to peripheral blood mononuclear cell functions and biomarkers may offer improved diagnoses and treatments for PTSD patients.
Collapse
Affiliation(s)
- James A Andrews
- Naval Health Research Center, San Diego, California 92106-3521, USA.
| | | |
Collapse
|
38
|
Tourdias T, Mori N, Dragonu I, Cassagno N, Boiziau C, Aussudre J, Brochet B, Moonen C, Petry KG, Dousset V. Differential aquaporin 4 expression during edema build-up and resolution phases of brain inflammation. J Neuroinflammation 2011; 8:143. [PMID: 22011386 PMCID: PMC3220647 DOI: 10.1186/1742-2094-8-143] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/19/2011] [Indexed: 11/10/2022] Open
Abstract
Background Vasogenic edema dynamically accumulates in many brain disorders associated with brain inflammation, with the critical step of edema exacerbation feared in patient care. Water entrance through blood-brain barrier (BBB) opening is thought to have a role in edema formation. Nevertheless, the mechanisms of edema resolution remain poorly understood. Because the water channel aquaporin 4 (AQP4) provides an important route for vasogenic edema resolution, we studied the time course of AQP4 expression to better understand its potential effect in countering the exacerbation of vasogenic edema. Methods Focal inflammation was induced in the rat brain by a lysolecithin injection and was evaluated at 1, 3, 7, 14 and 20 days using a combination of in vivo MRI with apparent diffusion coefficient (ADC) measurements used as a marker of water content, and molecular and histological approaches for the quantification of AQP4 expression. Markers of active inflammation (macrophages, BBB permeability, and interleukin-1β) and markers of scarring (gliosis) were also quantified. Results This animal model of brain inflammation demonstrated two phases of edema development: an initial edema build-up phase during active inflammation that peaked after 3 days (ADC increase) was followed by an edema resolution phase that lasted from 7 to 20 days post injection (ADC decrease) and was accompanied by glial scar formation. A moderate upregulation in AQP4 was observed during the build-up phase, but a much stronger transcriptional and translational level of AQP4 expression was observed during the secondary edema resolution phase. Conclusions We conclude that a time lag in AQP4 expression occurs such that the more significant upregulation was achieved only after a delay period. This change in AQP4 expression appears to act as an important determinant in the exacerbation of edema, considering that AQP4 expression is insufficient to counter the water influx during the build-up phase, while the second more pronounced but delayed upregulation is involved in the resolution phase. A better pathophysiological understanding of edema exacerbation, which is observed in many clinical situations, is crucial in pursuing new therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Tourdias
- INSERM U,1049 Neuroinflammation, Imagerie et Thérapie de la Sclérose en Plaques, F-33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kenne E, Lindbom L. Imaging inflammatory plasma leakage in vivo. Thromb Haemost 2011; 105:783-9. [PMID: 21437352 DOI: 10.1160/th10-10-0635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/10/2011] [Indexed: 12/15/2022]
Abstract
Increased vascular permeability and consequent plasma leakage from postcapillary venules is a cardinal sign of inflammation. Although the movement of plasma constituents from the vasculature to the affected tissue aids in clearing the inflammatory stimulus, excessive plasma extravasation can lead to hospitalisation or death in cases such as influenza-induced pneumonia, burns or brain injury. The use of intravital imaging has significantly contributed to the understanding of the mechanisms controlling the vascular permeability alterations that occur during inflammation. Today, intravital imaging can be performed using optical and non-optical techniques. Optical techniques, which are generally used in experimental settings, include traditional intravital fluorescence microscopy and near-infrared fluorescence imaging. Magnetic resonance (MRI) and radioisotopic imaging are used mainly in the clinical setting, but are increasingly used in experimental work, and can detect plasma leakage without optics. Although these methods are all able to visualise inflammatory plasma leakage in vivo, the spatial and temporal resolution differs between the techniques. In addition, they vary with regards to invasiveness and availability. This overview discusses the use of imaging techniques in the visualisation of inflammatory plasma leakage.
