1
|
Aeran R, Tanenhaus A, Sears SMS, Moerke NJ, Miller A, Artur C, Bouhlal Y, Bove PF, Diaz de Arce AJ, Shimizu S, Le J, Place K, Hoffelt D, Amarlkhagva T, Su J, Chen M, Babineau BA, McLaughlin J, Soe M, Macdonald W, Lin IW, Bole D, Valentine KM, Hallam E, Dhanota P, Liu S, Tan SA, Zhao B, Hosur R, Vila MC, Poda S, Belle A, Tagliatela S. Neuron-targeted gene therapy rescues multiple phenotypes of STXBP1-related disorders in mice and is well tolerated in nonhuman primates. Mol Ther 2025:S1525-0016(25)00381-8. [PMID: 40349107 DOI: 10.1016/j.ymthe.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
De novo heterozygous variants in the neuronal STXBP1 gene cause severe, early-onset developmental and epileptic encephalopathy. Adeno-associated virus (AAV)-based gene replacement therapy offers the potential for a one-time, disease-modifying approach for STXBP1-related disorders. However, off-target overexpression in the liver and in the dorsal root ganglion (DRG) are known potential toxicities of AAV vectors. In addition, while loss of STXBP1 in GABAergic interneurons contributes to disease pathogenesis, typical gene therapy promoters do not express well in these cell populations. We engineered novel promoter cassettes to drive potent, selective STXBP1 expression across both excitatory and inhibitory neurons, and a 3' UTR regulatory element to detarget expression in DRG. Bilateral intracerebroventricular (ICV) injection of these promoter candidates achieved robust neuronal expression of STXBP1 and rescued key behavioral phenotypes in Stxbp1+/- haploinsufficient mice. In nonhuman primates, widespread vector biodistribution and transgene expression were observed in the central nervous system after unilateral ICV administration of AAV9-STXBP1 vectors. The vectors were well tolerated, and addition of the detargeting regulatory element significantly reduced expression in DRG, while ameliorating histopathologic effects and functional nerve conduction alterations. Taken together, these data support the feasibility of a one-time AAV-based therapeutic approach for STXBP1-related disorders.
Collapse
Affiliation(s)
- Rangoli Aeran
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| | - Annie Tanenhaus
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Sheila M S Sears
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Nathan J Moerke
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Adam Miller
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Camille Artur
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Yosr Bouhlal
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Peter F Bove
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | | | - Saki Shimizu
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Jason Le
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Keith Place
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Dixon Hoffelt
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Tselmeg Amarlkhagva
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Jennifer Su
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Ming Chen
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Brooke A Babineau
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - John McLaughlin
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Myat Soe
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Warren Macdonald
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - I Winnie Lin
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Dhruv Bole
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Kristen M Valentine
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Elizabeth Hallam
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Puja Dhanota
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Serena Liu
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Steven A Tan
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Ben Zhao
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Raghavendra Hosur
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Maria Candida Vila
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Suresh Poda
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Archana Belle
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Stephanie Tagliatela
- Encoded Therapeutics, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Cardoso NC, Sohn JMB, Raymundi AM, Santos MR, Prickaerts J, Gazarini L, Stern CAJ. Time-dependent fear memory generalization triggered by phosphodiesterase 5 inhibition during reconsolidation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111274. [PMID: 39870136 DOI: 10.1016/j.pnpbp.2025.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fear generalization, a lack of discrimination between safe and unsafe cues, is a hallmark of posttraumatic stress disorder. The phosphodiesterase 5 (PDE5) regulates the cyclic guanosine monophosphate (cGMP) pathway, which has been proposed to be involved in fear memory generalization. However, whether PDE5 activity underlies fear memory generalization remains unexplored. Considering the importance of retrieval-induced reconsolidation in memory maintenance, we aimed to investigate whether PDE5 inhibition during reconsolidation of recent fear memory affects generalization over time in adult male Wistar rats submitted to contextual fear conditioning. The PDE5 inhibition with vardenafil (VAR) 1 mg/kg i.p. during reconsolidation triggered a time-dependent fear generalization without affecting fear memory in the paired context. Fear generalization and impaired pattern separation appear to be interlinked. Likewise, an impairment of object pattern separation was observed in the VAR-treated group at the remote time point. These effects depended on memory retrieval and were restricted to the reconsolidation time window. A chemogenetic inhibition of the anterior cingulate cortex (ACC), a region involved in allocating remote memories and generalization, prevented the effects of VAR. Moreover, VAR infusion into the ACC (6 μg/0.2 μL) after retrieval also promoted fear generalization and impaired OPS in remote time point, suggesting that ACC underlies the behavioral outcomes of the treatment with VAR. In conclusion, our results suggest that inhibiting PDE5 during the reconsolidation of a recent fear memory recruits the activity of the ACC, triggering fear memory generalization and impairing object pattern separation over time.
Collapse
Affiliation(s)
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Mateus Reis Santos
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Jos Prickaerts
- Peitho Translational, Drug Discovery and Development Consulting, Maastricht, the Netherlands
| | - Lucas Gazarini
- Federal University of Mato Grosso do Sul, Três Lagoas, Mato Grosso do Sul, Brazil
| | | |
Collapse
|
3
|
Fogaça MV, Daher F, Picciotto MR. Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses. Neuropsychopharmacology 2025; 50:673-684. [PMID: 39390105 PMCID: PMC11845475 DOI: 10.1038/s41386-024-02002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
| | - Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
4
|
Chesnokova E, Bal N, Alhalabi G, Balaban P. Regulatory Elements for Gene Therapy of Epilepsy. Cells 2025; 14:236. [PMID: 39937026 PMCID: PMC11816724 DOI: 10.3390/cells14030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The problem of drug resistance in epilepsy means that in many cases, a surgical treatment may be advised. But this is only possible if there is an epileptic focus, and resective brain surgery may have adverse side effects. One of the promising alternatives is gene therapy, which allows the targeted expression of therapeutic genes in different brain regions, and even in specific cell types. In this review, we provide detailed explanations of some key terms related to genetic engineering, and describe various regulatory elements that have already been used in the development of different approaches to treating epilepsy using viral vectors. We compare a few universal promoters for their strength and duration of transgene expression, and in our description of cell-specific promoters, we focus on elements driving expression in glutamatergic neurons, GABAergic neurons and astrocytes. We also explore enhancers and some other cis-regulatory elements currently used in viral vectors for gene therapy, and consider future perspectives of state-of-the-art technologies for designing new, stronger and more specific regulatory elements. Gene therapy has multiple advantages and should become more common in the future, but there is still a lot to study and invent in this field.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Natalia Bal
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Ghofran Alhalabi
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia;
| | - Pavel Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| |
Collapse
|
5
|
Cheng Z, Zhao F, Piao J, Yang W, Cui R, Li B. Rasd2 regulates depression-like behaviors via DRD2 neurons in the prelimbic cortex afferent to nucleus accumbens core circuit. Mol Psychiatry 2025; 30:435-449. [PMID: 39097664 PMCID: PMC11746134 DOI: 10.1038/s41380-024-02684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Depressive symptoms, such as anhedonia, decreased social interaction, and lack of motivation, implicate brain reward systems in the pathophysiology of depression. Exposure to chronic stress impairs the function of brain reward circuits and is well-known to be involved in the etiology of depression. A transcriptomic analysis found that stress alters the expression of Rasd2 in mice prefrontal cortex (PFC). Similarly, in our previous study, acute fasting decreased Rasd2 expression in mice PFC, and RASD2 modulated dopamine D2 receptor (DRD2)-mediated antidepressant-like effects in ovariectomized mice. This research suggests the role of RASD2 in stress-induced depression and its underlying neural mechanisms that require further investigation. Here, we show that 5-day unpredictable mild stress (5-d UMS) exposure reduces RASD2 expression in both the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) of mice, while overexpression (but not knock-down) of Rasd2 in the NAc core (NAcc) alleviates 5-d UMS-induced depression-like behaviors and activates the DRD2-cAMP-PKA-DARPP-32 signaling pathway. Further studies investigated neuronal projections between the mPFC (Cg1, PrL, and IL) and NAcc, labeled by the retrograde tracer Fluorogold. Depression-like behaviors induced by 5-d UMS were only related to inhibition of the PrL-NAcc circuit. DREADD (Designer receptors exclusively activated by designer drug) analysis found that the activation of PrL-NAcc glutaminergic projection alleviated depression-like behaviors and increased DRD2- and RASD2-positive neurons in the NAcc. Using Drd2-cre transgenic mice, we constructed mice with Rasd2 overexpression in DRD2PrL-NAcc neurons, finding that Rasd2 overexpression ameliorated 5-d UMS-induced depression-like behaviors. These findings demonstrate a critical role for RASD2 modulation of DRD2PrL-NAcc neurons in 5-d UMS-induced depression-like behaviors. In addition, the study identifies a new potential strategy for precision medical treatment of depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| |
Collapse
|
6
|
Yin X, Zhang Z, Zhou R, Zuo P, Sang D, Zhou S, Shi B, Chen L, Wu C, Guo Y, Wang F, Zhang EE, Li Q, Yanagisawa M, Liu Q. Calcineurin governs baseline and homeostatic regulations of non-rapid eye movement sleep in mice. Proc Natl Acad Sci U S A 2025; 122:e2418317122. [PMID: 39847332 PMCID: PMC11789068 DOI: 10.1073/pnas.2418317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear. Here, we report that enhanced activity of calcineurin Aα (CNAα)-a catalytic subunit of calcineurin-in the mouse brain neurons sharply increases the amount (to ~17-h/d) and delta power-a measure of intensity-of non-rapid eye movement sleep (NREMS). Knockout of the regulatory (CnB1) or catalytic (CnAα and CnAβ) subunits of calcineurin diminishes the amount (to ~4-h/d) and delta power of baseline NREMS, but also nearly abrogates the homeostatic recovery NREMS following SD. Accordingly, mathematical modeling of process S reveals an inability to accumulate sleep need during spontaneous or forced wakefulness in calcineurin deficient mice. Moreover, calcineurin promotes baseline NREMS by antagonizing wake-promoting protein kinase A and, in part, by activating sleep-promoting kinase SIK3. Together, these results indicate that calcineurin is an important regulator of sleep need and governs both baseline and homeostatic regulations of NREMS in mice.
