1
|
Solakoğlu ST, Erdener ŞE, Gliko O, Can A, Sümbül U, Eren-Koçak E. Layer-specific input to medial prefrontal cortex is linked to stress susceptibility. Transl Psychiatry 2025; 15:134. [PMID: 40204689 PMCID: PMC11982315 DOI: 10.1038/s41398-025-03258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/19/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025] Open
Abstract
Stress response is essential for adapting to an ever-changing environment. However, the mechanisms that render some individuals susceptible to stress are poorly understood. While chronic stress is known to induce dendritic atrophy and spine loss in medial prefrontal cortex (mPFC), its impact on synapses made by long-range projections terminating on the mPFC remains unknown. Here, we labeled synapses on male mouse mPFC dendrites formed by ventral hippocampus (VH), basolateral amygdala (BLA) and ventral tegmental area (VTA) long-range afferents using different-colored eGRASP constructs. We obtained multispectral 3D-images of the mPFC covering all cortical laminae, and automatically segmented the dendrites and synapses. In layer II/III, the relative abundances and spatial organizations of VH-mPFC and BLA-mPFC synapses changed similarly in stress resilient (SR) and stress susceptible (SS) mice when compared to stress naïve (SN) mice. In layers Vb and VI, on the other hand, the percentage of BLA-mPFC synapses increased and that of VH-mPFC decreased only in SS mice. Moreover, the distances of VH synapses to their corresponding closest BLA synapses decreased and the distances of BLA synapses to their corresponding closest VH synapses increased in the SS group. Consistently, the percentage of single dendritic segments receiving input from multiple brain regions increased in the SS group, suggesting that long-range synaptic inputs to deep layers of mPFC were disorganized in SS mice. Our findings demonstrate afferent- and lamina-specific differential reorganization of synapses between different stress phenotypes, suggesting specific roles for different long-range projections in mediating the stress response.
Collapse
Affiliation(s)
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Olga Gliko
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Alp Can
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Uygar Sümbül
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Cichon J, Joseph TT, Lu X, Wasilczuk AZ, Kelz MB, Mennerick SJ, Zorumski CF, Nagele P. Nitrous oxide activates layer 5 prefrontal neurons via SK2 channel inhibition for antidepressant effect. Nat Commun 2025; 16:2999. [PMID: 40180931 PMCID: PMC11968965 DOI: 10.1038/s41467-025-57951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Nitrous oxide (N2O) induces rapid and durable antidepressant effects. The cellular and circuit mechanisms mediating this process are not known. Here we find that a single dose of inhaled N2O induces rapid and specific activation of layer V (L5) pyramidal neurons in the cingulate cortex of rodents exposed to chronic stress conditions. N2O-induced L5 activation rescues a stress-associated hypoactivity state, persists following exposure, and is necessary for its antidepressant-like activity. Although NMDA-receptor antagonism is believed to be a primary mechanism of action for N2O, L5 neurons activate even when NMDA-receptor function is attenuated through both pharmacological and genetic approaches. By examining different molecular and circuit targets, we identify N2O-induced inhibition of calcium-sensitive potassium (SK2) channels as a key molecular interaction responsible for driving specific L5 activity along with ensuing antidepressant-like effects. These results suggest that N2O-induced L5 activation is crucial for its fast antidepressant action and this effect involves novel and specific molecular actions in distinct cortical cell types.
Collapse
Affiliation(s)
- Joseph Cichon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Thomas T Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Nagele
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Algaidi SA. Chronic stress-induced neuroplasticity in the prefrontal cortex: Structural, functional, and molecular mechanisms from development to aging. Brain Res 2025; 1851:149461. [PMID: 39864644 DOI: 10.1016/j.brainres.2025.149461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC. These structural changes are accompanied by disruptions in neurotransmitter systems, most notably glutamatergic and GABAergic signaling, and alterations in synaptic plasticity mechanisms. At the molecular level, we discuss the intricate interplay between stress hormones, neurotrophic factors, and epigenetic modifications that underlie these changes. The review highlights the significant behavioral and cognitive consequences of stress-induced PFC plasticity, including impairments in working memory, decision-making, and emotional regulation, which may contribute to the development of stress-related psychiatric disorders. We also explore individual differences in stress susceptibility, focusing on sex-specific effects and age-dependent variations in stress responses. The role of estrogens in conferring stress resilience in females and the unique vulnerabilities of the developing and aging PFC are discussed. Finally, we consider potential pharmacological and non-pharmacological interventions that may mitigate or reverse stress-induced changes in the PFC. The review concludes by identifying key areas for future research, including the need for more studies on the reversibility of stress effects and the potential of emerging technologies in unraveling the complexities of PFC plasticity. This comprehensive overview underscores the critical importance of understanding stress-induced PFC plasticity for developing more effective strategies to prevent and treat stress-related mental health disorders.
Collapse
Affiliation(s)
- Sami Awda Algaidi
- Department of Basic Medical Sciences Faculty of Medicine Taibah University Saudi Arabia.
| |
Collapse
|
4
|
Saad HA, Marzouk M, Abdelrahman H, Moradikor N. Mechanisms underlying stress effects on the brain: Basic concepts and clinical implications. PROGRESS IN BRAIN RESEARCH 2025; 291:21-47. [PMID: 40222781 DOI: 10.1016/bs.pbr.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Chronic stress impacts the brain through complex physiological, neurological, and immunological responses. The stress response involves the activation of the sympathetic-adrenal-medullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis, releasing stress hormones like norepinephrine and cortisol. While these responses are adaptive short-term, chronic stress disrupts homeostasis, increasing the risk of cardiovascular diseases, neurodegenerative disorders, and psychiatric conditions such as depression. This dysregulation is linked to persistent neuroinflammation, oxidative stress, and neurotransmitter imbalances involving dopamine and serotonin, impairing neuroplasticity and leading to structural changes in critical brain areas, such as the hippocampus and prefrontal cortex. Moreover, stress affects gene expression, particularly neuroinflammatory pathways, contributing to long-term cognitive function and emotional regulation alterations. Advancements in neuroimaging and molecular techniques, including MRI, PET, and SPECT, hold promise for identifying biomarkers and better understanding stress-induced brain changes. These insights are critical for developing targeted interventions to mitigate the adverse effects of chronic stress on brain health.
Collapse
Affiliation(s)
- Hager Adel Saad
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt.
| | - Mahmoud Marzouk
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt
| | - Hla Abdelrahman
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
5
|
Seah C, Sidamon-Eristoff AE, Huckins LM, Brennand KJ. Implications of gene × environment interactions in post-traumatic stress disorder risk and treatment. J Clin Invest 2025; 135:e185102. [PMID: 40026250 PMCID: PMC11870735 DOI: 10.1172/jci185102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Exposure to traumatic stress is common in the general population. Variation in the brain's molecular encoding of stress potentially contributes to the heterogeneous clinical outcomes in response to traumatic experiences. For instance, only a minority of those exposed to trauma will develop post-traumatic stress disorder (PTSD). Risk for PTSD is at least partially heritable, with a growing number of genetic factors identified through GWAS. A major limitation of genetic studies is that they capture only the genetic component of risk, whereas PTSD by definition requires an environmental traumatic exposure. Furthermore, the extent, timing, and type of trauma affects susceptibility. Here, we discuss the molecular mechanisms of PTSD risk together with gene × environment interactions, with a focus on how either might inform genetic screening for individuals at high risk for disease, reveal biological mechanisms that might one day yield novel therapeutics, and impact best clinical practices even today. To close, we discuss the interaction of trauma with sex, gender, and race, with a focus on the implications for treatment. Altogether, we suggest that predicting, preventing, and treating PTSD will require integrating both genotypic and environmental information.
Collapse
Affiliation(s)
- Carina Seah
- Department of Genetics and Genomics and
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anne Elizabeth Sidamon-Eristoff
- Department of Psychiatry, Division of Molecular Psychiatry
- Interdepartmental Neuroscience Program, Wu Tsai Institute, and
- MD-PhD Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Kristen J. Brennand
- Department of Genetics and Genomics and
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Division of Molecular Psychiatry
- Interdepartmental Neuroscience Program, Wu Tsai Institute, and
| |
Collapse
|
6
|
Fisher M, MacPhee C, Lackner C. Beyond the Score: Exploring the Associations Between Adverse Childhood Experiences and Electrophysiological Responses to Errors. Stress Health 2025; 41:e70003. [PMID: 39817592 DOI: 10.1002/smi.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Adverse childhood experiences (ACEs) have diverse effects on physical development and mental health. This study aimed to clarify the relationship between the quantity of ACE exposure, type of ACE exposure, and subjective level of stress felt, correlated with event-related potential activity across the scalp, while controlling for relevant confounding variables. Fifty-three participants aged 18-32 years completed questionnaires assessing their current mental health, self-regulation, childhood socioeconomic status, and history of traumatic events. Electroencephalographic activity was recorded while participants completed the Combined Attention Systems Task, a modified flanker task. Using cluster-corrected robust statistical approaches, significant relationships existed between the total number of ACEs, ACE type, the subjective impact of trauma, and amplitudes during the error-related negativity (ERN) and error positivity (Pe) at various scalp locations. In the ERN time window, greater error-correct differences were associated with greater total ACEs, abuse, and other ACEs at C5, P9, and TP10/C1 clusters, respectively. In addition, reduced error-correct differences at cluster-maximal C2 during the timing of the Pe were related to experiencing greater numbers of total ACEs while increased error-correct differences at cluster-maximal FPz during the timing of the Pe were associated with greater numbers of other ACEs. The subjective impact of total number of ACEs was not associated with error-correct differences, however, the subjective impact of household dysfunction, abuse, and 'other' ACE types were linked to error-correct differences at various scalp locations and timings. Notably, increased, rather than decreased, subjective impact of household dysfunction was related to greater error-correct differentiation during the timing of the ERN, maximal at Cz. These results suggest that both ACE type and subjective rating are relevant to future outcomes. The effects extended beyond the ERN-affecting error-related positivity and later event-related potentials-indicating associations with the number, type, and subjective impact of ACEs across a larger time window and scalp topography.
