1
|
Goh JY, Rueda P, Taylor J, Rathbone A, Scott D, Langmead CJ, Fone KC, Stewart GD, King MV. Transcriptomic analysis of rat prefrontal cortex following chronic stress induced by social isolation - Relevance to psychiatric and neurodevelopmental illness, and implications for treatment. Neurobiol Stress 2024; 33:100679. [PMID: 39502833 PMCID: PMC11536066 DOI: 10.1016/j.ynstr.2024.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Social isolation is an established risk factor for psychiatric illness, and became increasingly topical with the spread of SARS-CoV-2. We used RNA sequencing (RNA-Seq) to enable unbiased assessment of transcriptomic changes within the prefrontal cortex (PFC) of isolation-reared rats. To provide insight into the relevance of this manipulation for studying human illness, we compared differentially expressed genes (DEGs) and enriched biological functions against datasets involving post-mortem frontal cortical tissue from patients with psychiatric and neurodevelopmental illnesses. Sixteen male Sprague-Dawley rats were reared in groups of four or individually from weaning on postnatal day (PND) 22-24 until PFC tissue collection for RNA-Seq (PND64-66). We identified a total of 183 DEGs in isolates, of which 128 mirrored those in PFC tissue from patients with stress-related mental illnesses and/or neurodevelopmental conditions featuring social deficits. Seventy-one encode proteins classed as druggable by the gene-drug interaction database. Interestingly there are antagonists or inhibitors for the products of three of these up-regulated DEGs (Hrh3, Snca and Sod1) and agonists or activators for products of six of these down-regulated DEGs (Chrm4, Klf2, Lrrk2, Nr4a1, Nr4a3 and Prkca). Some have already undergone pre-clinical and clinical evaluation, and studies with the remainder may be warranted. Changes to Hrh3, Sod1, Chrm4, Lrrk2, Nr4a1 and Prkca were replicated in an independent cohort of sixteen male Sprague-Dawley rats via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Our findings support the continued use of post-weaning isolation rearing to investigate the neurobiology of stress-related disorders and evaluate therapeutic targets.
Collapse
Affiliation(s)
- Jen-Yin Goh
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Patricia Rueda
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joy Taylor
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Alex Rathbone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Daniel Scott
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher J. Langmead
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kevin C.F. Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Gregory D. Stewart
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Madeleine V. King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
2
|
Sal-Sarria S, López-Taboada I, González-Pardo H, Conejo NM. A shift to a standard diet after exposure to a high-fat, high-sucrose diet from gestation to weaning restores brain metabolism and behavioral flexibility in adult rats. Behav Brain Res 2024; 467:115020. [PMID: 38679144 DOI: 10.1016/j.bbr.2024.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Prolonged consumption of diets high in saturated fat and sugar has been related to obesity and overweight, which in turn are linked to cognitive impairment in both humans and rodents. This has become a current issue, especially in children and adolescents, because these stages are crucial to neurodevelopmental processes and programming of adult behavior. To evaluate the effects of gestational and early exposure to an obesogenic diet, three groups with different dietary patterns were established: high-fat and high-sucrose diet (HFS), standard diet (SD), and a dietary shift from a high-fat, high-sucrose diet to a standard diet after weaning (R). Spatial learning and behavioral flexibility in adult male and female Wistar rats were evaluated using the Morris water maze (MWM) at PND 60. Furthermore, regional brain oxidative metabolism was assessed in the prefrontal cortex and the hippocampus. Contrary to our hypothesis, the HFS diet groups showed similar performance on the spatial learning task as the other groups, although they showed impaired cognitive flexibility. The HFS group had increased brain metabolic capacity compared to that of animals fed the standard diet. Shifting from the HFS diet to the SD diet after weaning restored the brain metabolic capacity in both sexes to levels similar to those observed in animals fed the SD diet. In addition, animals in the R group performed similarly to those fed the SD diet in the Morris water maze in both tasks. However, dietary shift from HFS diet to standard diet after weaning had only moderate sex-dependent effects on body weight and fat distribution. In conclusion, switching from an HFS diet to a balanced diet after weaning would have beneficial effects on behavioral flexibility and brain metabolism, without significant sex differences.
Collapse
Affiliation(s)
- Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
3
|
Magalhães DM, Mampay M, Sebastião AM, Sheridan GK, Valente CA. Age-related impact of social isolation in mice: Young vs middle-aged. Neurochem Int 2024; 174:105678. [PMID: 38266657 DOI: 10.1016/j.neuint.2024.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Social isolation is a chronic mild stressor and a significant risk factor for mental health disorders. Herein we explored the impact of social isolation on depression- and anxiety-like behaviours, as well as spatial memory impairments, in middle-aged male mice compared to post-weaning mice. We aimed to quantify and correlate social isolation-induced behaviour discrepancies with changes in hippocampal glial cell reactivity and pro-inflammatory cytokine levels. Post-weaning and middle-aged C57BL7/J6 male mice were socially isolated for a 3-week period and behavioural tests were performed on the last five days of isolation. We found that 3 weeks of social isolation led to depressive-like behaviour in the forced swim test, anxiety-like behaviour in the open field test, and spatial memory impairment in the Morris water maze paradigm in middle-aged male mice. These behavioural alterations were not observed in male mice after post-weaning social isolation, indicating resilience to isolation-mediated stress. Increased Iba-1 expression and NLRP3 priming were both observed in the hippocampus of socially isolated middle-aged mice, suggesting a role for microglia and NLRP3 pathway in the detrimental effects of social isolation on cognition and behaviour. Young socially isolated mice also demonstrated elevated NLRP3 priming compared to controls, but no differences in Iba-1 levels and no significant changes in behaviour. Ageing-induced microglia activation and enhancement of IL-1β, TNF-α and IL-6 proinflammatory cytokines, known signs of a chronic low-grade inflammatory state, were also detected. Altogether, data suggest that social isolation, in addition to inflammaging, contributes to stress-related cognitive impairment in middle-aged mice.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; School of Applied Sciences, University of Brighton, Brighton, UK
| | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
Nikolaienko O, Klymenko M, Isaeva E. Consequences of adolescent social isolation on behavior and synaptic plasticity in the dorsal and ventral hippocampus in male Wistar rats. Neurol Res 2023; 45:1152-1160. [PMID: 37698124 DOI: 10.1080/01616412.2023.2257444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/29/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Social interaction at a young age plays a critical role in the normal maturation of the brain and neuroendocrine system. Deprivation of social contacts has been associated with numerous cognitive and emotional abnormalities. However, neurobiological mechanisms that may underlie these effects remain poorly understood. In the present study, we examined the effect of 4-6-week social isolation during the adolescent period on rat spatial memory and emotional responses and investigated synaptic plasticity in the dorsal (DH) and ventral hippocampus (VH), which are known to be differently involved in these behaviors. METHODS Male Wistar rats were housed individually or in groups of four for 4-6 weeks immediately after weaning. At the end of the isolation period, rats were subjected to behavioral testing or electrophysiological studies. Behavioral tests included behavioral excitability, sucrose preference, open field (OF), elevated plus maze (EPM), Morris water maze (MWM), and Y-maze test. For plasticity experiments, long-term potentiation (LTP) in Schaffer collateral/СA1 synapses was induced using high-frequency stimulation (HFS) on transverse hippocampal slices. RESULTS Social isolation induced hyperexcitability, increased anxiety- and anhedonia-like behaviors, while no significant changes were observed in cognitive tasks. Electrophysiological recordings revealed enhanced short-term potentiation (STP) in the VH and suppressed LTP in the DH of isolated animals compared to group-housed controls. CONCLUSIONS Our findings suggest that adolescent social isolation has distinct effects on synaptic plasticity in the VH and DH and leads to emotional dysregulation rather than impairments in cognitive performance.
Collapse
Affiliation(s)
- Oksana Nikolaienko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Mariia Klymenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Musuroglu Keloglan S, Sahin L, Kocahan S, Annac E, Tirasci N, Pekmezekmek AB. Effect of caffeine on hippocampal memory and levels of gene expression in social isolation stress. Int J Dev Neurosci 2023; 83:641-652. [PMID: 37575074 DOI: 10.1002/jdn.10292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Caffeine (Cf) antagonizes the adenosine receptors and has neuroprotective properties. The effect of Cf has been seen on stress-induced deficits of cognitive. In this study, we have investigated the effect of Cf on learning and memory functions induced by social isolation (SI) stress. MATERIALS AND METHODS In the present study, 21-day-old Wistar albino male rats (n = 28) were divided into four groups: the control (C), the SI, the Cf, and the social isolation + caffeine (SICf). Cf (0.3 g/L) was added to the drinking water of the experimental animals for 4 weeks. The learning and memory functions were assessed using the Morris Water Maze Test (MWMT). Following, was performed histopathological evaluation and determined hippocampal gene expression levels by RT-qPCR. RESULTS According to MWMT findings, the time spent in the quadrant where the platform removed was decreased in the SI group compared with the C (p < 0.05). Histological evaluation showed morphological changes in SI by irregular appearance, cellular edema, and dark pycnotic appearance of nuclei in some neurons. However, it was observed that the histological structure of most of the neurons in the SICf group was similar to the C and Cf groups. Hippocampal SNAP25 expression was decreased in the Cf and SICf groups than in the C group (p < 0.05). The GFAP expression was increased in the SICf group than in the C group (p < 0.05). NR2A increased in the SI and SICf groups compared with C and Cf groups (p < 0.05). NR2B expression decreased in the Cf group compared with C and SI groups (p < 0.05). CONCLUSIONS SI impaired spatial memory and causes morphological changes in adolescent rats, but this effect of isolation was not seen in Cf-treated animals. The effects of SI on NR2A, Cf on NR2B, and SNAP25 are remarkable. Here, we propose that the impaired effect of SI on spatial memory may be mediated by NR2A, but further studies are needed to explain this effect.