Collapse
Affiliation(s)
- Xin Yin
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing100871, China
- National Institute of Biological Sciences, Beijing102206, China
| | - Zihan Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Rui Zhou
- National Institute of Biological Sciences, Beijing102206, China
| | - Peng Zuo
- National Institute of Biological Sciences, Beijing102206, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Di Sang
- National Institute of Biological Sciences, Beijing102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Shuang Zhou
- National Institute of Biological Sciences, Beijing102206, China
- College of Life Sciences, Beijing Normal University, Beijing100875, China
| | - Bihan Shi
- National Institute of Biological Sciences, Beijing102206, China
| | - Lin Chen
- National Institute of Biological Sciences, Beijing102206, China
| | - Chongyang Wu
- National Institute of Biological Sciences, Beijing102206, China
| | - Ying Guo
- National Institute of Biological Sciences, Beijing102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing102206, China
- New Cornerstone Science Laboratory, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
7
|
Nagy MA, Price S, Wang K, Gill S, Ren E, Jayne L, Pajak V, Deighan S, Liu B, Lu X, Diallo A, Lo SC, Kleiman R, Henderson C, Suh J, Griffith EC, Greenberg ME, Hrvatin S. Cis-regulatory elements driving motor neuron-selective viral payload expression within the mammalian spinal cord. Proc Natl Acad Sci U S A 2024; 121:e2418024121. [PMID: 39602276 PMCID: PMC11626145 DOI: 10.1073/pnas.2418024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Spinal motor neuron (MN) dysfunction is the cause of a number of clinically significant movement disorders. Despite the recent approval of gene therapeutics targeting these MN-related disorders, there are no viral delivery mechanisms that achieve MN-restricted transgene expression. In this study, chromatin accessibility profiling of genetically defined mouse MNs was used to identify candidate cis-regulatory elements (CREs) capable of driving MN-selective gene expression. Subsequent testing of these candidates identified two CREs that confer MN-selective gene expression in the spinal cord as well as reduced off-target expression in dorsal root ganglia. Within one of these candidate elements, we identified a compact core transcription factor (TF)-binding region that drives MN-selective gene expression. Finally, we demonstrated that selective spinal cord expression driven by this mouse CRE is preserved in non-human primates. These findings suggest that cell-type-selective viral reagents in which cell-type-selective CREs drive restricted gene expression will be valuable research tools in mice and other mammalian species, with potentially significant therapeutic value in humans.
Collapse
Affiliation(s)
- M. Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Harvard Medical School, Boston, MA02115
| | - Spencer Price
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Kristina Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | - Stanley Gill
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Erika Ren
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Lorna Jayne
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Victoria Pajak
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Sarah Deighan
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | | | | | | | | | | | | | | | - Eric C. Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | | | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
8
|
Wang Y, Cao S, Tone D, Fujishima H, Yamada RG, Ohno RI, Shi S, Matsuzawa K, Yada S, Kaneko M, Sakamoto H, Onishi T, Ukai-Tadenuma M, Ukai H, Hanashima C, Hirose K, Kiyonari H, Sumiyama K, Ode KL, Ueda HR. Postsynaptic competition between calcineurin and PKA regulates mammalian sleep-wake cycles. Nature 2024; 636:412-421. [PMID: 39506111 DOI: 10.1038/s41586-024-08132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
The phosphorylation of synaptic proteins is a significant biochemical reaction that controls the sleep-wake cycle in mammals1-3. Protein phosphorylation in vivo is reversibly regulated by kinases and phosphatases. In this study, we investigate a pair of kinases and phosphatases that reciprocally regulate sleep duration. First, we perform a comprehensive screen of protein kinase A (PKA) and phosphoprotein phosphatase (PPP) family genes by generating 40 gene knockout mouse lines using prenatal and postnatal CRISPR targeting. We identify a regulatory subunit of PKA (Prkar2b), a regulatory subunit of protein phosphatase 1 (PP1; Pppr1r9b) and catalytic and regulatory subunits of calcineurin (also known as PP2B) (Ppp3ca and Ppp3r1) as sleep control genes. Using adeno-associated virus (AAV)-mediated stimulation of PKA and PP1-calcineurin activities, we show that PKA is a wake-promoting kinase, whereas PP1 and calcineurin function as sleep-promoting phosphatases. The importance of these phosphatases in sleep regulation is supported by the marked changes in sleep duration associated with their increased and decreased activities, ranging from approximately 17.3 h per day (PP1 expression) to 4.3 h per day (postnatal CRISPR targeting of calcineurin). Localization signals to the excitatory post-synapse are necessary for these phosphatases to exert their sleep-promoting effects. Furthermore, the wake-promoting effect of PKA localized to the excitatory post-synapse negated the sleep-promoting effect of PP1-calcineurin. These findings indicate that PKA and PP1-calcineurin have competing functions in sleep regulation at excitatory post-synapses.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Siyu Cao
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Tone
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Rei-Ichiro Ohno
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoi Shi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kyoko Matsuzawa
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Saori Yada
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maki Ukai-Tadenuma
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan.
| |
Collapse
|
9
|
Kang H, Babola TA, Kanold PO. Rapid rebalancing of co-tuned ensemble activity in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599418. [PMID: 38948779 PMCID: PMC11212947 DOI: 10.1101/2024.06.17.599418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sensory information is represented by small varying neuronal ensembles in sensory cortices. In the auditory cortex (AC) repeated presentations of the same sound activate differing ensembles indicating high trial-by trial variability in activity even though the sounds activate the same percept. Efficient processing of complex acoustic signals requires that these sparsely distributed neuronal ensembles actively interact in order to provide a constant percept. Thus, the differing ensembles might interact to process the incoming sound inputs. Here, we probe interactions within and across ensembles by combining in vivo 2-photon Ca2+ imaging and holographic optogenetic stimulation to study how increased activity of single cells level affects the cortical network. We stimulated a small number of neurons sharing the same frequency preference alongside the presentation of a target pure tone, further increasing their tone-evoked activity. We found that other non-stimulated co-tuned neurons decreased their tone-evoked activity when the frequency of the presented pure tone matched to their tuning property, while non co-tuned neurons were unaffected. Activity decrease was greater for non-stimulated co-tuned neurons with higher frequency selectivity. Co-tuned and non co-tuned neurons were spatially intermingled. Our results shows that co-tuned ensembles communicated and balanced their total activity across the larger network. The rebalanced network activity due to external stimulation remained constant. These effects suggest that co-tuned ensembles in AC interact and rapidly rebalance their activity to maintain encoding homeostasis, and that the rebalanced network is persistent.
Collapse
Affiliation(s)
- HiJee Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
| | - Travis A. Babola
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 20215
| |
Collapse
|
10
|
Baranauskas G, Rysevaite-Kyguoliene K, Sabeckis I, Tkatch T, Pauza DH. Local stimulation of pyramidal neurons in deep cortical layers of anesthetized rats enhances cortical visual information processing. Sci Rep 2024; 14:22862. [PMID: 39354096 PMCID: PMC11445437 DOI: 10.1038/s41598-024-73995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In the primary visual cortex area V1 activation of inhibitory interneurons, which provide negative feedback for excitatory pyramidal neurons, can improve visual response reliability and orientation selectivity. Moreover, optogenetic activation of one class of interneurons, parvalbumin (PV) positive cells, reduces the receptive field (RF) width. These data suggest that in V1 the negative feedback improves visual information processing. However, according to information theory, noise can limit information content in a signal, and to the best of our knowledge, in V1 signal-to-noise ratio (SNR) has never been estimated following either pyramidal or inhibitory neuron activation. Therefore, we optogenetically activated pyramidal or PV neurons in the deep layers of cortical area V1 and measured the SNR and RF area in nearby pyramidal neurons. Activation of pyramidal or PV neurons increased the SNR by 267% and 318%, respectively, and reduced the RF area to 60.1% and 77.5%, respectively, of that of the control. A simple integrate-and-fire neuron model demonstrated that an improved SNR and a reduced RF area can increase the amount of information encoded by neurons. We conclude that in V1 activation of pyramidal neurons improves visual information processing since the location of the visual stimulus can be pinpointed more accurately (via a reduced RF area), and more information is encoded by neurons (due to increased SNR).
