1
|
Plank JR, Gozdas E, Bruno J, McGhee CA, Wu H, Raman MM, Saggar M, Green T. Quantitative T1 mapping indicates elevated white matter myelin in children with RASopathies. Biol Psychiatry 2025:S0006-3223(25)01148-5. [PMID: 40316128 DOI: 10.1016/j.biopsych.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Evidence suggests a pathological role of myelination in neurodevelopmental disorders with links to cognitive difficulties, but in vivo assessment remains challenging. Quantitative T1 mapping (QT1) has been used in prior clinical studies (e.g., of multiple sclerosis) and shows promise for reliable measurement of myelin alterations. We investigated QT1 for measuring myelination in children with neurodevelopmental disorders of the RAS-MAPK signaling pathway (RASopathies). METHODS We collected QT1, diffusion-weighted, and structural MRI scans from 72 children (49 RASopathies, 23 typical developing (TD)). QT1 myelin content measures included white matter macromolecular tissue volume (MTV) and cortical R1 (1/T1 relaxation). Group differences were assessed across 39 white matter tracts. Principal components analysis captured cortical myelination patterns across 360 regions, followed by a MANOVA. A support vector machine (SVM) identified the most discriminative features between-groups. RESULTS Thirty-four of 39 tracts were higher in MTV in RASopathies relative to TD (pFDR<.05), indicating widespread elevation in myelination. MANOVA revealed a group effect on cortical R1 (p=.002, η2=.028), suggesting cortical myelination differences between-groups. The SVM yielded an accuracy of 87% and identified cognitive and cortical R1 features as the most discriminant between-groups. CONCLUSIONS We found widespread elevated white matter tract myelin and region-dependent cortical myelination patterns in children with RASopathies. Leveraging preclinical models showing oligodendrocyte dysfunction, QT1 revealed precocious myelination. Further work is needed to explore relationships with cognition. QT1 is a promising tool for identification and monitoring of myelin as a treatment target in neurodevelopmental disorders, offering significant potential for advancing current therapeutic strategies.
Collapse
Affiliation(s)
- Julia R Plank
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA.
| | - Elveda Gozdas
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Jennifer Bruno
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Chloe A McGhee
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA 94305, USA
| | - Mira M Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Manish Saggar
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Plank JR, Gozdas E, Bruno J, McGhee CA, Wu H, Raman MM, Saggar M, Green T. Quantitative T1 mapping indicates elevated white matter myelin in children with RASopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.25.25322881. [PMID: 40061352 PMCID: PMC11888482 DOI: 10.1101/2025.02.25.25322881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Evidence suggests pathological roles of myelination in neurodevelopmental disorders, but our understanding is limited. We investigated quantitative T1 mapping (QT1) as a clinically feasible tool for measuring myelination in children with neurodevelopmental disorders of the RAS-MAPK signaling pathway (RASopathies). Methods We collected QT1, diffusion-weighted, and structural MRI scans from 72 children (49 RASopathies, 23 typical developing (TD)). QT1 measures of myelin content included the macromolecular tissue volume (MTV) in white matter and R1 (1/T1 relaxation) of the cortex. For white matter, we assessed between-groups differences across 39 tracts. For cortical R1, we used principal components analysis to reduce dimensionality and capture myelination patterns across 360 regions. A multivariate ANOVA assessed differences across principal components. Finally, a support vector machine (SVM) identified the most discriminative features between TD and RASopathies. Results Thirty-four of 39 tracts were higher in MTV in RASopathies relative to TD (pFDR <.05), indicating widespread elevation in myelination. Our MANOVA revealed a group effect on cortical R1 (p=.002, η2 =.028), suggesting cortical myelination differences between-groups. SVM yielded an accuracy of 87% and identified cognitive and cortical R1 features as the most discriminant between-groups. Conclusions We found widespread elevated myelin in white matter tracts and region-dependent patterns of cortical myelination in children with RASopathies. QT1 enabled us to leverage preclinical models showing oligodendrocyte dysfunction to uncover the myelination pattern in vivo in the developing human brain. Using QT1, myelin represents a promising treatment target that can be identified and monitored in neurodevelopmental disorders, offering significant potential for advancing current therapeutic strategies.
