1
|
Baronti D, Tomov N, Hupp S, Mitchell TJ, Iliev AI. Dendritic spine loss deep in the neocortex and dendrite distortion with diffusion disturbances occur early in experimental pneumococcal meningitis. Front Neurosci 2023; 16:912445. [PMID: 36704002 PMCID: PMC9871924 DOI: 10.3389/fnins.2022.912445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Streptococcus pneumoniae (pneumococcus) meningitis is a serious disease with substantial lethality and long-term disability in survivors. Loss of synaptic staining in the superficial layers of the neocortex in rodent models and in humans, and pneumolysin (a major pneumococcal toxin)-dependent dendritic spine collapse in brain slices have been described. It remains unclear how deep in the neocortex more discrete changes are present, how soon after disease onset these changes occur, and whether other properties of dendrites are also affected. Methods Using a mouse model of pneumococcal meningitis, we studied changes in the neocortex shortly (3-6 h) after the onset of clinical symptoms via modified Golgi-Cox silver staining. Results Dendritic changes were present in areas with otherwise unchanged cell numbers and no signs of necrosis or other apparent neuronal pathology. Mature dendritic spines were reduced in the pyramidal neurons running through layers 1-5. Additionally, spine morphology changes (swelling, spine neck distortion), were also observed in the deeper layers 4 and 5 of the neocortex. Immature spines (filopodia) remained unchanged between groups, as well as the dendritic arborization of the analyzed neurons. In a third of the animals with meningitis, massive mechanical distortion of the primary dendrites of most of the pyramidal neurons through layers 1-5 was observed. This distortion was reproduced in acute brain slices after exposure to pneumolysin-containing bacterial lysates (S. pneumoniae D39 strain), but not to lysates of pneumolysin-deficient bacteria, which we explain by the tissue remodeling effect of the toxin. Experimental mechanical dendrite distortion in primary neural cultures demonstrated diminished FRAP diffusion of neuronally-expressed enhanced green fluorescent protein (eGFP), indicative of disturbed dendritic diffusion. Discussion Our work extends earlier knowledge of synaptic loss in the superficial cortical layers during meningitis to deeper layers. These changes occurred surprisingly early in the course of the disease, substantially limiting the effective therapeutic window. Methodologically, we demonstrate that the dendritic spine collapse readout is a highly reliable and early marker of neural damage in pneumococcal meningitis models, allowing for reduction of the total number of animals used per a group due to much lower variation among animals.
Collapse
Affiliation(s)
- Dario Baronti
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Nikola Tomov
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sabrina Hupp
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Timothy J. Mitchell
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asparouh I. Iliev
- Institute of Anatomy, University of Bern, Bern, Switzerland,*Correspondence: Asparouh I. Iliev,
| |
Collapse
|
2
|
Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons. Neural Plast 2016; 2016:4145708. [PMID: 26881108 PMCID: PMC4736975 DOI: 10.1155/2016/4145708] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022] Open
Abstract
The neurotrophin brain derived neurotrophic factor (BDNF) is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer's disease (AD). To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42) treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.
Collapse
|
3
|
Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ, Mucke L. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. ACTA ACUST UNITED AC 2015; 209:419-33. [PMID: 25963821 PMCID: PMC4427789 DOI: 10.1083/jcb.201407065] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tau ablation, knockdown, and reconstitution studies in primary mouse neurons show that tau enables amyloid β oligomers to inhibit axonal transport through activation of GSK3β and through functions of tau that do not depend on its microtubule binding activity. Axonal transport deficits in Alzheimer’s disease (AD) are attributed to amyloid β (Aβ) peptides and pathological forms of the microtubule-associated protein tau. Genetic ablation of tau prevents neuronal overexcitation and axonal transport deficits caused by recombinant Aβ oligomers. Relevance of these findings to naturally secreted Aβ and mechanisms underlying tau’s enabling effect are unknown. Here we demonstrate deficits in anterograde axonal transport of mitochondria in primary neurons from transgenic mice expressing familial AD-linked forms of human amyloid precursor protein. We show that these deficits depend on Aβ1–42 production and are prevented by tau reduction. The copathogenic effect of tau did not depend on its microtubule binding, interactions with Fyn, or potential role in neuronal development. Inhibition of neuronal activity, N-methyl-d-aspartate receptor function, or glycogen synthase kinase 3β (GSK3β) activity or expression also abolished Aβ-induced transport deficits. Tau ablation prevented Aβ-induced GSK3β activation. Thus, tau allows Aβ oligomers to inhibit axonal transport through activation of GSK3β, possibly by facilitating aberrant neuronal activity.
Collapse
Affiliation(s)
- Keith A Vossel
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Jordan C Xu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Vira Fomenko
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Takashi Miyamoto
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Elsa Suberbielle
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Joseph A Knox
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Daniel H Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
4
|
Heisler FF, Loebrich S, Pechmann Y, Maier N, Zivkovic AR, Tokito M, Hausrat TJ, Schweizer M, Bähring R, Holzbaur ELF, Schmitz D, Kneussel M. Muskelin regulates actin filament- and microtubule-based GABA(A) receptor transport in neurons. Neuron 2011; 70:66-81. [PMID: 21482357 PMCID: PMC3101366 DOI: 10.1016/j.neuron.2011.03.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2011] [Indexed: 12/29/2022]
Abstract
Intracellular transport regulates protein turnover including endocytosis. Because of the spatial segregation of F-actin and microtubules, internalized cargo vesicles need to employ myosin and dynein motors to traverse both cytoskeletal compartments. Factors specifying cargo delivery across both tracks remain unknown. We identified muskelin to interconnect retrograde F-actin- and microtubule-dependent GABA(A) receptor (GABA(A)R) trafficking. GABA(A)Rs regulate synaptic transmission, plasticity, and network oscillations. GABA(A)R α1 and muskelin interact directly, undergo neuronal cotransport, and associate with myosin VI or dynein motor complexes in subsequent steps of GABA(A)R endocytosis. Inhibition of either transport route selectively interferes with receptor internalization or degradation. Newly generated muskelin KO mice display depletion of both transport steps and a high-frequency ripple oscillation phenotype. A diluted coat color of muskelin KOs further suggests muskelin transport functions beyond neurons. Our data suggest the concept that specific trafficking factors help cargoes to traverse both F-actin and microtubule compartments, thereby regulating their fate.