Collapse
Affiliation(s)
| | - Leyla Sahin
- Department of Physiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Sayad Kocahan
- Department of Physiology, Faculty of Gulhane Medicine, Health Sciences University, Ankara, Turkey
| | - Ebru Annac
- Department of Histology and Embryology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Nurhan Tirasci
- Department of Zootechnics and Animal Nutrition, Institute of Health Sciences, Fırat University, Elazig, Turkey
| | | |
Collapse
|
6
|
Shi MM, Xu XF, Sun QM, Luo M, Liu DD, Guo DM, Chen L, Zhong XL, Xu Y, Cao WY. Betaine prevents cognitive dysfunction by suppressing hippocampal microglial activation in chronic social isolated male mice. Phytother Res 2023; 37:4755-4770. [PMID: 37846157 DOI: 10.1002/ptr.7944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/18/2023]
Abstract
Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.
Collapse
Affiliation(s)
- Meng Meng Shi
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Fan Xu
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiu Min Sun
- Department of Nursing, Yiyang Medical College, Yiyang, Hunan, China
| | - Mingying Luo
- Department of Anatomy and Histology and Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Dan Dan Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Dong Min Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen Yu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Powell SB, Swerdlow NR. The Relevance of Animal Models of Social Isolation and Social Motivation for Understanding Schizophrenia: Review and Future Directions. Schizophr Bull 2023; 49:1112-1126. [PMID: 37527471 PMCID: PMC10483472 DOI: 10.1093/schbul/sbad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND HYPOTHESES Social dysfunction in schizophrenia includes symptoms of withdrawal and deficits in social skills, social cognition, and social motivation. Based on the course of illness, with social withdrawal occurring prior to psychosis onset, it is likely that the severity of social withdrawal/isolation contributes to schizophrenia neuropathology. STUDY DESIGN We review the current literature on social isolation in rodent models and provide a conceptual framework for its relationship to social withdrawal and neural circuit dysfunction in schizophrenia. We next review preclinical tasks of social behavior used in schizophrenia-relevant models and discuss strengths and limitations of existing approaches. Lastly, we consider new effort-based tasks of social motivation and their potential for translational studies in schizophrenia. STUDY RESULTS Social isolation rearing in rats produces profound differences in behavior, pharmacologic sensitivity, and neurochemistry compared to socially reared rats. Rodent models relevant to schizophrenia exhibit deficits in social behavior as measured by social interaction and social preference tests. Newer tasks of effort-based social motivation are being developed in rodents to better model social motivation deficits in neuropsychiatric disorders. CONCLUSIONS While experimenter-imposed social isolation provides a viable experimental model for understanding some biological mechanisms linking social dysfunction to clinical and neural pathology in schizophrenia, it bypasses critical antecedents to social isolation in schizophrenia, notably deficits in social reward and social motivation. Recent efforts at modeling social motivation using effort-based tasks in rodents have the potential to quantify these antecedents, identify models (eg, developmental, genetic) that produce deficits, and advance pharmacological treatments for social motivation.
Collapse
Affiliation(s)
- Susan B Powell
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| | - Neal R Swerdlow
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| |
Collapse
|
8
|
Davari S, D'Costa N, Ramezan R, Mielke JG. Chronic Early-Life Social Isolation Enhances Spatial Memory in Male and Female Rats. Behav Brain Res 2023; 447:114433. [PMID: 37037406 DOI: 10.1016/j.bbr.2023.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Social adversity during childhood and adolescence can alter brain development in ways that may increase the likelihood of many prominent mental illnesses. To determine the underlying mechanisms, several animal models have been developed, such as Chronic Early-Life Social Isolation (CELSI), which sees rats isolated for several weeks after weaning. Although such a paradigm does cause many consistent changes in adult behaviour, one area where uncertainty exists concerns its effect upon hippocampal-dependent learning and memory. To help sort out how CELSI affects spatial learning and memory, male and female siblings from 15 Sprague-Dawley rat litters were stratified by sex and then randomly assigned to either group-housing (3 animals/cage), or social isolation (1 animal/cage) for 7 weeks. Spatial learning and memory were then tested over 5 days using the Morris water maze. Next, the animals were euthanised, and stress-sensitive biometrics, including serum corticosterone levels, were collected. Lastly, to determine whether CELSI affected neural cell density, the expression of key neuronal and glial proteins (such as PSD-95 and GFAP, respectively) was assessed in isolated hippocampal tissue using immunoblotting. Notably, both male and female rats that had experienced post-weaning social isolation displayed stronger spatial learning and memory abilities than their group-housed counterparts. As well, socially isolated male rats exhibited a clear increase in expression of PSD-95. However, housing condition did not seem to affect either stress-sensitive biometrics, or hippocampal GFAP expression. Our results support the possibility that CELSI may enhance some aspects of hippocampal-dependent behaviour in a fashion similar among male and female rats.
Collapse
Affiliation(s)
- Saeideh Davari
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Nicole D'Costa
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Reza Ramezan
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
9
|
Baghaei Naeini F, Hassanpour S, Asghari A. Resveratrol exerts anxiolytic-like effects through anti-inflammatory and antioxidant activities in rats exposed to chronic social isolation. Behav Brain Res 2023; 438:114201. [PMID: 36334782 DOI: 10.1016/j.bbr.2022.114201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Emerging evidence has confirmed resveratrol's (RES) antioxidant, anti-inflammatory, and antidepressant effects. The beneficial effects of RES were confirmed for several emotional and cognitive deficits. This research aimed to assess the impacts of RES on behavior and hippocampal levels of anti-inflammatory and pro-inflammatory factors in rats exposed to chronic social isolation (SI) stress, which is known to induce mental disorders such as depressive-like behavior. The animals were treated by RES (20, 40, or 80 mg/kg/intraperitoneally) for 28 days following a 28-day exposure to stress. Behavioral tests, including the forced swim test (FST), open-field test (OFT), tail suspension test (TST), and sucrose preference test (SPT), assessed depressive symptoms. Finally, the animals were sacrificed, and molecular studies (qPCR and ELISA) were performed. Exposure of animals to SI dramatically increased the immobility of animals in TST and FST, enhanced the time spent in the open-field peripheral zone of the OFT, and reduced the sucrose preference rate. In addition, SI increased serum levels of corticosterone and hippocampal content of MDA, whereas it reduced hippocampal SOD and CAT activities. Moreover, SI upregulated the expression of IL-10, IL-18, and IL-1β and downregulated the expression of TGF-β in the hippocampus. RES treatment (40 & 80 mg/kg) significantly improved the behavioral alterations through the modulation of neuroinflammation and oxidative stress. The 20 mg/kg RES dose was inefficient for treating SI-induced depressive-like behavior. These results indicated that RES attenuated depressive-like behavior in prolonged stressed animals. These properties might be associated with RES-mediated improvements in serum corticosterone and hippocampal inflammatory and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Farinaz Baghaei Naeini
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| |
Collapse
|
10
|
Early growth response 2 in the mPFC regulates mouse social and cooperative behaviors. Lab Anim (NY) 2023; 52:37-50. [PMID: 36646797 DOI: 10.1038/s41684-022-01090-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/14/2022] [Indexed: 01/18/2023]
Abstract
Adolescent social neglect impairs social performance, but the underlying molecular mechanisms remain unclear. Here we report that isolation rearing of juvenile mice caused cooperation defects that were rescued by immediate social reintroduction. We also identified the transcription factor early growth response 2 (Egr2) in the medial prefrontal cortex (mPFC) as a major target of social isolation and resocialization. Isolation rearing increased corticosteroid production, which reduced the expression of Egr2 in the mPFC, including in oligodendrocytes. Overexpressing Egr2 ubiquitously in the mPFC, but not specifically in neurons nor in oligodendroglia, protected mice from the isolation rearing-induced cooperation defect. In addition to synapse integrity, Egr2 also regulated the development of oligodendroglia, specifically the transition from undifferentiated oligodendrocyte precursor cells to premyelinating oligodendrocytes. In conclusion, this study reveals the importance of mPFC Egr2 in the cooperative behavior that is modulated by social experience, and its unexpected role in oligodendrocyte development.
Collapse
|
11
|
Zhou HY, Huai YP, Jin X, Yan P, Tang XJ, Wang JY, Shi N, Niu M, Meng ZX, Wang X. An enriched environment reduces hippocampal inflammatory response and improves cognitive function in a mouse model of stroke. Neural Regen Res 2022; 17:2497-2503. [PMID: 35535902 PMCID: PMC9120675 DOI: 10.4103/1673-5374.338999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An enriched environment is used as a behavioral intervention therapy that applies sensory, motor, and social stimulation, and has been used in basic and clinical research of various neurological diseases. In this study, we established mouse models of photothrombotic stroke and, 24 hours later, raised them in a standard, enriched, or isolated environment for 4 weeks. Compared with the mice raised in a standard environment, the cognitive function of mice raised in an enriched environment was better and the pathological damage in the hippocampal CA1 region was remarkably alleviated. Furthermore, protein expression levels of tumor necrosis factor receptor-associated factor 6, nuclear factor κB p65, interleukin-6, and tumor necrosis factor α, and the mRNA expression level of tumor necrosis factor receptor-associated factor 6 were greatly lower, while the expression level of miR-146a-5p was higher. Compared with the mice raised in a standard environment, changes in these indices in mice raised in an isolated environment were opposite to mice raised in an enriched environment. These findings suggest that different living environments affect the hippocampal inflammatory response and cognitive function in a mouse model of stroke. An enriched environment can improve cognitive function following stroke through up-regulation of miR-146a-5p expression and a reduction in the inflammatory response.