Collapse
Affiliation(s)
- Julia R Plank
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Elveda Gozdas
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Jennifer Bruno
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Chloe A McGhee
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA 94305, USA
| | - Mira M Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Manish Saggar
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
4
|
Dal Bello S, Martinuzzi D, Tereshko Y, Veritti D, Sarao V, Gigli GL, Lanzetta P, Valente M. The Present and Future of Optic Pathway Glioma Therapy. Cells 2023; 12:2380. [PMID: 37830595 PMCID: PMC10572241 DOI: 10.3390/cells12192380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Optic pathway gliomas (OPGs) encompass two distinct categories: benign pediatric gliomas, which are characterized by favorable prognosis, and malignant adult gliomas, which are aggressive cancers associated with a poor outcome. Our review aims to explore the established standards of care for both types of tumors, highlight the emerging therapeutic strategies for OPG treatment, and propose potential alternative therapies that, while originally studied in a broader glioma context, may hold promise for OPGs pending further investigation. These potential therapies encompass immunotherapy approaches, molecular-targeted therapy, modulation of the tumor microenvironment, nanotechnologies, magnetic hyperthermia therapy, cyberKnife, cannabinoids, and the ketogenic diet. Restoring visual function is a significant challenge in cases where optic nerve damage has occurred due to the tumor or its therapeutic interventions. Numerous approaches, particularly those involving stem cells, are currently being investigated as potential facilitators of visual recovery in these patients.
Collapse
Affiliation(s)
- Simone Dal Bello
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Deborah Martinuzzi
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Yan Tereshko
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Daniele Veritti
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Valentina Sarao
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Paolo Lanzetta
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Hill CS, Khan M, Phipps K, Green K, Hargrave D, Aquilina K. Neurosurgical experience of managing optic pathway gliomas. Childs Nerv Syst 2021; 37:1917-1929. [PMID: 33532921 PMCID: PMC8184710 DOI: 10.1007/s00381-021-05060-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Optic pathway gliomas (OPGs), also known as visual pathway gliomas, are debilitating tumors that account for 3-5% of all pediatric brain tumors. They are most commonly WHO grade 1 pilocytic astrocytomas and frequently occur in patients with neurofibromatosis type 1. The location of these tumors results in visual loss and blindness, endocrine and hypothalamic dysfunction, hydrocephalus, and premature death. Their involvement of the visual pathways and proximity to other eloquent brain structures typically precludes complete resection or optimal radiation dosing without incurring significant neurological injury. There are various surgical interventions that can be performed in relation to these lesions including biopsy, cerebrospinal fluid diversion, and partial or radical resection, but their role is a source of debate. This study catalogues our surgical experience and patient outcomes in order to support decision-making in this challenging pathology. METHODS A retrospective review of all cases of OPGs treated in a single center from July 1990 to July 2020. Data was collected on patient demographics, radiographic findings, pathology, and management including surgical interventions. Outcome data included survival, visual function, endocrine, and hypothalamic dysfunction. RESULTS One hundred twenty-one patients with OPG were identified, and 50 of these patients underwent a total of 104 surgical procedures. These included biopsy (31), subtotal or gross total resection (20 operations in 17 patients), cyst drainage (17), Ommaya reservoir insertion (9), or cerebrospinal fluid diversion (27). During the study period, there was 6% overall mortality, 18% hypothalamic dysfunction, 20% endocrine dysfunction, and 42% had some cognitive dysfunction. At diagnosis 75% of patients had good or moderate visual function in at least one eye, and overall, this improved to 83% at the end of the study period. In comparison the worst eye had good or moderate visual function in 56%, and this reduced to 53%. Baseline and final visual function were poorer in patients who had a surgical resection, but improvements in vision were still found-particularly in the best eye. DISCUSSION/CONCLUSION OPG are debilitating childhood tumor that have lifelong consequences in terms of visual function and endocrinopathies/hypothalamic dysfunction; this can result in substantial patient morbidity. Decisions regarding management and the role of surgery in this condition are challenging and include cerebrospinal fluid diversion, biopsy, and in highly select cases cystic decompression or surgical resection. In this paper, we review our own experience, outcomes, and surgical philosophy.