Collapse
Affiliation(s)
- Madeline Fisher
- Psychology Department, Mount St. Vincent University, Halifax, Canada
| | - Catrina MacPhee
- Psychology and Neuroscience Department, Dalhousie University, Halifax, Canada
| | - Christine Lackner
- Psychology Department, Mount St. Vincent University, Halifax, Canada
| |
Collapse
|
7
|
Shang G, Zhou T, Yan X, He K, Liu B, Feng Z, Xu J, Yu X, Zhang Y. Multiscale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence From Cushing's Disease. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00014-X. [PMID: 39793703 DOI: 10.1016/j.bpsc.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. In this study, we explored structural and functional alterations of hippocampal (HP) subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure. METHODS Utilizing structural and resting-state functional magnetic resonance imaging data from 169 participants (86 patients with CD and 83 healthy control participants [HCs]) recruited from a single center, we investigated specific structural changes in HP subfields and explored the functional connectivity alterations driven by these structural abnormalities. We also analyzed potential associative mechanisms between these changes and biological attributes, neuropsychiatric representations, cognitive function, and gene expression profiles. RESULTS Compared with HCs, patients with CD exhibited significant bilateral volume reductions in multiple HP subfields. Notably, volumetric decreases in the left HP body and tail subfields were significantly correlated with cortisol levels, Montreal Cognitive Assessment scores, and quality of life measures. Disrupted connectivity between the structurally abnormal HP subfields and the ventromedial prefrontal cortex may impair reward-based decision making and emotional regulation, with this dysconnectivity being linked to structural changes in right HP subfields. Another region that exhibited dysconnectivity was located in the left pallidum and putamen. Gene expression patterns associated with synaptic components may underlie these macrostructural alterations. CONCLUSIONS Our findings elucidate the subfield-specific effects of chronic cortisol overexposure on the hippocampus, enhancing understanding of shared neuropathological traits linked to cortisol dysregulation in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Guosong Shang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Xinyuan Yan
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kunyu He
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Bin Liu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Junpeng Xu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Judd JM, Peay DN, Kim JL, Smith EA, Donnay ME, Miller J, Klein JP, Nagy EK, Acuña AM, Olive MF, Conrad CD. Inhibition of prefrontal glutamatergic neuron activity during the recovery period following chronic stress disrupts fear memory in male rats: potential role of the infralimbic cortex. Learn Mem 2025; 32:a053957. [PMID: 39824647 PMCID: PMC11801481 DOI: 10.1101/lm.053957.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 01/20/2025]
Abstract
Chronic stress typically leads to deficits in fear extinction. However, when a delay occurs from the end of chronic stress and the start of fear conditioning (a "recovery"), rats show improved context-cue discrimination, compared to recently stressed rats or nonstressed rats. The infralimbic cortex (IL) is important for fear extinction and undergoes neuronal remodeling after chronic stress ends, which could drive improved context-cue discrimination. Here, glutamatergic IL neurons of Sprague-Dawley male rats were targeted for inhibition using inhibitory designer receptors exclusively activated by designer drugs (DREADDs) and daily injections of clozapine N-oxide (CNO) during a 21-day recovery period from chronic stress. Histological verification confirmed DREADDs in the IL with some spread to nearby medial prefrontal cortex (PFC) regions. CNO administration was then discontinued before fear conditioning started and behavioral testing thereafter so that behavioral assessments occurred without neuronal inhibition. Fear conditioning involved presenting male rats with three tone-foot shock pairings on 1 day, which was followed by 2 days of 15 tone-alone extinction sessions. Daily and repeated inhibition of mainly IL neurons during the 21-day recovery period did not disrupt fear learning or fear extinction in all groups (controls, stressed rats without a recovery, and stressed rats with a recovery). However, chronically stressed rats given a recovery and with DREADD activation showed impaired spontaneous recovery, indicating a failure to form a tone-foot shock association. The findings show that daily inhibition of mainly IL neurons prior to fear conditioning and extinction depends upon the changes that occur during the recovery period following the end of chronic stress.
Collapse
Affiliation(s)
- Jessica M Judd
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Dylan N Peay
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Jinah L Kim
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Elliot A Smith
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Megan E Donnay
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Joel Miller
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Jean-Paul Klein
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Erin K Nagy
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Amanda M Acuña
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
9
|
Cichon J, Joseph TT, Lu X, Wasilczuk AZ, Kelz MB, Mennerick SJ, Zorumski CF, Nagele P. Nitrous Oxide activates layer 5 prefrontal neurons via SK2 channel inhibition for antidepressant effect. RESEARCH SQUARE 2024:rs.3.rs-5141491. [PMID: 39606485 PMCID: PMC11601843 DOI: 10.21203/rs.3.rs-5141491/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nitrous oxide (N2O) induces rapid and durable antidepressant effects. The cellular and circuit mechanisms mediating this process are not known. Here we find that a single dose of inhaled N2O induces rapid and specific activation of layer V (L5) pyramidal neurons in the cingulate cortex of rodents exposed to chronic stress conditions. N2O-induced L5 activation rescues a stress-associated hypoactivity state, persists following exposure, and is necessary for its antidepressant-like activity. Although NMDA-receptor antagonism is believed to be a primary mechanism of action for N2O, L5 neurons activate even when NMDA-receptor function is attenuated through both pharmacological and genetic approaches. By examining different molecular and circuit targets, we identify N2O-induced inhibition of calcium-sensitive potassium (SK2) channels as a key molecular interaction responsible for driving specific L5 activity along with ensuing antidepressant-like effects. These results suggest that N2O-induced L5 activation is crucial for its fast antidepressant action and this effect involves novel and specific molecular actions in distinct cortical cell types.
Collapse
Affiliation(s)
- Joseph Cichon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas T. Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine
| | - Andrzej Z. Wasilczuk
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven J. Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine
| | - Peter Nagele
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Grizzell JA, Clarity TT, Rodriguez RM, Marshall ZQ, Cooper MA. Effects of social dominance and acute social stress on morphology of microglia and structural integrity of the medial prefrontal cortex. Brain Behav Immun 2024; 122:353-367. [PMID: 39187049 PMCID: PMC11402560 DOI: 10.1016/j.bbi.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic stress increases activity of the brain's innate immune system and impairs function of the medial prefrontal cortex (mPFC). However, whether acute stress triggers similar neuroimmune mechanisms is poorly understood. Across four studies, we used a Syrian hamster model to investigate whether acute stress drives changes in mPFC microglia in a time-, subregion-, and social status-dependent manner. We found that acute social defeat increased expression of ionized calcium binding adapter molecule 1 (Iba1) in the infralimbic (IL) and prelimbic (PL) and altered the morphology Iba1+ cells 1, 2, and 7 days after social defeat. We also investigated whether acute defeat induced tissue degeneration and reductions of synaptic plasticity 2 days post-defeat. We found that while social defeat increased deposition of cellular debris and reduced synaptophysin immunoreactivity in the PL and IL, treatment with minocycline protected against these cellular changes. Finally, we tested whether a reduced conditioned defeat response in dominant compared to subordinate hamsters was associated with changes in microglia reactivity in the IL and PL. We found that while subordinate hamsters and those without an established dominance relationships showed defeat-induced changes in morphology of Iba1+ cells and cellular degeneration, dominant hamsters showed resistance to these effects of social defeat. Taken together, these findings indicate that acute social defeat alters microglial morphology, increases markers of tissue degradation, and impairs structural integrity in the IL and PL, and that experience winning competitive interactions can specifically protect the IL and reduce stress vulnerability.
