1
|
Reck AM, Siderovski DP, Kinsey SG. The synthetic cannabinoid agonist WIN 55,212-2 reduces experimental pruritus via CB 2 receptor activation. Neuropharmacology 2025; 264:110216. [PMID: 39551242 PMCID: PMC11922163 DOI: 10.1016/j.neuropharm.2024.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Pruritus (i.e., the experience that evokes a desire to scratch) is an adaptive process that can become maladaptive, leading to a persistent scratch-itch cycle that potentiates pruritus and increases the risk of infection. Cannabinoid drugs have been reported to decrease pruritus, but often at doses that also decrease locomotor activity, which confounds assessments of utility. To determine the utility of cannabinoids in treating pruritus without undesirable adverse effects, the current preclinical study investigated a range of doses of the synthetic cannabinoid agonist, WIN 55,212-2, and two minor Cannabis phytoconstituents, Δ8-tetrahydrocannabinol and β-caryophyllene, in experimentally induced pruritus in male and female C57BL/6J adult mice. WIN 55,212-2 reduced compound 48/80-induced scratching, and this antipruritic effect was prevented by either chemically blocking (via SR144528 antagonism) or genetically deleting the CB2 cannabinoid receptor. The CB2 receptor selective agonist, JWH-133, also attenuated compound 48/80-induced scratching, while the CB1 positive allosteric modulator, ZCZ011, had no effect. Similarly, the minor phytocannabinoid Δ8-tetrahydrocannabinol reduced scratching at doses that did not affect locomotor activity. In contrast, the sesquiterpene cannabis constituent β-caryophyllene induced scratching, acting as a pruritogen. These preclinical data support the continuing investigation of cannabinoid receptor modulation as a potential therapeutic strategy for pruritus.
Collapse
Affiliation(s)
- Antonio Matt Reck
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - David P Siderovski
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - Steven G Kinsey
- School of Nursing, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
2
|
Beck TC, Wilson EM, Wilkes E, Lee LW, Norris R, Valdebran M. Kappa opioid agonists in the treatment of itch: just scratching the surface? ITCH (PHILADELPHIA, PA.) 2023; 8:e0072. [PMID: 38099236 PMCID: PMC10720604 DOI: 10.1097/itx.0000000000000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Chronic pruritus is a debilitating condition affecting 23-44 million Americans. Recently, kappa opioid agonists (KOAs) have emerged as a novel class of potent antipruritic agents. In 2021, the Food and Drug Administration approved difelikefalin (Korsuva) for the treatment of moderate-to-severe pruritus associated with chronic kidney disease in adults undergoing hemodialysis. Difelikefalin is a potent, peripherally restricted KOA that is intravenously available. Although promising, difelikefalin is currently available as an intravenous composition only, limiting the scope of use. Oral formulations of difelikefalin did not meet the primary endpoint criteria in recent phase 2 clinical trials; however, additional clinical studies are ongoing. The future for KOAs in the treatment of pruritus is encouraging. Orally active pathway-biased KOAs, such as triazole 1.1, may serve as viable alternatives with broader applications. Extended-release compositions, such as the TP-2021 ProNeura subdermal implant, may circumvent the pharmacokinetic issues associated with peptide-based KOAs. Lastly, dual-acting kappa opioid receptor agonist/mu opioid receptor antagonists are orally bioavailable and may be useful in the treatment of various forms of chronic itch. In this review, we summarize the results of KOAs in clinical and preclinical trials and discuss future directions of drug development.
Collapse
Affiliation(s)
- Tyler C. Beck
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Elena M. Wilson
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, SC
| | - Erik Wilkes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - Lara Wine Lee
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, SC
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Russell Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Manuel Valdebran
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, SC
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
3
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
4
|
Toyama S, Tominaga M, Takamori K. Treatment Options for Troublesome Itch. Pharmaceuticals (Basel) 2022; 15:1022. [PMID: 36015170 PMCID: PMC9412524 DOI: 10.3390/ph15081022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023] Open
Abstract
Itch (or pruritus) is an unpleasant sensation, inducing the desire to scratch. It is also a major and distressing symptom of many skin and systemic diseases. The involvement of histamine, which is a major itch mediator, has been extensively examined. Recent studies suggest that histamine-independent pathways may play roles in chronic itch. Therefore, antihistamines are not always effective in the treatment of patients with chronic itch. The development of biologics and κ-opioid receptor (KOR) agonists has contributed to advances in the treatment of itch; however, since biologics are expensive for patients to purchase, some patients may limit or discontinue their use of these agents. Furthermore, KOR agonists need to be prescribed with caution due to risks of side effects in the central nervous system. Janus kinase (JAK) inhibitors are sometimes associated with side effects, such as infection. In this review, we summarize antidepressants, antineuralgics, cyclosporine A, antibiotics, crotamiton, phosphodiesterase 4 inhibitor, botulinum toxin type A, herbal medicines, phototherapy, and acupuncture therapy as itch treatment options other than antihistamines, biologics, opioids, and JAK inhibitors; we also explain their underlying mechanisms of action.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
| |
Collapse
|
5
|
Dalefield ML, Scouller B, Bibi R, Kivell BM. The Kappa Opioid Receptor: A Promising Therapeutic Target for Multiple Pathologies. Front Pharmacol 2022; 13:837671. [PMID: 35795569 PMCID: PMC9251383 DOI: 10.3389/fphar.2022.837671] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Kappa-opioid receptors (KOR) are widely expressed throughout the central nervous system, where they modulate a range of physiological processes depending on their location, including stress, mood, reward, pain, inflammation, and remyelination. However, clinical use of KOR agonists is limited by adverse effects such as dysphoria, aversion, and sedation. Within the drug-development field KOR agonists have been extensively investigated for the treatment of many centrally mediated nociceptive disorders including pruritis and pain. KOR agonists are potential alternatives to mu-opioid receptor (MOR) agonists for the treatment of pain due to their anti-nociceptive effects, lack of abuse potential, and reduced respiratory depressive effects, however, dysphoric side-effects have limited their widespread clinical use. Other diseases for which KOR agonists hold promising therapeutic potential include pruritis, multiple sclerosis, Alzheimer's disease, inflammatory diseases, gastrointestinal diseases, cancer, and ischemia. This review highlights recent drug-development efforts targeting KOR, including the development of G-protein-biased ligands, mixed opioid agonists, and peripherally restricted ligands to reduce side-effects. We also highlight the current KOR agonists that are in preclinical development or undergoing clinical trials.
Collapse
Affiliation(s)
| | | | | | - Bronwyn M. Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
6
|
Abstract
Nalfurafine has been used clinically in Japan for treatment of itch in kidney dialysis patients and in patients with chronic liver diseases. A one-year post-marketing study showed nalfurafine to be safe and efficacious without producing side effects of typical KOR agonists such as anhedonia and psychotomimesis. In this chapter, we summarize in vitro characterization and in vivo preclinical studies on nalfurafine. In vitro, nalfurafine is a highly potent and moderately selective KOR full agonist; however, whether it is a biased KOR agonist is a matter of debate. In animals, nalfurafine produced anti-pruritic effects in a dose range lower than that caused side effects, including conditioned place aversion (CPA), hypolocomotion, motor incoordination, consistent with the human data. In addition, nalfurafine showed antinociceptive effects in several pain models at doses that did not cause the side effects mentioned above. It appears to be effective against inflammatory pain and mechanical pain, but less so against thermal pain, particularly high-intensity thermal pain. U50,488H and nalfurafine differentially modulated several signaling pathways in a brain region-specific manners. Notably, U50,488H, but not nalfurafine, activated the mTOR pathway, which contributed to U50,488H-induced CPA. Because of its lack of side effects associated with typical KOR agonists, nalfurafine has been investigated as a combination therapy with an MOR ligand for pain treatment and for its effects on opioid use disorder and alcohol use disorder, and results indicate potential usefulness for these indications. Thus, although in vitro data regarding uniqueness of nalfurafine in terms of signaling at the KOR are somewhat equivocal, in vivo results support the assertion that nalfurafine is an atypical KOR agonist with a significantly improved side-effect profile relative to typical KOR agonists.