Collapse
Affiliation(s)
- Ciaran Scott Hill
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK.
- UCL Cancer Institute, University College London, London, UK.
| | - Mehdi Khan
- University College London Medical School, London, UK
| | - Kim Phipps
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | - Katherine Green
- Department of Pediatric Oncology, Great Ormond Street Hospital London, London, UK
| | - Darren Hargrave
- Department of Pediatric Oncology, Great Ormond Street Hospital London, London, UK
- Department of Pediatric Oncology, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| |
Collapse
|
6
|
Abstract
As a cancer predisposition syndrome, individuals with neurofibromatosis type 1 (NF1) are at increased risk for the development of both benign and malignant tumors. One of the most common locations for these cancers is the central nervous system, where low-grade gliomas predominate in children. During early childhood, gliomas affecting the optic pathway are most frequently encountered, whereas gliomas of the brainstem and other locations are observed in slightly older children. In contrast, the majority of gliomas arising in adults with NF1 are malignant cancers, typically glioblastoma, involving the cerebral hemispheres. Our understanding of the pathogenesis of NF1-associated gliomas has been significantly advanced through the use of genetically engineered mice, yielding new targets for therapeutic drug design and evaluation. In addition, Nf1 murine glioma models have served as instructive platforms for defining the cell of origin of these tumors, elucidating the critical role of the tumor microenvironment in determining tumor growth and vision loss, and determining how cancer risk factors (sex, germline NF1 mutation) impact on glioma formation and progression. Moreover, these preclinical models have permitted early phase analysis of promising drugs that reduce tumor growth and attenuate vision loss, as an initial step prior to translation to human clinical trials.
Collapse
Affiliation(s)
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Freret ME, Gutmann DH. Insights into optic pathway glioma vision loss from mouse models of neurofibromatosis type 1. J Neurosci Res 2018; 97:45-56. [PMID: 29704429 DOI: 10.1002/jnr.24250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 gene. The NF1-encoded protein (neurofibromin) is an inhibitor of the oncoprotein RAS and controls cell growth and survival. Individuals with NF1 are prone to developing low-grade tumors of the optic nerves, chiasm, tracts, and radiations, termed optic pathway gliomas (OPGs), which can cause vision loss. A paucity of surgical tumor specimens and of patient-derived xenografts for investigative studies has limited our understanding of human NF1-associated OPG (NF1-OPG). However, mice genetically engineered to harbor Nf1 gene mutations develop optic gliomas that share many features of their human counterparts. These genetically engineered mouse (GEM) strains have provided important insights into the cellular and molecular determinants that underlie mouse Nf1 optic glioma development, maintenance, and associated vision loss, with relevance by extension to human NF1-OPG disease. Herein, we review our current understanding of NF1-OPG pathobiology and describe the mechanisms responsible for tumor initiation, growth, and associated vision loss in Nf1 GEM models. We also discuss how Nf1 GEM and other preclinical models can be deployed to identify and evaluate molecularly targeted therapies for OPG, particularly as they pertain to future strategies aimed at preventing or improving tumor-associated vision loss in children with NF1.