Collapse
Affiliation(s)
- Hong-Yu Zhou
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Ya-Ping Huai
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
| | - Xing Jin
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Ping Yan
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xiao-Jia Tang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Jun-Ya Wang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Nan Shi
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Meng Niu
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhao-Xiang Meng
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Xin Wang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Zhang Y, Pang Y, Feng W, Jin Y, Chen S, Ding S, Wang Z, Zou Y, Li Y, Wang T, Sun P, Gao J, Zhu Y, Ke X, Marshall C, Huang H, Sheng C, Xiao M. miR-124 regulates early isolation-induced social abnormalities via inhibiting myelinogenesis in the medial prefrontal cortex. Cell Mol Life Sci 2022; 79:507. [PMID: 36059036 PMCID: PMC11803008 DOI: 10.1007/s00018-022-04533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/10/2023]
Abstract
Patients with autism spectrum disorder (ASD) typically experience substantial social isolation, which may cause secondary adverse effects on their brain development. miR-124 is the most abundant miRNA in the human brain, acting as a pivotal molecule regulating neuronal fate determination. Alterations of miR-124 maturation or expression are observed in various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. In the present study, we analyzed a panel of brain-enriched microRNAs in serums from 2 to 6 year old boys diagnosed with ASD. The hsa-miR-124 level was found significantly elevated in ASD boys than in age and sex-matched healthy controls. In an isolation-reared weanling mouse model, we evidenced elevated mmu-miR-124 level in the serum and the medial prefrontal cortex (mPFC). These mice displayed significant sociability deficits, as well as myelin abnormality in the mPFC, which was partially rescued by expressing the miR-124 sponge in the bilateral mPFC, ubiquitously or specifically in oligodendroglia. In cultured mouse oligodendrocyte precursor cells, introducing a synthetic mmu-miR-124 inhibited the differentiation process through suppressing expression of nuclear receptor subfamily 4 group A member 1 (Nr4a1). Overexpressing Nr4a1 in the bilateral mPFC also corrected the social behavioral deficits and myelin impairments in the isolation-reared mice. This study revealed an unanticipated role of the miR-124/Nr4a1 signaling in regulating early social experience-dependent mPFC myelination, which may serve as a potential therapy target for social neglect or social isolation-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yingting Pang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuxi Jin
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Li
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Tianqi Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyan Ke
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, USA
| | - Huang Huang
- Department of Neurology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
13
|
Lodha J, Brocato E, Wolstenholme JT. Areas of Convergence and Divergence in Adolescent Social Isolation and Binge Drinking: A Review. Front Behav Neurosci 2022; 16:859239. [PMID: 35431830 PMCID: PMC9009335 DOI: 10.3389/fnbeh.2022.859239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a critical developmental period characterized by enhanced social interactions, ongoing development of the frontal cortex and maturation of synaptic connections throughout the brain. Adolescents spend more time interacting with peers than any other age group and display heightened reward sensitivity, impulsivity and diminished inhibitory self-control, which contribute to increased risky behaviors, including the initiation and progression of alcohol use. Compared to adults, adolescents are less susceptible to the negative effects of ethanol, but are more susceptible to the negative effects of stress, particularly social stress. Juvenile exposure to social isolation or binge ethanol disrupts synaptic connections, dendritic spine morphology, and myelin remodeling in the frontal cortex. These structural effects may underlie the behavioral and cognitive deficits seen later in life, including social and memory deficits, increased anxiety-like behavior and risk for alcohol use disorders (AUD). Although the alcohol and social stress fields are actively investigating the mechanisms through which these effects occur, significant gaps in our understanding exist, particularly in the intersection of the two fields. This review will highlight the areas of convergence and divergence in the fields of adolescent social stress and ethanol exposure. We will focus on how ethanol exposure or social isolation stress can impact the development of the frontal cortex and lead to lasting behavioral changes in adulthood. We call attention to the need for more mechanistic studies and the inclusion of the evaluation of sex differences in these molecular, structural, and behavioral responses.
Collapse
Affiliation(s)
- Jyoti Lodha
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
14
|
Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice. Neuroimage 2021; 245:118740. [PMID: 34808365 DOI: 10.1016/j.neuroimage.2021.118740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Social isolation (SI) leads to various mental health disorders. Despite abundant studies on behavioral and neurobiological changes induced by post-weaning SI, the characterization of its imaging correlates, such as resting-state functional connectivity (RSFC), is critically lacking. In addition, the effects of resocialization after isolation remain unclear. Therefore, this study aimed to explore the effects of 1) SI on cortical functional connectivity and 2) subsequent resocialization on behavior and functional connectivity. METHODS Behavioral tests were conducted to validate the post-weaning SI mouse model, which is isolated during the juvenile period. Wide-field optical mapping was performed to observe both neuronal and hemodynamic signals in the cortex under anesthesia. Using seed-based and graph theoretical analyses, RSFC was analyzed. SI mice were then resocialized and the array of behavior and imaging tests was conducted. RESULTS Behaviorally, SI mice showed elevated anxiety, social preference, and aggression. RSFC analyses using the seed-based approach revealed decreased cortical functional connectivity in SI mice, especially in the frontal region. Graph network analyses demonstrated significant reduction in network segregation measures. After resocialization, mice exhibited recovered anxiogenic and aggressive behavior, but RSFC data did not show significant changes. CONCLUSIONS We observed an overall decrease in functional connectivity in SI mice. Moreover, resocialization restored the disruptions in behavioral patterns but functional connectivity was not recovered. To our knowledge, this is the first study to report that, despite the recovering tendencies of behavior in resocialized mice, similar changes in RSFC were not observed. This suggests that disruptions in functional connectivity caused by social isolation remain as long-term sequelae.
Collapse
|
15
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
16
|
Song MK, Lee JH, Kim YJ. Effect of chronic handling and social isolation on emotion and cognition in adolescent rats. Physiol Behav 2021; 237:113440. [PMID: 33940083 DOI: 10.1016/j.physbeh.2021.113440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Adolescence is a critical period of establishing social relations through social interactions that affect the emotional development associated with stress responses, anxiety, depression, and cognitive development. We investigated the behavioral and neurobiological changes induced by handling and social isolation in adolescent rats to determine social interaction effects. Rats were randomly divided into groups and used as a control, a handling, and a social isolation group. After 12 weeks, the handling group showed a significant increase in mobility in the open field test and in tryptophan hydroxylase expression in the dorsal raphe nucleus, as well as significantly reduced immobility times in the forced swim test, compared to the control group (p < 0.05). The social isolation group, in contrast, showed a significant increase in immobility times in the forced swim test and in glucocorticoid and SIRT1 expression in the hippocampus, as well as a significant reduction in mobility in the open field test and in escape latency times in the passive avoidance test, compared to the control group (p < 0.05). The present results show that while handling did not improve cognitive function, it reduced anxiety and lowered depression levels; social isolation, in contrast, significantly impaired the animals' stress response, anxiety and depression levels, and cognitive function. Our findings indicate that handling and social isolation have a strong effect on adolescents' emotional and cognitive development into healthy adults.
Collapse
Affiliation(s)
- Min Kyung Song
- Department of Nursing, Graduate school, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hee Lee
- Department of Nursing, Graduate school, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University• East West Nursing Institute, Seoul, 02447, Republic of Korea.
| |
Collapse
|
17
|
Post-weaning social isolation impairs purinergic signaling in rat brain. Neurochem Int 2021; 148:105111. [PMID: 34171414 DOI: 10.1016/j.neuint.2021.105111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/14/2023]
Abstract
Early life stressors, such as social isolation (SI), can disrupt brain development contributing to behavioral and neurochemical alterations in adulthood. Purinergic receptors and ectonucleotidases are key regulators of brain development in embryonic and postnatal periods, and they are involved in several psychiatric disorders, including schizophrenia. The extracellular ATP drives purinergic signaling by activating P2X and P2Y receptors and it is hydrolyzed by ectonucleotidases in adenosine, which activates P1 receptors. The purpose of this study was to investigate if SI, a rodent model used to replicate abnormal behavior relevant to schizophrenia, impacts purinergic signaling. Male Wistar rats were reared from weaning in group-housed or SI conditions for 8 weeks. SI rats exhibited impairment in prepulse inhibition and social interaction. SI presented increased ADP levels in cerebrospinal fluid and ADP hydrolysis in the hippocampus and striatum synaptosomes. Purinergic receptor expressions were upregulated in the prefrontal cortex and downregulated in the hippocampus and striatum. A2A receptors were differentially expressed in SI prefrontal cortex and the striatum, suggesting distinct roles in these brain structures. SI also presented decreased ADP, adenosine, and guanosine levels in the cerebrospinal fluid in response to D-amphetamine. Like patients with schizophrenia, uric acid levels were prominently increased in SI rats after D-amphetamine challenge. We suggest that the SI-induced deficits in prepulse inhibition might be related to the SI-induced changes in purinergic signaling. We provide new evidence that purinergic signaling is markedly affected in a rat model relevant to schizophrenia, pointing out the importance of purinergic system in psychiatry conditions.
Collapse
|
18
|
Gondora N, Pople CB, Tandon G, Robinson M, Solomon E, Beazely MA, Mielke JG. Chronic early-life social isolation affects NMDA and TrkB receptor expression in a sex-specific manner. Neurosci Lett 2021; 760:136016. [PMID: 34111511 DOI: 10.1016/j.neulet.2021.136016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
Exposing mammals to adverse social environments early in life can affect brain development in ways that alter adult behaviour. For example, chronic, early-life social isolation (CELSI) has been found to cause novelty-induced hyperactivity, impaired pre-pulse inhibition, and enhanced anxiety-related behaviour. Although the molecular mechanism(s) underlying the embedding of CELSI have not been fully elucidated, evidence suggests changes in the level of excitatory neurotransmission and neurotrophic factor signalling may be quite important. Since much of the work in this area has focused upon mRNA-level analyses, and has shown variable responses across both brain region and animal sex, our study aimed to explore the impact of CELSI on the expression of two important plasticity-related proteins (Tropomyosin receptor kinase B and the GluN2B subunit of the NMDA receptor) in the pre-frontal cortex and hippocampus of both male and female rats. We observed that the expression of both proteins was clearly changed by CELSI, but that the effect occurred in a sex (but not region) specific manner. Our results support the growing view that early-life adversity can cause structural changes reasonably associated with adult behaviour, and emphasise that the study of such changes benefits from a sex-based analysis.