Collapse
Affiliation(s)
- J Alex Grizzell
- Neuroscience and Behavioral Biology Program, Emory University, United States; Department of Psychology, University of Tennessee Knoxville, United States; Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Thomas T Clarity
- Department of Psychology, University of Tennessee Knoxville, United States
| | - R Mason Rodriguez
- Department of Psychology, University of Tennessee Knoxville, United States
| | - Zachary Q Marshall
- Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, United States.
| |
Collapse
|
11
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
12
|
Bączyńska E, Zaręba-Kozioł M, Ruszczycki B, Krzystyniak A, Wójtowicz T, Bijata K, Pochwat B, Magnowska M, Roszkowska M, Figiel I, Masternak J, Pytyś A, Dzwonek J, Worch R, Olszyński K, Wardak A, Szymczak P, Labus J, Radwańska K, Jahołkowski P, Hogendorf A, Ponimaskin E, Filipkowski R, Szewczyk B, Bijata M, Włodarczyk J. Stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. Neurobiol Stress 2024; 33:100683. [PMID: 39524934 PMCID: PMC11543545 DOI: 10.1016/j.ynstr.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Stress resilience is the ability of neuronal networks to maintain their function despite the stress exposure. Using a mouse model we investigate stress resilience phenomenon. To assess the resilient and anhedonic behavioral phenotypes developed after the induction of chronic unpredictable stress, we quantitatively characterized the structural and functional plasticity of excitatory synapses in the hippocampus using a combination of proteomic, electrophysiological, and imaging methods. Our results indicate that stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. We reveal that chronic stress influences palmitoylation of synaptic proteins, whose profiles differ between resilient and anhedonic animals. The changes in palmitoylation are predominantly related with the glutamate receptor signaling thus affects synaptic transmission and associated structures of dendritic spines. We show that stress resilience is associated with structural compensatory plasticity of the postsynaptic parts of synapses in CA1 subregion of the hippocampus.
Collapse
Affiliation(s)
- E. Bączyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, 02-781, Poland
| | - M. Zaręba-Kozioł
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - B. Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - A. Krzystyniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - T. Wójtowicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - K. Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - B. Pochwat
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - M. Magnowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - M. Roszkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - I. Figiel
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Masternak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - A. Pytyś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Dzwonek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - R. Worch
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - K.H. Olszyński
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - A.D. Wardak
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - P. Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - J. Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - K. Radwańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - P. Jahołkowski
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - A. Hogendorf
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - E. Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - R.K. Filipkowski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - B. Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - M. Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Włodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| |
Collapse
|
13
|
Hayes SH, Patel SV, Arora P, Zhao L, Schormans AL, Whitehead SN, Allman BL. Neurophysiological, structural, and molecular alterations in the prefrontal and auditory cortices following noise-induced hearing loss. Neurobiol Dis 2024; 200:106619. [PMID: 39079581 DOI: 10.1016/j.nbd.2024.106619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
It is well established that hearing loss can lead to widespread plasticity within the central auditory pathway, which is thought to contribute to the pathophysiology of audiological conditions such as tinnitus and hyperacusis. Emerging evidence suggests that hearing loss can also result in plasticity within brain regions involved in higher-level cognitive functioning like the prefrontal cortex; findings which may underlie the association between hearing loss and cognitive impairment documented in epidemiological studies. Using the 40-Hz auditory steady state response to assess sound-evoked gamma oscillations, we previously showed that noise-induced hearing loss results in impaired gamma phase coherence within the prefrontal but not the auditory cortex. To determine whether region-specific structural or molecular changes accompany this differential plasticity following hearing loss, in the present study we utilized Golgi-Cox staining to assess dendritic organization and synaptic density, as well as Western blotting to measure changes in synaptic signaling proteins in these cortical regions. We show that following noise exposure, impaired gamma phase coherence within the prefrontal cortex is accompanied by alterations in pyramidal cell dendritic morphology and decreased expression of proteins involved in GABAergic (GAD65) and glutamatergic (NR2B) neurotransmission; findings that were not observed in the auditory cortex, where gamma phase coherence remained unchanged post-noise exposure. In contrast to the noise-induced effects we observed in the prefrontal cortex, plasticity in the auditory cortex was characterized by an increase in NR2B suggesting increased excitability, as well as increases in the synaptic proteins PSD95 and synaptophysin within the auditory cortex. Overall, our results highlight the disparate effect of noise-induced hearing loss on auditory and higher-level brain regions as well as potential structural and molecular mechanisms by which hearing loss may contribute to impaired cognitive and sensory functions mediated by the prefrontal and auditory cortices.
Collapse
Affiliation(s)
- Sarah H Hayes
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; Department of Otolaryngology, University of Rochester, 601 Elmwood Ave, Box 629, Rochester, NY 14642, USA.
| | - Salonee V Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Parinita Arora
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Lin Zhao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Ashley L Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
14
|
Shang G, Zhou T, Yu X, Yan X, He K, Liu B, Feng Z, Xu J, Zhang Y, Yu X. Chronic hypercortisolism disrupts the principal functional gradient in Cushing's disease: A multi-scale connectomics and transcriptomics study. Neuroimage Clin 2024; 43:103652. [PMID: 39146836 PMCID: PMC11367515 DOI: 10.1016/j.nicl.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Cushing's disease (CD) represents a state of cortisol excess, serving as a model to investigate the effects of prolonged hypercortisolism on functional brain. Potential alterations in the functional connectome of the brain may explain frequently reported cognitive deficits and affective disorders in CD patients. This study aims to elucidate the effects of chronic hypercortisolism on the principal functional gradient, which represents a hierarchical architecture with gradual transitions across cognitive processes, by integrating connectomics and transcriptomics approaches. Utilizing resting-state functional magnetic resonance imaging data from 140 participants (86 CD patients, 54 healthy controls) recruited at a single center, we explored the alterations in the principal gradient in CD patients. Further, we thoroughly explored the underlying associative mechanisms of the observed characteristic alterations with cognitive function domains, biological attributes, and neuropsychiatric representations, as well as gene expression profiles. Compared to healthy controls, CD patients demonstrated changes in connectome patterns in both primary and higher-order networks, exhibiting an overall converged trend along the principal gradient axis. The gradient values in CD patients' right prefrontal cortex and bilateral sensorimotor cortices exhibited a significant correlation with cortisol levels. Moreover, the cortical regions showing gradient alterations were principally associated with sensory information processing and higher-cognitive functions, as well as correlated with the gene expression patterns which involved synaptic components and function. The findings suggest that converged alterations in the principal gradient in CD patients may mediate the relationship between hypercortisolism and cognitive impairments, potentially involving genes regulating synaptic components and function.
Collapse
Affiliation(s)
- Guosong Shang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Yu
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Xinyuan Yan
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kunyu He
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Bin Liu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, PLA 942 Hospital, Yinchuan, Ningxia, China
| | - Junpeng Xu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
15
|
Zhao Y, Sun W, Fan Q, Huang Y, Ma Y, Zhang S, Gong C, Wang B, Zhang W, Yang Q, Lin S. Exploring the potential molecular intersection of stroke and major depression disorder. Biochem Biophys Res Commun 2024; 720:150079. [PMID: 38759300 DOI: 10.1016/j.bbrc.2024.150079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Stroke and major depression disorder are common neurological diseases, and a large number of clinical studies have shown that there is a close relationship between the two diseases, but whether the two diseases are linked at the genetic level needs to be further explored. The purpose of this study was to explore the comorbidity mechanism of stroke and major depression by using bioinformatics technology and animal experiments. From the GEO database, we gathered transcriptome data of stroke and depression mice (GSE104036, GSE131712, GSE81672, and GSE146845) and identified comorbid gene set through edgR and WGCNA analyses. Further analysis revealed that these genes were enriched in pathways associated with cell death. Programmed cell death gene sets (PCDGs) are generated from genes related to apoptosis, necroptosis, pyroptosis and autophagy. The intersection of PCDGs and comorbid gene set resulted in two hub genes, Mlkl and Nlrp3. Single-cell sequencing analysis indicated that Mlkl and Nlrp3 are mainly influential on endothelial cells and microglia, suggesting that the impairment of these two cell types may be a factor in the relationship between stroke and major depression. This was experimentally confirmed by RT-PCR and immunofluorescence staining. Our research revealed that two specific genes, namely, Mlkl and Nlrp3, play crucial roles in the complex mechanism that links stroke and major depression. Additionally, we have predicted six possible therapeutic agents and the outcomes of docking simulations of target proteins and drug molecules.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Wenzhe Sun
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Qinlin Fan
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Yanjie Huang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Yufan Ma
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Shuang Zhang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Changxiong Gong
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Bingqiao Wang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Wanyun Zhang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
16
|
Yang C, Zhu Z, Wang G, Liu Z, Shu C, Guo J, Wan Q. Fluoxetin suppresses tau phosphorylation and modulates the interaction between tau and tubulin in the hippocampus of CUMS rats. Neurosci Lett 2024; 836:137870. [PMID: 38852764 DOI: 10.1016/j.neulet.2024.137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/24/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Depression is considered a crucial psychiatric disease correlated with neuronal-dysfunctions induced by stress-stimuli. This study aimed to investigate effect of Fluoxetine (FL) on chronic unpredictable mild stress (CUMS) and explore the associated mechanisms. CUMS rat model was established by treating with lots of stresses. CUMS rats were administered FL, SB216763 (SB), Wortmannin (WT) alone or in combination. CUMS rats were administered 1 % sugar water to conduct sugar water consumption experiment. Acet-Tub, Tyr-Tub, tau46, p-tau-Ser199/202, p-tau-Ser396, p-tau-Ser231, expression was examined using immunohistochemical assay and western blotassay. Interaction between tau and tubulin was evaluated with immunoprecipitation assay. Double immunohistochemical assay was used to identify interaction between Nestin and Tau. The results indicated that FL treatment only increased sugar consumption of CUMS rats (P < 0.05), but also strengthened effects of SB and WT. FL significantly treatment decreased tau phosphorylation (p-tau) in hippocampal tissues of rats compared to those of rats in CUMS group (P < 0.05). FL treatment markedly decreased Acet-Tub and increased Tyr-Tub expression in hippocampal tissues of rats compared to those of rats in CUMS group (P < 0.05). The effects of FL treatment on p-tau down-regulation and tubulin modulation in hippocampal tissues were independent from PI3K and GSK-3 signaling pathways. FL treatment could also enhance proliferation and total tau of newborn neurons of CUMS rats. FL treatment strengthened interaction between tau and botulin in hippocampal tissues of CUMS rats. In conclusion, Fluoxetin suppressed phosphorylation of tau and modulated the interaction between tau and tubulin in hippocampus of adult CUMS rats.