Collapse
Affiliation(s)
- Morgan E Freret
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Toonen JA, Ma Y, Gutmann DH. Defining the temporal course of murine neurofibromatosis-1 optic gliomagenesis reveals a therapeutic window to attenuate retinal dysfunction. Neuro Oncol 2018; 19:808-819. [PMID: 28039362 DOI: 10.1093/neuonc/now267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Optic gliomas arising in the neurofibromatosis type 1 (NF1) cancer predisposition syndrome cause reduced visual acuity in 30%-50% of affected children. Since human specimens are rare, genetically engineered mouse (GEM) models have been successfully employed for preclinical therapeutic discovery and validation. However, the sequence of cellular and molecular events that culminate in retinal dysfunction and vision loss has not been fully defined relevant to potential neuroprotective treatment strategies. Methods Nf1flox/mut GFAP-Cre (FMC) mice and age-matched Nf1flox/flox (FF) controls were euthanized at defined intervals from 2 weeks to 24 weeks of age. Optic nerve volumes were measured, and optic nerves/retinae analyzed by immunohistochemistry. Optical coherence tomography (OCT) was performed on anesthetized mice. FMC mice were treated with lovastatin from 12 to 16 weeks of age. Results The earliest event in tumorigenesis was a persistent elevation in proliferation (4 wk), which preceded sustained microglia numbers and incremental increases in S100+ glial cells. Microglia activation, as evidenced by increased interleukin (IL)-1β expression and morphologic changes, coincided with axonal injury and retinal ganglion cell (RGC) apoptosis (6 wk). RGC loss and retinal nerve fiber layer (RNFL) thinning then ensued (9 wk), as revealed by direct measurements and live-animal OCT. Lovastatin administration at 12 weeks prevented further RGC loss and RNFL thinning both immediately and 8 weeks after treatment completion. Conclusion By defining the chronology of the cellular and molecular events associated with optic glioma pathogenesis, we demonstrate critical periods for neuroprotective intervention and visual preservation, as well as establish OCT as an accurate biomarker of RGC loss.
Collapse
Affiliation(s)
- Joseph A Toonen
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| |
Collapse
|
9
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common brain tumor predisposition syndromes, in which affected children are prone to the development of low-grade gliomas. While NF1-associated gliomas can be found in several brain regions, the majority arise in the optic nerves, chiasm, tracts, and radiations (optic pathway gliomas; OPGs). Owing to their location, 35-50% of affected children present with reduced visual acuity. Unfortunately, despite tumor stabilization following chemotherapy, vision does not improve in most children. For this reasons, more effective therapies are being sought that reflect a deeper understanding of the NF1 gene and the use of authenticated Nf1 genetically-engineered mouse strains. The implementation of these models for drug discovery and validation has galvanized molecularly-targeted clinical trials in children with NF1-OPG. Future research focused on defining the cellular and molecular factors that underlie optic glioma development and progression also has the potential to provide personalized risk assessment strategies for this pediatric population.
Collapse
Affiliation(s)
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| |
Collapse
|
10
|
Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol 2017; 299:270-280. [PMID: 28392281 DOI: 10.1016/j.expneurol.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
The future of precision medicine is heavily reliant on the use of human tissues to identify the key determinants that account for differences between individuals with the same disorder. This need is exemplified by the neurofibromatosis type 1 (NF1) neurogenetic condition. As such, individuals with NF1 are born with a germline mutation in the NF1 gene, but may develop numerous distinct neurological problems, ranging from autism and attention deficit to brain and peripheral nerve sheath tumors. Coupled with accurate preclinical mouse models, the availability of NF1 patient-derived induced pluripotent stem cells (iPSCs) provides new opportunities to define the critical factors that underlie NF1-associated nervous system disease pathogenesis and progression. In this review, we discuss the generation and potential applications of iPSC technology to the study of NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
11
|
Karmakar S, Reilly KM. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2016; 6:45-60. [PMID: 28001089 DOI: 10.2217/cns-2016-0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.