Collapse
Affiliation(s)
- Nyasha Gondora
- School of Pharmacy, University of Waterloo, 10 Victoria Street S, Kitchener, Ontario N2G 1C5, Canada
| | - Christopher B Pople
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, Ontario M4N 3M5, Canada
| | - Gorvie Tandon
- School of Nursing, York University, 400 Keele Toronto, Ontario M3J 1P3, Canada
| | - Morgan Robinson
- School of Pharmacy, University of Waterloo, 10 Victoria Street S, Kitchener, Ontario N2G 1C5, Canada
| | - Eden Solomon
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Michael A Beazely
- School of Pharmacy, University of Waterloo, 10 Victoria Street S, Kitchener, Ontario N2G 1C5, Canada
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
19
|
Wang P, Li M, Zhao A, Ma J. Application of animal experimental models in the research of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2021; 186:209-227. [PMID: 34155806 DOI: 10.1002/ajmg.b.32863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a relatively common but serious mental illness that results in a heavy burden to patients, their families, and society. The disease can be triggered by multiple factors, while the specific pathogenesis remains unclear. The development of effective therapeutic drugs for schizophrenia relies on a comprehensive understanding of the basic biology and pathophysiology of the disease. Therefore, effective animal experimental models play a vital role in the study of schizophrenia. Based on different molecular mechanisms and modeling methods, the currently used experimental animal experimental models of schizophrenia can be divided into four categories that can better simulate the clinical symptoms and the interplay between susceptible genes and the environment: neurodevelopmental, drug-induced, genetic-engineering, and genetic-environmental interaction of animal experimental models. Each of these categories contains multiple subtypes, which has its own advantages and disadvantages and therefore requires careful selection in a research application. The emergence and utilization of these models are promising in the prediction of the risk of schizophrenia at the molecular level, which will shed light on effective and targeted treatment at the genetic level.
Collapse
Affiliation(s)
- Pengjie Wang
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Manling Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Gui Yang, Guizhou, China
| | - Aizhen Zhao
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jie Ma
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. The environmental enrichment model revisited: A translatable paradigm to study the stress of our modern lifestyle. Eur J Neurosci 2021; 55:2359-2392. [PMID: 33638921 DOI: 10.1111/ejn.15160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 01/31/2023]
Abstract
Mounting evidence shows that physical activity, social interaction and sensorimotor stimulation provided by environmental enrichment (EE) exert several neurobehavioural effects traditionally interpreted as enhancements relative to standard housing (SH) conditions. However, this evidence rather indicates that SH induces many deficits, which could be ameliorated by exposing animals to an environment vaguely mimicking some features of their wild habitat. Rearing rodents in social isolation (SI) can aggravate such deficits, which can be restored by SH or EE. It is not surprising, therefore, that most preclinical stress models have included severe and unnatural stressors to produce a stress response prominent enough to be distinguishable from SH or SI-frequently used as control groups. Although current stress models induce a stress-related phenotype, they may fail to represent the stress of our urban lifestyle characterized by SI, poor housing and working environments, sedentarism, obesity and limited access to recreational activities and exercise. In the following review, we discuss the stress of living in urban areas and how exposures to and performing activities in green environments are stress relievers. Based on the commonalities between human and animal EE, we discuss how models of housing conditions (e.g., SI-SH-EE) could be adapted to study the stress of our modern lifestyle. The housing conditions model might be easy to implement and replicate leading to more translational results. It may also contribute to accomplishing some ethical commitments by promoting the refinement of procedures to model stress, diminishing animal suffering, enhancing animal welfare and eventually reducing the number of experimental animals needed.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica.,Instituto de Investigaciones en Salud, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
21
|
Diminished excitatory synaptic transmission correlates with impaired spatial working memory in neurodevelopmental rodent models of schizophrenia. Pharmacol Biochem Behav 2021; 202:173103. [PMID: 33444600 DOI: 10.1016/j.pbb.2021.173103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Neurodevelopmental abnormalities are associated with cognitive dysfunction in schizophrenia. In particular, deficits of working memory, are consistently observed in schizophrenia, reflecting prefrontal cortex (PFc) dysfunction. To elucidate the mechanism of such deficits in working memory, the pathophysiological properties of PFc neurons and synaptic transmission have been studied in several developmental models of schizophrenia. Given the pathogenetic heterogeneity of schizophrenia, comparison of PFc synaptic transmission between models of prenatal and postnatal defect would promote our understanding on the developmental components of the biological vulnerability to schizophrenia. In the present study, we investigated the excitatory synaptic transmission onto pyramidal cells localized in layer 5 of the medial PFc (mPFc) in two developmental models of schizophrenia: gestational methylazoxymethanol acetate (MAM) administration and post-weaning social isolation (SI). We found that both models exhibited defective spatial working memory, as indicated by lower spontaneous alternations in a Y-maze paradigm. The recordings from pyramidal neurons in both models exhibited decreased spontaneous excitatory postsynaptic current (sEPSC), representing the reduction of excitatory synaptic transmission in the mPFc. Interestingly, a positive correlation between the impaired spontaneous alternation behavior and the decreased excitatory synaptic transmission of pyramidal neurons was found in both models. These findings suggest that diminished excitatory neurotransmission in the mPFc could be a common pathophysiology regardless of the prenatal and postnatal pathogenesis in developmental models of schizophrenia, and that it might underlie the mechanism of defective working memory in those models.
Collapse
|
22
|
Oh DR, Kim Y, Im S, Oh KN, Shin J, Jeong C, Kim Y, Choi EJ, Choi C. Vaccinium bracteatum Improves Spatial Learning and Memory by Regulating N-methyl-D-aspartate Receptors and Tau Phosphorylation in Chronic Restraint Stress-Induced Memory Impaired Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:69-94. [PMID: 33371815 DOI: 10.1142/s0192415x2150004x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vaccinium bracteatum Thunb. Leaves (VBL) are a component of traditional herbal medicines. However, molecular mechanisms of VBL in stress-related memory impairment are still unclear. This study aimed to investigate the spatial memory improvement effects of VBL in an animal model of chronic restraint stress (CRS) by using Y maze test and identified possible protective mechanisms against oxidative stress inducers (e.g., corticosterone and hydrogen peroxide [H2O2]) in SH-SY5Y neuronal cells. VBL showed neuroprotective effects via reduced release of lactate dehydrogenase (LDH) in corticosterone or H2O2-induced cell death that was mediated through the regulation of cleaved caspase-3 and Nrf2 pathways. Furthermore, CRS-exposed mice were orally administered VBL (10, 50, 100, and 200 mg/kg) daily for 21 days. CRS-exposed mice treated with VBL showed significantly increased spontaneous alternation in short-term memory (STM) and long-term memory (LTM) trials, and number of total arm entries in LTM trials as measured by the Y maze test. Moreover, VBL (50, 100, and 200 mg/kg) decreased acetylcholinesterase (AChE) activity in the hippocampus (HC, [Formula: see text] ¡ 0.01 and [Formula: see text] ¡ 0.001, respectively) and prefrontal cortex (PFC). CRS-exposed mice treated with VBL had dramatically decreased total Tau and Tau phosphorylation in the synapse of the HC and PFC which might be mediated by the regulation of CaMKII and GSK3[Formula: see text] phosphorylation. Additionally, VBL reduced CRS-induced upregulation of N-methyl-D-aspartate (NMDA) receptor subunits (NMDAR1, 2A, and 2B). Thus, VBL exerts spatial memory improvement by regulating CRS-induced NMDA receptor neurotoxicity and Tau hyperphosphorylation.