Collapse
Affiliation(s)
- E Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
40
|
|
41
|
Zheng W, Watts LT, Holstein DM, Prajapati SI, Keller C, Grass EH, Walter CA, Lechleiter JD. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. PLoS One 2010; 5:e14401. [PMID: 21203502 PMCID: PMC3008710 DOI: 10.1371/journal.pone.0014401] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP) increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2-MeSADP), an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y(1)R). At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP(3))-dependent Ca(2+) release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lora Talley Watts
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Deborah M. Holstein
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Suresh I. Prajapati
- Greenhey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Charles Keller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greenhey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eileen H. Grass
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christi A. Walter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - James D. Lechleiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Kunz A, Dirnagl U, Mergenthaler P. Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract Res Clin Anaesthesiol 2010; 24:495-509. [DOI: 10.1016/j.bpa.2010.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/11/2010] [Indexed: 12/23/2022]
|
43
|
Signore A, Mather SJ, Piaggio G, Malviya G, Dierckx RA. Molecular imaging of inflammation/infection: nuclear medicine and optical imaging agents and methods. Chem Rev 2010; 110:3112-45. [PMID: 20415479 DOI: 10.1021/cr900351r] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A Signore
- Nuclear Medicine Unit, II Faculty of Medicine and Surgery, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
44
|
Planas AM. Noninvasive Brain Imaging in Small Animal Stroke Models: MRI and PET. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-750-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Winkeler A, Boisgard R, Martin A, Tavitian B. Radioisotopic imaging of neuroinflammation. J Nucl Med 2009; 51:1-4. [PMID: 20008995 DOI: 10.2967/jnumed.109.065680] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory responses are closely associated with many neurologic disorders and influence their outcome. In vivo imaging can document events accompanying neuroinflammation, such as changes in blood flow, vascular permeability, tightness of the blood-to-brain barrier, local metabolic activity, and expression of specific molecular targets. Here, we briefly review current methods for imaging neuroinflammation, with special emphasis on nuclear imaging techniques.
Collapse
Affiliation(s)
- Alexandra Winkeler
- CEA, I(2)BM, Service Hospitalier Frédéric Joliot, LIME, INSERM U803, 91400 Orsay, France
| | | | | | | |
Collapse
|
46
|
Wang H, Pullambhatla M, Guilarte TR, Mease RC, Pomper MG. Synthesis of [(125)I]iodoDPA-713: a new probe for imaging inflammation. Biochem Biophys Res Commun 2009; 389:80-3. [PMID: 19703411 DOI: 10.1016/j.bbrc.2009.08.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022]
Abstract
[(125)I]IodoDPA-713 [(125)I]1, which targets the translocator protein (TSPO, 18 kDa), was synthesized in seven steps from methyl-4-methoxybenzoate as a tool for quantification of inflammation in preclinical models. Preliminary in vitro autoradiography and in vivo small animal imaging were performed using [(125)I]1 in a neurotoxicant-treated rat and in a murine model of lung inflammation, respectively. The radiochemical yield of [(125)I]1 was 44+/-6% with a specific radioactivity of 51.8 GBq/micromol (1400 mCi/micromol) and >99% radiochemical purity. Preliminary studies showed that [(125)I]1 demonstrated increased specific binding to TSPO in a neurotoxicant-treated rat and increased radiopharmaceutical uptake in the lungs of an experimental inflammation model of lung inflammation. Compound [(125)I]1 is a new, convenient probe for preclinical studies of TSPO activity.
Collapse
Affiliation(s)
- Haofan Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience 2008; 158:1151-60. [PMID: 18651996 DOI: 10.1016/j.neuroscience.2008.06.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 11/17/2022]
Abstract
Inflammation plays a central role in the pathophysiology of numerous disorders of the nervous system, but is also pivotal for repair processes like peripheral nerve regeneration. In this review we summarize recent advances in cellular magnetic resonance imaging (MRI) while nuclear imaging methods to visualize neuroinflammation are covered by Wunder et al. [Wunder A, Klohs J, Dirnagl U (2009) Non-invasive imaging of central nervous system inflammation with nuclear and optical imaging. Neuroscience, in press]. Use of iron oxide-contrast agents allows assessment of inflammatory processes in living organisms. Upon systemic application, circulating small (SPIO) and ultrasmall particles of iron oxide (USPIO) are preferentially phagocytosed by monocytes before clearance within the reticuloendothelial system of the liver, spleen and lymph nodes. Upon acute migration into the diseased nervous system these iron oxide-laden macrophages become visible on MRI by the superparamagnetic effects of iron oxide resulting in a signal loss on T2-w and/or bright contrast on T1-w MRI. There is an ongoing controversy, however, to what extent SPIO/USPIO also diffuses passively into the brain after disruption of the blood-brain barrier pretending macrophage invasion. Other confounding factors include circulating SPIO/USPIO particles within the blood pool, local hemorrhages, and intrinsic iron oxide-loading of phagocytes. These uncertainties can be overcome by in vitro preloading of cells with iron oxide contrast agents and consecutive systemic application into animals. Iron oxide-contrast-enhanced MRI allowed in vivo visualization of cellular inflammation during wallerian degeneration, experimental autoimmune neuritis and encephalomyelitis, and stroke in rodents, but also in patients with multiple sclerosis and stroke. Importantly, cellular MRI provides additional information to gadolinium-DTPA-enhanced MRI since cellular infiltration and breakdown of the blood-brain barrier are not closely linked. Coupling of antibodies to iron oxide particles opens new avenues for molecular MRI and has been successfully used to visualize cell adhesion molecules guiding inflammation.
Collapse
Affiliation(s)
- G Stoll
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | | |
Collapse
|