Collapse
Affiliation(s)
- Souvik Karmakar
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Karlyne M Reilly
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Ricker CA, Pan Y, Gutmann DH, Keller C. Challenges in Drug Discovery for Neurofibromatosis Type 1-Associated Low-Grade Glioma. Front Oncol 2016; 6:259. [PMID: 28066715 PMCID: PMC5167692 DOI: 10.3389/fonc.2016.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that results from germline mutations of the NF1 gene, creating a predisposition to low-grade gliomas (LGGs; pilocytic astrocytoma) in young children. Insufficient data and resources represent major challenges to identifying the best possible drug therapies for children with this tumor. Herein, we summarize the currently available cell lines, genetically engineered mouse models, and therapeutic targets for these LGGs. Conspicuously absent are human tumor-derived cell lines or patient-derived xenograft models for NF1-LGG. New collaborative initiatives between patients and their families, research groups, and pharmaceutical companies are needed to create transformative resources and broaden the knowledge base relevant to identifying cooperating genetic drivers and possible drug therapeutics for this common pediatric brain tumor.
Collapse
Affiliation(s)
- Cora A Ricker
- Children's Cancer Therapy Development Institute , Beaverton, OR , USA
| | - Yuan Pan
- Washington University School of Medicine , St. Louis, MO , USA
| | - David H Gutmann
- Washington University School of Medicine , St. Louis, MO , USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute , Beaverton, OR , USA
| |
Collapse
|
13
|
RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth. Neoplasia 2016; 17:776-88. [PMID: 26585233 PMCID: PMC4656811 DOI: 10.1016/j.neo.2015.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
Solid cancers develop within a supportive microenvironment that promotes tumor formation and growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), we have previously demonstrated that microglia are essential for glioma formation and maintenance. To identify potential tumor-associated microglial factors that support glioma growth (gliomagens), we initiated a comprehensive large-scale discovery effort using optimized RNA-sequencing methods focused specifically on glioma-associated microglia. Candidate microglial gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative real-time polymerase chain reaction as well as by RNA fluorescence in situ hybridization following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, chemokine (C-C motif) ligand 5 (Ccl5) was identified as a chemokine highly expressed in genetically engineered Nf1 mouse optic gliomas relative to nonneoplastic optic nerves. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, treatment with Ccl5 neutralizing antibodies reduced Nf1 mouse optic glioma growth and improved retinal dysfunction in vivo. Collectively, these findings establish Ccl5 as an important microglial growth factor for low-grade glioma maintenance relevant to the development of future stroma-targeted brain tumor therapies.
Collapse
|
14
|
The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 2016; 19:20-7. [PMID: 26713745 DOI: 10.1038/nn.4185] [Citation(s) in RCA: 1203] [Impact Index Per Article: 133.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/23/2015] [Indexed: 11/08/2022]
Abstract
There is a growing recognition that gliomas are complex tumors composed of neoplastic and non-neoplastic cells, which each individually contribute to cancer formation, progression and response to treatment. The majority of the non-neoplastic cells are tumor-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, that create a supportive stroma for neoplastic cell expansion and invasion. TAMs are recruited to the glioma environment, have immune functions, and can release a wide array of growth factors and cytokines in response to those factors produced by cancer cells. In this manner, TAMs facilitate tumor proliferation, survival and migration. Through such iterative interactions, a unique tumor ecosystem is established, which offers new opportunities for therapeutic targeting.
Collapse
|
15
|
Helfferich J, Nijmeijer R, Brouwer OF, Boon M, Fock A, Hoving EW, Meijer L, den Dunnen WFA, de Bont ESJM. Neurofibromatosis type 1 associated low grade gliomas: A comparison with sporadic low grade gliomas. Crit Rev Oncol Hematol 2016; 104:30-41. [PMID: 27263935 DOI: 10.1016/j.critrevonc.2016.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder, associated with a variable clinical phenotype including café-au-lait spots, intertriginous freckling, Lisch nodules, neurofibromas, optic pathway gliomas and distinctive bony lesions. NF1 is caused by a mutation in the NF1 gene, which codes for neurofibromin, a large protein involved in the MAPK- and the mTOR-pathway through RAS-RAF signalling. NF1 is a known tumour predisposition syndrome, associated with different tumours of the nervous system including low grade gliomas (LGGs) in the paediatric population. The focus of this review is on grade I pilocytic astrocytomas (PAs), the most commonly observed histologic subtype of low grade gliomas in NF1. Clinically, these PAs have a better prognosis and show different localisation patterns than their sporadic counterparts, which are most commonly associated with a KIAA1549:BRAF fusion. In this review, possible mechanisms of tumourigenesis in LGGs with and without NF1 will be discussed, including the contribution of different signalling pathways and tumour microenvironment. Furthermore we will discuss how increased understanding of tumourigenesis may lead to new potential targets for treatment.