Collapse
|
7
|
Wang X, Gou X, Yu X, Bai D, Tan B, Cao P, Qian M, Zheng X, Wang H, Tang P, Zhang C, Ye F, Ni J. Antinociceptive and Antipruritic Effects of HSK21542, a Peripherally-Restricted Kappa Opioid Receptor Agonist, in Animal Models of Pain and Itch. Front Pharmacol 2021; 12:773204. [PMID: 34867403 PMCID: PMC8635029 DOI: 10.3389/fphar.2021.773204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Kappa opioid receptor (KOR) agonists have been promising therapeutic candidates, owing to their potential for relieving pain and treating intractable pruritus. Although lacking morphine-like central nervous system (CNS) effects, KOR agonists do elicit sedation, dysphoria and diuresis which seriously impede their development. Peripherally-restricted KOR agonists have a poor ability to penetrate into the CNS system, so that CNS-related adverse effects can be ameliorated or even abolished. However, the only approved peripherally-restricted KOR agonist CR845 remains some frequent CNS adverse events. In the present study, we aim to address pharmacological profiles of HSK21542, with an expectation to provide a safe and effective alternative for patients who are suffering from pain and pruritus. The in vitro experimental results showed that HSK21542 was a selective and potent KOR agonist with higher potency than CR845, and had a brain/plasma concentration ratio of 0.001, indicating its peripheral selectivity. In animal models of pain, HSK21542 significantly inhibited acetic acid-, hindpaw incision- or chronic constriction injury-induced pain-related behaviors, and the efficacy was comparable to CR845 at 15 min post-dosing. HSK21542 had a long-lasting analgesic potency with a median effective dose of 1.48 mg/kg at 24 h post-drug in writhing test. Meanwhile, the antinociceptive activity of HSK21542 was effectively reversed by a KOR antagonist nor-binaltorphimine. In addition, HSK21542 had powerful antipruritic activities in compound 48/80-induced itch model. On the other hand, HSK21542 had a weak ability to produce central antinociceptive effects in a hot-plate test and fewer effects on the locomotor activity of mice. HSK21542 didn't affect the respiratory rate of mice. Therefore, HSK21542 might be a safe and effective KOR agonist and promising candidate for treating pain and pruritus.
Collapse
Affiliation(s)
- Xin Wang
- Intensive Care Unit, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoli Gou
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Xiaojuan Yu
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Dongdong Bai
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Bowei Tan
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Pingfeng Cao
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Meilin Qian
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Xiaoxiao Zheng
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Hairong Wang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Pingming Tang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Chen Zhang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Fei Ye
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Jia Ni
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| |
Collapse
|
8
|
Cowan A, Liu-Chen LY, Inan S. Itching-like behavior: A common effect of the kappa opioid receptor antagonist 5′-guanidinonaltrindole and the biased kappa opioid receptor agonist 6′-guanidinonaltrindole in mice. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
9
|
Li JN, Ren JH, Zhao LJ, Wu XM, Li H, Dong YL, Li YQ. Projecting neurons in spinal dorsal horn send collateral projections to dorsal midline/intralaminar thalamic complex and parabrachial nucleus. Brain Res Bull 2021; 169:184-195. [PMID: 33508400 DOI: 10.1016/j.brainresbull.2021.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Itch is an annoying sensation that always triggers scratching behavior, yet little is known about its transmission pathway in the central nervous system. Parabrachial nucleus (PBN), an essential transmission nucleus in the brainstem, has been proved to be the first relay station in itch sensation. Meanwhile, dorsal midline/intralaminar thalamic complex (dMITC) is proved to be activated with nociceptive stimuli. However, whether the PBN-projecting neurons in spinal dorsal horn (SDH) send collateral projections to dMITC, and whether these projections involve in itch remain unknown. In the present study, a double retrograde tracing method was applied when the tetramethylrhodamine-dextran (TMR) was injected into the dMITC and Fluoro-gold (FG) was injected into the PBN, respectively. Immunofluorescent staining for NeuN, substance P receptor (SPR), substance P (SP), or FOS induced by itch or pain stimulations with TMR and FG were conducted to provide morphological evidence. The results revealed that TMR/FG double-labeled neurons could be predominately observed in superficial laminae and lateral spinal nucleus (LSN) of SDH; Meanwhile, most of the collateral projection neurons expressed SPR and some of them expressed FOS in acute itch model induced by histamine. The present results implicated that some of the SPR-expressing neurons in SDH send collateral projections to the dMITC and PBN in itch transmission, which might be involved in itch related complex affective/emotional processing to the higher brain centers.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Hao Ren
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Liu-Jie Zhao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue-Mei Wu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, China.
| |
Collapse
|
10
|
Spetea M, Schmidhammer H. Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. Handb Exp Pharmacol 2021; 271:163-195. [PMID: 33454858 DOI: 10.1007/164_2020_431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kappa opioid receptor (KOR), a G protein-coupled receptor, and its endogenous ligands, the dynorphins, are prominent members of the opioid neuromodulatory system. The endogenous kappa opioid system is expressed in the central and peripheral nervous systems, and has a key role in modulating pain in central and peripheral neuronal circuits and a wide array of physiological functions and neuropsychiatric behaviors (e.g., stress, reward, emotion, motivation, cognition, epileptic seizures, itch, and diuresis). We review the latest advances in pharmacology of the KOR, chemical developments on KOR ligands with advances and challenges, and therapeutic and potential applications of KOR ligands. Diverse discovery strategies of KOR ligands targeting natural, naturally derived, and synthetic compounds with different scaffolds, as small molecules or peptides, with short or long-acting pharmacokinetics, and central or peripheral site of action, are discussed. These research efforts led to ligands with distinct pharmacological properties, as agonists, partial agonists, biased agonists, and antagonists. Differential modulation of KOR signaling represents a promising strategy for developing pharmacotherapies for several human diseases, either by activating (treatment of pain, pruritus, and epilepsy) or blocking (treatment of depression, anxiety, and addiction) the receptor. We focus on the recent chemical and pharmacological advances on diphenethylamines, a new class of structurally distinct, selective KOR ligands. Design strategies and investigations to define structure-activity relationships together with in vivo pharmacology of diphenethylamines as agonists, biased agonists, and antagonists and their potential use as therapeutics are discussed.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Antipruritic Effects of Kappa Opioid Receptor Agonists: Evidence from Rodents to Humans. Handb Exp Pharmacol 2020; 271:275-292. [PMID: 33296031 DOI: 10.1007/164_2020_420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centrally administered bombesin induces scratching and grooming in rats. These behaviors were blocked by early benzomorphan kappa opioid receptor (KOR) agonists as reported by Gmerek and Cowan in 1984. This was the first evidence that KORs may be involved in the sensation of itch-like behaviors. Subsequent development of additional animal models for acute and chronic itch has led to important discoveries since then. For example, it was found that (a) gastrin-releasing peptide (GRP), natriuretic polypeptide b and their cognate receptors are keys for the transmission of itch sensation at the spinal cord level, (b) dynorphins (Dyns), the endogenous KOR agonists, work as inhibitory neuromodulators of itch at the spinal cord level, (c) in a mouse model for acute itch, certain KOR antagonists elicit scratching, (d) in mouse models of acute or chronic itch, KOR agonists (e.g., U50,488, nalfurafine, CR 845, nalbuphine) suppress scratching induced by different pruritogens, and (e) nalfurafine, CR 845, and nalbuphine are in the clinic or in clinical trials for pruritus associated with chronic kidney disease and chronic liver disease, as well as pruritus in chronic skin diseases.
