1
|
Arakawa H, Higuchi Y. Exocrine scent marking: Coordinative role of arginine vasopressin in the systemic regulation of social signaling behaviors. Neurosci Biobehav Rev 2022; 136:104597. [PMID: 35248677 DOI: 10.1016/j.neubiorev.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Arginine vasopressin (AVP) is a neurohypophysial hormone that coordinatively regulates central socio-emotional behavior and peripheral control of antidiuretic fluid homeostasis. Most mammals, including rodents, utilize exocrine or urine-contained scent marking as a social signaling tool that facilitates social adaptation. The exocrine scent marking behavior is postulated to fine-tune sensory and cognitive abilities to recognize key social features via exocrine/urinary olfactory cues and subsequently control exocrine deposition or urinary marking through the mediation of osmotic fluid balance. AVP is implicated as a major player in controlling both recognition and signaling responses. This review provides constructive hypotheses on the coordinative processes of the AVP neurohypophysial circuits in the systemic regulations of fluid control and social-communicative behavior, via the expression of exocrine scent marking, and further emphasizes a potential role of AVP in a common mechanism underlying social communication in rodents.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan.
| | - Yuki Higuchi
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| |
Collapse
|
2
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
3
|
Colloca L, Pine DS, Ernst M, Miller FG, Grillon C. Vasopressin Boosts Placebo Analgesic Effects in Women: A Randomized Trial. Biol Psychiatry 2016; 79:794-802. [PMID: 26321018 PMCID: PMC4740270 DOI: 10.1016/j.biopsych.2015.07.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/20/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Social cues and interpersonal interactions strongly contribute to evoke placebo effects that are pervasive in medicine and depend upon the activation of endogenous modulatory systems. Here, we explore the possibility to boost placebo effects by targeting pharmacologically the vasopressin system, characterized by a sexually dimorphic response and involved in the regulation of human and nonhuman social behaviors. METHODS We enrolled 109 healthy participants and studied the effects of intranasal administration of an arginine vasopressin 1A and 1B receptor agonist against 1) no treatment, 2) oxytocin, and 3) saline in a randomized, placebo-controlled, double-blind, parallel design trial using a well-established model of placebo analgesia while controlling for sex differences. RESULTS Vasopressin agonists boosted placebo effects in women but had no effect in men. The effects of vasopressin on expectancy-induced analgesia were significantly larger than those observed in the no-treatment (p < .004), oxytocin (p < .001), and saline (p < .015) groups. Moreover, women with lower dispositional anxiety and cortisol levels showed the largest vasopressin-induced modulation of placebo effects, suggesting a moderating interplay between pre-existing psychological factors and treatment cortisol changes. CONCLUSIONS This is the first study that demonstrates that arginine vasopressin boosts placebo effects and that the effect of vasopressin depends upon a significant sex by treatment interaction. These findings are novel and might open up new avenues for clinically relevant research due to the therapeutic potentials of vasopressin as well as the possibility to systematically control for influences of placebo responses in clinical trials.
Collapse
|
4
|
Fang P, He B, Shi M, Kong G, Dong X, Zhu Y, Bo P, Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015; 71:240-249. [PMID: 26188174 DOI: 10.1016/j.peptides.2015.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
It is essential for the species survival that an efficient coordination between energy storage and reproduction through endocrine regulation. The neuropeptide galanin, one of the endocrine hormones, can potently coordinate energy metabolism and the activities of hypothalamic-pituitary-gonadal reproductive axis to adjust synthesis and release of metabolic and reproductive hormones in animals and humans. However, few papers have summarized the regulative effect of the galanin family members on the link of energy storage and reproduction as yet. To address this issue, this review attempts to summarize the current information available about the regulative effect of galanin, galanin-like peptide and alarin on the metabolic and reproductive events, with special emphasis on the interactions between galanin and hypothalamic gonadotropin-releasing hormone, pituitary luteinizing hormone and ovarian hormones. This research line will further deepen our understanding of the physiological roles of the galanin family in regulating the link of energy metabolism and reproduction.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Guimei Kong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Xiaoyun Dong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
5
|
Montagnese CM, Székely T, Csillag A, Zachar G. Distribution of vasotocin- and vasoactive intestinal peptide-like immunoreactivity in the brain of blue tit (Cyanistes coeruleus). Front Neuroanat 2015; 9:90. [PMID: 26236200 PMCID: PMC4500960 DOI: 10.3389/fnana.2015.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/23/2015] [Indexed: 12/06/2022] Open
Abstract
Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species.