Collapse
Affiliation(s)
- Can Yang
- Department of Psychiatry, Renmin hospital of Wuhan University, Wuhan, China
| | - Zhixian Zhu
- Department of Psychiatry, Renmin hospital of Wuhan University, Wuhan, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin hospital of Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin hospital of Wuhan University, Wuhan, China
| | - Chang Shu
- Department of Psychiatry, Renmin hospital of Wuhan University, Wuhan, China
| | - Junhui Guo
- Department of Psychiatry, Renmin hospital of Wuhan University, Wuhan, China
| | - Qirong Wan
- Department of Psychiatry, Renmin hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Krupp KT, Yaeger JDW, Ledesma LJ, Withanage MHH, Gale JJ, Howe CB, Allen TJ, Sathyanesan M, Newton SS, Summers CH. Single administration of a psychedelic [(R)-DOI] influences coping strategies to an escapable social stress. Neuropharmacology 2024; 252:109949. [PMID: 38636726 PMCID: PMC11073902 DOI: 10.1016/j.neuropharm.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.
Collapse
Affiliation(s)
- Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Jazmine D W Yaeger
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Leighton J Ledesma
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | | | - J J Gale
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Chase B Howe
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trevor J Allen
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Samuel S Newton
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
18
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
19
|
Seah C, Signer R, Deans M, Bader H, Rusielewicz T, Hicks EM, Young H, Cote A, Townsley K, Xu C, Hunter CJ, McCarthy B, Goldberg J, Dobariya S, Holtzherimer PE, Young KA, Noggle SA, Krystal JH, Paull D, Girgenti MJ, Yehuda R, Brennand KJ, Huckins LM. Common genetic variation impacts stress response in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573459. [PMID: 38234801 PMCID: PMC10793429 DOI: 10.1101/2023.12.27.573459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To explain why individuals exposed to identical stressors experience divergent clinical outcomes, we determine how molecular encoding of stress modifies genetic risk for brain disorders. Analysis of post-mortem brain (n=304) revealed 8557 stress-interactive expression quantitative trait loci (eQTLs) that dysregulate expression of 915 eGenes in response to stress, and lie in stress-related transcription factor binding sites. Response to stress is robust across experimental paradigms: up to 50% of stress-interactive eGenes validate in glucocorticoid treated hiPSC-derived neurons (n=39 donors). Stress-interactive eGenes show brain region- and cell type-specificity, and, in post-mortem brain, implicate glial and endothelial mechanisms. Stress dysregulates long-term expression of disorder risk genes in a genotype-dependent manner; stress-interactive transcriptomic imputation uncovered 139 novel genes conferring brain disorder risk only in the context of traumatic stress. Molecular stress-encoding explains individualized responses to traumatic stress; incorporating trauma into genomic studies of brain disorders is likely to improve diagnosis, prognosis, and drug discovery.
Collapse
|
20
|
Tse WS, Pochwat B, Szewczyk B, Misztak P, Bobula B, Tokarski K, Worch R, Czarnota-Bojarska M, Lipton SA, Zaręba-Kozioł M, Bijata M, Wlodarczyk J. Restorative effect of NitroSynapsin on synaptic plasticity in an animal model of depression. Neuropharmacology 2023; 241:109729. [PMID: 37797736 DOI: 10.1016/j.neuropharm.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
In the search for new options for the pharmacological treatment of major depressive disorder, compounds with a rapid onset of action and high efficacy but lacking a psychotomimetic effect are of particular interest. In the present study, we evaluated the antidepressant potential of NitroSynapsin (NS) at behavioural, structural, and functional levels. NS is a memantine derivative and a dual allosteric N-methyl-d-aspartate receptors (NMDAR) antagonist using targeted delivery by the aminoadamantane of a warhead nitro group to inhibitory redox sites on the NMDAR. In a chronic restraint stress (CRS) mouse model of depression, five doses of NS administered on three consecutive days evoked antidepressant-like activity in the chronically stressed male C57BL/6J mice, reversing CRS-induced behavioural disturbances in sucrose preference and tail suspension tests. CRS-induced changes in morphology and density of dendritic spines in cerebrocortical neurons in the medial prefrontal cortex (mPFC) were also reversed by NS. Moreover, CRS-induced reduction in long-term potentiation (LTP) in the mPFC was found to be prevented by NS based on the electrophysiological recordings. Our study showed that NS restores structural and functional synaptic plasticity and reduces depressive behaviour to the level found in naïve animals. These results preliminarily revealed an antidepressant-like potency of NS.
Collapse
Affiliation(s)
- Wing Sze Tse
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Bartłomiej Pochwat
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland; Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; Department of Medicine and Surgery, University of Milano-Bicocca, 20-900, Monza, Italy
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Remigiusz Worch
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Marta Czarnota-Bojarska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Neurosciences, University of California, School of Medicine, La Jolla, San Diego, CA 92093, United States
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland.
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland.
| |
Collapse
|
21
|
Wang YJ, Zan GY, Xu C, Li XP, Shu X, Yao SY, Xu XS, Qiu X, Chen Y, Jin K, Zhou QX, Ye JY, Wang Y, Xu L, Chen Z, Liu JG. The claustrum-prelimbic cortex circuit through dynorphin/κ-opioid receptor signaling underlies depression-like behaviors associated with social stress etiology. Nat Commun 2023; 14:7903. [PMID: 38036497 PMCID: PMC10689794 DOI: 10.1038/s41467-023-43636-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Ample evidence has suggested the stress etiology of depression, but the underlying mechanism is not fully understood yet. Here, we report that chronic social defeat stress (CSDS) attenuates the excitatory output of the claustrum (CLA) to the prelimbic cortex (PL) through the dynorphin/κ-opioid receptor (KOR) signaling, being critical for depression-related behaviors in male mice. The CSDS preferentially impairs the excitatory output from the CLA onto the parvalbumin (PV) of the PL, leading to PL micronetwork dysfunction by disinhibiting pyramidal neurons (PNs). Optogenetic activation or inhibition of this circuit suppresses or promotes depressive-like behaviors, which is reversed by chemogenetic inhibition or activation of the PV neurons. Notably, manipulating the dynorphin/KOR signaling in the CLA-PL projecting terminals controls depressive-like behaviors that is suppressed or promoted by optogenetic activation or inhibition of CLA-PL circuit. Thus, this study reveals both mechanism of the stress etiology of depression and possibly therapeutic interventions by targeting CLA-PL circuit.
Collapse
Affiliation(s)
- Yu-Jun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Gui-Ying Zan
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue-Ping Li
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xuelian Shu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China
| | - Song-Yu Yao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Shan Xu
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, 650223, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yexiang Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou, 310053, China
| | - Kai Jin
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, 650223, China
| | - Qi-Xin Zhou
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, 650223, China
| | - Jia-Yu Ye
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Xu
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, 650223, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing-Gen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou, 310053, China.
| |
Collapse
|
22
|
Wallace T, Myers B. Prefrontal representation of affective stimuli: importance of stress, sex, and context. Cereb Cortex 2023; 33:8232-8246. [PMID: 37032618 PMCID: PMC10321111 DOI: 10.1093/cercor/bhad110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Stress-related disorders such as depression and anxiety exhibit sex differences in prevalence and negatively impact both mental and physical health. Affective illness is also frequently accompanied by changes in ventromedial prefrontal cortical (vmPFC) function. However, the neurobiology that underlies sex-specific cortical processing of affective stimuli is poorly understood. Although rodent studies have investigated the prefrontal impact of chronic stress, postmortem studies have focused largely on males and yielded mixed results. Therefore, genetically defined population recordings in behaving animals of both sexes were used to test the hypothesis that chronic variable stress (CVS) impairs the neural processing of affective stimuli in the rodent infralimbic region. Here, we targeted expression of a calcium indicator, GCaMP6s, to infralimbic pyramidal cells. In males, CVS reduced infralimbic responses to social interaction and restraint stress but increased responses to novel objects and food reward. In contrast, females did not have CVS-induced changes in infralimbic activity, which was partially dependent on the ovarian status. These results indicate that both male and female vmPFC cells encode social, stress, and reward stimuli. However, chronic stress effects are sex-dependent and behavior-specific. Ultimately, these findings extend the understanding of chronic stress-induced prefrontal dysfunction and indicate that sex is a critical factor for cortical processing of affective stimuli.