Collapse
|
12
|
3'-O-Methylorobol Inhibits the Voltage-Gated Sodium Channel Nav1.7 with Anti-Itch Efficacy in A Histamine-Dependent Itch Mouse Model. Int J Mol Sci 2019; 20:ijms20236058. [PMID: 31805638 PMCID: PMC6928743 DOI: 10.3390/ijms20236058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
An itch is a clinical complication that affects millions of patients. However, few treatment options are available. The voltage-gated sodium channel Nav1.7 is predominantly expressed in peripheral sensory neurons and is responsible for the rising phase of action potentials, thereby mediating nociceptive conduction. A gain-of-function mutation of Nav1.7 results in the hyperexcitability of sensory neurons and causes the inherited paroxysmal itch. Conversely, a monoclonal antibody that selectively inhibits Nav1.7 is able to effectively suppress the histamine-dependent itch in mice. Therefore, Nav1.7 inhibitors may possess the potential to relieve the itch. In the present study, using whole-cell voltage-clamp recordings, we demonstrated that 3’-O-methylorobol inhibited Na+ currents in Nav1.7-CHO cells and tetrodotoxin-sensitive Na+ currents in mouse dorsal root ganglion (DRG) neurons with IC50 (half-maximal inhibitory concentration) values of 3.46 and 6.60 μM, respectively. 3’-O-methylorobol also suppressed the tetrodotoxin-resistant Na+ currents in DRG neurons, though with reduced potency (~43% inhibition at 30 µM). 3’-O-methylorobol (10 µM) affected the Nav1.7 by shifting the half-maximal voltage (V1/2) of activation to a depolarizing direction by ~6.76 mV, and it shifted the V1/2 of inactivation to a hyperpolarizing direction by ~16.79 mV. An analysis of 3’-O-methylorobol activity toward an array of itch targets revealed that 3’-O-methylorobol was without effect on histamine H1 receptor, TRPV1, TRPV3, TRPV4, TRPC4 and TRPM8. The intrathecal administration of 3’-O-methylorobol significantly attenuated compound 48/80-induced histamine-dependent spontaneous scratching bouts and the expression level of c-fos in the nuclei of spinal dorsal horn neurons with a comparable efficacy to that of cyproheptadine. Our data illustrated the therapeutic potential for 3’-O-methylorobol for histamine-dependent itching, and the small molecule inhibition of Nav1.7 may represent a useful strategy to develop novel therapeutics for itching.
Collapse
|
13
|
Nalbuphine, a kappa opioid receptor agonist and mu opioid receptor antagonist attenuates pruritus, decreases IL-31, and increases IL-10 in mice with contact dermatitis. Eur J Pharmacol 2019; 864:172702. [PMID: 31568781 DOI: 10.1016/j.ejphar.2019.172702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Chronic itch is one of the disturbing symptoms of inflammatory skin diseases. Kappa opioid receptor agonists are effective in suppressing scratching in mice against different pruritogens. Nalbuphine, a nonscheduled kappa opioid receptor agonist and mu opioid receptor antagonist, has been in clinical use for post-operative pain management since the 1980s and recently has been in clinical trials for chronic itch of prurigo nodularis (https://www.trevitherapeutics.com/nalbuphine). We studied whether nalbuphine is effective against chronic scratching induced by rostral neck application of 1-fluoro-2,4-dinitrobenzene (DNFB), an accepted mouse model of contact dermatitis to study pruritoceptive itch. Mice were treated once a week with either saline or nalbuphine 20 min before the third, fifth, seventh, and ninth sensitizations with DNFB and the number of scratching bouts was counted for 30 min. Skin samples from the neck of mice at week 4 were used to measure protein levels and mRNA expressions of chemokines and cytokines. Different sets of mice were used to study sedation and anhedonic-like behavior of nalbuphine. We found that: nalbuphine (a) antagonized scratching in a dose- and time-dependent manner without affecting locomotion, b) decreased IL-31, and increased anti-inflammatory IL-10, and c) induced more elevations in the levels of CCL2, CCL3, CCL12, CXCL1, CXCL2, CXCL9, CXCL10, IL-1β, IL-16, TIMP-1, M-CSF, TREM-1 and M1-type macrophages compared to saline. Increases in chemokines and cytokines and M1 macrophages by nalbuphine suggest an inflammatory phase of healing in damaged skin due to scratching. Our data indicate that nalbuphine is an effective antipruritic in murine model of pruritoceptive itch.
Collapse
|
14
|
Mores KL, Cummins BR, Cassell RJ, van Rijn RM. A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists. Front Pharmacol 2019; 10:407. [PMID: 31057409 PMCID: PMC6478756 DOI: 10.3389/fphar.2019.00407] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Between 2000 and 2005 several studies revealed that morphine is more potent and exhibits fewer side effects in beta-arrestin 2 knockout mice. These findings spurred efforts to develop opioids that signal primarily via G protein activation and do not, or only very weakly, recruit beta-arrestin. Development of such molecules targeting the mu opioid receptor initially outpaced those targeting the kappa, delta and nociceptin opioid receptors, with the G protein-biased mu opioid agonist oliceridine/TRV130 having completed phase III clinical trials with improved therapeutic window to treat moderate-to-severe acute pain. Recently however, there has been a sharp increase in the development of novel G protein-biased kappa agonists. It is hypothesized that G protein-biased kappa agonists can reduce pain and itch, but exhibit fewer side effects, such as anhedonia and psychosis, that have thus far limited the clinical development of unbiased kappa opioid agonists. Here we summarize recently discovered G protein-biased kappa agonists, comparing structures, degree of signal bias and preclinical effects. We specifically reviewed nalfurafine, 22-thiocyanatosalvinorin A (RB-64), mesyl-salvinorin B, 2-(4-(furan-2-ylmethyl)-5-((4-methyl-3-(trifluoromethyl)benzyl)thio)-4H-1,2,4-triazol-3-yl)pyridine (triazole 1.1), 3-(2-((cyclopropylmethyl)(phenethyl)amino)ethyl)phenol (HS666), N-n-butyl-N-phenylethyl-N-3-hydroxyphenylethyl-amine (compound 5/BPHA), 6-guanidinonaltrindole (6′GNTI), and collybolide. These agonists encompass a variety of chemical scaffolds and range in both their potency and efficacy in terms of G protein signaling and beta-arrestin recruitment. Thus unsurprisingly, the behavioral responses reported for these agonists are not uniform. Yet, it is our conclusion that the kappa opioid field will benefit tremendously from future studies that compare several biased agonists and correlate the degree of signaling bias to a particular pharmacological response.