Collapse
Affiliation(s)
- Dool-Ri Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Yujin Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Sojeong Im
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Kyo-Nyeo Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Jawon Shin
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Changsik Jeong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Yonguk Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Eun Jin Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Chulyung Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources, Research (JINR), Jeollanamdo 59338, Republic of Korea
| |
Collapse
|
23
|
Tendilla-Beltrán H, Sanchez-Islas NDC, Marina-Ramos M, Leza JC, Flores G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog Neurobiol 2020; 199:101967. [PMID: 33271238 DOI: 10.1016/j.pneurobio.2020.101967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Prefrontal cortex (PFC) inflammatory imbalance, oxidative/nitrosative stress (O/NS) and impaired neuroplasticity in schizophrenia are thought to have neurodevelopmental origins. Animal models are not only useful to test this hypothesis, they are also effective to establish a relationship among brain disturbances and behavior with the atypical antipsychotics (AAPs) effects. Here we review data of PFC post-mortem and in vivo neuroimaging, human induced pluripotent stem cells (hiPSC), and peripheral blood studies of inflammatory, O/NS, and neuroplasticity alterations in the disease as well as about their modulation by AAPs. Moreover, we reviewed the PFC alterations and the AAP mechanisms beyond their canonical antipsychotic action in four neurodevelopmental animal models relevant to the study of schizophrenia with a distinct approach in the generation of schizophrenia-like phenotypes, but all converge in O/NS and altered neuroplasticity in the PFC. These animal models not only reinforce the neurodevelopmental risk factor model of schizophrenia but also arouse some novel potential therapeutic targets for the disease including the reestablishment of the antioxidant response by the perineuronal nets (PNNs) and the nuclear factor erythroid 2-related factor (Nrf2) pathway, as well as the dendritic spine dynamics in the PFC pyramidal cells.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Mauricio Marina-Ramos
- Departamento de Ciencias de la Salud, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital, 12 de Octubre (Imas12), Madrid, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
24
|
Zhang XQ, Jiang HJ, Xu L, Yang SY, Wang GZ, Jiang HD, Wu T, Du H, Yu ZP, Zhao QQ, Ling Y, Zhang ZY, Shen HW. The metabotropic glutamate receptor 2/3 antagonist LY341495 improves working memory in adult mice following juvenile social isolation. Neuropharmacology 2020; 177:108231. [DOI: 10.1016/j.neuropharm.2020.108231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2020] [Accepted: 07/04/2020] [Indexed: 11/30/2022]
|
25
|
Wang H, Xu X, Xu X, Gao J, Zhang T. Enriched Environment and Social Isolation Affect Cognition Ability via Altering Excitatory and Inhibitory Synaptic Density in Mice Hippocampus. Neurochem Res 2020; 45:2417-2432. [PMID: 32748366 DOI: 10.1007/s11064-020-03102-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
The purpose of the study was to examine whether the underlying mechanism of the alteration of cognitive ability and synaptic plasticity induced by the housing environment is associated with the balance of excitatory/inhibitory synaptic density. Enriched environment (EE) and social isolation (SI) are two different housing environment, and one is to give multiple sensory environments, the other is to give monotonous and lonely environment. Male 4-week-old C57 mice were divided into three groups: CON, EE and SI. They were housed in the different cage until 3 months of age. Morris water maze and novel object recognition were performed. Long term potentiation (LTP), depotentiation (DEP) and local field potentials were recorded in the hippocampal perforant pathway and dentate gyrus (DG) region. The data showed that EE enhanced the ability of spatial learning, reversal learning and memory as well as LTP/DEP in the hippocampal DG region. Meanwhile, SI reduced those abilities and the level of LTP/DEP. Moreover, there were higher couplings of both phase-amplitude and phase-phase in the EE group, and lower couplings of them in the SI group compared to that in the CON group. Western blot and immunofluorescence analysis showed that EE significantly enhanced the level of PSD-95, NR2B and DCX; however, SI reduced them but increased GABAARα1 and decreased DCX levels. The data suggests that the cognitive functions, synaptic plasticity, neurogenesis and neuronal oscillatory patterns were significantly impacted by housing environment via possibly changing the balance of excitatory and inhibitory synaptic density.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
- School of Mathematical Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiaxia Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xinxin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
| | - Jing Gao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
26
|
Brenes JC, Fornaguera J, Sequeira-Cordero A. Environmental Enrichment and Physical Exercise Attenuate the Depressive-Like Effects Induced by Social Isolation Stress in Rats. Front Pharmacol 2020; 11:804. [PMID: 32547399 PMCID: PMC7272682 DOI: 10.3389/fphar.2020.00804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
We assessed the antidepressant-like effects of environmental enrichment (EE) and physical exercise (PE) compared with the selective serotonin reuptake inhibitor fluoxetine against the depression-related neurobehavioral alterations induced by postweaning social isolation (SI) in rats. After 1 month of SI, rats were submitted to PE (treadmill), EE, or fluoxetine (10 mg/kg), which were compared with naïve SI and group-housed rats. After 1 month, behavior was analyzed in the open field (OFT), the sucrose preference (SPT), and the forced swimming (FST) tests. Afterward, the hippocampal serotonin contents, its metabolite, and turnover were measured. SI induced a depression-related phenotype characterized by a marginal bodyweight gain, anxiety, anhedonia, behavioral despair, and alterations of serotonin metabolism. EE produced the widest and largest antidepressive-like effect, followed by PE and fluoxetine, which were almost equivalent. The treatments, however, affected differentially the neurobehavioral domains investigated. EE exerted its largest effect on anhedonia and was the only treatment inducing anxiolytic-like effects. Fluoxetine, in contrast, produced its largest effect on serotonin metabolism, followed by its anti-behavioral despair action. PE was a middle-ground treatment with broader behavioral outcomes than fluoxetine, but ineffective to reverse the serotonergic alterations induced by SI. The most responsive test to the treatments was the FST, followed closely by the SPT. Although OFT locomotion and body weight varied considerably between groups, they were barely responsive to PE and fluoxetine. From a translational standpoint, our data suggest that exercise and recreational activities may have broader health benefits than antidepressants to overcome confinement and the consequences of chronic stress.
Collapse
Affiliation(s)
- Juan C Brenes
- Institute for Psychological Research, University of Costa Rica, San José, Costa Rica.,Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Jaime Fornaguera
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Biochemistry Department, School of Medicine, University of Costa Rica, San José, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Institute of Health Research, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
27
|
Zhang XQ, Yu ZP, Ling Y, Zhao QQ, Zhang ZY, Wang ZC, Shen HW. Enduring effects of juvenile social isolation on physiological properties of medium spiny neurons in nucleus accumbens. Psychopharmacology (Berl) 2019; 236:3281-3289. [PMID: 31197434 DOI: 10.1007/s00213-019-05284-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
RATIONALE Juvenile social isolation (SI) and neglect is associated with a wide range of psychiatric disorders. While dysfunction of the corticolimbic pathway is considered to link various abnormal behaviors in SI models of schizophrenia, the enduring effects of early social deprivation on physiological properties of medium spiny neurons (MSNs) in nucleus accumbens (NAc) are not well understood. OBJECTIVES This study investigated the impacts of juvenile SI on locomotor activity to methamphetamine (METH) and neurophysiological characteristics of MSNs in the core of NAc. METHODS Socially isolated C57BL/6 mice experienced single housing for 4 weeks on postnatal day (PND) 21. The locomotor response to METH (1.0 mg/kg) was observed in both socially isolated and group-housed mice at PND 56. The effects of juvenile SI on the excitatory synaptic events in MSNs and the intrinsic excitability of MSNs in NAc core were investigated in other batches during PND 63-70. RESULTS Socially isolated mice showed locomotor hypersensitivity to METH, although the expression of locomotor sensitization to METH in socially isolated mice was not different from group-housed mice. The recordings from MSNs of SI-reared mice exhibited higher frequency and smaller amplitude of miniature/spontaneous excitatory postsynaptic current than those from group-reared mice. Moreover, SI resulted in increased intrinsic excitability of MSNs in adult mice. CONCLUSIONS These results demonstrate neuronal hyperactivity in the NAc of socially isolated mice, which could contribute to locomotor hypersensitivity to METH. Furthermore, the findings indicate a biological link between early negative life events and the vulnerability to psychostimulant-induced psychosis in adulthood.
Collapse
Affiliation(s)
- Xiao-Qin Zhang
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Yu Ling
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Qi-Qi Zhao
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhong-Yu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Zheng-Chun Wang
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Hao-Wei Shen
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
28
|
Liu Y, Sun Y, Zhao X, Kim JY, Luo L, Wang Q, Meng X, Li Y, Sui N, Chen ZF, Pan C, Li L, Zhang Y. Enhancement of Aggression Induced by Isolation Rearing is Associated with a Lack of Central Serotonin. Neurosci Bull 2019; 35:841-852. [PMID: 30977041 DOI: 10.1007/s12264-019-00373-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/13/2019] [Indexed: 01/06/2023] Open
Abstract
Isolation rearing (IR) enhances aggressive behavior, and the central serotonin (5-hydroxytryptamine, 5-HT) system has been linked to IR-induced aggression. However, whether the alteration of central serotonin is the cause or consequence of enhanced aggression is still unknown. In the present study, using mice deficient in central serotonin Tph2-/- and Lmx1b-/-, we examined the association between central serotonin and aggression with or without social isolation. We demonstrated that central serotonergic neurons are critical for the enhanced aggression after IR. 5-HT depletion in wild-type mice increased aggression. On the other hand, application of 5-HT in Lmx1b-/- mice inhibited the enhancement of aggression under social isolation conditions. Dopamine was downregulated in Lmx1b-/- mice. Similar to 5-HT, L-DOPA decreased aggression in Lmx1b-/- mice. Our results link the serotoninergic system directly to aggression and this may have clinical implications for aggression-related human conditions.
Collapse
Affiliation(s)
- Yiqiong Liu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | | | - Xiaoyan Zhao
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Ji-Young Kim
- Department of Anesthesiology, Department of Psychiatry, Department of Developmental Biology, Center for the Study of Itch, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Xiaolu Meng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhou-Feng Chen
- Department of Anesthesiology, Department of Psychiatry, Department of Developmental Biology, Center for the Study of Itch, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Chuxiong Pan
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China. .,Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
| |
Collapse
|
29
|
Corsi-Zuelli F, Fachim HA, Loureiro CM, Shuhama R, Bertozi G, Joca SRL, Menezes PR, Louzada-Junior P, Del-Ben CM. Prolonged Periods of Social Isolation From Weaning Reduce the Anti-inflammatory Cytokine IL-10 in Blood and Brain. Front Neurosci 2019; 12:1011. [PMID: 30686977 PMCID: PMC6337063 DOI: 10.3389/fnins.2018.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/17/2018] [Indexed: 01/31/2023] Open
Abstract
Life stressors during critical periods are reported to trigger an immune dysfunction characterised by abnormal production of inflammatory cytokines. Despite the relationship between early stressors and schizophrenia is described, the evidence on inflammatory biomarkers remains limited. We aimed to investigate whether an imbalance between pro- and anti-inflammatory cytokines in the brain is reflected in the peripheral blood of rats submitted to post-weaning social isolation (pwSI), a model with validity to study schizophrenia. We evaluated pro- and anti-inflammatory cytokines (IL-6, TNF-α, and IL-10) simultaneously at blood, prefrontal cortex and hippocampal tissues (Milliplex MAP), including the respective cytokines gene expression (mRNA) (qRT-PCR TaqMan mastermix). We also performed a correlation matrix to explore significant correlations among cytokines (protein and mRNA) in blood and brain, as well as cytokines and total number of square crossings in the open field for isolated-reared animals. Male Wistar rats (n = 10/group) were kept isolated (n = 1/cage) or grouped (n = 3–4/cage) since weaning for 10 weeks. After this period, rats were assessed for locomotion and sacrificed for blood and brain cytokines measurements. Prolonged pwSI decreased IL-10 protein and mRNA in the blood, and IL-10 protein in the hippocampus, along with decreased IL-6 and its mRNA expression in the prefrontal cortex. Our results also showed that cytokines tend to correlate to one-another among the compartments investigated, although blood and brain correlations are far from perfect. IL-10 hippocampal levels were negatively correlated with hyperlocomotion in the open field. Despite the unexpected decrease in IL-6 and unchanged TNF-α levels contrast to the expected pro-inflammatory phenotype, this may suggest that reduced anti-inflammatory signalling may be critical for eliciting abnormal behaviour in adulthood. Altogether, these results suggest that prolonged early-life adverse events reduce the ability to build proper anti-inflammatory cytokine that is translated from blood-to-brain.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Helene Aparecida Fachim
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Camila Marcelino Loureiro
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rosana Shuhama
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giuliana Bertozi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sâmia Regiane Lourenço Joca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina Marta Del-Ben
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
30
|
Tsvetkov N, Cook CN, Zayed A. Effects of group size on learning and memory in the honey bee, Apis mellifera. J Exp Biol 2019; 222:jeb.193888. [DOI: 10.1242/jeb.193888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/12/2019] [Indexed: 11/20/2022]
Abstract
In animals that experience interactions with conspecifics while young, social interactions appear to be a necessary prerequisite for typical behaviour. Eusocial insects have large colonies where individuals experience a great deal of social interactions with nest mates during all life stages, making them excellent candidates for understanding the effects of social isolation on brain development and behaviour. Here we used the honey bee Apis mellifera to study the effect of social isolation and group size on reward perception and discrimination learning and memory. We confined day old adult workers into three different size groups (1 bee, 8 or 32 bees) for six days during a critical period associated with adult behavioural maturation. We quantified their sucrose responsiveness, their ability to use and remember olfactory cues to discriminate between sucrose and salt (i.e. discrimination learning), and four biogenic amines in the brain. We found that the smaller the group size, the more responsive a worker was to the sucrose reward. Honey bees raised in groups of 32 performed the best in the learning trials and had the highest levels of dopamine. We found no effect of group size on memory. The observed group size effect on learning but not memory supports the hypothesis that social interactions modulate learning through the dopaminergic system.