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | - Ignas Sabeckis
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tatiana Tkatch
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Dainius H Pauza
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
11
|
Stern MA, Cole ER, Gutekunst CA, Yang JJ, Berglund K, Gross RE. Organellular imaging in vivo reveals a depletion of endoplasmic reticular calcium during post-ictal cortical spreading depolarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614252. [PMID: 39386598 PMCID: PMC11463492 DOI: 10.1101/2024.09.21.614252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
During cortical spreading depolarization (CSD), neurons exhibit a dramatic increase in cytosolic calcium, which may be integral to CSD-mediated seizure termination. This calcium increase greatly exceeds that during seizures, suggesting the calcium source may not be solely extracellular. Thus, we sought to determine if the endoplasmic reticulum (ER), the largest intracellular calcium store, is involved. We developed a two-photon calcium imaging paradigm to simultaneously record the cytosol and ER during seizures in awake mice. Paired with direct current recording, we reveal that CSD can manifest as a slow post-ictal cytosolic calcium wave with a concomitant depletion of ER calcium that is spatiotemporally consistent with a calcium-induced calcium release. Importantly, we observed both naturally occurring and electrically induced CSD suppressed post-ictal epileptiform activity. Collectively, this work links ER dynamics to CSD, which serves as an innate process for seizure suppression and a potential mechanism underlying therapeutic electrical stimulation for epilepsy.
Collapse
Affiliation(s)
- Matthew A. Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Eric R. Cole
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E. Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Kim YJ, Kim K, Lee Y, Min HW, Ko YH, Lee BR, Hur KH, Kim SK, Lee SY, Jang CG. The mutated cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2 S968F) regulates cocaine-induced reward behaviour and plasticity in the nucleus accumbens. Br J Pharmacol 2024; 181:3327-3345. [PMID: 38751203 DOI: 10.1111/bph.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2), as a component of the Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) regulatory complex, is involved in actin polymerization, contributing to neuronal development and structural plasticity. Mutating serine-968 to phenylalanine (S968F) in CYFIP2 causes an altered cocaine response in mice. The neuronal mechanisms underlying this response remain unknown. EXPERIMENTAL APPROACH We performed cocaine reward-related behavioural tests and examined changes in synaptic protein phenotypes and neuronal morphology in the nucleus accumbens (NAc), using CYFIP2 S968F knock-in mice to investigate the role of CYFIP2 in regulating cocaine reward. KEY RESULTS CYFIP2 S968F mutation attenuated cocaine-induced behavioural sensitization and conditioned place preference. Cocaine-induced c-Fos was not observed in the NAc of CYFIP2 S968F knock-in mice. However, c-Fos induction was still evident in the medial prefrontal cortex (mPFC). CYFIP2 S968F mutation altered cocaine-associated CYFIP2 signalling, glutamatergic protein expression and synaptic density in the NAc following cocaine exposure. To further determine the role of CYFIP2 in NAc neuronal activity and the mPFC projecting to the NAc activity-mediating reward response, we used optogenetic tools to stimulate the NAc or mPFC-NAc pathway and observed that optogenetic activation of the NAc or mPFC-NAc pathway induced reward-related behaviours. This effect was not observed in the S968F mutation in CYFIP2. CONCLUSION AND IMPLICATIONS These results suggest that CYFIP2 plays a role in controlling cocaine-mediated neuronal function and structural plasticity in the NAc, and that CYFIP2 could serve as a target for regulating cocaine reward.
Collapse
Affiliation(s)
- Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyungin Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hee-Won Min
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Fogaça MV, Daher F, Picciotto MR. Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605610. [PMID: 39131322 PMCID: PMC11312475 DOI: 10.1101/2024.07.29.605610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
Collapse
Affiliation(s)
- Manoela V. Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| |
Collapse
|
14
|
de Brito Van Velze M, Dhanasobhon D, Martinez M, Morabito A, Berthaux E, Pinho CM, Zerlaut Y, Rebola N. Feedforward and disinhibitory circuits differentially control activity of cortical somatostatin interneurons during behavioral state transitions. Cell Rep 2024; 43:114197. [PMID: 38733587 DOI: 10.1016/j.celrep.2024.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.
Collapse
Affiliation(s)
- Marcel de Brito Van Velze
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Dhanasak Dhanasobhon
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Marie Martinez
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Annunziato Morabito
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Emmanuelle Berthaux
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Cibele Martins Pinho
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Yann Zerlaut
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| | - Nelson Rebola
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| |
Collapse
|
15
|
Meyer J, Yu K, Luna-Figueroa E, Deneen B, Noebels J. Glioblastoma disrupts cortical network activity at multiple spatial and temporal scales. Nat Commun 2024; 15:4503. [PMID: 38802334 PMCID: PMC11130179 DOI: 10.1038/s41467-024-48757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
The emergence of glioblastoma in cortical tissue initiates early and persistent neural hyperexcitability with signs ranging from mild cognitive impairment to convulsive seizures. The influence of peritumoral synaptic density, expansion dynamics, and spatial contours of excess glutamate upon higher order neuronal network modularity is unknown. We combined cellular and widefield imaging of calcium and glutamate fluorescent reporters in two glioblastoma mouse models with distinct synaptic microenvironments and infiltration profiles. Functional metrics of neural ensembles are dysregulated during tumor invasion depending on the stage of malignant progression and tumor cell proximity. Neural activity is differentially modulated during periods of accelerated and inhibited tumor expansion. Abnormal glutamate accumulation precedes and outpaces the spatial extent of baseline neuronal calcium signaling, indicating these processes are uncoupled in tumor cortex. Distinctive excitability homeostasis patterns and functional connectivity of local and remote neuronal populations support the promise of precision genetic diagnosis and management of this devastating brain disease.
Collapse
Affiliation(s)
- Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Kwanha Yu
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
16
|
Lai JD, Berlind JE, Fricklas G, Lie C, Urenda JP, Lam K, Sta Maria N, Jacobs R, Yu V, Zhao Z, Ichida JK. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell 2024; 31:519-536.e8. [PMID: 38579683 DOI: 10.1016/j.stem.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.
Collapse
Affiliation(s)
- Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA.
| | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Gabriella Fricklas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Cecilia Lie
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kelsey Lam
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naomi Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Russell Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Violeta Yu
- Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Simpson EH, Akam T, Patriarchi T, Blanco-Pozo M, Burgeno LM, Mohebi A, Cragg SJ, Walton ME. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 2024; 112:718-739. [PMID: 38103545 PMCID: PMC10939905 DOI: 10.1016/j.neuron.2023.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was primarily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This generated new insights into brain functions including movement, memory, and motivation at the level of defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded with the development of an extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new availability of affordable "plug-and-play" recording systems, has made monitoring molecules with high spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues for research, the rapid expansion in fiber photometry applications has occurred without coordination or consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze, and suitably interpret fiber photometry studies.
Collapse
Affiliation(s)
- Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University and ETH Zürich, Zürich, Switzerland.
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lauren M Burgeno
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Nikitin ES, Postnikova TY, Proskurina EY, Borodinova AA, Ivanova V, Roshchin MV, Smirnova MP, Kelmanson I, Belousov VV, Balaban PM, Zaitsev AV. Overexpression of KCNN4 channels in principal neurons produces an anti-seizure effect without reducing their coding ability. Gene Ther 2024; 31:144-153. [PMID: 37968509 DOI: 10.1038/s41434-023-00427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Gene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K+ channels has been proposed as a treatment due to the outstanding ability of K+ channels to hyperpolarize neurons. However, the effects of K+ channel overexpression on cell physiology remain to be investigated. Here we report an adeno-associated virus (AAV) vector designed to reduce epileptiform activity specifically in excitatory pyramidal neurons by expressing the human Ca2+-gated K+ channel KCNN4 (KCa3.1). Electrophysiological and pharmacological experiments in acute brain slices showed that KCNN4-transduced cells exhibited a Ca2+-dependent slow afterhyperpolarization that significantly decreased the ability of KCNN4-positive neurons to generate high-frequency spike trains without affecting their lower-frequency coding ability and action potential shapes. Antiepileptic activity tests showed potent suppression of pharmacologically induced seizures in vitro at both single cell and local field potential levels with decreased spiking during ictal discharges. Taken together, our findings strongly suggest that the AAV-based expression of the KCNN4 channel in excitatory neurons is a promising therapeutic intervention as gene therapy for epilepsy.
Collapse
Affiliation(s)
- Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia.
| | - Tatiana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia
| | - Elena Y Proskurina
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia
| | | | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Matvey V Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Maria P Smirnova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Ilya Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia.
| |
Collapse
|
19
|
Ong RCS, Beros JL, Fuller K, Wood FM, Melton PE, Rodger J, Fear MW, Barrett L, Stevenson AW, Tang AD. Non-severe thermal burn injuries induce long-lasting downregulation of gene expression in cortical excitatory neurons and microglia. Front Mol Neurosci 2024; 17:1368905. [PMID: 38476460 PMCID: PMC10927825 DOI: 10.3389/fnmol.2024.1368905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Burn injuries are devastating traumas, often leading to life-long consequences that extend beyond the observable burn scar. In the context of the nervous system, burn injury patients commonly develop chronic neurological disorders and have been suggested to have impaired motor cortex function, but the long-lasting impact on neurons and glia in the brain is unknown. Using a mouse model of non-severe burn injury, excitatory and inhibitory neurons in the primary motor cortex were labelled with fluorescent proteins using adeno-associated viruses (AAVs). A total of 5 weeks following the burn injury, virus labelled excitatory and inhibitory neurons were isolated using fluorescence-activated cell sorting (FACS). In addition, microglia and astrocytes from the remaining cortical tissue caudal to the motor cortex were immunolabelled and isolated with FACS. Whole transcriptome RNA-sequencing was used to identify any long-lasting changes to gene expression in the different cell types. RNA-seq analysis showed changes to the expression of a small number of genes with known functions in excitatory neurons and microglia, but not in inhibitory neurons or astrocytes. Specifically, genes related to GABA-A receptors in excitatory neurons and several cellular functions in microglia were found to be downregulated in burn injured mice. These findings suggest that non-severe burn injuries lead to long lasting transcriptomic changes in the brain, but only in specific cell types. Our findings provide a broad overview of the long-lasting impact of burn injuries on the central nervous system which may help identify potential therapeutic targets to prevent neurological dysfunction in burn patients.