Collapse
Affiliation(s)
- Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States
| | - Benjamin R Cummins
- Department of Chemistry, College of Science, West Lafayette, IN, United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| |
Collapse
|
15
|
Lee YC, Lin CH, Hung SY, Chung HY, Luo ST, MacDonald I, Chu YT, Lin PL, Chen YH. Manual acupuncture relieves bile acid-induced itch in mice: the role of microglia and TNF-α. Int J Med Sci 2018; 15:953-960. [PMID: 30008609 PMCID: PMC6036097 DOI: 10.7150/ijms.24146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
Pruritus, or itch, is a frequent complaint amongst patients with cholestatic hepatobiliary disease and is difficult to manage, with many patients refractory to currently available antipruritic treatments. In this study, we examined whether manual acupuncture (MA) at particular acupoints represses deoxycholic acid (DCA)-induced scratching behavior and microglial activation and compared these effects with those induced by another pruritogen, 5'-guanidinonaltrindole (GNTI, a kappa opioid receptor antagonist). MA at Hegu (LI4) and Quchi (LI11) acupoints significantly attenuated DCA- and GNTI-induced scratching, whereas no such effects were observed at the bilateral Zusanli acupoints (ST36). Interestingly, GNTI-induced scratching was reduced similarly by both MA and electroacupuncture (EA) at the LI4 and LI11 acupoints. MA at non-acupoints did not affect scratching behavior. Intraperitoneal injection of minocycline (a microglial inhibitor) reduced GNTI- and DCA-induced scratching behavior. In Western blot analysis, subcutaneous DCA injection to the back of the neck increased spinal cord expression of ionized calcium-binding adapter molecule 1 (Iba1) and tumor necrosis factor-alpha (TNF-α) as compared with saline injection, while MA at LI4 and LI11 reduced these DCA-induced changes. Immunofluorescence confocal microcopy revealed that DCA-induced Iba1-positive cells with thicker processes emanated from the enlarged cell bodies, while this effect was attenuated by pretreatment with MA. It is concluded that microglia and TNF-α play important roles in the itching sensation and MA reduces DCA-induced scratching behavior by alleviating spinal microglial activation. MA may be an effective treatment for cholestatic pruritus.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Acupuncture, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Chia-Hsien Lin
- Department of Health Industry Management, Kainan University, No. 1 Kainan Road, Taoyuan 33857, Taiwan
| | - Shih-Ya Hung
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Sih-Ting Luo
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Iona MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Yu-Ting Chu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Pei-Lin Lin
- Department of Anesthesiology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan.,Department of Photonics and Communication Engineering, Asia University, Taiwan
| |
Collapse
|
16
|
Schattauer SS, Kuhar JR, Song A, Chavkin C. Nalfurafine is a G-protein biased agonist having significantly greater bias at the human than rodent form of the kappa opioid receptor. Cell Signal 2017; 32:59-65. [PMID: 28088389 DOI: 10.1016/j.cellsig.2017.01.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/04/2016] [Accepted: 01/09/2017] [Indexed: 11/27/2022]
Abstract
Nalfurafine is a moderately selective kappa opioid receptor (KOR) analgesic with low incidence of dysphoric side effects in clinical development for the treatment of uremic pruritis. The basis for its reduced dysphoric effect compared to other KOR agonists is not clear, but prior studies suggest that the aversive properties of KOR agonists require p38α MAPK activation through an arrestin-dependent mechanism. To determine whether nalfurafine is a functionally selective KOR agonist, we measured its potency to activate the G protein-dependent early phase of Extracellular Signal-Regulated Kinase (ERK1/2) phosphorylation and the arrestin-dependent late phase of p38 MAPK signaling. Nalfurafine was approximately 250 fold more potent for ERK1/2 activation as compared to p38 MAPK activation in human KOR (hKOR) expressing HEK293 cells, and approximately 20 fold more potent for ERK1/2 activation than p38 activation in rodent KOR (rKOR) expressing HEK293 cells. The 10-fold greater G-bias at the hKOR than rKOR was unexpected, however the G protein biased effect of nalfurafine is consistent with its reduced dysphoric effects in human and rodent models. Although nalfurafine is reported to have low receptor selectivity in radioligand binding assays, its antinociceptive effect was blocked by the selective KOR antagonist norbinaltorphimine. Nalfurafine pretreatment also resulted in a KOR-dependent and mu opioid receptor-independent reduction in scratching induced by 5'-GNTI. These findings suggest that nalfurafine is a functionally selective KOR agonist and that KOR agonists able to selectively activate G protein signaling without activating p38α MAPK may have therapeutic potential as non-dysphoric antipruritic analgesics.
Collapse
Affiliation(s)
- Selena S Schattauer
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, United States
| | - Jamie R Kuhar
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, United States
| | - Allisa Song
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, United States
| | - Charles Chavkin
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, United States.
| |
Collapse
|
17
|
Cai X, Huang H, Kuzirian MS, Snyder LM, Matsushita M, Lee MC, Ferguson C, Homanics GE, Barth AL, Ross SE. Generation of a KOR-Cre knockin mouse strain to study cells involved in kappa opioid signaling. Genesis 2015; 54:29-37. [PMID: 26575788 DOI: 10.1002/dvg.22910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/26/2015] [Accepted: 11/15/2015] [Indexed: 01/06/2023]
Abstract
The kappa opioid receptor (KOR) has numerous important roles in the nervous system including the modulation of mood, reward, pain, and itch. In addition, KOR is expressed in many non-neuronal tissues. However, the specific cell types that express KOR are poorly characterized. Here, we report the development of a KOR-Cre knockin allele, which provides genetic access to cells that express KOR. In this mouse, Cre recombinase (Cre) replaces the initial coding sequence of the Opkr1 gene (encoding the kappa opioid receptor). We demonstrate that the KOR-Cre allele mediates recombination by embryonic day 14.5 (E14.5). Within the brain, KOR-Cre shows expression in numerous areas including the cerebral cortex, nucleus accumbens and striatum. In addition, this allele is expressed in epithelium and throughout many regions of the body including the heart, lung, and liver. Finally, we reveal that KOR-Cre mediates recombination of a subset of bipolar and amacrine cells in the retina. Thus, the KOR-Cre mouse line is a valuable new tool for conditional gene manipulation to enable the study of KOR.
Collapse
Affiliation(s)
- Xiaoyun Cai
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huizhen Huang
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA.,Tsinghua University School of Medicine, Beijing, China
| | - Marissa S Kuzirian
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsey M Snyder
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megumi Matsushita
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michael C Lee
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn Ferguson
- Departments of Anesthesiology and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E Homanics
- Departments of Anesthesiology and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sarah E Ross
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Cowan A, Lyu RM, Chen YH, Dun SL, Chang JK, Dun NJ. Phoenixin: A candidate pruritogen in the mouse. Neuroscience 2015; 310:541-8. [PMID: 26415767 DOI: 10.1016/j.neuroscience.2015.09.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022]
Abstract
Phoenixin (PNX) is a 14-amino acid amidated peptide (PNX-14) or an N-terminal extended 20-residue amidated peptide (PNX-20) recently identified in neural and non-neural tissue. Mass spectrometry analysis identified a major peak corresponding to PNX-14, with negligible PNX-20, in mouse spinal cord extracts. Using a previously characterized antiserum that recognized both PNX-14 and PNX-20, PNX-immunoreactivity (irPNX) was detected in a population of dorsal root ganglion (DRG) cells and in cell processes densely distributed to the superficial layers of the dorsal horn; irPNX cell processes were also detected in the skin. The retrograde tracer, Fluorogold, injected subcutaneously (s.c.) to the back of the cervical and thoracic spinal cord of mice, labeled a population of DRG, some of which were also irPNX. PNX-14 (2, 4 and 8 mg/kg) injected s.c.to the nape of the neck provoked dose-dependent repetitive scratching bouts directed to the back of the neck with the hindpaws. The number of scratching bouts varied from 16 to 95 in 30 min, commencing within 5 min post-injection and lasted 10-15 min. Pretreatment of mice at -20 min with nalfurafine (20 μg/kg, s.c.), the kappa opioid receptor agonist, significantly reduced the number of bouts induced by PNX-14 (4 mg/kg) compared with that of saline-pretreated mice. Our results suggest that the peptide, PNX-14, serves as one of the endogenous signal molecules transducing itch sensation in the mouse.