Collapse
Affiliation(s)
- Tyler Wallace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Li J, Zhang M, Pei Y, Yang Q, Zheng L, Wang G, Sun Y, Yang W, Liu L. The total alkaloids of Sophora alopecuroides L. improve depression-like behavior in mice via BDNF-mediated AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116723. [PMID: 37271329 DOI: 10.1016/j.jep.2023.116723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression has become a global public health problem and the development of new highly effective, low-toxicity antidepressants is imminent. Sophora alopecuroides L. is a common medicinal plant, which has therapeutic effect on central nervous system diseases. AIM OF THE STUDY In this study, the antidepressant effect of total alkaloids (ALK) isolated from Sophora alopecuroides L. was explored and the mechanism was further elucidated. MATERIALS AND METHODS A primary neuronal injury model was established in vitro by corticosterone. ICR mice were then selected to construct an in vivo model of chronic unpredictable mild stress (CUMS)-induced depression, and the ameliorative effects of ALK on depression were examined by various behavioral tests. The antidepressant molecular mechanism of ALK was subsequently revealed by ELISA, Western blot, immunohistochemistry and Golgi staining. RESULTS BDNF secretion as well as TrkB and ERK phosphorylated protein levels were found to be improved in primary cortical neurons, along with improved dendritic complexity of neurons. The results of in vivo showed that the depression-like behavior of CUMS-induced mice was reversed after 2 weeks of continuous gavage administration of ALK, and the neurotransmitter levels in the plasma of mice were increased. Moreover, the expression levels of key proteins of BDNF-AKT-mTOR pathway and the complexity of neuronal dendrites were improved in the prefrontal cortex of mice. CONCLUSIONS These findings indicate that ALK of Sophora alopecuroides L. can effectively improve the depressive phenotype of mice, possibly by promoting the expression of BDNF in prefrontal cortex, activating the downstream AKT/mTOR signal pathway, and ultimately enhancing neuronal dendritic complexity.
Collapse
Affiliation(s)
- Jingyi Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yiying Pei
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Qifang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China.
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| |
Collapse
|
24
|
Choi MH. A Pilot Study: Extraction of a Neural Network and Feature Extraction of Generation and Reduction Mechanisms Due to Acute Stress. Brain Sci 2023; 13:519. [PMID: 36979329 PMCID: PMC10046029 DOI: 10.3390/brainsci13030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
This study aimed to compare the functional connectivity (FC) assessed during acute stress and recovery after stress using the Montreal imaging stress task (MIST) in adults in their 20s and 30s with Korean Perceived Stress Scale (PSS) scores between 15 and 19 points inclusive. Four seed networks, including the salience network, default mode network, frontoparietal network, and dorsal attention network, were specified to extract the results. Healthy male and female adults who were required to make an effort to relieve stress were exposed to acute stress tasks, and the most common FCs were observed in the salience network, default mode network, and frontoparietal network during the stress and recovery phases. Compared to the stress phase, the increased effect size was significantly different in the recovery phase. In the stress phase, characteristically common FCs were observed in the dorsal attention network. During the recovery period, Salience network (Anterior Insula, R) and Salience network (anterior cingulate cortex, ACC)/Salience network (rostral prefrontal cortex, RPFC), Salience network (AInsula) and Salience network (RPFC), and Default Mode network (posterior cingulate) cortex, PCC) and fronto-parietal network (lateral prefrontal cortex, LPFC) FC were characteristically observed.
Collapse
Affiliation(s)
- Mi-Hyun Choi
- Biomedical Engineering, Research Institute of Biomedical Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
25
|
Dias L, Pochmann D, Lemos C, Silva HB, Real JI, Gonçalves FQ, Rial D, Gonçalves N, Simões AP, Ferreira SG, Agostinho P, Cunha RA, Tomé AR. Increased Synaptic ATP Release and CD73-Mediated Formation of Extracellular Adenosine in the Control of Behavioral and Electrophysiological Modifications Caused by Chronic Stress. ACS Chem Neurosci 2023; 14:1299-1309. [PMID: 36881648 PMCID: PMC10080657 DOI: 10.1021/acschemneuro.2c00810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Increased ATP release and its extracellular catabolism through CD73 (ecto-5'-nucleotidase) lead to the overactivation of adenosine A2A receptors (A2AR), which occurs in different brain disorders. A2AR blockade blunts mood and memory dysfunction caused by repeated stress, but it is unknown if increased ATP release coupled to CD73-mediated formation of extracellular adenosine is responsible for A2AR overactivation upon repeated stress. This was now investigated in adult rats subject to repeated stress for 14 consecutive days. Frontocortical and hippocampal synaptosomes from stressed rats displayed an increased release of ATP upon depolarization, coupled to an increased density of vesicular nucleotide transporters and of CD73. The continuous intracerebroventricular delivery of the CD73 inhibitor α,β-methylene ADP (AOPCP, 100 μM) during restraint stress attenuated mood and memory dysfunction. Slice electrophysiological recordings showed that restraint stress decreased long-term potentiation both in prefrontocortical layer II/III-layer V synapses and in hippocampal Schaffer fibers-CA1 pyramid synapses, which was prevented by AOPCP, an effect occluded by adenosine deaminase and by the A2AR antagonist SCH58261. These results indicate that increased synaptic ATP release coupled to CD73-mediated formation of extracellular adenosine contributes to mood and memory dysfunction triggered by repeated restraint stress. This prompts considering interventions decreasing ATP release and CD73 activity as novel strategies to mitigate the burden of repeated stress.
Collapse
Affiliation(s)
- Liliana Dias
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Pochmann
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Henrique B Silva
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana I Real
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Rial
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Patrícia Simões
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Samira G Ferreira
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula Agostinho
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Angelo R Tomé
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
26
|
James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol (Lausanne) 2023; 14:1085950. [PMID: 36950689 PMCID: PMC10025564 DOI: 10.3389/fendo.2023.1085950] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Stress is viewed as a state of real or perceived threat to homeostasis, the management of which involves the endocrine, nervous, and immune systems. These systems work independently and interactively as part of the stress response. The scientific stress literature, which spans both animal and human studies, contains heterogeneous findings about the effects of stress on the brain and the body. This review seeks to summarise and integrate literature on the relationships between these systems, examining particularly the roles of physiological and psychosocial stress, the stress hormone cortisol, as controlled by the hypothalamic-pituitary-adrenal (HPA) axis, and the effects of stress on cognitive functioning. Health conditions related to impaired HPA axis functioning and their associated neuropsychiatric symptoms will also be considered. Lastly, this review will provide suggestions of clinical applicability for endocrinologists who are uniquely placed to measure outcomes related to endocrine, nervous and immune system functioning and identify areas of intervention.
Collapse
Affiliation(s)
- Katharine Ann James
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliet Ilena Stromin
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Nina Steenkamp
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Marc Irwin Combrinck
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
27
|
Hughes BW, Siemsen BM, Tsvetkov E, Berto S, Kumar J, Cornbrooks RG, Akiki RM, Cho JY, Carter JS, Snyder KK, Assali A, Scofield MD, Cowan CW, Taniguchi M. NPAS4 in the medial prefrontal cortex mediates chronic social defeat stress-induced anhedonia-like behavior and reductions in excitatory synapses. eLife 2023; 12:e75631. [PMID: 36780219 PMCID: PMC9925055 DOI: 10.7554/elife.75631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/29/2023] [Indexed: 02/14/2023] Open
Abstract
Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.
Collapse
Affiliation(s)
- Brandon W Hughes
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Benjamin M Siemsen
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Stefano Berto
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Rebecca G Cornbrooks
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jennifer Y Cho
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jordan S Carter
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
| |
Collapse
|
28
|
Grabowska K, Ziemichód W, Biała G. Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender. Brain Sci 2023; 13:brainsci13010121. [PMID: 36672102 PMCID: PMC9857036 DOI: 10.3390/brainsci13010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Nowadays, stressful situations are an unavoidable element of everyday life. Stressors activate a number of complex mental and physiological reactions in the organism, thus affecting the state of health of an individual. Stress is the main risk factor in the development of mental disorders, such as depression and other disorders developing as a result of addiction. Studies indicate that women are twice as likely as men to develop anxiety, depression and therefore addiction, e.g., to nicotine. Even though the data presented is indicative of significant differences between the sexes in the prevalence of these disorders, the majority of preclinical animal models for investigating stress-induced disorders use predominantly male subjects. However, the recent data indicates that this type of studies has also been launched in female rodents. Therefore, conducting research on both sexes allows for a more accurate understanding and assessment of the impact of stress on stress-induced behavioral, peripheral and molecular changes in the body and brain. In this manuscript we have gathered the data from 41 years (from 1981-2022) on the influence of stress on the development of depression and nicotine addiction in both sexes.