Collapse
Affiliation(s)
- Rebecca C. S. Ong
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Jamie L. Beros
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Kathy Fuller
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M. Wood
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Burn Injury Research Unit, The University of Western Australia, Crawley, WA, Australia
- Burns Service of Western Australia, WA Department of Health, Murdoch, WA, Australia
- Paediatric Burn Care, Telethon Kids Institute, Nedlands, WA, Australia
| | - Phillip E. Melton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Global and Population Health, The University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Mark W. Fear
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lucy Barrett
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Burn Injury Research Unit, The University of Western Australia, Crawley, WA, Australia
- Burns Service of Western Australia, WA Department of Health, Murdoch, WA, Australia
| | - Andrew W. Stevenson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Burn Injury Research Unit, The University of Western Australia, Crawley, WA, Australia
| | - Alexander D. Tang
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
20
|
Johnson CS, Chapp AD, Lind EB, Thomas MJ, Mermelstein PG. Sex differences in mouse infralimbic cortex projections to the nucleus accumbens shell. Biol Sex Differ 2023; 14:87. [PMID: 38082417 PMCID: PMC10712109 DOI: 10.1186/s13293-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The nucleus accumbens (NAc) is an important region in motivation and reward. Glutamatergic inputs from the infralimbic cortex (ILC) to the shell region of the NAc (NAcSh) have been implicated in driving the motivation to seek reward through repeated action-based behavior. While this has primarily been studied in males, observed sex differences in motivational circuitry and behavior suggest that females may be more sensitive to rewarding stimuli. These differences have been implicated for the observed vulnerability in women to substance use disorders. METHODS We used an optogenetic self-stimulation task in addition to ex vivo electrophysiological recordings of NAcSh neurons in mouse brain slices to investigate potential sex differences in ILC-NAcSh circuitry in reward-seeking behavior. Glutamatergic neurons in the ILC were infected with an AAV delivering DNA encoding for channelrhodopsin. Entering the designated active corner of an open field arena resulted in photostimulation of the ILC terminals in the NAcSh. Self-stimulation occurred during two consecutive days of testing over three consecutive weeks: first for 10 Hz, then 20 Hz, then 30 Hz. Whole-cell recordings of medium spiny neurons in the NAcSh assessed both optogenetically evoked local field potentials and intrinsic excitability. RESULTS Although both sexes learned to seek the active zone, within the first day, females entered the zone more than males, resulting in a greater amount of photostimulation. Increasing the frequency of optogenetic stimulation amplified female reward-seeking behavior. Males were less sensitive to ILC stimulation, with higher frequencies and repeated days required to increase male reward-seeking behavior. Unexpectedly, ex vivo optogenetic local field potentials in the NAcSh were greater in slices from male animals. In contrast, female medium-spiny neurons (MSNs) displayed significantly greater intrinsic neuronal excitability. CONCLUSIONS Taken together, these data indicate that there are sex differences in the motivated behavior driven by glutamate within the ILC-NAcSh circuit. Though glutamatergic signaling was greater in males, heightened intrinsic excitability in females appears to drive this sex difference.
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
| | - Andrew D Chapp
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Erin B Lind
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Wang J, Lin J, Chen Y, Liu J, Zheng Q, Deng M, Wang R, Zhang Y, Feng S, Xu Z, Ye W, Hu Y, Duan J, Lin Y, Dai J, Chen Y, Li Y, Luo T, Chen Q, Lu Z. An ultra-compact promoter drives widespread neuronal expression in mouse and monkey brains. Cell Rep 2023; 42:113348. [PMID: 37910509 DOI: 10.1016/j.celrep.2023.113348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Promoters are essential tools for basic and translational neuroscience research. An ideal promoter should possess the shortest possible DNA sequence with cell-type selectivity. However, whether ultra-compact promoters can offer neuron-specific expression is unclear. Here, we report the development of an extremely short promoter that enables selective gene expression in neurons, but not glial cells, in the brain. The promoter sequence originates from the human CALM1 gene and is only 120 bp in size. The CALM1 promoter (pCALM1) embedded in an adeno-associated virus (AAV) genome directed broad reporter expression in excitatory and inhibitory neurons in mouse and monkey brains. Moreover, pCALM1, when inserted into an all-in-one AAV vector expressing SpCas9 and sgRNA, drives constitutive and conditional in vivo gene editing in neurons and elicits functional alterations. These data demonstrate the ability of pCALM1 to conduct restricted neuronal gene expression, illustrating the feasibility of ultra-miniature promoters for targeting brain-cell subtypes.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518034, China; Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbang Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yefei Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Qiongping Zheng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mao Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ruiqi Wang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujing Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shijing Feng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenyan Xu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weiyi Ye
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yu Hu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiamei Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunping Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuantao Li
- Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518034, China
| | - Qian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Zhonghua Lu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
23
|
Mueller SA, Oler JA, Roseboom PH, Aggarwal N, Kenwood MM, Riedel MK, Elam VR, Olsen ME, DiFilippo AH, Christian BT, Hu X, Galvan A, Boehm MA, Michaelides M, Kalin NH. DREADD-mediated amygdala activation is sufficient to induce anxiety-like responses in young nonhuman primates. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100111. [PMID: 38020807 PMCID: PMC10663133 DOI: 10.1016/j.crneur.2023.100111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, with symptoms often beginning early in life. To model the pathophysiology of human pathological anxiety, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in a nonhuman primate model of anxious temperament to selectively increase neuronal activity of the amygdala. Subjects included 10 young rhesus macaques; 5 received bilateral infusions of AAV5-hSyn-HA-hM3Dq into the dorsal amygdala, and 5 served as controls. Subjects underwent behavioral testing in the human intruder paradigm following clozapine or vehicle administration, prior to and following surgery. Behavioral results indicated that clozapine treatment post-surgery increased freezing across different threat-related contexts in hM3Dq subjects. This effect was again observed approximately 1.9 years following surgery, indicating the long-term functional capacity of DREADD-induced neuronal activation. [11C]deschloroclozapine PET imaging demonstrated amygdala hM3Dq-HA specific binding, and immunohistochemistry revealed that hM3Dq-HA expression was most prominent in basolateral nuclei. Electron microscopy confirmed expression was predominantly on neuronal membranes. Together, these data demonstrate that activation of primate amygdala neurons is sufficient to induce increased anxiety-related behaviors, which could serve as a model to investigate pathological anxiety in humans.
Collapse
Affiliation(s)
- Sascha A.L. Mueller
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Jonathan A. Oler
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Patrick H. Roseboom
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Nakul Aggarwal
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Margaux M. Kenwood
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Marissa K. Riedel
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Victoria R. Elam
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Miles E. Olsen
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Alexandra H. DiFilippo
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Bradley T. Christian
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Xing Hu
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Matthew A. Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ned H. Kalin
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| |
Collapse
|
24
|
Patel N, Ouellet V, Paquet-Mercier F, Chetoui N, Bélanger E, Paquet ME, Godin AG, Marquet P. A robust and reliable methodology to perform GECI-based multi-time point neuronal calcium imaging within mixed cultures of human iPSC-derived cortical neurons. Front Neurosci 2023; 17:1247397. [PMID: 37817802 PMCID: PMC10560759 DOI: 10.3389/fnins.2023.1247397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Human induced pluripotent stem cells (iPSCs), with their ability to generate human neural cells (astrocytes and neurons) from patients, hold great promise for understanding the pathophysiology of major neuropsychiatric diseases such as schizophrenia and bipolar disorders, which includes alterations in cerebral development. Indeed, the in vitro neurodifferentiation of iPSCs, while recapitulating certain major stages of neurodevelopment in vivo, makes it possible to obtain networks of living human neurons. The culture model presented is particularly attractive within this framework since it involves iPSC-derived neural cells, which more specifically differentiate into cortical neurons of diverse types (in particular glutamatergic and GABAergic) and astrocytes. However, these in vitro neuronal networks, which may be heterogeneous in their degree of differentiation, remain challenging to bring to an appropriate level of maturation. It is therefore necessary to develop tools capable of analyzing a large number of cells to assess this maturation process. Calcium (Ca2+) imaging, which has been extensively developed, undoubtedly offers an incredibly good approach, particularly in its versions using genetically encoded calcium indicators. However, in the context of these iPSC-derived neural cell cultures, there is a lack of studies that propose Ca2+ imaging methods that can finely characterize the evolution of neuronal maturation during the neurodifferentiation process. Methods In this study, we propose a robust and reliable method for specifically measuring neuronal activity at two different time points of the neurodifferentiation process in such human neural cultures. To this end, we have developed a specific Ca2+ signal analysis procedure and tested a series of different AAV serotypes to obtain expression levels of GCaMP6f under the control of the neuron-specific human synapsin1 (hSyn) promoter. Results The retro serotype has been found to be the most efficient in driving the expression of the GCaMP6f and is compatible with multi-time point neuronal Ca2+ imaging in our human iPSC-derived neural cultures. An AAV2/retro carrying GCaMP6f under the hSyn promoter (AAV2/retro-hSyn-GCaMP6f) is an efficient vector that we have identified. To establish the method, calcium measurements were carried out at two time points in the neurodifferentiation process with both hSyn and CAG promoters, the latter being known to provide high transient gene expression across various cell types. Discussion Our results stress that this methodology involving AAV2/retro-hSyn-GCaMP6f is suitable for specifically measuring neuronal calcium activities over multiple time points and is compatible with the neurodifferentiation process in our mixed human neural cultures.