Collapse
Affiliation(s)
- Catherine M Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| | - Tamás Székely
- Department of Biology and Biochemistry, University of Bath Bath, UK
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| |
Collapse
|
6
|
Kelly AM, Goodson JL. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front Neuroendocrinol 2014; 35:512-29. [PMID: 24813923 DOI: 10.1016/j.yfrne.2014.04.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Vasopressin-oxytocin (VP-OT) nonapeptides modulate numerous social and stress-related behaviors, yet these peptides are made in multiple nuclei and brain regions (e.g., >20 in some mammals), and VP-OT cells in these areas often exhibit overlapping axonal projections. Furthermore, the magnocellular cell groups release peptide volumetrically from dendrites and soma, which gives rise to paracrine modulation in distal brain areas. Nonapeptide receptors also tend to be promiscuous. Hence, behavioral effects that are mediated by any given receptor type (e.g., the OT receptor) in a target brain region cannot be conclusively attributed to either VP or OT, nor to a specific cell group. We here review what is actually known about the social behavior functions of nonapeptide cell groups, with a focus on aggression, affiliation, bonding, social stress, and parental behavior, and discuss recent studies that demonstrate a diversity of sex-specific contributions of VP-OT cell groups to gregariousness and pair bonding.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Kelly AM, Goodson JL. Behavioral relevance of species-specific vasotocin anatomy in gregarious finches. Front Neurosci 2013; 7:242. [PMID: 24381536 PMCID: PMC3865460 DOI: 10.3389/fnins.2013.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/28/2013] [Indexed: 11/13/2022] Open
Abstract
Despite substantial species differences in the vasotocin/vasopressin (VT/VP) circuitry of the medial bed nucleus of the stria terminalis (BSTm) and lateral septum (LS; a primary projection target of BSTm VT/VP cells), functional consequences of this variation are poorly known. Previous experiments in the highly gregarious zebra finch (Estrildidae: Taeniopygia guttata) demonstrate that BSTm VT neurons promote gregariousness in a male-specific manner and reduce anxiety in both sexes. However, in contrast to the zebra finch, the less gregarious Angolan blue waxbill (Estrildidae: Uraeginthus angolensis) exhibits fewer VT-immunoreactive cells in the BSTm as well as differences in receptor distribution across the LS subnuclei, suggesting that knockdown of VT production in the BSTm would produce behavioral effects in Angolan blue waxbills that are distinct from zebra finches. Thus, we here quantified social contact, gregariousness (i.e., preference for the larger of two groups), and anxiety-like behavior following bilateral antisense knockdown of VT production in the BSTm of male and female Angolan blue waxbills. We find that BSTm VT neurons promote social contact, but not gregariousness (as in male zebra finches), and that antisense effects on social contact are significantly stronger in male waxbills than in females. Knockdown of BSTm VT production has no effect on anxiety-like behavior. These data provide novel evidence that species differences in the VT/VP circuitry arising in the BSTm are accompanied by species-specific effects on affiliation behaviors.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University Bloomington, IN, USA
| | - James L Goodson
- Department of Biology, Indiana University Bloomington, IN, USA
| |
Collapse
|
8
|
Kelly AM, Goodson JL. Functional significance of a phylogenetically widespread sexual dimorphism in vasotocin/vasopressin production. Horm Behav 2013; 64:840-6. [PMID: 24100197 DOI: 10.1016/j.yhbeh.2013.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
Male-biased production of arginine vasotocin/vasopressin (VT/VP) in the medial bed nucleus of the stria terminalis (BSTm) represents one of the largest and most phylogenetically widespread sexual dimorphisms in the vertebrate brain. Although this sex difference was identified 30 years ago, the function of the dimorphism has yet to be determined. Because 1) rapid transcriptional activation of BSTm VT/VP neurons is observed selectively in response to affiliation-related stimuli, 2) BSTm VT/VP content and release correlates negatively with aggression, and 3) BSTm VT/VP production is often limited to periods of reproduction, we hypothesized that the sexual dimorphism serves to promote male-specific reproductive behaviors and offset male aggression in the context of reproductive affiliation. We now show that antisense knockdown of BSTm VT production in colony-housed finches strongly increases aggression in a male-specific manner and concomitantly reduces courtship. Thus, the widespread dimorphism may serve to focus males on affiliation in appropriate reproductive contexts (e.g., when courting) while concomitantly offsetting males' tendency for greater aggression relative to females.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