Collapse
|
29
|
Wolugbom JA, Areloegbe SE, Olaniyi KS. Protective Role of Acetate Against Depressive-Like Behaviour Associated with Letrozole-Induced PCOS Rat Model: Involvement of HDAC2 and DNA Methylation. Mol Neurobiol 2023; 60:355-368. [PMID: 36269541 DOI: 10.1007/s12035-022-03074-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder amongst women of reproductive age. PCOS has been demonstrated to induce depressive-like behaviour. Epigenetic alterations such as histone deacetylation (HDAC) and DNA methylation have been suggested in major depression. However, their effects with respect to neuroinflammation are not clear. This study therefore investigated the pathogenic involvement of epigenetic changes in PCOS-associated depression and the protective role of HDACi, especially acetate. Virgin female Wistar rats (140 ± 10 g) were assigned into four groups: the groups received vehicle (control), acetate (200 mg/kg), letrozole (1 mg/kg) and letrozole plus acetate, respectively. The administrations were done concomitantly by oral gavage for 21 days. Treatment with letrozole caused hyperandrogenism, hypoestrogenism, hyperinsulinemia and multiple ovarian cysts/degenerated follicles. In addition, these animals showed depressive-like behaviours and increased expression of HDAC2 and DNA methyltransferase in PFC and hippocampal tissues. Biochemical analyses showed elevated levels of NF-κB, malondialdehyde and acetylcholine (ACH) with glutathione depletion in PFC and hippocampus as well as elevated plasma malondialdehyde and impaired anti-oxidant system in letrozole-treated animals. Histological analysis of PFC and hippocampus showed neurodegeneration in letrozole-treated animals compared with control. However, these alterations were attenuated when treated with acetate. The study demonstrates that PCOS-associated depression is characterised by neuroinflammation and elevated ACH levels, accompanied by increased expression of HDAC2/DNA methyltransferase in PFC and hippocampus. Besides, the study suggests that acetate protects against PCOS-associated depression through suppression of prefrontal and hippocampal DNA methylation and prefrontal but not hippocampal HDAC2 expression.
Collapse
Affiliation(s)
- John A Wolugbom
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Stephanie E Areloegbe
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Kehinde S Olaniyi
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
| |
Collapse
|
30
|
Shade RD, Ross JA, Van Bockstaele EJ. Targeting the cannabinoid system to counteract the deleterious effects of stress in Alzheimer’s disease. Front Aging Neurosci 2022; 14:949361. [PMID: 36268196 PMCID: PMC9577232 DOI: 10.3389/fnagi.2022.949361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.
Collapse
Affiliation(s)
- Ronnie D. Shade
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
- *Correspondence: Jennifer A. Ross,
| | - Elisabeth J. Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Zakaria FH, Samhani I, Mustafa MZ, Shafin N. Pathophysiology of Depression: Stingless Bee Honey Promising as an Antidepressant. Molecules 2022; 27:molecules27165091. [PMID: 36014336 PMCID: PMC9416360 DOI: 10.3390/molecules27165091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is a debilitating psychiatric disorder impacting an individual’s quality of life. It is the most prevalent mental illness across all age categories, incurring huge socio-economic impacts. Most depression treatments currently focus on the elevation of neurotransmitters according to the monoamine hypothesis. Conventional treatments include tricyclic antidepressants (TCAs), norepinephrine–dopamine reuptake inhibitors (NDRIs), monoamine oxidase inhibitors (MAOIs), and serotonin reuptake inhibitors (SSRIs). Despite numerous pharmacological strategies utilising conventional drugs, the discovery of alternative medicines from natural products is a must for safer and beneficial brain supplement. About 30% of patients have been reported to show resistance to drug treatments coupled with functional impairment, poor quality of life, and suicidal ideation with a high relapse rate. Hence, there is an urgency for novel discoveries of safer and highly effective depression treatments. Stingless bee honey (SBH) has been proven to contain a high level of antioxidants compared to other types of honey. This is a comprehensive review of the potential use of SBH as a new candidate for antidepressants from the perspective of the monoamine, inflammatory and neurotrophin hypotheses.
Collapse
Affiliation(s)
- Fatin Haniza Zakaria
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
| | - Ismail Samhani
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, Kuala Terengganu 20400, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
- Correspondence: (M.Z.M.); (N.S.); Tel.: +609-7673000 (M.Z.M. & N.S.)
| | - Nazlahshaniza Shafin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
- Correspondence: (M.Z.M.); (N.S.); Tel.: +609-7673000 (M.Z.M. & N.S.)
| |
Collapse
|
32
|
Abstract
Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.
Collapse
Affiliation(s)
- Puja K Parekh
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Shane B Johnson
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Conor Liston
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
33
|
Chaudry S, Vasudevan N. mTOR-Dependent Spine Dynamics in Autism. Front Mol Neurosci 2022; 15:877609. [PMID: 35782388 PMCID: PMC9241970 DOI: 10.3389/fnmol.2022.877609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders characterized by deficits in social communication and interaction as well as repetitive behaviors and restricted range of interests. ASC are complex genetic disorders with moderate to high heritability, and associated with atypical patterns of neural connectivity. Many of the genes implicated in ASC are involved in dendritic spine pruning and spine development, both of which can be mediated by the mammalian target of rapamycin (mTOR) signaling pathway. Consistent with this idea, human postmortem studies have shown increased spine density in ASC compared to controls suggesting that the balance between autophagy and spinogenesis is altered in ASC. However, murine models of ASC have shown inconsistent results for spine morphology, which may underlie functional connectivity. This review seeks to establish the relevance of changes in dendritic spines in ASC using data gathered from rodent models. Using a literature survey, we identify 20 genes that are linked to dendritic spine pruning or development in rodents that are also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes are linked to the mTOR pathway and propose that the mTOR pathway regulating spine dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We show here that the direction of change in spine density was mostly correlated to the upstream positive or negative regulation of the mTOR pathway and most rodent models of mutant mTOR regulators show increases in immature spines, based on morphological analyses. We further explore the idea that these mutations in these genes result in aberrant social behavior in rodent models that is due to these altered spine dynamics. This review should therefore pave the way for further research on the specific genes outlined, their effect on spine morphology or density with an emphasis on understanding the functional role of these changes in ASC.
Collapse
|
34
|
Kinlein SA, Wallace NK, Savenkova MI, Karatsoreos IN. Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice. Neurobiol Stress 2022; 19:100466. [PMID: 35720261 PMCID: PMC9198473 DOI: 10.1016/j.ynstr.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
It is now well-established that stress elicits brain- and body-wide changes in physiology and has significant impacts on many aspects of health. The hypothalamic-pituitary-adrenal (HPA) axis is the major neuroendocrine system mediating the integrated response to stress. Appropriate engagement and termination of HPA activity enhances survival and optimizes physiological and behavioral responses to stress, while dysfunction of this system is linked to negative health outcomes such as depression, anxiety, and post-traumatic stress disorder. Glutamate signaling plays a large role in the transmission of stress-related information throughout the brain. Furthermore, aberrant glutamate signaling has negative consequences for neural plasticity and synaptic function and is linked to stress-related pathology. However, the connection between HPA dysfunction and glutamate signaling is not fully understood. We tested how HPA axis dysfunction (using low dose chronic corticosterone in the drinking water) affects glutamate homeostasis and neural responses under baseline and acute stress in male C57BL/6N mice. Using laser microdissection and transcriptomic analyses, we show that chronic disruption of the HPA axis alters the expression of genes related to glutamate signaling in the medial prefrontal cortex (mPFC), hippocampus, and amygdala. While neural responses to stress (as measured by FOS) in the hippocampus and amygdala were not affected in our model of HPA dysfunction, we observed an exaggerated response to stress in the mPFC. To further probe this we undertook in vivo biosensor measurements of the dynamics of extracellular glutamate responses to stress in the mPFC in real-time, and found glutamate dynamics in the mPFC were significantly altered by chronic HPA dysfunction. Together, these findings support the hypothesis that chronic HPA axis dysfunction alters glutamatergic signaling in regions known to regulate emotional behavior, providing more evidence linking HPA dysfunction and stress vulnerability.
Collapse
|
35
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
36
|
Hodebourg R, Meyerink ME, Crow AD, Reichel CM, Kalivas PW, Garcia-Keller C. Cannabinoid use is enhanced by stress and changes conditioned stress responses. Neuropsychopharmacology 2022; 47:1037-1045. [PMID: 35145212 PMCID: PMC8938410 DOI: 10.1038/s41386-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Abstract
Individuals diagnosed with post-traumatic stress disorder (PTSD) are often comorbid for substance use disorders. Cannabis is widely used by PSTD patients, and the literature is mixed on whether cannabis use ameliorates or exacerbates patient responses to stress-associated conditioned stimuli (stress-CS). We determined if cannabis use affects responsivity to stress-CS in rats receiving 2 h stress in the presence of an odor stress-CS. Three weeks after acute stress, rats self-administered cannabinoids (delta9-tetrahydrocannabinol + cannabidiol; THC + CBD) for 15 days, and the stressed males consumed more THC + CBD than sham males. We then used the stress-CS or a novel odor (stress-NS) to reinstate THC + CBD seeking. Surprisingly, the stress-NS reinstated THC + CBD seeking, an effect blocked by N-acetylcysteine. Moreover, the stress-CS inhibited THC + CBD-CS induced reinstatement. To determine if the unexpected effects of stress-NS and -CS resulted from THC + CBD altering conditioned stress, the effect of THC + CBD use on stress-NS/CS-induced coping behaviors and spine morphology was quantified. In THC + CBD-treated rats, stress-NS increased active coping (burying). Conversely, stress-CS reduced active coping and increased passive coping (immobility) and other behavioral parameters associated with stress responses, including self-grooming and defecation. Transient spine head expansion in nucleus accumbens core is necessary for cue-induced drug seeking, and THC + CBD self-administration prevented the increase in head diameter by stress-CS in control rats. These data show THC + CBD self-administration altered the salience of environmental cues, causing neutral cues to promote active behavior (drug seeking and burying) and stress-CS to switch from active to passive behavior (inhibiting drug seeking and immobilization). We hypothesize that cannabis may exacerbate conditioned stress responses.