Collapse
Affiliation(s)
- Niraj Patel
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | - Vincent Ouellet
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | | | - Nizar Chetoui
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | - Erik Bélanger
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | - Marie-Eve Paquet
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, QC, Canada
| | - Antoine G. Godin
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
- Centre for Optics, Photonics and Lasers (COPL), Laval University, Quebec, QC, Canada
| | - Pierre Marquet
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
- Centre for Optics, Photonics and Lasers (COPL), Laval University, Quebec, QC, Canada
| |
Collapse
|
25
|
Jang MJ, Coughlin GM, Jackson CR, Chen X, Chuapoco MR, Vendemiatti JL, Wang AZ, Gradinaru V. Spatial transcriptomics for profiling the tropism of viral vectors in tissues. Nat Biotechnol 2023; 41:1272-1286. [PMID: 36702899 PMCID: PMC10443732 DOI: 10.1038/s41587-022-01648-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023]
Abstract
A barrier to advancing engineered adeno-associated viral vectors (AAVs) for precision access to cell subtypes is a lack of high-throughput, high-resolution assays to characterize in vivo transduction profiles. In this study, we developed an ultrasensitive, sequential fluorescence in situ hybridization (USeqFISH) method for spatial transcriptomic profiling of endogenous and viral RNA with a short barcode in intact tissue volumes by integrating hydrogel-based tissue clearing, enhanced signal amplification and multiplexing using sequential labeling. Using USeqFISH, we investigated the transduction and cell subtype tropisms across mouse brain regions of six systemic AAVs, including AAV-PHP.AX, a new variant that transduces robustly and efficiently across neurons and astrocytes. Here we reveal distinct cell subtype biases of each AAV variant, including a bias of AAV-PHP.N toward excitatory neurons. USeqFISH also enables profiling of pooled regulatory cargos, as we show for a 13-variant pool of microRNA target sites in AAV genomes. Lastly, we demonstrate potential applications of USeqFISH for in situ AAV profiling and multimodal single-cell analysis in non-human primates.
Collapse
Affiliation(s)
- Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gerard M Coughlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cameron R Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Miguel R Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julia L Vendemiatti
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander Z Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
26
|
Yamamoto H, Spitzner FP, Takemuro T, Buendía V, Murota H, Morante C, Konno T, Sato S, Hirano-Iwata A, Levina A, Priesemann V, Muñoz MA, Zierenberg J, Soriano J. Modular architecture facilitates noise-driven control of synchrony in neuronal networks. SCIENCE ADVANCES 2023; 9:eade1755. [PMID: 37624893 PMCID: PMC10456864 DOI: 10.1126/sciadv.ade1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
High-level information processing in the mammalian cortex requires both segregated processing in specialized circuits and integration across multiple circuits. One possible way to implement these seemingly opposing demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use precision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with an in silico model of spiking neurons and a mesoscopic model of stochastically coupled modules to show that (i) a modular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stimulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlying mechanism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks of excitable units is determined by both its modular architecture and the properties of the external inputs.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - F. Paul Spitzner
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Taiki Takemuro
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Victor Buendía
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada, Spain
| | - Hakuba Murota
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Carla Morante
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Anna Levina
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | | | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| |
Collapse
|
27
|
Mueller SAL, Oler JA, Roseboom PH, Aggarwal N, Kenwood MM, Riedel MK, Elam VR, Olsen ME, DiFilippo AH, Christian BT, Hu X, Galvan A, Boehm MA, Michaelides M, Kalin NH. DREADD-mediated amygdala activation is sufficient to induce anxiety-like responses in young nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543911. [PMID: 37333300 PMCID: PMC10274719 DOI: 10.1101/2023.06.06.543911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, with symptoms often beginning early in life. To model the pathophysiology of human pathological anxiety, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in a nonhuman primate model of anxious temperament to selectively increase neuronal activity of the amygdala. Subjects included 10 young rhesus macaques; 5 received bilateral infusions of AAV5-hSyn-HA-hM3Dq into the dorsal amygdala, and 5 served as controls. Subjects underwent behavioral testing in the human intruder paradigm following clozapine or vehicle administration, prior to and following surgery. Behavioral results indicated that clozapine treatment post-surgery increased freezing across different threat-related contexts in hM3Dq subjects. This effect was again observed approximately 1.9 years following surgery, indicating the long-term functional capacity of DREADD-induced neuronal activation. [11C]deschloroclozapine PET imaging demonstrated amygdala hM3Dq-HA specific binding, and immunohistochemistry revealed that hM3Dq-HA expression was most prominent in basolateral nuclei. Electron microscopy confirmed expression was predominantly on neuronal membranes. Together, these data demonstrate that activation of primate amygdala neurons is sufficient to induce increased anxiety-related behaviors, which could serve as a model to investigate pathological anxiety in humans.
Collapse
Affiliation(s)
- Sascha A L Mueller
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Jonathan A Oler
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Patrick H Roseboom
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Nakul Aggarwal
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Margaux M Kenwood
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Marissa K Riedel
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Victoria R Elam
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Miles E Olsen
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Alexandra H DiFilippo
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Bradley T Christian
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xing Hu
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew A Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ned H Kalin
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| |
Collapse
|
28
|
Watkins de Jong L, Nejad MM, Yoon E, Cheng S, Diba K. Optogenetics reveals paradoxical network stabilizations in hippocampal CA1 and CA3. Curr Biol 2023; 33:1689-1703.e5. [PMID: 37023753 PMCID: PMC10175182 DOI: 10.1016/j.cub.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Recurrent connectivity between excitatory neurons and the strength of feedback from inhibitory neurons are critical determinants of the dynamics and computational properties of neuronal circuits. Toward a better understanding of these circuit properties in regions CA1 and CA3 of the hippocampus, we performed optogenetic manipulations combined with large-scale unit recordings in rats under anesthesia and in quiet waking, using photoinhibition and photoexcitation with different light-sensitive opsins. In both regions, we saw striking paradoxical responses: subsets of cells increased firing during photoinhibition, while other cells decreased firing during photoexcitation. These paradoxical responses were more prominent in CA3 than in CA1, but, notably, CA1 interneurons showed increased firing in response to photoinhibition of CA3. These observations were recapitulated in simulations where we modeled both CA1 and CA3 as inhibition-stabilized networks in which strong recurrent excitation is balanced by feedback inhibition. To directly test the inhibition-stabilized model, we performed large-scale photoinhibition directed at (GAD-Cre) inhibitory cells and found that interneurons in both regions increased firing when photoinhibited, as predicted. Our results highlight the often-paradoxical circuit dynamics that are evidenced during optogenetic manipulations and indicate that, contrary to long-standing dogma, both CA1 and CA3 hippocampal regions display strongly recurrent excitation, which is stabilized through inhibition.
Collapse
Affiliation(s)
- Laurel Watkins de Jong
- Department of Anesthesiology, Michigan Medicine, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Psychology, University of Wisconsin-Milwaukee, 2441 E Hartford Ave, Milwaukee, WI 53211, USA
| | | | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, 1301 Beal Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Kamran Diba
- Department of Anesthesiology, Michigan Medicine, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Psychology, University of Wisconsin-Milwaukee, 2441 E Hartford Ave, Milwaukee, WI 53211, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Ersing I, Rego M, Wang C, Zhang Y, DeMaio KH, Tillgren M, Fava A, Clouse G, Patrick M, Guerin K, Fan M. Quality control for Adeno-associated viral vector production. NEUROMETHODS 2023; 195:77-101. [PMID: 38585382 PMCID: PMC10997381 DOI: 10.1007/978-1-0716-2918-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Adeno-associated viral vectors (AAV) are frequently used by neuroscientists to deliver tools, such as biosensors and optogenetic and chemogenetic actuators, in vivo. Despite its widespread use, AAV vector characterization and quality control can vary between labs and viral vector cores leading to variable results and irreproducibility. This protocol describes some of the characterization and quality control assays necessary to confirm an AAV vector's titer, genomic identity, serotype and purity.