Collapse
Affiliation(s)
- A Cowan
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - R-M Lyu
- Phoenix Pharmaceuticals Inc., Burlingame, CA 94010, USA
| | - Y-H Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - S L Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - J-K Chang
- Phoenix Pharmaceuticals Inc., Burlingame, CA 94010, USA
| | - N J Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
19
|
Investigation of the role of βarrestin2 in kappa opioid receptor modulation in a mouse model of pruritus. Neuropharmacology 2015; 99:600-9. [PMID: 26318102 DOI: 10.1016/j.neuropharm.2015.08.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 11/22/2022]
Abstract
The kappa opioid receptor (KOR) is involved in mediating pruritus; agonists targeting this receptor have been used to treat chronic intractable itch. Conversely, antagonists induce an itch response at the site of injection. As a G protein-coupled receptor (GPCR), the KOR has potential for signaling via G proteins and βarrestins, however, it is not clear which of these pathways are involved in the KOR modulation of itch. In this study asked whether the actions of KOR in pruritus involve βarrestins by using βarrestin2 knockout (βarr2-KO) mice as well as a recently described biased KOR agonist that biases receptor signaling toward G protein pathways over βarrestin2 recruitment. We find that the KOR antagonists nor-binaltorphimine (NorBNI) and 5'-guanidinonaltrindole (5'GNTI) induce acute pruritus in C57BL/6J mice, with reduced effects in KOR-KO mice. βArr2-KO mice display less of a response to KOR antagonist-induced itch compared to wild types, however no genotype differences are observed from chloroquine phosphate (CP)-induced itch, suggesting that the antagonists may utilize a KOR-βarrestin2 dependent mechanism. The KOR agonist U50,488H was equally effective in both WT and βarr2-KO mice in suppressing CP-induced itch. Furthermore, the G protein biased agonist, Isoquinolinone 2.1 was as effective as U50,488H in suppressing the itch response induced by KOR antagonist NorBNI or CP in C57BL/6J mice. Together these data suggest that the antipruritic effects of KOR agonists may not require βarrestins.
Collapse
|
20
|
Lovell KM, Frankowski KJ, Stahl EL, Slauson SR, Yoo E, Prisinzano TE, Aubé J, Bohn LM. Structure-activity relationship studies of functionally selective kappa opioid receptor agonists that modulate ERK 1/2 phosphorylation while preserving G protein over βarrestin2 signaling bias. ACS Chem Neurosci 2015; 6:1411-9. [PMID: 25891774 DOI: 10.1021/acschemneuro.5b00092] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Kappa opioid receptor (KOR) modulation is a promising target for drug discovery efforts due to KOR involvement in pain, depression, and addiction behaviors. We recently reported a new class of triazole KOR agonists that displays significant bias toward G protein signaling over βarrestin2 recruitment; interestingly, these compounds also induce less activation of ERK1/2 map kinases than the balanced agonist, U69,593. We have identified structure-activity relationships around the triazole scaffold that allows for decreasing the bias for G protein signaling over ERK1/2 activation while maintaining the bias for G protein signaling over βarrestin2 recruitment. The development of novel compounds, with different downstream signaling outcomes, independent of G protein/βarrestin2 bias, provides a more diverse pharmacological toolset for use in defining complex KOR signaling and elucidating the significance of KOR-mediated signaling.
Collapse
Affiliation(s)
- Kimberly M. Lovell
- Departments
of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kevin J. Frankowski
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Edward L. Stahl
- Departments
of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Stephen R. Slauson
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Euna Yoo
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Thomas E. Prisinzano
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Jeffrey Aubé
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Laura M. Bohn
- Departments
of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
21
|
Abstract
Given its profound analgesic nature, neuraxial opioids are frequently used for pain management. Unfortunately, the high incident rate of itch/pruritus after spinal administration of opioid analgesics reported in postoperative and obstetric patients greatly diminishes patient satisfaction and thus the value of the analgesics. Many endeavors to solve the mystery behind neuraxial opioid-induced itch had not been successful, as the pharmacological antagonism other than the blockade of mu opioid receptors remains elusive. Nevertheless, as the characteristics of all opioid receptor subtypes have become more understood, more studies have shed light on the potential effective treatments. This review discusses the mechanisms underlying neuraxial opioid-induced itch and compares pharmacological evidence in nonhuman primates with clinical findings across diverse drugs. Both nonhuman primate and human studies corroborate that mixed mu/kappa opioid partial agonists seem to be the most effective drugs in ameliorating neuraxial opioid-induced itch while retaining neuraxial opioid-induced analgesia.
Collapse
|
22
|
Salaga M, Polepally PR, Zielinska M, Marynowski M, Fabisiak A, Murawska N, Sobczak K, Sacharczuk M, Do Rego JC, Roth BL, Zjawiony JK, Fichna J. Salvinorin A analogues PR-37 and PR-38 attenuate compound 48/80-induced itch responses in mice. Br J Pharmacol 2015; 172:4331-41. [PMID: 26040667 DOI: 10.1111/bph.13212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The opioid system plays a crucial role in several physiological processes in the CNS and in the periphery. It has also been shown that selective opioid receptor agonists exert potent inhibitory action on pruritus and pain. In this study we examined whether two analogues of Salvinorin A, PR-37 and PR-38, exhibit antipruritic properties in mice. EXPERIMENTAL APPROACH To examine the antiscratch effect of PR-37 and PR-38 we used a mouse model of compound 48/80-induced pruritus. In order to elucidate the mechanism of action of tested compounds, specific antagonists of opioid and cannabinoid receptors were used. The effect of PR-37 on the CNS was assessed by measuring motor parameters and exploratory behaviours in mice. KEY RESULTS PR-37 and PR-38, jnjected s.c., significantly reduced the number of compound 48/80-induced scratching behaviours in mice in a dose- and time-dependent manner. PR-38 was also active when orally administered. The antiscratch activity of PR-37 was blocked by the selective κ opioid receptor antagonist, nor-binaltorphimine, and that of PR-38 by the selective μ opioid receptor antagonist, β-funaltrexamine. CONCLUSION AND IMPLICATIONS In conclusion, a novel framework for the development of new antipruritic drugs derived from salvinorin A has been validated.
Collapse
Affiliation(s)
- M Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - P R Polepally
- Department of BioMolecular Sciences, Division of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| | - M Zielinska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - M Marynowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - A Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - N Murawska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - K Sobczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - M Sacharczuk
- Department of Molecular Cytogenetic, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - J C Do Rego
- Platform of Behavioural Analysis (SCAC), Institute for Research and Innovation in Biomedicine (IRIB), Faculty of Medicine & Pharmacy, University of Rouen, Rouen Cedex, France
| | - B L Roth
- Department of Pharmacology, Division of Chemical Biology and Medicinal Chemistry, Medical School, NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, NC, USA
| | - J K Zjawiony
- Department of BioMolecular Sciences, Division of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
Akiyama T, Carstens MI, Piecha D, Steppan S, Carstens E. Nalfurafine suppresses pruritogen- and touch-evoked scratching behavior in models of acute and chronic itch in mice. Acta Derm Venereol 2015; 95:147-50. [PMID: 24890341 DOI: 10.2340/00015555-1879] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The kappa-opioid agonist, nalfurafine, has been approved in Japan for treatment of itch in patients with chronic kidney disease. We presently investigated if systemic administration of nalfurafine inhibited ongoing or touch-evoked scratching behavior (alloknesis) following acute intradermal injection of histamine or the non-histaminergic itch mediator, chloroquine, in mice. We also investigated if nalfurafine suppressed spontaneous or touch-evoked scratching in an experimental model of chronic dry skin itch. Nalfurafine reduced scratching evoked by histamine and chloroquine. Following acute histamine, but not chloroquine, low-threshold mechanical stimuli reliably elicited directed hindlimb scratching behavior, which was significantly attenuated by nalfurafine. In mice with experimental dry skin, nalfurafine abolished spontaneous scratching but had no effect on alloknesis. Nalfurafine thus appears to be a promising treatment for acute itch as well as ongoing itch of dry skin.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Ave, Davis CA 95616, USA
| | | | | | | | | |
Collapse
|
24
|
Cowan A, Kehner GB, Inan S. Targeting Itch with Ligands Selective for κ Opioid Receptors. Handb Exp Pharmacol 2015; 226:291-314. [PMID: 25861786 DOI: 10.1007/978-3-662-44605-8_16] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Several chemically diverse pruritogens, including bombesin, compound 48/80, norbinaltorphimine, and 5'-GNTI, cause rodents to scratch excessively in a stable, uniform manner and consequently provide convenient animal models of itch against which potential antipruritics may be evaluated, structure-activity relationships established, and the nature of spontaneous, repetitive behavior itself analyzed. Decreasing the number of scratching bouts in these apparently simple models has been the requisite first step in the progress of kappa opioid agonists such as nalbuphine, asimadoline, and CR845 toward clinical testing as antipruritics. Nalfurafine is the prime example of a kappa agonist spanning the developmental divide between scratching mice models and commercialization within 10 years. Patients undergoing hemodialysis and suffering from the itching associated with uremic pruritus, and potentially those inflicted with atopic dermatitis, are the beneficiaries.