Collapse
Affiliation(s)
- Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael E Meyerink
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ayteria D Crow
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | | |
Collapse
|
37
|
Laine M, Shansky R. Rodent models of stress and dendritic plasticity – Implications for psychopathology. Neurobiol Stress 2022; 17:100438. [PMID: 35257016 PMCID: PMC8897597 DOI: 10.1016/j.ynstr.2022.100438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Stress, as commonplace as it is, is a major environmental risk factor for psychopathology. While this association intuitively, anecdotally, and empirically makes sense, we are still very early in the process of understanding what the neurobiological manifestations of this risk truly are. Seminal work from the past few decades has established structural plasticity in the brain as a potential key mechanism. In this review we discuss evidence linking particularly chronic stress exposure in rodent models to plasticity at the dendrites, like remodeling of dendritic branches and spines, in a range of brain regions. A number of candidate mechanisms that seek to explain how stress influences neuroanatomy at this level have been proposed, utilizing in vivo, ex vivo and in vitro methods. However, a large gap still remains in our knowledge of how such dynamic structural changes ultimately relate to downstream effects such as altered affective and cognitive states relevant for psychopathology. We propose that future work expand our understanding of plasticity of specific stress-related brain circuits and cell-types. We also note that the vast majority of the work has been conducted solely on male rodents. The next big strides in our understanding of the neurobiology of psychopathology will require the inclusion of female subjects, as several studies have suggested both sex divergent and convergent features. By understanding plasticity, we can harness it. The growth of this body of knowledge will inform our efforts to improve the therapeutic options for stress-related psychopathology.
Collapse
|
38
|
Grossman YS, Fillinger C, Manganaro A, Voren G, Waldman R, Zou T, Janssen WG, Kenny PJ, Dumitriu D. Structure and function differences in the prelimbic cortex to basolateral amygdala circuit mediate trait vulnerability in a novel model of acute social defeat stress in male mice. Neuropsychopharmacology 2022; 47:788-799. [PMID: 34799681 PMCID: PMC8782864 DOI: 10.1038/s41386-021-01229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 02/03/2023]
Abstract
Stressful life events are ubiquitous and well-known to negatively impact mental health. However, in both humans and animal models, there is large individual variability in how individuals respond to stress, with some but not all experiencing long-term adverse consequences. While there is growing understanding of the neurobiological underpinnings of the stress response, much less is known about how neurocircuits shaped by lifetime experiences are activated during an initial stressor and contribute to this selective vulnerability versus resilience. We developed a model of acute social defeat stress (ASDS) that allows classification of male mice into "susceptible" (socially avoidant) versus "resilient" (expressing control-level social approach) one hour after exposure to six minutes of social stress. Using circuit tracing and high-resolution confocal imaging, we explored differences in activation and dendritic spine density and morphology in the prelimbic cortex to basolateral amygdala (PL→BLA) circuit in resilient versus susceptible mice. Susceptible mice had greater PL→BLA recruitment during ASDS and activated PL→BLA neurons from susceptible mice had more and larger mushroom spines compared to resilient mice. We hypothesized identified structure/function differences indicate an overactive PL→BLA response in susceptible mice and used an intersectional chemogenetic approach to inhibit the PL→BLA circuit during or prior to ASDS. We found in both cases that this blocked ASDS-induced social avoidance. Overall, we show PL→BLA structure/function differences mediate divergent behavioral responses to ASDS in male mice. These results support PL→BLA circuit overactivity during stress as a biomarker of trait vulnerability and potential target for prevention of stress-induced psychopathology.
Collapse
Affiliation(s)
- Yael S Grossman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
| | - Clementine Fillinger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Manganaro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - George Voren
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Waldman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Zou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dani Dumitriu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, Columbia University, New York, NY, USA.
- Sackler Institute, Columbia University, New York, NY, USA.
- Columbia Population Research Center, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
39
|
Hwang HM, Hashimoto-Torii K. Activation of the anterior cingulate cortex ameliorates anxiety in a preclinical model of fetal alcohol spectrum disorders. Transl Psychiatry 2022; 12:24. [PMID: 35058425 PMCID: PMC8776849 DOI: 10.1038/s41398-022-01789-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
People with fetal alcohol spectrum disorders (FASD) are suffered from a wide range of interlinked cognitive and psychological problems. However, few therapeutic options are available for those patients due to limited dissection of its underlying etiology. Here we found that prenatal alcohol exposure (PAE) increases anxiety in mice due to a dysregulated functional connectivity between the anterior cingulate cortex (ACC) and basolateral amygdala (BLA). We also show that chemogenetic activation of excitatory neurons in the ACC reduced this anxiety behavior in the PAE mice. Interestingly, although the level of plasma corticosterone correlated with the increase in anxiety in the PAE, this level was not altered by chemogenetic activation of the ACC, suggesting that the functional connectivity between the ACC and the BLA does not alter the activity of the hypothalamic-pituitary-adrenal axis. Altogether, this study demonstrated that reduced excitation in the ACC is a cause of anxiety in the PAE mice, providing critical insights into the ACC-BLA neural circuit as a potential target for treating anxiety in FASD patients.
Collapse
Affiliation(s)
- Hye M. Hwang
- grid.239560.b0000 0004 0482 1586Center for Neuroscience Research, The Children’s Research Institute, Children’s National Hospital, Washington, DC USA ,grid.253615.60000 0004 1936 9510The Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
40
|
Wang Z, Cao Q, Bai W, Zheng X, Liu T. Decreased Phase-Amplitude Coupling Between the mPFC and BLA During Exploratory Behaviour in Chronic Unpredictable Mild Stress-Induced Depression Model of Rats. Front Behav Neurosci 2022; 15:799556. [PMID: 34975430 PMCID: PMC8716490 DOI: 10.3389/fnbeh.2021.799556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is a common neuropsychiatric illness observed worldwide, and reduced interest in exploration is one of its symptoms. The control of dysregulated medial prefrontal cortex (mPFC) over the basolateral amygdala (BLA) is related to depression. However, the oscillation interaction in the mPFC-BLA circuit has remained elusive. Therefore, this study used phase-amplitude coupling (PAC), which provides complicated forms of information transmission by the phase of low-frequency rhythm, modulating the amplitude of high-frequency rhythm, and has a potential application for the treatment of neurological disease. The chronic unpredictable mild stress (CUMS) was used to prepare the rat models of depression. Moreover, multichannel in vivo recording was applied to obtain the local field potentials (LFPs) of the mPFC, the BLA in rats in control, and CUMS groups, while they explored the open field. The results showed prominent coupling between the phase of theta oscillation (4-12 Hz) in the mPFC and the amplitude of high-gamma oscillation (70-120 Hz) in the BLA. Compared to the control group, this theta-gamma PAC was significantly decreased in the CUMS group, which was accompanied by the diminished exploratory behaviour. The results indicate that the coupling between the phase of theta in the mPFC and the amplitude of gamma in the BLA is involved in exploratory behaviour, and this decreased coupling may inhibit exploratory behaviour of rats exposed to CUMS.
Collapse
Affiliation(s)
- Zihe Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qingying Cao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
41
|
Gururajan A. The impact of chronic stress on the PFC transcriptome: a bioinformatic meta-analysis of publicly available RNA-sequencing datasets. Stress 2022; 25:305-312. [PMID: 35983587 DOI: 10.1080/10253890.2022.2111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
The prefrontal cortex (PFC) is one of several brain structures that are sensitive to chronic stress exposure. There have been several studies which have examined the effects on chronic stress, using various protocols such as chronic unpredictable stress and chronic social defeat stress, on the PFC transcriptome. In this report, a bioinformatic meta-analysis of publicly available RNA sequencing datasets (101 samples) from seven chronic stress studies was carried out to identify core PFC transcriptional signatures that underpin behavioral phenotypes including resilience and susceptibility. The results showed 160 differentially expressed genes in chronic stress mice compared to controls with significant enrichment in mechanisms associated with translation and localization of membrane-bound proteins with a putative effect on synaptic plasticity in glutamatergic neurons. Moreover, the meta-analysis revealed no differentially expressed genes in resilient mice but 144 in susceptible mice compared to controls, of which 44 were not identified in the individual studies. Enrichment analysis revealed that susceptibility genes were most affected in oligodendrocytes and linked to mechanisms which mediate biochemical, bidirectional communication between this cell-type and myelinated axons. These results provide new avenues for further research into the neurobiology and treatment of chronic stress-induced disorders.