Collapse
Affiliation(s)
- Ina Ersing
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | - Meghan Rego
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | - Chen Wang
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | - Yijun Zhang
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | | | | | - Alanna Fava
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | | | | | - Karen Guerin
- Vedere Bio II, Inc, 300 Technology square, Cambridge, MA 02139, USA
| | - Melina Fan
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| |
Collapse
|
30
|
Impaired OTUD7A-dependent Ankyrin regulation mediates neuronal dysfunction in mouse and human models of the 15q13.3 microdeletion syndrome. Mol Psychiatry 2023; 28:1747-1769. [PMID: 36604605 DOI: 10.1038/s41380-022-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Copy number variations (CNVs) are associated with psychiatric and neurodevelopmental disorders (NDDs), and most, including the recurrent 15q13.3 microdeletion disorder, have unknown disease mechanisms. We used a heterozygous 15q13.3 microdeletion mouse model and patient iPSC-derived neurons to reveal developmental defects in neuronal maturation and network activity. To identify the underlying molecular dysfunction, we developed a neuron-specific proximity-labeling proteomics (BioID2) pipeline, combined with patient mutations, to target the 15q13.3 CNV genetic driver OTUD7A. OTUD7A is an emerging independent NDD risk gene with no known function in the brain, but has putative deubiquitinase function. The OTUD7A protein-protein interaction network included synaptic, axonal, and cytoskeletal proteins and was enriched for ASD and epilepsy risk genes (Ank3, Ank2, SPTAN1, SPTBN1). The interactions between OTUD7A and Ankyrin-G (Ank3) and Ankyrin-B (Ank2) were disrupted by an epilepsy-associated OTUD7A L233F variant. Further investigation of Ankyrin-G in mouse and human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed protein instability, increased polyubiquitination, and decreased levels in the axon initial segment, while structured illumination microscopy identified reduced Ankyrin-G nanodomains in dendritic spines. Functional analysis of human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed shared and distinct impairments to axonal growth and intrinsic excitability. Importantly, restoring OTUD7A or Ankyrin-G expression in 15q13.3 microdeletion neurons led to a reversal of abnormalities. These data reveal a critical OTUD7A-Ankyrin pathway in neuronal development, which is impaired in the 15q13.3 microdeletion syndrome, leading to neuronal dysfunction. Furthermore, our study highlights the utility of targeting CNV genes using cell type-specific proteomics to identify shared and unexplored disease mechanisms across NDDs.
Collapse
|
31
|
Kim YE, Kim S, Kim IH. Neural circuit-specific gene manipulation in mouse brain in vivo using split-intein-mediated split-Cre system. STAR Protoc 2022; 3:101807. [PMID: 36386891 PMCID: PMC9641071 DOI: 10.1016/j.xpro.2022.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural network studies require efficient genetic tools to analyze individual neural circuit functions in vivo. Thus, we developed an advanced circuit-selective gene manipulating tool utilizing anterograde and retrograde adeno-associated viruses (AAVs) encoding split-intein-mediated split-Cre. This strategy can be applied to visualize a specific neural circuit as well as manipulate multiple genes in the circuit neurons. Here, we describe the production and purification of the AAVs, viral injection to the mouse brain, and imaging analysis for a specific neural circuit. For complete details on the use and execution of this protocol, please refer to Kim et al. (2022).
Collapse
Affiliation(s)
- Yong-Eun Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sunwhi Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
32
|
Liu Q, Wu Y, Wang H, Jia F, Xu F. Viral Tools for Neural Circuit Tracing. Neurosci Bull 2022; 38:1508-1518. [PMID: 36136267 PMCID: PMC9723069 DOI: 10.1007/s12264-022-00949-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/09/2022] [Indexed: 10/14/2022] Open
Abstract
Neural circuits provide an anatomical basis for functional networks. Therefore, dissecting the structure of neural circuits is essential to understanding how the brain works. Recombinant neurotropic viruses are important tools for neural circuit tracing with many advantages over non-viral tracers: they allow for anterograde, retrograde, and trans-synaptic delivery of tracers in a cell type-specific, circuit-selective manner. In this review, we summarize the recent developments in the viral tools for neural circuit tracing, discuss the key principles of using viral tools in neuroscience research, and highlight innovations for developing and optimizing viral tools for neural circuit tracing across diverse animal species, including nonhuman primates.
Collapse
Affiliation(s)
- Qing Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Wang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Jia
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuqiang Xu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Hollidge BS, Carroll HB, Qian R, Fuller ML, Giles AR, Mercer AC, Danos O, Liu Y, Bruder JT, Smith JB. Kinetics and durability of transgene expression after intrastriatal injection of AAV9 vectors. Front Neurol 2022; 13:1051559. [PMID: 36452163 PMCID: PMC9702554 DOI: 10.3389/fneur.2022.1051559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2023] Open
Abstract
Understanding the kinetics and durability of AAV-mediated transgene expression in the brain is essential for conducting basic neuroscience studies as well as for developing gene therapy approaches for CNS diseases. Here, we characterize and compare the temporal profile of transgene expression after bilateral injections into the mouse striatum of rAAV9 encoding GFP under the control of either a ubiquitous promoter (CAG), or the neuron-specific human synapsin (hSyn) and CamKII promoters. GFP protein expression with the CAG promoter was highest at 3 weeks, and then decreased to stable levels at 3 and 6 months. Surprisingly, GFP mRNA levels continued to increase from 3 weeks to 3 months, despite GFP protein expression decreasing during this time. GFP protein expression with hSyn increased more slowly, reaching a maximum at 3 months, which was equivalent to protein expression levels from CAG at that time point. Importantly, transgene expression driven by the hSyn promoter at 6 months was not silenced as previously reported, and GFP mRNA was continuing to rise even at the final 6-month time point. Thus, hSyn as a promoter for transgene expression demonstrates long-term durability but may require more time after vector administration to achieve steady-state levels. Because CAG had the highest GFP protein expression in our comparison, which was at 3 weeks post administration, the early kinetics of transgene expression from CAG was examined (1, 2, 5, and 10 days after injection). This analysis showed that GFP protein expression and GFP mRNA increased during the first 3 weeks after administration. Interestingly, vector DNA rapidly decreased 10-fold over the first 3 weeks following injection as it assembled into stable circular episomes and concatemers. Surprisingly, the processing of vector genomes into circular episomes and concatemers was continually dynamic up to 3 months after injection. These results provide novel insight into the dynamic processing of vector genomes and promoter-specific temporal patterns of transgene expression in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jared B. Smith
- Research and Early Development, REGENXBIO Inc., Rockville, MD, United States
| |
Collapse
|
34
|
Murtaza N, Cheng AA, Brown CO, Meka DP, Hong S, Uy JA, El-Hajjar J, Pipko N, Unda BK, Schwanke B, Xing S, Thiruvahindrapuram B, Engchuan W, Trost B, Deneault E, Calderon de Anda F, Doble BW, Ellis J, Anagnostou E, Bader GD, Scherer SW, Lu Y, Singh KK. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep 2022; 41:111678. [DOI: 10.1016/j.celrep.2022.111678] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
35
|
Halbout B, Hutson C, Wassum KM, Ostlund SB. Dorsomedial prefrontal cortex activation disrupts Pavlovian incentive motivation. Front Behav Neurosci 2022; 16:999320. [PMID: 36311857 PMCID: PMC9608868 DOI: 10.3389/fnbeh.2022.999320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
The dorsomedial prefrontal cortex (dmPFC) is known to make important contributions to flexible, reward-motivated behavior. However, it remains unclear if the dmPFC is involved in regulating the expression of Pavlovian incentive motivation, the process through which reward-paired cues promote instrumental reward-seeking behavior, which is modeled in rats using the Pavlovian-instrumental transfer (PIT) task. The current study examined this question using a bidirectional chemogenetic strategy in which inhibitory (hM4Di) or excitatory (hM3Dq) designer G-protein coupled receptors were virally expressed in dmPFC neurons, allowing us to later stimulate or inhibit this region by administering CNO prior to PIT testing. We found that dmPFC inhibition did not alter the tendency for a reward-paired cue to instigate instrumental reward-seeking behavior, whereas dmPFC stimulation disrupted the expression of this motivational influence. Neither treatment altered cue-elicited anticipatory activity at the reward-delivery port, indicating that dmPFC stimulation did not lead to more widespread motor suppression. A reporter-only control experiment indicated that our CNO treatment did not have non-specific behavioral effects. Thus, the dmPFC does not mediate the expression of Pavlovian incentive motivation but instead has the capacity to exert pronounced inhibitory control over this process, suggesting that it is involved in adaptively regulating cue-motivated behavior.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Kate M. Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
- UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
36
|
Tone D, Ode KL, Zhang Q, Fujishima H, Yamada RG, Nagashima Y, Matsumoto K, Wen Z, Yoshida SY, Mitani TT, Arisato Y, Ohno RI, Ukai-Tadenuma M, Yoshida Garçon J, Kaneko M, Shi S, Ukai H, Miyamichi K, Okada T, Sumiyama K, Kiyonari H, Ueda HR. Distinct phosphorylation states of mammalian CaMKIIβ control the induction and maintenance of sleep. PLoS Biol 2022; 20:e3001813. [PMID: 36194579 PMCID: PMC9531794 DOI: 10.1371/journal.pbio.3001813] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)β as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIβ supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIβ can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIβ as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIβ. A CaMKIIβ mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIβ differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.