Collapse
Affiliation(s)
- Alan Cowan
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA,
| | | | | |
Collapse
|
25
|
Zhang Y, Dun SL, Chen YH, Luo JJ, Cowan A, Dun NJ. Scratching activates microglia in the mouse spinal cord. J Neurosci Res 2014; 93:466-74. [PMID: 25354468 DOI: 10.1002/jnr.23501] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/26/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022]
Abstract
This study tested the hypothesis that repetitive scratching provoked by two known pruritogens, compound 48/80 and 5'-guanidinonaltrindole (GNTI), is accompanied by activation of microglial cells in the mouse spinal cord. Immunohistochemical studies revealed that the complement receptor 3, also known as cluster determinant 11b (CD11b), a cell surface marker of microglial cells, was upregulated in the spinal cord 10-30 min after a subcutaneous (s.c.) injection of compound 48/80 (50 μg/100 μl) or GNTI (0.3 mg/kg) to the back of the mouse neck. Numerous intensely labeled CD11b-immunoreactive (CD11b-ir) cells, with the appearance of hypertrophic reactive microglia, were distributed throughout the gray and white matter. In contrast, weakly labeled CD11b-ir cells were distributed in the spinal cord from mice injected with saline. Western blots showed that CD11b expression levels were significantly increased in spinal cords of mice injected s.c. with either pruritogen, reached a peak response in about 30 min, and declined to about the basal level in the ensuing 60 min. In addition, phospho-p38 (p-p38) but not p38 levels were upregulated in spinal cords from mice injected with compound 48/80 or GNTI, with a time course parallel to that of CD11b expression. Pretreatment of the mice with nalfurafine (20 µg/kg; s.c.), a κ-opioid receptor agonist that has been shown to suppress scratching, reduced CD11b and p-p38 expression induced by either pruritogen. The results demonstrate, for the first time, that scratch behavior induced by the pruritogens GNTI and compound 48/80 is accompanied by a parallel activation of microglial cells in the spinal cord.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Pathophysiology, Kunming Medical University, Kunming, China
| | | | | | | | | | | |
Collapse
|
26
|
Tsai KS, Chen YH, Chen HY, Shen EY, Lee YC, Shen JL, Wu SY, Lin JG, Chen YH, Chen WC. Antipruritic effect of cold stimulation at the Quchi acupoint (LI11) in mice. Altern Ther Health Med 2014; 14:341. [PMID: 25239797 PMCID: PMC4179855 DOI: 10.1186/1472-6882-14-341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022]
Abstract
Background Acupuncture and moxibustion are used to treat pruritus and atopic dermatitis. However, whether cold stimulation (defined as that the temperature conducted under skin temperature) of acupoints affects itching in experimental murine models remains unclear. Methods The present study was designed to determine the therapeutic effects of different thermal stimulations at the Quchi acupoint (LI11) in a murine model in which scratching behaviour was elicited by subcutaneous injection with a pruritogenic agent (compound 48/80). Male ICR mice were divided into several groups as follows: control (saline), those receiving compound 48/80 and compound 48/80 with various thermal stimulations (5°C–45°C) at LI11 (n = 6 per group). The scratch response of each animal to these stimulations was recorded for 30 min. The antipruritic effect of the acupoint was further evaluated in LI11 and sham (non-acupoint) groups (n = 6 per group). Results Treatment with lower temperature (20°C) at the LI11 acupoint significantly attenuated compound 48/80-induced scratching; however, this antipruritic effect was not observed with stimulation at the sham point. The expression of c-fos in the neuron of the cervical spine induced by compound 48/80 was suppressed by cold stimulation at LI11. The antipruritic effect of cold stimulation was blocked by ruthium red (RR), a non-selective transient receptor potential (TRP) channel blocker, suggesting that TRP channels may play an important role in the antipruritic effect of cold stimulation at LI11 in mice. Conclusions This study demonstrated that cold stimulation at LI11 attenuated compound 48/80-induced scratching behaviour in mice, possibly by a TRP-related pathway.
Collapse
|
27
|
Funahashi H, Naono-Nakayama R, Ebihara K, Koganemaru G, Kuramashi A, Ikeda T, Nishimori T, Ishida Y. Hemokinin-1 mediates pruriceptive processing in the rat spinal cord. Neuroscience 2014; 277:206-16. [DOI: 10.1016/j.neuroscience.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022]
|
28
|
Dimattio KM, Yakovleva TV, Aldrich JV, Cowan A, Liu-Chen LY. Zyklophin, a short-acting kappa opioid antagonist, induces scratching in mice. Neurosci Lett 2014; 563:155-9. [PMID: 24503508 DOI: 10.1016/j.neulet.2014.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/10/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
It has been shown previously that norbinaltorphimine (norBNI) and 5'-guanidinonaltrindole (5'-GNTI), long-acting kappa opioid receptor (KOPR) antagonists, cause frenzied scratching in mice [1,2]. In the current study, we examined if zyklophin, a short-acting cyclic peptide KOPR antagonist, also elicited scratching behavior. When injected s.c. in the nape of the neck of male Swiss-Webster mice, zyklophin at doses of 0.1, 0.3 and 1mg/kg induced dose-related hindleg scratching of the neck between 3 and 15 min after injection. Pretreating mice with norBNI (20mg/kg, i.p.) at 18-20 h before challenge with zyklophin (0.3mg/kg) did not markedly affect scratching. Additionally, KOPR-/- mice given 0.3mg/kg of zyklophin displayed similar levels of scratching as wild-type animals. The absence of KOPR in KOPR-/- mice was confirmed with ex vivo radioligand binding using [(3)H]U69,593. Taken together, our data suggest that the presence of kappa receptors is not required for the excessive scratching caused by zyklophin. Thus, zyklophin, similar to the structurally different KOPR antagonist 5'-GNTI, appears to act at other targets to elicit scratching and potentially the sensation of itch.
Collapse
Affiliation(s)
- K M Dimattio
- Center for Substance Abuse Research and Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| | - T V Yakovleva
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - J V Aldrich
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - A Cowan
- Center for Substance Abuse Research and Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| | - L Y Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
29
|
Munro TA, Huang XP, Inglese C, Perrone MG, Van't Veer A, Carroll FI, Béguin C, Carlezon WA, Colabufo NA, Cohen BM, Roth BL. Selective κ opioid antagonists nor-BNI, GNTI and JDTic have low affinities for non-opioid receptors and transporters. PLoS One 2013; 8:e70701. [PMID: 23976952 PMCID: PMC3747596 DOI: 10.1371/journal.pone.0070701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023] Open
Abstract
Background Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. Results In binding assays, the three antagonists showed no detectable affinity (Ki≥10 µM) for most non-opioid receptors and transporters (26 of 43 tested). There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold). Nor-BNI bound weakly to the α2C-adrenoceptor (Ki = 630 nM). GNTI enhanced calcium mobilization by noradrenaline at the α1A-adrenoceptor (EC50 = 41 nM), but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M1 receptor antagonist (KB = 3.7 µM). JDTic bound to the noradrenaline transporter (Ki = 54 nM), but only weakly inhibited transport (IC50 = 1.1 µM). JDTic also bound to the opioid-like receptor NOP (Ki = 12 nM), but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. Conclusions Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α1A-adrenoceptors). This may contribute to GNTI's severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists.