9
|
Marie-Luce C, Raskin K, Bolborea M, Monin M, Picot M, Mhaouty-Kodja S. Effects of neural androgen receptor disruption on aggressive behavior, arginine vasopressin and galanin systems in the bed nucleus of stria terminalis and lateral septum. Gen Comp Endocrinol 2013; 188:218-25. [PMID: 23583766 DOI: 10.1016/j.ygcen.2013.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/29/2022]
Abstract
In the present study, we investigated the role of the androgen receptor (AR) in the nervous system in the regulation of aggressive behavior and arginine vasopressin and galanin systems by testosterone. For this purpose, we used a conditional mouse line selectively lacking AR gene in the nervous system, backcrossed onto the C57BL/6J strain. Adult males were gonadectomized and supplemented with similar amounts of testosterone. When tested on two consecutive days in the resident intruder paradigm, fewer males of the mutant group exhibited aggressive behavior compared to their control littermates. In addition, a high latency to the first offensive attack was observed for the few animals that exhibited fighting behavior. This alteration was associated with a normal anogenital chemoinvestigation of intruder males. In olfactory discrimination tasks, sexual experience enhanced preference towards female-soiled bedding rather than male-soiled bedding and estrus females rather than intact males, regardless of genotype. This indicated that the behavioral alteration induced by neural AR mutation occurs in brain areas located downstream from the olfactory bulb. Quantification of the sexually dimorphic cell populations expressing preprovasopressin and galanin mRNAs in the bed nucleus of stria terminalis (BNST) and vasopressin-neurophysin 2 and galanin immunoreactivity in the lateral septum showed no significant differences between the two genotypes. The present findings indicate that the neural AR is required in the expression of aggressive behavior but not in the sexual differentiation of AVP and galanin cell number in the BNST and fiber immunoreactivity in the lateral septum. They also suggest that AR in the nervous system could mediate activational effects of testosterone in the regulation of aggressive behavior during adulthood.
Collapse
Affiliation(s)
- Clarisse Marie-Luce
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7224, 9 quai St Bernard, Paris CEDEX 05, France
| | | | | | | | | | | |
Collapse
|
10
|
Otero-Garcia M, Martin-Sanchez A, Fortes-Marco L, Martínez-Ricós J, Agustin-Pavón C, Lanuza E, Martínez-García F. Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice. Brain Struct Funct 2013; 219:1055-81. [PMID: 23625152 DOI: 10.1007/s00429-013-0553-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/11/2013] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of the immunoreactivity for arginine-vasopressin (AVP-ir) in the telencephalon of male (intact and castrated) and female CD1 mice allows us to precisely locate two sexually dimorphic (more abundant in intact than castrated males and females) AVP-ir cell groups in the posterior bed nucleus of the stria terminalis (BST) and the amygdala. Chemoarchitecture (NADPH diaphorase) reveals that the intraamygdaloid AVP-ir cells are located in the intra-amygdaloid BST (BSTIA) rather than the medial amygdala (Me), as previously thought. Then, we have used for the first time tract tracing (combined with AVP immunofluorescence) and fiber-sparing lesions of the BST to analyze the projections of the telencephalic AVP-ir cell groups. The results demonstrate that the posterior BST originates the sexually dimorphic innervation of the lateral septum, the posterodorsal Me and a substance P-negative area in the medioventral striato-pallidum (mvStP).The BSTIA may also contribute to some of these terminal fields. Our material also reveals non-dimorphic AVP-ir processes in two locations of the amygdala. First, the ventral Me shows dendrite-like AVP-ir processes apparently belonging supraoptic neurons, whose possible functions are discussed. Second, the Ce shows sparse, thick AVP-ir axons with high individual variability in density and distribution, whose possible influence on stress coping in relation to the affiliative or agonistic behaviors mediated by the Me are discussed. Finally, we propose that the region of the mvStP showing sexually dimorphic AVP-ir innervation is part of the brain network for socio-sexual behavior, in which it would mediate motivational aspects of chemosensory-guided social interactions.