Collapse
Affiliation(s)
- Daisuke Tone
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji L. Ode
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Qianhui Zhang
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Yoshiki Nagashima
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Thermo Fisher Scientific K.K., Yokohama, Kanagawa, Japan
| | - Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Zhiqing Wen
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shota Y. Yoshida
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Graduate school of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomoki T. Mitani
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Graduate school of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Arisato
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rei-ichiro Ohno
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maki Ukai-Tadenuma
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Junko Yoshida Garçon
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Shoi Shi
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connections, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, the University of Tokyo, Minato-city, Tokyo, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
37
|
Bortoloci JGT, Motta SC. Failure of AAV retrograde tracer transduction in hypothalamic projections to the periaqueductal gray matter. Heliyon 2022; 8:e10243. [PMID: 36061004 PMCID: PMC9433681 DOI: 10.1016/j.heliyon.2022.e10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
|
38
|
Wirtshafter HS, Disterhoft JF. In Vivo Multi-Day Calcium Imaging of CA1 Hippocampus in Freely Moving Rats Reveals a High Preponderance of Place Cells with Consistent Place Fields. J Neurosci 2022; 42:4538-4554. [PMID: 35501152 PMCID: PMC9172072 DOI: 10.1523/jneurosci.1750-21.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Calcium imaging using GCaMP indicators and miniature microscopes has been used to image cellular populations during long timescales and in different task phases, as well as to determine neuronal circuit topology and organization. Because the hippocampus (HPC) is essential for tasks of memory, spatial navigation, and learning, calcium imaging of large populations of HPC neurons can provide new insight on cell changes over time during these tasks. All reported HPC in vivo calcium imaging experiments have been done in mouse. However, rats have many behavioral and physiological experimental advantages over mice. In this paper, we present the first (to our knowledge) in vivo calcium imaging from CA1 HPC in freely moving male rats. Using the UCLA Miniscope, we demonstrate that, in rat, hundreds of cells can be visualized and held across weeks. We show that calcium events in these cells are highly correlated with periods of movement, with few calcium events occurring during periods without movement. We additionally show that an extremely large percent of cells recorded during a navigational task are place cells (77.3 ± 5.0%, surpassing the percent seen during mouse calcium imaging), and that these cells enable accurate decoding of animal position and can be held over days with consistent place fields in a consistent spatial map. A detailed protocol is included, and implications of these advancements on in vivo imaging and place field literature are discussed.SIGNIFICANCE STATEMENT In vivo calcium imaging in freely moving animals allows the visualization of cellular activity across days. In this paper, we present the first in vivo Ca2+ recording from CA1 hippocampus (HPC) in freely moving rats. We demonstrate that hundreds of cells can be visualized and held across weeks, and that calcium activity corresponds to periods of movement. We show that a high percentage (77.3 ± 5.0%) of imaged cells are place cells, and that these place cells enable accurate decoding and can be held stably over days with little change in field location. Because the HPC is essential for many tasks involving memory, navigation, and learning, imaging of large populations of HPC neurons can shed new insight on cellular activity changes and organization.
Collapse
Affiliation(s)
- Hannah S Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - John F Disterhoft
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
39
|
Wu X, Jiang Y, Rommelfanger NJ, Yang F, Zhou Q, Yin R, Liu J, Cai S, Ren W, Shin A, Ong KS, Pu K, Hong G. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat Biomed Eng 2022; 6:754-770. [PMID: 35314800 PMCID: PMC9232843 DOI: 10.1038/s41551-022-00862-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Neural circuitry is typically modulated via invasive brain implants and tethered optical fibres in restrained animals. Here we show that wide-field illumination in the second near-infrared spectral window (NIR-II) enables implant-and-tether-free deep-brain stimulation in freely behaving mice with stereotactically injected macromolecular photothermal transducers activating neurons ectopically expressing the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1). The macromolecular transducers, ~40 nm in size and consisting of a semiconducting polymer core and an amphiphilic polymer shell, have a photothermal conversion efficiency of 71% at 1,064 nm, the wavelength at which light attenuation by brain tissue is minimized (within the 400-1,800 nm spectral window). TRPV1-expressing neurons in the hippocampus, motor cortex and ventral tegmental area of mice can be activated with minimal thermal damage on wide-field NIR-II illumination from a light source placed at distances higher than 50 cm above the animal's head and at an incident power density of 10 mW mm-2. Deep-brain stimulation via wide-field NIR-II illumination may open up opportunities for social behavioural studies in small animals.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nicholas J Rommelfanger
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Qi Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Rongkang Yin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Junlang Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sa Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Wei Ren
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Andrew Shin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Kyrstyn S Ong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
40
|
Viral strategies for targeting spinal neuronal subtypes in adult wild-type rodents. Sci Rep 2022; 12:8627. [PMID: 35606530 PMCID: PMC9126985 DOI: 10.1038/s41598-022-12535-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
Targeting specific subtypes of interneurons in the spinal cord is primarily restricted to a small group of genetic model animals. Since the development of new transgenic model animals can be expensive and labor intensive, it is often difficult to generalize these findings and verify them in other model organisms, such as the rat, ferret or monkey, that may be more beneficial in certain experimental investigations. Nevertheless, endogenous enhancers and promoters delivered using an adeno-associated virus (AAV) have been successful in providing expression in specific subtypes of neurons in the forebrain of wildtype animals, and therefore may introduce a shortcut. GABAergic interneurons, for instance, have successfully been targeted using the mDlx promoter, which has recently been developed and is now widely used in wild type animals. Here, we test the specificity and efficiency of the mDlx enhancer for robust targeting of inhibitory interneurons in the lumbar spinal cord of wild-type rats using AAV serotype 2 (AAV2). Since this has rarely been done in the spinal cord, we also test the expression and specificity of the CamKIIa and hSynapsin promoters using serotype 9. We found that AAV2-mDlx does in fact target many neurons that contain an enzyme for catalyzing GABA, the GAD-65, with high specificity and a small fraction of neurons containing an isoform, GAD-67. Expression was also seen in some motor neurons although with low correlation. Viral injections using the CamKIIa enhancer via AAV9 infected in some glutamatergic neurons, but also GABAergic neurons, whereas hSynapsin via AAV9 targets almost all the neurons in the lumbar spinal cord.
Collapse
|
41
|
Vendrell-Llopis N, Fang C, Qü AJ, Costa RM, Carmena JM. Diverse operant control of different motor cortex populations during learning. Curr Biol 2022; 32:1616-1622.e5. [PMID: 35219429 PMCID: PMC9007898 DOI: 10.1016/j.cub.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
During motor learning,1 as well as during neuroprosthetic learning,2-4 animals learn to control motor cortex activity in order to generate behavior. Two different populations of motor cortex neurons, intra-telencephalic (IT) and pyramidal tract (PT) neurons, convey the resulting cortical signals within and outside the telencephalon. Although a large amount of evidence demonstrates contrasting functional organization among both populations,5,6 it is unclear whether the brain can equally learn to control the activity of either class of motor cortex neurons. To answer this question, we used a calcium-imaging-based brain-machine interface (CaBMI)3 and trained different groups of mice to modulate the activity of either IT or PT neurons in order to receive a reward. We found that the animals learned to control PT neuron activity faster and better than IT neuron activity. Moreover, our findings show that the advantage of PT neurons is the result of characteristics inherent to this population as well as their local circuitry and cortical depth location. Taken together, our results suggest that the motor cortex is more efficient at controlling the activity of pyramidal tract neurons, which are embedded deep in the cortex, and relaying motor commands outside the telencephalon.
Collapse
Affiliation(s)
- Nuria Vendrell-Llopis
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA; Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA 94720, USA.
| | - Ching Fang
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Albert J Qü
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Rui M Costa
- Department of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jose M Carmena
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA; Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
42
|
Rocchi F, Canella C, Noei S, Gutierrez-Barragan D, Coletta L, Galbusera A, Stuefer A, Vassanelli S, Pasqualetti M, Iurilli G, Panzeri S, Gozzi A. Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex. Nat Commun 2022; 13:1056. [PMID: 35217677 PMCID: PMC8881459 DOI: 10.1038/s41467-022-28591-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1–4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes. Pathological perturbation affects whole brain network activity. Here the authors show in mice that cortical inactivation unexpectedly results in increased fMRI connectivity between the manipulated regions and its direct axonal targets.
Collapse
Affiliation(s)
- Federico Rocchi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Carola Canella
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Shahryar Noei
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy.,Neural Computational Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alexia Stuefer
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Stefano Vassanelli
- Dept. of Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, Italy
| | - Massimo Pasqualetti
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Biology Department, University of Pisa, Pisa, Italy
| | - Giuliano Iurilli
- Systems Neurobiology Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Stefano Panzeri
- Neural Computational Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy. .,Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
43
|
Heffernan KS, Rahman K, Smith Y, Galvan A. Characterization of the GfaABC1D Promoter to Selectively Target Astrocytes in the Rhesus Macaque Brain. J Neurosci Methods 2022; 372:109530. [PMID: 35202614 PMCID: PMC8940704 DOI: 10.1016/j.jneumeth.2022.109530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND The study of astrocytic functions in non-human primates (NHPs) has been hampered by the lack of genetic tools to selectively target astrocytes. Viral vectors with selective and efficient transduction of astrocytes could be a potent tool to express marker proteins, modulators, or sensors in NHP astrocytes, but the availability of thoroughly characterized astrocytic selective promoter sequences to use in these species remains extremely limited. NEW METHOD We describe the specificity and efficiency of an astrocyte-specific promoter, GfaABC1D in the brain of the rhesus macaque, with emphasis in basal ganglia regions. AAV5-pZac2.1-GfaABC1D-tdTomato was locally injected into the globus pallidus external segment (GPe) and putamen. The extent, efficiency, and specificity of transduction was analyzed with immunohistochemistry at the light and electron microscope levels. RESULTS The GfaABC1D promoter directed the expression of tdTomato in an astrocyte-specific manner in directly or indirectly targeted regions (including both segments of the globus pallidus, putamen, subthalamic nucleus and cortex). COMPARISON WITH EXISTING METHODS Due to its small size, the GfaABC1D promoter is advantageous over other previously used glial fibrillary acidic protein-based promoter sequences, facilitating its use to drive expression of various transgenes in adeno-associated viruses (AAV) or other viral vectors. CONCLUSION GfaABC1D is an efficient promoter that selectively targets astrocytes in the monkey basal ganglia and expands the viral vector toolbox to study astrocytic functions in non-human primates.