Collapse
Affiliation(s)
- Nadejda Tsvetkov
- Biology Department, York University, 4700 Keele Street, Toronto, M3J 1P3, Ontario, Canada
| | - Chelsea N. Cook
- School of Life Sciences, Arizona State University, 427 E Tyler Mall #320, Tempe, AZ 85281, USA
| | - Amro Zayed
- Biology Department, York University, 4700 Keele Street, Toronto, M3J 1P3, Ontario, Canada
| |
Collapse
|
31
|
Mechanism underlying NMDA blockade-induced inhibition of aggression in post-weaning socially isolated mice. Neuropharmacology 2018; 143:95-105. [DOI: 10.1016/j.neuropharm.2018.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022]
|
32
|
Templer VL, Wise TB, Heimer-McGinn VR. Social housing protects against age-related working memory decline independently of physical enrichment in rats. Neurobiol Aging 2018; 75:117-125. [PMID: 30557770 DOI: 10.1016/j.neurobiolaging.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/09/2022]
Abstract
Longitudinal human studies suggest that as we age, sociality provides protective benefits against cognitive decline. However, little is known about the underlying neural mechanisms. Rodent studies, which are ideal for studying cognition, fail to examine the independent effects of social housing while controlling for physical enrichment in all groups. In this study, rats were socially housed or nonsocially housed throughout their lifespan and tested in the radial arm maze to measure working memory (WM) and reference memory longitudinally at 3 ages. In old age, exclusively, socially housed rats made significantly less WM errors than nonsocially housed rats, while reference memory errors did not differ between groups at any age. Anxiety, as assessed behaviorally and physiologically, could not account for the observed differences in WM. These data provide the first evidence that social enrichment alone can prevent age-related WM deficits in spite of the effects of practice seen in longitudinal designs. Importantly, our model will facilitate future investigations into the mechanisms underlying the neuroprotective benefits of sociability in old age.
Collapse
Affiliation(s)
| | - Taylor B Wise
- Psychology Department, Providence College, Providence, RI, USA
| | | |
Collapse
|
33
|
Yang Y, Ju W, Zhang H, Sun L. Effect of Ketamine on LTP and NMDAR EPSC in Hippocampus of the Chronic Social Defeat Stress Mice Model of Depression. Front Behav Neurosci 2018; 12:229. [PMID: 30356718 PMCID: PMC6189398 DOI: 10.3389/fnbeh.2018.00229] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Depression is a common mental disorder that is associated with memory dysfunction. Ketamine has recently been demonstrated to be a rapid antidepressant. The mechanisms underlying how depression induces memory dysfunction and how ketamine relieves depressive symptoms remain poorly understood. This work compared three groups of male C57BL/6J mice: mice exposed to chronic social defeat stress (CSDS) to induce a depression-like phenotype, depression-like mice treated with ketamine, and control mice that were not exposed to CSDS or treated with ketamine. Spatial working memory and long term memory were assessed by spontaneous alternation Y-maze and fear conditioning tests, respectively. We used western blot to analyze the density of N-methyl-D-aspartate receptor (NMDAR) subunits in the hippocampus. We recorded long term potentiation (LTP) and NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal slices. We observed that compared with control mice, depression-like mice had significant reductions in spatial working memory and contextual fear memory. The level of NR2B, LTP and NMDA receptor-mediated EPSCs of depression-like mice were decreased. Ketamine treatment attenuated the memory impairment, and increased the density of NR2B and the amplitude of LTP and NMDA receptor-mediated EPSCs in the hippocampus of depression-like mice. In conclusion, depression-like mice have deficits in working memory and contextual fear memory. The decrease of NR2B, LTP induction and NMDA receptor-mediated EPSCs in the hippocampus may be involved in this process. Ketamine can improve expression of NR2B, LTP induction and NMDA receptor-mediated EPSCs in the hippocampus of depression-like mice, which might be part of the reason why ketamine can alleviate the memory dysfunction induced by depression.
Collapse
Affiliation(s)
- Yu Yang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Weina Ju
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Haining Zhang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Chen YW, Akad A, Aderogba R, Chowdhury TG, Aoki C. Dendrites of the dorsal and ventral hippocampal CA1 pyramidal neurons of singly housed female rats exhibit lamina-specific growths and retractions during adolescence that are responsive to pair housing. Synapse 2018; 72:e22034. [PMID: 29631321 DOI: 10.1002/syn.22034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 01/07/2023]
Abstract
Adolescence is accompanied by increased vulnerability to psychiatric illnesses, including anxiety, depression, schizophrenia, and eating disorders. The hippocampus is important for regulating emotional state through its ventral compartment and spatial cognition through its dorsal compartment. Previous animal studies have examined hippocampal development at stages before, after or at single time points during adolescence. However, only one study has investigated morphological changes at multiple time points during adolescence, and no study has yet compared developmental changes of dorsal versus ventral hippocampi. We analyzed the dorsal and ventral hippocampi of rats to determine the developmental trajectory of Golgi-stained hippocampal CA1 neurons by sampling at five time points, ranging from postnatal day (P) 35 (puberty) to 55 (end of adolescence). We show that the dorsal hippocampus undergoes transient dendritic retractions in stratum radiatum (SR), while the ventral hippocampus undergoes transient dendritic growths in SR. During adulthood, stress and hormonal fluctuations have been shown to alter the physiology and morphology of hippocampal neurons, but studies of the impact of these factors upon adolescent hippocampi are scarce. In addition, we show that female-female pair housing from P 36-44 significantly increases branching in the dorsal SR and reduces branching in the ventral SR. Taken together with data on spine density, these results indicate that pyramidal cells in the dorsal and ventral CA1 of female adolescents are remodeled differently following single housing. Social housing during adolescence elicits pathway-specific changes in the hippocampus that may underlie behavioral benefits, including stability of emotion regulation and superior cognition.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Neural Science, New York University, New York, New York 10003
| | - Ada Akad
- Center for Neural Science, New York University, New York, New York 10003
| | - Ruka Aderogba
- Center for Neural Science, New York University, New York, New York 10003
| | - Tara G Chowdhury
- Center for Neural Science, New York University, New York, New York 10003
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York 10003.,Neuroscience Institute, Langone Medical Center, New York University, New York, New York 10016
| |
Collapse
|
35
|
Li X, Sun W, An L. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats. Toxicol Ind Health 2018; 34:409-421. [DOI: 10.1177/0748233718758233] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Manufactured metal nanoparticles and their applications are continuously expanding because of their unique characteristics while their increasing use may predispose to potential health problems. Several studies have reported the adverse effects of copper oxide nanoparticles (nano-CuO) relative to ecotoxicity and cell toxicity, whereas little is known about the neurotoxicity of nano-CuO. The present study aimed to examine its effects on spatial cognition, hippocampal function, and the possible mechanisms. Male Wistar rats were used to establish an animal model, and nano-CuO was administered at a dose of 0.5 mg/kg/day for 2 weeks. The Morris water maze (MWM) test was employed to evaluate learning and memory. The long-term potentiation (LTP) from Schaffer collaterals to the hippocampal CA1 region, and the effects of nano-CuO on synases were recorded in the hippocampal CA1 neurons of rats. MWM test showed that learning and memory abilities were impaired significantly by nano-CuO ( p < 0.05). The LTP test demonstrated that the field excitatory postsynaptic potential (fEPSP) slopes were significantly lower in nano-CuO-treated groups compared with the control group ( p < 0.01). Furthermore, the data of whole-cell patch-clamp experiments showed that nano-CuO markedly depressed the frequencies of both spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), indicating an effect of nano-CuO on inhibiting the release frequency of glutamate presynapticly ( p < 0.01). Meanwhile, the amplitudes of both sEPSC and mEPSC were significantly reduced in nano-CuO-treated animals, which suggested that the effect of nano-CuO modulates postsynaptic receptor kinetics ( p < 0.01). Paired pulse facilitation (PPF) ( p < 0.05) and the expression of NR2A, but not NR2B, of N-methyl-d-aspartate (NMDA) subunits ( p < 0.05), were decreased significantly. In conclusion, nano-CuO impaired glutamate transmission presynapticly and postsynapticly, which may contribute importantly to diminished LTP and other induced cognitive deficits.