Collapse
Affiliation(s)
- Marcos Otero-Garcia
- Laboratori de Neuroanatomia Funcional Comparada, Depts. Biologia Funcional i Biologia Cel·lular, Fac. Ciències Biològiques, Univ. València, C. Dr. Moliner, 50, 46100, Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Bolborea M, Laran-Chich MP, Rasri K, Hildebrandt H, Govitrapong P, Simonneaux V, Pévet P, Steinlechner S, Klosen P. Melatonin controls photoperiodic changes in tanycyte vimentin and neural cell adhesion molecule expression in the Djungarian hamster (Phodopus sungorus). Endocrinology 2011; 152:3871-83. [PMID: 21846800 DOI: 10.1210/en.2011-1039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Djungarian hamster displays photoperiodic variations in gonadal size synchronized to the seasons by the nightly secretion of the pineal hormone melatonin. In short photoperiod (SP), the gonads regress in size, and circulating sex steroids levels decline. Thus, the brain is subject to seasonal variations of both melatonin and sex steroids. Tanycytes are specialized glial cells located in the ependymal lining of the third ventricle. They send processes either to the meninges or to blood vessels of the medio-basal hypothalamus. Furthermore, they are known to locally modulate GnRH release in the median eminence and to display seasonal structural changes. Seasonal changes in tanycyte morphology might be mediated either through melatonin or sex steroids. Therefore, we analyzed the effects of photoperiod, melatonin, and sex steroids 1) on tanycyte vimentin expression by immunohistochemistry and 2) on the expression of the neural cell adhesion molecule (NCAM) and polysialic acid as markers of brain plasticity. Vimentin immunostaining was reduced in tanycyte cell bodies and processes in SP. Similarly, tanycytes and their processes contained lower amounts of NCAM in SP. These changes induced by SP exposure could not be restored to long photoperiod (LP) levels by testosterone supplementation. Likewise, castration in LP did not affect tanycyte vimentin or NCAM expression. By contrast, late afternoon melatonin injections mimicking a SP-like melatonin peak in LP hamsters reduced vimentin and NCAM expression. Thus, the seasonal changes in vimentin and NCAM expression in tanycytes are regulated by melatonin independently of seasonal sex steroid changes.
Collapse
Affiliation(s)
- Matei Bolborea
- Tierärztliche Hochschule, Institut für Zoologie, 30559 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kelly AM, Kingsbury MA, Hoffbuhr K, Schrock SE, Waxman B, Kabelik D, Thompson RR, Goodson JL. Vasotocin neurons and septal V1a-like receptors potently modulate songbird flocking and responses to novelty. Horm Behav 2011; 60:12-21. [PMID: 21295577 PMCID: PMC3106146 DOI: 10.1016/j.yhbeh.2011.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 02/06/2023]
Abstract
Previous comparisons of territorial and gregarious finches (family Estrildidae) suggest the hypothesis that arginine vasotocin (VT) neurons in the medial bed nucleus of the stria terminalis (BSTm) and V(1a)-like receptors in the lateral septum (LS) promote flocking behavior. Consistent with this hypothesis, we now show that intraseptal infusions of a V(1a) antagonist in male zebra finches (Taeniopygia guttata) reduce gregariousness (preference for a group of 10 versus 2 conspecific males), but have no effect on the amount of time that subjects spend in close proximity to other birds ("contact time"). The antagonist also produces a profound increase in anxiety-like behavior, as exhibited by an increased latency to feed in a novelty-suppressed feeding test. Bilateral knockdown of VT production in the BSTm using LNA-modified antisense oligonucleotides likewise produces increases in anxiety-like behavior and a potent reduction in gregariousness, relative to subjects receiving scrambled oligonucleotides. The antisense oligonucleotides also produced a modest increase in contact time, irrespective of group size. Together, these combined experiments provide clear evidence that endogenous VT promotes preferences for larger flock sizes, and does so in a manner that is coupled to general anxiolysis. Given that homologous peptide circuitry of the BSTm-LS is found across all tetrapod vertebrate classes, these findings may be predictive for other highly gregarious species.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University,1001 East Third Street, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nonapeptide mechanisms of social cognition, behavior and species-specific social systems. Curr Opin Neurobiol 2010; 20:784-94. [DOI: 10.1016/j.conb.2010.08.020] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 01/01/2023]