Collapse
Affiliation(s)
- Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kazi Rahman
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
44
|
Learning-induced biases in the ongoing dynamics of sensory representations predict stimulus generalization. Cell Rep 2022; 38:110340. [PMID: 35139386 DOI: 10.1016/j.celrep.2022.110340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sensory stimuli have long been thought to be represented in the brain as activity patterns of specific neuronal assemblies. However, we still know relatively little about the long-term dynamics of sensory representations. Using chronic in vivo calcium imaging in the mouse auditory cortex, we find that sensory representations undergo continuous recombination, even under behaviorally stable conditions. Auditory cued fear conditioning introduces a bias into these ongoing dynamics, resulting in a long-lasting increase in the number of stimuli activating the same subset of neurons. This plasticity is specific for stimuli sharing representational similarity to the conditioned sound prior to conditioning and predicts behaviorally observed stimulus generalization. Our findings demonstrate that learning-induced plasticity leading to a representational linkage between the conditioned stimulus and non-conditioned stimuli weaves into ongoing dynamics of the brain rather than acting on an otherwise static substrate.
Collapse
|
45
|
Condylis C, Ghanbari A, Manjrekar N, Bistrong K, Yao S, Yao Z, Nguyen TN, Zeng H, Tasic B, Chen JL. Dense functional and molecular readout of a circuit hub in sensory cortex. Science 2022; 375:eabl5981. [PMID: 34990233 DOI: 10.1126/science.abl5981] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although single-cell transcriptomics of the neocortex has uncovered more than 300 putative cell types, whether this molecular classification predicts distinct functional roles is unclear. We combined two-photon calcium imaging with spatial transcriptomics to functionally and molecularly investigate cortical circuits. We characterized behavior-related responses across major neuronal subclasses in layers 2 or 3 of the primary somatosensory cortex as mice performed a tactile working memory task. We identified an excitatory intratelencephalic cell type, Baz1a, that exhibits high tactile feature selectivity. Baz1a neurons homeostatically maintain stimulus responsiveness during altered experience and show persistent enrichment of subsets of immediately early genes. Functional and anatomical connectivity reveals that Baz1a neurons residing in upper portions of layers 2 or 3 preferentially innervate somatostatin-expressing inhibitory neurons. This motif defines a circuit hub that orchestrates local sensory processing in superficial layers of the neocortex.
Collapse
Affiliation(s)
- Cameron Condylis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.,Center for Neurophotonics, Boston University, Boston, MA 02215, USA
| | - Abed Ghanbari
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Karina Bistrong
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.,Center for Neurophotonics, Boston University, Boston, MA 02215, USA.,Department of Biology, Boston University, Boston, MA 02215, USA.,Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
46
|
Fenno LE, Levy R, Yizhar O. Molecular Optimization of Rhodopsin-Based Tools for Neuroscience Applications. Methods Mol Biol 2022; 2501:289-310. [PMID: 35857234 DOI: 10.1007/978-1-0716-2329-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is no question that genetically encoded tools have revolutionized neuroscience. These include optically modulated tools for writing-in (optogenetics) and reading-out (calcium, voltage, and neurotransmitter indicators) neural activity as well as precision expression of these reagents using virally mediated delivery. With few exceptions, these powerful approaches are derived from naturally occurring molecules that are sourced from diverse organisms that span all kingdoms of life. Successful expression of genetic tools in standard neuroscience model organisms requires optimizing gene structure, taking into account differences in both protein translation and trafficking. Myriad approaches have resolved these two challenges, resulting in order-of-magnitude increases in functional expression. In this chapter, we focus on synthesizing prior experience in successfully enabling the transition of genes across kingdoms with a goal of facilitating the production of the next generation of molecular tools for neuroscience. We then provide a detailed protocol that allows expression and testing of novel genetically encoded tools in mammalian cell lines and primary cultured neurons.
Collapse
Affiliation(s)
- Lief E Fenno
- Departments of Psychiatry and Neuroscience, University of Texas Austin Dell Medical School, Austin, TX, USA
| | - Rivka Levy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
47
|
Cecchetto C, Vassanelli S, Kuhn B. Simultaneous Two-Photon Voltage or Calcium Imaging and Multi-Channel Local Field Potential Recordings in Barrel Cortex of Awake and Anesthetized Mice. Front Neurosci 2021; 15:741279. [PMID: 34867155 PMCID: PMC8632658 DOI: 10.3389/fnins.2021.741279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Neuronal population activity, both spontaneous and sensory-evoked, generates propagating waves in cortex. However, high spatiotemporal-resolution mapping of these waves is difficult as calcium imaging, the work horse of current imaging, does not reveal subthreshold activity. Here, we present a platform combining voltage or calcium two-photon imaging with multi-channel local field potential (LFP) recordings in different layers of the barrel cortex from anesthetized and awake head-restrained mice. A chronic cranial window with access port allows injecting a viral vector expressing GCaMP6f or the voltage-sensitive dye (VSD) ANNINE-6plus, as well as entering the brain with a multi-channel neural probe. We present both average spontaneous activity and average evoked signals in response to multi-whisker air-puff stimulations. Time domain analysis shows the dependence of the evoked responses on the cortical layer and on the state of the animal, here separated into anesthetized, awake but resting, and running. The simultaneous data acquisition allows to compare the average membrane depolarization measured with ANNINE-6plus with the amplitude and shape of the LFP recordings. The calcium imaging data connects these data sets to the large existing database of this important second messenger. Interestingly, in the calcium imaging data, we found a few cells which showed a decrease in calcium concentration in response to vibrissa stimulation in awake mice. This system offers a multimodal technique to study the spatiotemporal dynamics of neuronal signals through a 3D architecture in vivo. It will provide novel insights on sensory coding, closing the gap between electrical and optical recordings.
Collapse
Affiliation(s)
- Claudia Cecchetto
- Department of Biomedical Sciences, Section of Physiology, University of Padua, Padua, Italy.,Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Stefano Vassanelli
- Department of Biomedical Sciences, Section of Physiology, University of Padua, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
48
|
Dias M, Ferreira R, Remondes M. Medial Entorhinal Cortex Excitatory Neurons Are Necessary for Accurate Timing. J Neurosci 2021; 41:9932-9943. [PMID: 34670849 PMCID: PMC8638688 DOI: 10.1523/jneurosci.0750-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
The hippocampal region has long been considered critical for memory of time, and recent evidence shows that network operations and single-unit activity in the hippocampus and medial entorhinal cortex (MEC) correlate with elapsed time. However, whether MEC activity is necessary for timing remains largely unknown. Here we expressed DREADDs (designer receptors exclusively activated by designer drugs) under the CaMKIIa promoter to preferentially target MEC excitatory neurons for chemogenetic silencing, while freely moving male rats reproduced a memorized time interval by waiting inside a region of interest. We found that such silencing impaired the reproduction of the memorized interval and led to an overestimation of elapsed time. Trial history analyses under this condition revealed a reduced influence of previous trials on current waiting times, suggesting an impairment in maintaining temporal memories across trials. Moreover, using GLM (logistic regression), we show that decoding behavioral performance from preceding waiting times was significantly compromised when MEC was silenced. In addition to revealing an important role of MEC excitatory neurons for timing behavior, our results raise the possibility that these neurons contribute to such behavior by holding temporal information across trials.SIGNIFICANCE STATEMENT Medial temporal lobe (MTL) structures are implicated in processing temporal information. However, little is known about the role MTL structures, such as the hippocampus and the entorhinal cortex, play in perceiving or reproducing temporal intervals. By chemogenetically silencing medial entorhinal cortex (MEC) excitatory activity during a timing task, we show that this structure is necessary for the accurate reproduction of temporal intervals. Furthermore, trial history analyses suggest that silencing MEC disrupts memory mechanisms during timing. Together, these results suggest that MEC is necessary for timing behavior, possibly by representing the target interval in memory.
Collapse
Affiliation(s)
- Marcelo Dias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Raquel Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Miguel Remondes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
49
|
Duba-Kiss R, Niibori Y, Hampson DR. GABAergic Gene Regulatory Elements Used in Adeno-Associated Viral Vectors. Front Neurol 2021; 12:745159. [PMID: 34671313 PMCID: PMC8521139 DOI: 10.3389/fneur.2021.745159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Several neurological and psychiatric disorders have been associated with impairments in GABAergic inhibitory neurons in the brain. Thus, in the current era of accelerated development of molecular medicine and biologically-based drugs, there is a need to identify gene regulatory sequences that can be utilized for selectively manipulating the expression of nucleic acids and proteins in GABAergic neurons. This is particularly important for the use of viral vectors in gene therapy. In this Mini Review, we discuss the use of various gene regulatory elements for targeting GABAergic neurons, with an emphasis on adeno-associated viral vectors, the most widely used class of viral vectors for treating brain diseases.
Collapse
Affiliation(s)
- Robert Duba-Kiss
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David R Hampson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Jiang ZJ, Li W, Yao LH, Saed B, Rao Y, Grewe BS, McGinley A, Varga K, Alford S, Hu YS, Gong LW. TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis. eLife 2021; 10:e66709. [PMID: 34569930 PMCID: PMC8516418 DOI: 10.7554/elife.66709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Wenping Li
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Li-Hua Yao
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
- School of Life Science, Jiangxi Science & Technology Normal UniversityNanchangChina
| | - Badeia Saed
- Department of Chemistry, University of Illinois at ChicagoChicagoUnited States
| | - Yan Rao
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Brian S Grewe
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Andrea McGinley
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Kelly Varga
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
- Department of Biological Sciences, University of North Texas at DallasDallasUnited States
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at ChicagoChicagoUnited States
| | - Ying S Hu
- Department of Chemistry, University of Illinois at ChicagoChicagoUnited States
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|