Collapse
Affiliation(s)
- Anand Gururajan
- Brain & Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Ramnauth AD, Maynard KR, Kardian AS, Phan BN, Tippani M, Rajpurohit S, Hobbs JW, Cerceo Page S, Jaffe AE, Martinowich K. Induction of Bdnf from promoter I following electroconvulsive seizures contributes to structural plasticity in neurons of the piriform cortex. Brain Stimul 2022; 15:427-433. [PMID: 35183789 PMCID: PMC8957536 DOI: 10.1016/j.brs.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF). HYPOTHESIS We hypothesized that cells expressing the Bdnf exon 1-containing isoform are important for ECS-induced structural plasticity in the piriform cortex, a highly epileptogenic region that is responsive to ECS. METHODS We selectively labeled Bdnf exon 1-expressing neurons in mouse piriform cortex using Cre recombinase dependent on GFP technology (CRE-DOG). We then quantified changes in dendrite morphology and density of Bdnf exon 1-expressing neurons. RESULTS Loss of promoter I-derived BDNF caused changes in spine density and morphology in Bdnf exon 1-expressing neurons following ECS. CONCLUSIONS Promoter I-derived Bdnf is required for ECS-induced dendritic structural plasticity in Bdnf exon 1-expressing neurons.
Collapse
Affiliation(s)
- Anthony D. Ramnauth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Alisha S. Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - BaDoi N. Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Sumita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - John W. Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
44
|
Zhu Y, Qu Y, Zhang J, Hou J, Fang J, Shen J, Xu C, Huang M, Qiao H, An S. Phencynonate hydrochloride exerts antidepressant effects by regulating the dendritic spine density and altering glutamate receptor expression. Behav Pharmacol 2021; 32:660-672. [PMID: 34751176 DOI: 10.1097/fbp.0000000000000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phencynonate hydrochloride (PCH) is a drug that crosses the blood-brain barrier. Cellular experiments confirmed that PCH protects against glutamate toxicity and causes only weak central inhibition and limited side effects. As shown in our previous studies, PCH alleviates depression-like behaviours induced by chronic unpredictable mild stress (CUMS). Here we administered PCH at three different doses (4, 8 and 16 mg/kg) to male rats for two continuous days after CUMS and conducted behavioural tests to assess the dose-dependent antidepressant effects of PCH and its effects on the neuroplasticity in the hippocampus and medial prefrontal cortex (mPFC). Meanwhile, we measured the spine density and expression of related proteins to illustrate the mechanism of PCH. PCH treatment (8 mg/kg) significantly alleviated depression-like behaviours induced by CUMS. All doses of PCH treatment reversed the spine loss in prelimbic and CA3 regions induced by CUMS. Kalirin-7 expression was decreased in the hippocampus and mPFC of the CUMS group. The expression of the NR1 and NR2B subunits in the hippocampus, and NR2B in mPFC are increased by CUMS. PCH treatment (8 and 16 mg/kg) reversed all of these changes of Kalirin-7 in PFC and hippocampus, as well as NR1 and NR2B expression in the hippocampus. PCH is expected to be developed as a new type of rapid antidepressant. Its antidepressant effect may be closely related to the modulation of dendritic spine density in the prelimbic and CA3 regions and the regulation of Kalilin-7 and N-methyl-D-aspartic acid receptor levels in the hippocampus.
Collapse
Affiliation(s)
- Yingqi Zhu
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Yishan Qu
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Jing Zhang
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Jun Hou
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Jie Fang
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Jingxuan Shen
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Chang Xu
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, China
| | - Hui Qiao
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Shucheng An
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| |
Collapse
|
45
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
46
|
Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation 2021; 18:258. [PMID: 34742308 PMCID: PMC8571840 DOI: 10.1186/s12974-021-02309-6] [Citation(s) in RCA: 376] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunological concepts from these studies have been applied to describe neuro-immune interactions in the absence of disease, injury, or infection. Indeed, terms such as 'microglia activation' or 'neuroinflammation' are used ubiquitously to describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunology and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in different contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurological disease.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
47
|
Lucantonio F, Kim E, Su Z, Chang AJ, Bari BA, Cohen JY. Aversive stimuli bias corticothalamic responses to motivationally significant cues. eLife 2021; 10:57634. [PMID: 34738905 PMCID: PMC8570692 DOI: 10.7554/elife.57634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
Making predictions about future rewards or punishments is fundamental to adaptive behavior. These processes are influenced by prior experience. For example, prior exposure to aversive stimuli or stressors changes behavioral responses to negative- and positive-value predictive cues. Here, we demonstrate a role for medial prefrontal cortex (mPFC) neurons projecting to the paraventricular nucleus of the thalamus (PVT; mPFC→PVT) in this process. We found that a history of aversive stimuli negatively biased behavioral responses to motivationally relevant cues in mice and that this negative bias was associated with hyperactivity in mPFC→PVT neurons during exposure to those cues. Furthermore, artificially mimicking this hyperactive response with selective optogenetic excitation of the same pathway recapitulated the negative behavioral bias induced by aversive stimuli, whereas optogenetic inactivation of mPFC→PVT neurons prevented the development of the negative bias. Together, our results highlight how information flow within the mPFC→PVT circuit is critical for making predictions about motivationally-relevant outcomes as a function of prior experience.
Collapse
Affiliation(s)
- Federica Lucantonio
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Eunyoung Kim
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhixiao Su
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Anna J Chang
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Bilal A Bari
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremiah Y Cohen
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
48
|
Walker CK, Herskowitz JH. Dendritic Spines: Mediators of Cognitive Resilience in Aging and Alzheimer's Disease. Neuroscientist 2021; 27:487-505. [PMID: 32812494 PMCID: PMC8130863 DOI: 10.1177/1073858420945964] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cognitive resilience is often defined as the ability to remain cognitively normal in the face of insults to the brain. These insults can include disease pathology, such as plaques and tangles associated with Alzheimer's disease, stroke, traumatic brain injury, or other lesions. Factors such as physical or mental activity and genetics may contribute to cognitive resilience, but the neurobiological underpinnings remain ill-defined. Emerging evidence suggests that dendritic spine structural plasticity is one plausible mechanism. In this review, we highlight the basic structure and function of dendritic spines and discuss how spine density and morphology change in aging and Alzheimer's disease. We note evidence that spine plasticity mediates resilience to stress, and we tackle dendritic spines in the context of cognitive resilience to Alzheimer's disease. Finally, we examine how lifestyle and genetic factors may influence dendritic spine plasticity to promote cognitive resilience before discussing evidence for actin regulatory kinases as therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Courtney K. Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Jeremy H. Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| |
Collapse
|
49
|
Wallace T, Myers B. Effects of Biological Sex and Stress Exposure on Ventromedial Prefrontal Regulation of Mood-Related Behaviors. Front Behav Neurosci 2021; 15:737960. [PMID: 34512290 PMCID: PMC8426926 DOI: 10.3389/fnbeh.2021.737960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ventral portion of the medial prefrontal cortex (vmPFC) regulates mood, sociability, and context-dependent behaviors. Consequently, altered vmPFC activity has been implicated in the biological basis of emotional disorders. Recent methodological advances have greatly enhanced the ability to investigate how specific prefrontal cell populations regulate mood-related behaviors, as well as the impact of long-term stress on vmPFC function. However, emerging preclinical data identify prominent sexual divergence in vmPFC behavioral regulation and stress responsivity. Notably, the rodent infralimbic cortex (IL), a vmPFC subregion critical for anti-depressant action, shows marked functional divergence between males and females. Accordingly, this review examines IL encoding and modulation of mood-related behaviors, including coping style, reward, and sociability, with a focus on sex-based outcomes. We also review how these processes are impacted by prolonged stress exposure. Collectively, the data suggest that chronic stress has sex-specific effects on IL excitatory/inhibitory balance that may account for sex differences in the prevalence and course of mood disorders.
Collapse
Affiliation(s)
- Tyler Wallace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
50
|
Li Y, Fan C, Wang L, Lan T, Gao R, Wang W, Yu SY. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J Clin Invest 2021; 131:e148853. [PMID: 34228643 DOI: 10.1172/jci148853] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Depression is a neuropsychiatric disease associated with neuronal anomalies within specific brain regions. In the present study, we screened microRNA (miRNA) expression profiles in the dentate gyrus (DG) of the hippocampus and found that miR-26a-3p was markedly downregulated in a rat model of depression, whereas upregulation of miR-26a-3p within DG regions rescued the neuronal deterioration and depression-like phenotypes resulting from stress exposure, effects that appear to be mediated by the PTEN pathway. The knockdown of miR-26a-3p in DG regions of normal control rats induced depression-like behaviors, effects that were accompanied by activation of the PTEN/PI3K/Akt signaling pathway and neuronal deterioration via suppression of autophagy, impairments in synaptic plasticity, and promotion of neuronal apoptosis. In conclusion, these results suggest that miR-26a-3p deficits within the hippocampal DG mediated the neuronal anomalies contributing to the display of depression-like behaviors. This miRNA may serve as a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Ye Li
- Department of Physiology and
| | | | - Liyan Wang
- Morphological Experimental Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | | | - Rui Gao
- Department of Microorganism, Jinan Nursing Vocational College, Lvyoulu Road, Jinan, Shandong Province, China
| | | | - Shu Yan Yu
- Department of Physiology and.,Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|