Collapse
MESH Headings
- Allosteric Regulation
- Biological Transport
- Caco-2 Cells
- Calcium/metabolism
- Guanidines/metabolism
- Guanidines/pharmacology
- Humans
- Kinetics
- Morphinans/metabolism
- Morphinans/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/metabolism
- Naltrexone/pharmacology
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Norepinephrine/metabolism
- Norepinephrine Plasma Membrane Transport Proteins/metabolism
- Piperidines/metabolism
- Piperidines/pharmacology
- Protein Binding
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Tetrahydroisoquinolines/metabolism
- Tetrahydroisoquinolines/pharmacology
Collapse
Affiliation(s)
- Thomas A. Munro
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, Australia
- * E-mail:
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Carmela Inglese
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Ashlee Van't Veer
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - F. Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, North Carolina, United States of America
| | - Cécile Béguin
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A. Carlezon
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicola A. Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Bruce M. Cohen
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan L. Roth
- National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
30
|
Abstract
INTRODUCTION Chronic pruritus (CP), defined as itch lasting for > 6 weeks, is a burdensome symptom of several different diseases, dermatological and systemic, with a high negative impact on the quality of life of patients. Given the manifold aetiologies of CP, therapy is often difficult. In recent years, however, novel substances have been developed for treatment of certain CP entities and identified targets. AREAS COVERED In this review, the authors present a survey of targets currently believed to be promising (H4R, IL-31, MOR, KOR, GRPR, NGF, NK-1R, TRP channels) and related investigational drugs that are in the preclinical or clinical stage of development. Some substances have already undergone clinical testing, but only one of them (nalfurafine) has been licensed so far. Many of them are most likely to exert their effects on the skin and interfere there with the cutaneous neurobiology of CP. EXPERT OPINION Currently, the most promising candidates for new therapeutic agents in CP are neurokinin-1 receptor antagonists and substances targeting the kappa- or mu-opioid receptor, or both. They have the potential to target the neuronal pathway of CP and are thus of interest for several CP entities. The goal for the coming years is to validate these concepts and move forward in developing new drugs for the therapy of CP.
Collapse
Affiliation(s)
- Heike Benecke
- University Medicine Göttingen, Center Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
31
|
Electroacupuncture Attenuates 5'-Guanidinonaltrindole-Evoked Scratching and Spinal c-Fos Expression in the Mouse. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:319124. [PMID: 23878596 PMCID: PMC3708416 DOI: 10.1155/2013/319124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022]
Abstract
The present study was undertaken to investigate the influence of electroacupuncture (EA) on compulsive scratching in mice and c-Fos expression elicited by subcutaneous (s.c.) administration of a known puritogen, 5'-guanidinonaltrindole (GNTI) to the neck. Application of EA to Hegu (LI4) and Quchi (LI11) acupoints at 2 Hz, but not 100 Hz, attenuated GNTI-evoked scratching. In mice pretreated with the µ opioid receptor antagonist naloxone, EA 2 Hz did not attenuate GNTI-evoked scratching, whereas EA at 2 Hz did attenuate GNTI-evoked scratching in mice pretreated with the κ opioid receptor antagonist nor-binaltorphimine. Moreover, intradermal (i.d.) administration of the selective µ opioid receptor agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate (DAMGO) attenuated GNTI-evoked scratching behavior, while s.c. administration of DAMGO was ineffective. GNTI provoked c-Fos expression on the lateral side of the superficial layer of the dorsal horn of the cervical spinal cord. Application of 2 Hz EA to LI4 and LI11 decreased the number of c-Fos positive nuclei induced by GNTI. It may be concluded that application of 2 Hz EA to LI4 and LI11 attenuates scratching behavior induced by GNTI in mice and that the peripheral µ opioid system is involved, at least in part, in the anti-pruritic effects of EA.
Collapse
|
32
|
Electroacupuncture reduces cocaine-induced seizures and mortality in mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:134610. [PMID: 23690833 PMCID: PMC3652148 DOI: 10.1155/2013/134610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/17/2013] [Indexed: 12/20/2022]
Abstract
The aims of this study were to characterize the protective profile of electroacupuncture (EA) on cocaine-induced seizures and mortality in mice. Mice were treated with EA (2 Hz, 50 Hz, and 100 Hz), or they underwent needle insertion without anesthesia at the Dazhui (GV14) and Baihui (GV20) acupoints before cocaine administration. EA at 50 Hz applied to GV14 and GV20 significantly reduced the seizure severity induced by a single dose of cocaine (75 mg/kg; i.p.). Furthermore, needle insertion into GV14 and GV20 and EA at 2 Hz and 50 Hz at both acupoints significantly reduced the mortality rate induced by a single lethal dose of cocaine (125 mg/kg; i.p.). In the sham control group, EA at 50 Hz applied to bilateral Tianzong (SI11) acupoints had no protective effects against cocaine. In addition, EA at 50 Hz applied to GV14 and GV20 failed to reduce the incidence of seizures and mortality induced by the local anesthetic procaine. In an immunohistochemistry study, EA (50 Hz) pretreatment at GV14 and GV20 decreased cocaine (75 mg/kg; i.p.)-induced c-Fos expression in the paraventricular thalamus. While the dopamine D3 receptor antagonist, SB-277011-A (30 mg/kg; s.c), did not by itself affect cocaine-induced seizure severity, it prevented the effects of EA on cocaine-induced seizures. These results suggest that EA alleviates cocaine-induced seizures and mortality and that the dopamine D3 receptor is involved, at least in part, in the anticonvulsant effects of EA in mice.
Collapse
|
33
|
Bobko SI, Lotts T, Metze D, Lvov AN, Staender S. Immunohistochemistry detection of kappa-opioid receptors in human skin. VESTNIK DERMATOLOGII I VENEROLOGII 2013. [DOI: 10.25208/vdv585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The imbalance of p- and kappa-opioid receptors in the skin or central nervous system is currently deemed to be one of the reasons of chronic pruritus. A number of studies demonstrated a positive effect of system agonists of kappa-opioid receptors in the treatment of uremic pruritus, nodular pruritus, paraneoplastic and cholestatic pruritus. This research demonstrates an expression of kappa-opioid receptors in human skin (basal keratinocytes, dendritic cells, epidermal melanocytes and fibroblasts of the upper dermis) detected with the use of different immunochemistry methods.
Collapse
|
34
|
Kuraishi Y. [Mechanisms of itch and the pharmacology of anti-pruritic agents]. Nihon Yakurigaku Zasshi 2012; 139:160-164. [PMID: 22498680 DOI: 10.1254/fpj.139.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
35
|
Abstract
In psychophysical experiments, humans use different verbal responses to pruritic and algesic chemical stimuli to indicate the different qualities of sensation they feel. A major challenge for behavioural models in the mouse of chemical itch and pain in humans is to devise experimental protocols that provide the opportunity for the animal to exhibit a multiplicity of responses as well. One basic criterion is that chemicals that evoke primarily itch or pain in humans should elicit different types of responses when applied in the same way to the mouse. Meeting this criterion is complicated by the fact that the type of behavioural responses exhibited by the mouse depends in part on the site of chemical application such as the nape of the neck that evokes only scratching with the hind paw versus the hind limb that elicits licking and biting. Here, we review to what extent mice behaviourally differentiate chemicals that elicit itch versus pain in humans.