|
14
|
Gutzler SJ, Karom M, Erwin WD, Albers HE. Seasonal regulation of social communication by photoperiod and testosterone: effects of arginine-vasopressin, serotonin and galanin in the medial preoptic area-anterior hypothalamus. Behav Brain Res 2010; 216:214-9. [PMID: 20696187 DOI: 10.1016/j.bbr.2010.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 02/06/2023]
Abstract
Arginine-vasopressin (AVP) activation of V1a AVP receptors in the medial preoptic area-anterior hypothalamus (MPOA-AH) plays a critical role in the control of a form of social communication called flank marking. The ability of AVP and V1a receptors in the MPOA-AH to regulate flank marking is modulated by a number of factors including galanin (GAL), serotonin (5-HT) and gonadal hormones. More recent studies suggest that there may be seasonal differences in the number or type of AVP receptors in the MPOA-AH controlling flank marking or in the modulation of these mechanisms by GAL or 5-HT. The purpose of the present study was to examine how exposure to "summer-like" and "winter-like" photoperiods alters the neural mechanisms regulating flank marking. These studies confirmed that V1a AVP receptors, but not V1b AVP receptors play a significant role in controlling flank marking in the MPOA-AH in both LP and SP-housed hamsters. These studies also found that there were no significant differences between hamsters housed in LP and SP in the ability of serotonin 5-HT1a/7 and 5-HT1b receptor agonists injected into the MPOA-AH to inhibit odor-induced flank marking. Finally, these studies found that GAL could significantly inhibit the ability of AVP to stimulate flank marking in SP-housed hamsters and that there were no differences between hamsters housed in LP and SP in the ability of a GAL antagonist to inhibit AVP-induced flank marking. The present study confirms that V1a receptors are critical for AVP regulation of flank marking and that photoperiodic mechanisms do not alter the modulation of flank marking by GAL or 5-HT in the MPOA-AH.
Collapse
Affiliation(s)
- Stephanie J Gutzler
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | | | | | | |
Collapse
|
15
|
Ho JM, Murray JH, Demas GE, Goodson JL. Vasopressin cell groups exhibit strongly divergent responses to copulation and male-male interactions in mice. Horm Behav 2010; 58:368-77. [PMID: 20382147 PMCID: PMC4195792 DOI: 10.1016/j.yhbeh.2010.03.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/16/2010] [Accepted: 03/31/2010] [Indexed: 11/26/2022]
Abstract
Arginine vasopressin (AVP) and its nonmammalian homolog arginine vasotocin influence social behaviors ranging from affiliation to resident-intruder aggression. Although numerous sites of action have been established for these behavioral effects, the involvement of specific AVP cell groups in the brain is poorly understood, and socially elicited Fos responses have not been quantified for many of the AVP cell groups found in rodents. Surprisingly, this includes the AVP population in the posterior part of the medial bed nucleus of the stria terminalis (BSTMP), which has been extensively implicated, albeit indirectly, in various aspects of affiliation and other social behaviors. We examined the Fos responses of eight hypothalamic and three extra-hypothalamic AVP-immunoreactive (-ir) cell groups to copulation, nonaggressive male-male interaction, and aggressive male-male interaction in both dominant and subordinate C57BL/6J mice. The BSTMP cells exhibited a response profile that was unlike all other cell groups: from a control baseline of approximately 5% of AVP-ir neurons colocalizing with Fos, colocalization increased significantly to approximately 12% following nonaggressive male-male interaction, and to approximately 70% following copulation. Aggressive interactions did not increase colocalization beyond the level observed in nonaggressive male mice. These results suggest that BSTMP neurons in mice may increase AVP-Fos colocalization selectively in response to affiliation-related stimuli, similar to findings in finches. In contrast, virtually all other cell groups were responsive to negative aspects of interaction, either through elevated AVP-Fos colocalization in subordinate animals, positive correlations of AVP-Fos colocalization with bites received, and/or negative correlations of AVP-Fos colocalization with dominance. These findings greatly expand what is known of the contributions of specific brain AVP cell groups to social behavior.
Collapse
Affiliation(s)
- Jacqueline M Ho
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|