Collapse
Affiliation(s)
- Frank F. Heisler
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University of Hamburg Medical School, Germany
| | - Sven Loebrich
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University of Hamburg Medical School, Germany
| | - Yvonne Pechmann
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University of Hamburg Medical School, Germany
| | - Nikolaus Maier
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin
| | | | - Mariko Tokito
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, PA
| | - Torben J. Hausrat
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University of Hamburg Medical School, Germany
| | - Michaela Schweizer
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University of Hamburg Medical School, Germany
| | - Robert Bähring
- Center for Experimental Medicine, University of Hamburg Medical School, Germany
| | - Erika L. F. Holzbaur
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, PA
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University of Hamburg Medical School, Germany
| |
Collapse
|
5
|
Schapitz IU, Behrend B, Pechmann Y, Lappe-Siefke C, Kneussel SJ, Wallace KE, Stempel AV, Buck F, Grant SGN, Schweizer M, Schmitz D, Schwarz JR, Holzbaur ELF, Kneussel M. Neuroligin 1 is dynamically exchanged at postsynaptic sites. J Neurosci 2010; 30:12733-44. [PMID: 20861378 PMCID: PMC3108891 DOI: 10.1523/jneurosci.0896-10.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/30/2010] [Accepted: 08/04/2010] [Indexed: 12/18/2022] Open
Abstract
Neuroligins are postsynaptic cell adhesion molecules that associate with presynaptic neurexins. Both factors form a transsynaptic connection, mediate signaling across the synapse, specify synaptic functions, and play a role in synapse formation. Neuroligin dysfunction impairs synaptic transmission, disrupts neuronal networks, and is thought to participate in cognitive diseases. Here we report that chemical treatment designed to induce long-term potentiation or long-term depression (LTD) induces neuroligin 1/3 turnover, leading to either increased or decreased surface membrane protein levels, respectively. Despite its structural role at a crucial transsynaptic position, GFP-neuroligin 1 leaves synapses in hippocampal neurons over time with chemical LTD-induced neuroligin internalization depending on an intact microtubule cytoskeleton. Accordingly, neuroligin 1 and its binding partner postsynaptic density protein-95 (PSD-95) associate with components of the dynein motor complex and undergo retrograde cotransport with a dynein subunit. Transgenic depletion of dynein function in mice causes postsynaptic NLG1/3 and PSD-95 enrichment. In parallel, PSD lengths and spine head sizes are significantly increased, a phenotype similar to that observed upon transgenic overexpression of NLG1 (Dahlhaus et al., 2010). Moreover, application of a competitive PSD-95 peptide and neuroligin 1 C-terminal mutagenesis each specifically alter neuroligin 1 surface membrane expression and interfere with its internalization. Our data suggest the concept that synaptic plasticity regulates neuroligin turnover through active cytoskeleton transport.
Collapse
Affiliation(s)
- Inga U. Schapitz
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, D-20251 Hamburg, Germany
| | - Bardo Behrend
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, D-20251 Hamburg, Germany
| | - Yvonne Pechmann
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, D-20251 Hamburg, Germany
| | - Corinna Lappe-Siefke
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, D-20251 Hamburg, Germany
| | - Silas J. Kneussel
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, D-20251 Hamburg, Germany
| | - Karen E. Wallace
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104
| | - A. Vanessa Stempel
- Neuroscience Research Center of the Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Fritz Buck
- Institute of Clinical Chemistry, University of Hamburg Medical School, D-20246 Hamburg, Germany
| | - Seth G. N. Grant
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom, and
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, D-20251 Hamburg, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center of the Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Jürgen R. Schwarz
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, D-20251 Hamburg, Germany
| | - Erika L. F. Holzbaur
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104
| | - Matthias Kneussel
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, D-20251 Hamburg, Germany
| |
Collapse
|
6
|
Janke C, Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 2010; 33:362-72. [PMID: 20541813 DOI: 10.1016/j.tins.2010.05.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/20/2022]
Abstract
In the past decades, a range of post-translational modifications has been discovered on tubulins, the major constituents of microtubules. Pioneering studies have described the occurrence and dynamics of these modifications and provided first insights into their potential functions in regulating the microtubule cytoskeleton. By contrast, several tubulin-modifying enzymes were only discovered in the last few years, and studies on molecular mechanisms and cellular functions of tubulin modifications are just beginning to emerge. This review highlights the roles of tubulin modifications in neurons. Recent studies are also discussed in relation to how the combinatorial use of tubulin modifications could generate a dynamic microtubule code, and how such a code might regulate basic as well as higher-order neuronal functions.
Collapse
Affiliation(s)
- Carsten Janke
- Institut Curie, Bâtiment 110, Centre Universitaire, F-91405 Orsay Cedex, France.
| | | |
Collapse
|