Collapse
Affiliation(s)
- Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
36
|
Tsukahara-Ohsumi Y, Tsuji F, Niwa M, Hata T, Narita M, Suzuki T, Sasano M, Aono H. The kappa opioid receptor agonist SA14867 has antinociceptive and weak sedative effects in models of acute and chronic pain. Eur J Pharmacol 2011; 671:53-60. [DOI: 10.1016/j.ejphar.2011.09.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
37
|
Cevikbas F, Steinhoff M, Ikoma A. Role of spinal neurotransmitter receptors in itch: new insights into therapies and drug development. CNS Neurosci Ther 2011; 17:742-9. [PMID: 20950328 PMCID: PMC6493876 DOI: 10.1111/j.1755-5949.2010.00201.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Targets for antipruritic therapies are now expanding from the skin to the central nervous system. Recent studies demonstrate that various neuronal receptors in the spinal cord are involved in pruritus. The spinal opioid receptor is one of the best-known examples. Spinal administration of morphine is frequently accompanied by segmental pruritus. In addition to μ-opioid receptor antagonists, κ-opioid receptor agonists have recently come into usage as novel antipruritic drugs, and are expected to suppress certain subtypes of itch such as hemodialysis- and cholestasis-associated itch that are difficult to treat with antihistamines. The gastrin-releasing peptide receptor in the superficial dorsal horn of the spinal cord has also received recent attention as a novel pathway of itch-selective neural transmission. The NMDA glutamate receptor appears to be another potential target for the treatment of itch, especially in terms of central sensitization. The development of NMDA receptor antagonists with less undesirable side effects on the central nervous system might be beneficial for antipruritic therapies. Drugs suppressing presynaptic glutamate-release such as gabapentin and pregabalin also reportedly inhibit certain subtypes of itch such as brachioradial pruritus. Spinal receptors of other neuromediators such as bradykinin, substance P, serotonin, and histamine may also be potential targets for antipruritic therapies, given that most of these molecules interfere not only with pain, but also with itch transmission or regulation. Thus, the identification of itch-specific receptors and understanding itch-related circuits in the spinal cord may be innovative strategies for the development of novel antipruritic drugs.
Collapse
MESH Headings
- Animals
- Drug Design
- Gastrin-Secreting Cells/drug effects
- Gastrin-Secreting Cells/physiology
- Humans
- Neurotransmitter Agents/physiology
- Pruritus/drug therapy
- Pruritus/physiopathology
- Receptors, Bradykinin/drug effects
- Receptors, Bradykinin/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Histamine/drug effects
- Receptors, Histamine/physiology
- Receptors, Neurokinin-1/drug effects
- Receptors, Neurokinin-1/physiology
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/physiology
- Spinal Cord/physiology
Collapse
Affiliation(s)
- Ferda Cevikbas
- Departments of Dermatology and Surgery, University of California, San Francisco, USA
| | - Martin Steinhoff
- Departments of Dermatology and Surgery, University of California, San Francisco, USA
| | - Akihiko Ikoma
- Departments of Dermatology and Surgery, University of California, San Francisco, USA
- Department of Dermatology, Kyoto University, Japan
| |
Collapse
|
38
|
Taneda K, Tominaga M, Negi O, Tengara S, Kamo A, Ogawa H, Takamori K. Evaluation of epidermal nerve density and opioid receptor levels in psoriatic itch. Br J Dermatol 2011; 165:277-84. [PMID: 21457210 DOI: 10.1111/j.1365-2133.2011.10347.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Psoriasis is a complex, multifactorial inflammatory skin disease with genetic and environmental interactions. Patients with psoriasis exhibit erythematous plaques with itch, but the mechanisms of psoriatic itch are poorly understood. OBJECTIVES This study was performed to investigate epidermal nerve density and opioid receptor levels in psoriatic skin with or without itch. METHODS Twenty-four patients with psoriasis aged between 39 and 82 years were included in this study. The number of epidermal nerve fibres, the levels of semaphorin 3A (Sema3A) and the expression patterns of μ- and κ-opioid systems were examined immunohistologically in skin biopsies from psoriatic patients with or without itch and healthy volunteers as controls. RESULTS The number of epidermal nerve fibres tended to increase in approximately 40% of psoriatic patients with itch compared with healthy controls, while such intraepidermal nerves were not observed in other itchy patients. In comparison with healthy controls, Sema3A levels also tended to decrease in the epidermis of psoriatic patients with itch. However, no relationship was found between nerve density and Sema3A levels in the epidermis of psoriatic patients with itch. The levels of μ-opioid receptor and β-endorphin in the epidermis were the same in healthy controls and psoriatic patients with or without itch. The levels of κ-opioid receptor and dynorphin A were significantly decreased in the epidermis of psoriatic patients with itch compared with healthy controls. CONCLUSIONS Based on Sema3A levels in the epidermis, epidermal opioid systems, rather than hyperinnervation, may be involved in the pathogenesis of psoriatic itch.
Collapse
Affiliation(s)
- Kenichi Taneda
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Inan S, Dun NJ, Cowan A. Investigation of gastrin-releasing peptide as a mediator for 5'-guanidinonaltrindole-induced compulsive scratching in mice. Peptides 2011; 32:286-92. [PMID: 21126550 PMCID: PMC3995915 DOI: 10.1016/j.peptides.2010.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 11/16/2022]
Abstract
Gastrin-releasing peptide (GRP) has been implicated in the itch-scratch cycle. We investigated if this gut-brain-skin peptide plays a role in the compulsive, hindleg scratching of the neck of mice by 5'-guanidinonaltrindole (GNTI), the kappa opioid receptor antagonist, and in the antipruritic activity of nalfurafine, the kappa opioid agonist. Previously, we showed that GNTI (0.03-1mg/kg, s.c.) elicits dose-related scratching and that nalfurafine (0.001-0.02mg/kg, s.c.) inhibits this behavior in mice. Utilizing immunohistochemistry, GRP positive nerve fibers were detected in mouse skin and superficial layer of the dorsal horn of the spinal cord as well as GRP positive cells in the dorsal root ganglion. Pretreating mice with either a pseudopeptide GRP receptor antagonist, RC-3095 (10-30mg/kg, s.c. at -15min), or a peptide GRP receptor antagonist, [d-Phe(6)]bombesin(6-13) methyl ester (2-100nmol, i.t. at -10min), did not suppress GNTI-induced scratching. However, pretreating mice with either antagonist inhibited scratching precipitated by the GRP receptor agonist, GRP(18-27) (2nmol, i.t.). Pretreating mice with a muscarinic M(1) receptor agonist, McN-A-343 (1.5-15μg/5μl, i.t. at -10min) antagonized GNTI-induced scratching. Norbinaltorphimine (20mg/kg, i.p. at -18 to -20h), a kappa opioid antagonist, countered the antiscratch activity of nalfurafine. We conclude that (a) the GRP receptor system does not mediate GNTI-induced scratching and (b) the kappa opioid system is involved, at least in part, in the scratch suppressing activity of nalfurafine.
Collapse
Affiliation(s)
- Saadet Inan
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Nae J Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Alan Cowan
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Corresponding author: Alan Cowan, PhD, Department of Pharmacology, Temple University School of Medicine, 3420 N Broad Street, Philadelphia, PA 19140, Telephone: (215)-707-4110, Fax: (215)-707-7068,
| |
Collapse
|
40
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
41
|
Tsukahara-Ohsumi Y, Tsuji F, Niwa M, Nakamura M, Mizutani K, Inagaki N, Sasano M, Aono H. SA14867, a newly synthesized kappa-opioid receptor agonist with antinociceptive and antipruritic effects. Eur J Pharmacol 2010; 647:62-7. [DOI: 10.1016/j.ejphar.2010.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/20/2010] [Indexed: 12/01/2022]
|