Collapse
Affiliation(s)
- Xiaoliang Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Sun
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
36
|
Rodriguez FS, Schroeter ML, Witte AV, Engel C, Löffler M, Thiery J, Villringer A, Luck T, Riedel-Heller SG. Could High Mental Demands at Work Offset the Adverse Association Between Social Isolation and Cognitive Functioning? Results of the Population-Based LIFE-Adult-Study. Am J Geriatr Psychiatry 2017; 25:1258-1269. [PMID: 28669574 DOI: 10.1016/j.jagp.2017.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/15/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The study investigated whether high mental demands at work, which have shown to promote a good cognitive functioning in old age, could offset the adverse association between social isolation and cognitive functioning. METHODS Based on data from the population-based LIFE-Adult-Study, the association between cognitive functioning (Verbal Fluency Test, Trail Making Test B) and social isolation (Lubben Social Network Scale) as well as mental demands at work (O*NET database) was analyzed via linear regression analyses adjusted for age, sex, education, and sampling weights. RESULTS Cognitive functioning was significantly lower in socially isolated individuals and in individuals working in low mental demands jobs-even in old age after retirement and even after taking into account the educational level. An interaction effect suggested stronger effects of mental demands at work in socially isolated than nonisolated individuals. CONCLUSIONS The findings suggest that working in high mental-demand jobs could offset the adverse association between social isolation and cognitive functioning. Further research should evaluate how interventions that target social isolation and enhance mentally demanding activities promote a good cognitive functioning in old age.
Collapse
Affiliation(s)
- Francisca S Rodriguez
- Edward R. Roybal Institute on Aging, University of Southern California, Los Angeles, CA; Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany; Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.
| | - Matthias L Schroeter
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - A Veronica Witte
- Collaborative Research Centre 1052 "Obesity Mechanisms", University of Leipzig, Leipzig, Germany; Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Christoph Engel
- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Subproject A1, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Markus Löffler
- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Subproject A1, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Arno Villringer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Tobias Luck
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany; Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
Watt MJ, Weber MA, Davies SR, Forster GL. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79. [PMID: 28642080 PMCID: PMC5610933 DOI: 10.1016/j.pnpbp.2017.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeated exposure to stress during childhood is associated with increased risk for neuropsychiatric illness, substance use disorders and other behavioral problems in adulthood. However, it is not clear how chronic childhood stress can lead to emergence of such a wide range of symptoms and disorders in later life. One possible explanation lies in stress-induced disruption to the development of specific brain regions associated with executive function and reward processing, deficits in which are common to the disorders promoted by childhood stress. Evidence of aberrations in prefrontal cortex and nucleus accumbens function following repeated exposure of juvenile (pre- and adolescent) organisms to a variety of different stressors would account not only for the similarity in symptoms across the wide range of childhood stress-associated mental illnesses, but also their persistence into adulthood in the absence of further stress. Therefore, the goal of this review is to evaluate the current knowledge regarding disruption to executive function and reward processing in adult animals or humans exposed to chronic stress over the juvenile period, and the underlying neurobiology, with particular emphasis on the prefrontal cortex and nucleus accumbens. First, the role of these brain regions in mediating executive function and reward processing is highlighted. Second, the neurobehavioral development of these systems is discussed to illustrate how juvenile stress may exert long-lasting effects on prefrontal cortex-accumbal activity and related behavioral functions. Finally, a critical review of current animal and human findings is presented, which strongly supports the supposition that exposure to chronic stress (particularly social aggression and isolation in animal studies) in the juvenile period produces impairments in executive function in adulthood, especially in working memory and inhibitory control. Chronic juvenile stress also results in aberrations to reward processing and seeking, with increased sensitivity to drugs of abuse particularly noted in animal models, which is in line with greater incidence of substance use disorders seen in clinical studies. These consequences are potentially mediated by monoamine and glutamatergic dysfunction in the prefrontal cortex and nucleus accumbens, providing translatable therapeutic targets. However, the predominant use of male subjects and social-based stressors in preclinical studies points to a clear need for determining how both sex differences and stressor heterogeneity may differentially contribute to stress-induced changes to substrates mediating executive function and reward processing, before the impact of chronic juvenile stress in promoting adult psychopathology can be fully understood.
Collapse
|
38
|
Cao M, Pu T, Wang L, Marshall C, He H, Hu G, Xiao M. Early enriched physical environment reverses impairments of the hippocampus, but not medial prefrontal cortex, of socially-isolated mice. Brain Behav Immun 2017; 64:232-243. [PMID: 28412142 DOI: 10.1016/j.bbi.2017.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 01/24/2023] Open
Abstract
Early social isolation (SI) produces a variety of emotional, behavioral and cognitive abnormalities. Conversely, environmental enrichment (EE), a complicated social and physical construct, offers beneficial effects on brain plasticity and development. However, whether or not exclusive physical EE is sufficient to reverse the adverse consequences of early SI remains unclear. Here we reported that 1month-old solitary mice housed in the EE for 8weeks corrected spatial cognitive dysfunction, but did not ameliorate social interaction deficits and increased anxiety-like behavior. Pathological analyses revealed that the enriched environment decreased cellular apoptosis, synaptic protein loss, myelination defect and microglial activation in the hippocampus, but not medial prefrontal cortex (mPFC) of mice housed singly. Moreover, increased nuclear factor-kappaB and interleukin-1β levels, and downregulation of brain-derived neurotrophic factor signaling pathway were normalized in the hippocampus rather than mPFC of these animals. Our results revealed a brain region-specific effectiveness of physical EE in remediating brain impairment of adolescent SI mice, with a complete reversal of hippocampus-dependent cognitive dysfunctions, but without mitigation of mPFC associated anxiety and social interaction defects. This finding emphasizes the irreplaceable role of social life for the early brain development.
Collapse
Affiliation(s)
- Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Tinglin Pu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, 750 Morton Blvd., Hazard, KY 41701, USA
| | - Hongliang He
- Department of Pharmacology, Sir Run Run Shaw Hospital, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, Jiangsu 211166, China; Jiangsu Key Laboratory of Gerontology, the First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
39
|
Okudan N, Belviranlı M. Long-term voluntary exercise prevents post-weaning social isolation-induced cognitive impairment in rats. Neuroscience 2017; 360:1-8. [PMID: 28757245 DOI: 10.1016/j.neuroscience.2017.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/29/2023]
Abstract
This study aimed to determine the effect of exercise on locomotion, anxiety-related behavior, learning, and memory in socially isolated post-weaning rats, as well as the correlation between exercise and the concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus. Rats were randomly assigned to three groups: the control group; the social isolation group; the social isolation plus exercise (SIE) group. Social isolation conditions, with or without exercise were maintained for 90d, and then multiple behavioral tests, including the open-field test, elevated plus maze test, and Morris water maze (MWM) test were administered. Following behavioral assessment, hippocampal tissue samples were obtained for measurement of BDNF and NGF. There wasn't a significant difference in locomotor activity between the groups (P>0.05). Anxiety scores were higher in the socially isolated group (P<0.05) than in the SIE group (P<0.05). According to the probe trial session of the MWM test results, exercise training improved platform crossings' number in the socially isolated rats (P<0.05). Exercise training ameliorated social isolation-induced reduction in hippocampal BDNF and NGF content (P<0.05). These findings suggest that exercise training improves cognitive functions via increasing hippocampal BDNF and NGF concentrations in socially isolated post-weaning rats.
Collapse
Affiliation(s)
- Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| | - Muaz Belviranlı
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey.
| |
Collapse
|
40
|
Region-specific impairments in parvalbumin interneurons in social isolation-reared mice. Neuroscience 2017; 359:196-208. [PMID: 28723388 DOI: 10.1016/j.neuroscience.2017.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/17/2017] [Accepted: 07/09/2017] [Indexed: 01/08/2023]
Abstract
Many neuropsychiatric disorders show localized dysfunction in specific cortical regions. The mechanisms underlying such region-specific vulnerabilities are unknown. Post-mortem analyses have demonstrated a selective reduction in the expression of parvalbumin (PV) in GABAergic interneurons in the frontal rather than the sensory cortex of patients with neuropsychiatric disorders such as schizophrenia, autism spectrum disorders, and bipolar disorders. PV neurons are surrounded by perineuronal nets (PNNs), and are protected from oxidative stress. Previous studies have shown that the characteristics of PNNs are brain region-specific. Therefore, we hypothesized that PV neurons and PNNs may be targeted in region-specific lesions in the brain. Oxidative stress was induced in mice by rearing them in socially isolated conditions. We systemically examined the distribution of PV neurons and PNNs in the brains of these mice as well as a control group. Our results show that the regions frequently affected in neuropsychiatric disorders show significantly lower PV expression and a lower percentage of PV neurons surrounded by PNNs in the brains of socially isolated mice. These results indicate that PV neurons and PNNs exhibit region-specific vulnerabilities. Our findings may be useful for elucidating the mechanisms underlying region-specific disruption of the brain in neuropsychiatric disorders.
Collapse
|
41
|
Physical exercise ameliorates mood disorder-like behavior on high fat diet-induced obesity in mice. Psychiatry Res 2017; 250:71-77. [PMID: 28142069 DOI: 10.1016/j.psychres.2017.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/05/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Obesity is associated with mood disorders such as depression and anxiety. The aim of this study was to investigate whether treadmill exercise had any benefits on mood disorder by high fat diet (HFD) induced obesity. Mice were randomly divided into four groups: control, control and exercise, high fat diet (HFD), and HFD and exercise. Obesity was induced by a 20-week HFD (60%). In the exercise groups, exercise was performed 6 times a week for 12 weeks, with the exercise duration and intensity gradually increasing at 4-week intervals. Mice were tested in tail suspension and elevated plus maze tasks in order to verify the mood disorder like behavior such as depression and anxiety on obesity. In the present study, the number of 5-HT- and TPH-positive cells, and expression of 5-HT1A and 5-HTT protein decreased in dorsal raphe, and depression and anxiety like behavior increased in HFD group compared with the CON group. In contrast, treadmill exercise ameliorated mood disorder like behavior by HFD induced obesity and enhanced expression of the serotonergic system in the dorsal raphe. We concluded that exercise increases the capacity of the serotonergic system in the dorsal raphe, which improves the mood disorders associated with HFD-induced obesity.
Collapse
|
42
|
An L, Sun W. Prenatal melamine exposure impairs spatial cognition and hippocampal synaptic plasticity by presynaptic and postsynaptic inhibition of glutamatergic transmission in adolescent offspring. Toxicol Lett 2017; 269:55-64. [DOI: 10.1016/j.toxlet.2017.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
43
|
Chen W, An D, Xu H, Cheng X, Wang S, Yu W, Yu D, Zhao D, Sun Y, Deng W, Tang Y, Yin S. Effects of social isolation and re-socialization on cognition and ADAR1 (p110) expression in mice. PeerJ 2016; 4:e2306. [PMID: 27602277 PMCID: PMC4994079 DOI: 10.7717/peerj.2306] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/09/2016] [Indexed: 11/20/2022] Open
Abstract
It has been reported that social isolation stress could be a key factor that leads to cognitive deficit for both humans and rodent models. However, detailed mechanisms are not yet clear. ADAR1 (Adenosine deaminase acting on RNA) is an enzyme involved in RNA editing that has a close relation to cognitive function. We have hypothesized that social isolation stress may impact the expression of ADAR1 in the brain of mice with cognitive deficit. To test our hypothesis, we evaluated the cognition ability of mice isolated for different durations (2, 4, and 8 weeks) using object recognition and object location tests; we also measured ADAR1 expression in hippocampus and cortex using immunohistochemistry and western blot. Our study showed that social isolation stress induced spatial and non-spatial cognition deficits of the tested mice. In addition, social isolation significantly increased both the immunoreactivity and protein expression of ADAR1 (p110) in the hippocampus and frontal cortex. Furthermore, re-socialization could not only recover the cognition deficits, but also bring ADAR1 (p110) immunoreactivity of hippocampus and frontal cortex, as well as ADAR1 (p110) protein expression of hippocampus back to the normal level for the isolated mice in adolescence. In conclusion, social isolation stress significantly increases ADAR1 (p110) expression in the hippocampus and frontal cortex of the mice with cognitive deficit. This finding may open a window to better understand the reasons (e.g., epigenetic change) that are responsible for social isolation-induced cognitive deficit and help the development of novel therapies for the resulted diseases.
Collapse
Affiliation(s)
- Wei Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Dong An
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong Xu
- Department of Physiology Laboratory, Dalian Medical University, Dalian, China
| | - Xiaoxin Cheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shiwei Wang
- Menzies Research Institute, University of Tasmania, Tasmania, Australia
| | - Weizhi Yu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Deqin Yu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Dan Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yiping Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yiyuan Tang
- Department of Psychological Sciences, Texas Tech University, Lubbock, United States
| | - Shengming Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Oliveras I, Sánchez-González A, Piludu MA, Gerboles C, Río-Álamos C, Tobeña A, Fernández-Teruel A. Divergent effects of isolation rearing on prepulse inhibition, activity, anxiety and hippocampal-dependent memory in Roman high- and low-avoidance rats: A putative model of schizophrenia-relevant features. Behav Brain Res 2016; 314:6-15. [PMID: 27478139 DOI: 10.1016/j.bbr.2016.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
Abstract
Social isolation of rats induces a constellation of behavioral alterations known as "isolation syndrome" that are consistent with some of the positive and cognitive symptoms observed in schizophrenic patients. In the present study we have assessed whether isolation rearing of inbred Roman high-avoidance (RHA-I) and Roman low-avoidance (RLA-I) strains can lead to the appearance of some of the key features of the "isolation syndrome", such as prepulse inhibition (PPI) deficits, increased anxious behavior, hyperactivity and memory/learning impairments. Compared to RLA-I rats, the results show that isolation rearing (IR) in RHA-I rats has a more profound impact, as they exhibit isolation-induced PPI deficits, increased anxiety, hyperactivity and long-term reference memory deficits, while isolated RLA-I rats only exhibit deficits in a spatial working memory task. These results give further support to the validity of RHA-I rats as a genetically-based model of schizophrenia relevant-symptoms.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain.
| | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain
| | - Maria Antonietta Piludu
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Cristina Gerboles
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain
| | - Cristóbal Río-Álamos
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
45
|
Stein LR, O'Dell KA, Funatsu M, Zorumski CF, Izumi Y. Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats. Neuroscience 2016; 329:294-305. [PMID: 27208617 DOI: 10.1016/j.neuroscience.2016.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. Here, we tested if short-term EE could overcome age-associated impairments in induction of LTP and LTD. LTP and LTD could not be induced in the CA1 region of hippocampal slices in control, aged rats using standard stimuli that are highly effective in young rats. However, exposure of aged littermates to EE for three weeks enabled successful induction of LTP and LTD. EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals.
Collapse
Affiliation(s)
- Liana R Stein
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Kazuko A O'Dell
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Michiyo Funatsu
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Dev Psychopathol 2016; 27:477-91. [PMID: 25997766 DOI: 10.1017/s0954579415000103] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer-peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep-wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence.
Collapse
|
47
|
Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: Interplay of these factors changes these effects. Int J Dev Neurosci 2016; 50:16-25. [DOI: 10.1016/j.ijdevneu.2016.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/01/2016] [Indexed: 01/09/2023] Open
|
48
|
Impaired hippocampal synaptic plasticity and NR2A/2B expression ratio in remifentanil withdrawal rats. Neurotoxicology 2016; 53:115-123. [PMID: 26777139 DOI: 10.1016/j.neuro.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/05/2015] [Accepted: 01/09/2016] [Indexed: 11/20/2022]
Abstract
Remifentanil is a kind of synthetic opioid which has gained wide clinical acceptance by anesthesiologists. In this study, we attempted to test whether withdrawal effects on learning mechanisms can be triggered by repeated low-dose remifentanil treatment. Male Sprague-Dawley (SD) rats were subjected to remifentanil (50μg/kgs.c.) twice per day at 12h intervals for 15 days. When the animals of remifentanil group were withdrawn from remifentanil at 10h after the last injection, changes in open field test, Morris water maze test (MWM) and synaptic efficacy were examined in each group. We demonstrated that repeated exposure to 50μg/kg remifentanil produced enhanced locomotor activity indicating that a remifentanil addiction animal model in rats was established. MWM results showed that exposure to remifentanil had no influence on the spatial cognition. After withdrawal of remifentanil rats showed impaired spatial cognition. In electrophysiology test, remifentanil group rats showed a trend for a rightward shift of input/output relationship and significant deficits in maintenance of STP and LTP. Immunohistochemistry results demonstrated increased NR2A/NR2B ratio that should be included depression of LTP. In the whole-cell patch-clamp recording, after elimination from remifentanil incubation, mEPSC frequency was down regulated in hippocampal CA1 neurons, indicating that basal synaptic transmission were affected by remifentanil withdrawal. Taken together, the current findings demonstrate that the remifentanil withdrawn rats exhibit obvious impairment of hippocampus-dependent memory and synaptic plasticity. Increased hippocampal NR2A/NR2B expression ratio and the changes of basal synaptic transmission may participate in the impairment of LTP.
Collapse
|
49
|
Powell SB, Swerdlow NR. Social Isolation Rearing and Sensorimotor Gating in Rat Models of Relevance to Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00009-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Powell SB, Khan A, Young JW, Scott CN, Buell MR, Caldwell S, Tsan E, de Jong LAW, Acheson DT, Lucero J, Geyer MA, Behrens MM. Early Adolescent Emergence of Reversal Learning Impairments in Isolation-Reared Rats. Dev Neurosci 2015; 37:253-62. [PMID: 26022788 DOI: 10.1159/000430091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/10/2015] [Indexed: 12/30/2022] Open
Abstract
Cognitive impairments appear early in the progression of schizophrenia, often preceding the symptoms of psychosis. Thus, the systems subserving these functions may be more vulnerable to, and mechanistically linked with, the initial pathology. Understanding the trajectory of behavioral and anatomical abnormalities relevant to the schizophrenia prodrome and their sensitivity to interventions in relevant models will be critical to identifying early therapeutic strategies. Isolation rearing of rats is an environmental perturbation that deprives rodents of social contact from weaning through adulthood and produces behavioral and neuronal abnormalities that mirror some pathophysiology associated with schizophrenia, e.g. frontal cortex abnormalities and prepulse inhibition (PPI) of startle deficits. Previously, we showed that PPI deficits in isolation-reared rats emerge in mid-adolescence (4 weeks after weaning; approx. postnatal day 52) but are not present when tested at 2 weeks after weaning (approx. postnatal day 38). Because cognitive deficits are reported during early adolescence, are relevant to the prodrome, and are linked to functional outcome, we examined the putative time course of reversal learning deficits in isolation-reared rats. Separate groups of male Sprague Dawley rats were tested in a two-choice discrimination task at 2 and 8 weeks after weaning, on postnatal day 38 and 80, respectively. The isolation-reared rats displayed impaired reversal learning at both time points. Isolation rearing was also associated with deficits in PPI at 4 and 10 weeks after weaning. The reversal learning deficits in the isolated rats were accompanied by reductions in parvalbumin immunoreactivity, a marker for specific subpopulations of GABAergic neurons, in the hippocampus. Hence, isolation rearing of rats may offer a unique model to examine the ontogeny of behavioral and neurobiological alterations that may be relevant to preclinical models of prodromal psychosis. © 2015 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Susan B Powell
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, Calif., USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|