Collapse
Affiliation(s)
- Jelte Helfferich
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Ronald Nijmeijer
- Department of Pathology and Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Oebele F Brouwer
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Maartje Boon
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Annemarie Fock
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Eelco W Hoving
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisethe Meijer
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eveline S J M de Bont
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Falsini B, Chiaretti A, Rizzo D, Piccardi M, Ruggiero A, Manni L, Soligo M, Dickmann A, Federici M, Salerni A, Timelli L, Guglielmi G, Lazzareschi I, Caldarelli M, Galli-Resta L, Colosimo C, Riccardi R. Nerve growth factor improves visual loss in childhood optic gliomas: a randomized, double-blind, phase II clinical trial. Brain 2016; 139:404-414. [PMID: 26767384 DOI: 10.1093/brain/awv366] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022] Open
Abstract
Paediatric optic pathway gliomas are low-grade brain tumours characterized by slow progression and invalidating visual loss. Presently there is no strategy to prevent visual loss in this kind of tumour. This study evaluated the effects of nerve growth factor administration in protecting visual function in patients with optic pathway glioma-related visual impairment. A prospective randomized double-blind phase II clinical trial was conducted in 18 optic pathway glioma patients, aged from 2 to 23 years, with stable disease and severe visual loss. Ten patients were randomly assigned to receive a single 10-day course of 0.5 mg murine nerve growth factor as eye drops, while eight patients received placebo. All patients were evaluated before and after treatment, testing visual acuity, visual field, visual-evoked potentials, optic coherence tomography, electroretinographic photopic negative response, and magnetic resonance imaging. Post-treatment evaluations were repeated at 15, 30, 90, and 180 days Brain magnetic resonance imaging was performed at baseline and at 180 days. Treatment with nerve growth factor led to statistically significant improvements in objective electrophysiological parameters (electroretinographic photopic negative response amplitude at 180 days and visual-evoked potentials at 30 days), which were not observed in placebo-treated patients. Furthermore, in patients in whom visual fields could still be measured, visual field worsening was only observed in placebo-treated cases, while three of four nerve growth factor-treated subjects showed significant visual field enlargement. This corresponded to improved visually guided behaviour, as reported by the patients and/or the caregivers. There was no evidence of side effects related to nerve growth factor treatment. Nerve growth factor eye drop administration appears a safe, easy and effective strategy for the treatment of visual loss associated with optic pathway gliomas.
Collapse
Affiliation(s)
- Benedetto Falsini
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Chiaretti
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Rizzo
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Piccardi
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luigi Manni
- 3 Institute of Translational Pharmacology, CNR, 00142 Rome, Italy
| | - Marzia Soligo
- 3 Institute of Translational Pharmacology, CNR, 00142 Rome, Italy
| | - Anna Dickmann
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Federici
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Annabella Salerni
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Gaspare Guglielmi
- 5 Pharmacy Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Lazzareschi
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Caldarelli
- 6 Paediatric Neurosurgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cesare Colosimo
- 8 Institute of Radiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Riccardi
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
17
|
Chen YH, McGowan LD, Cimino PJ, Dahiya S, Leonard JR, Lee DY, Gutmann DH. Mouse low-grade gliomas contain cancer stem cells with unique molecular and functional properties. Cell Rep 2015; 10:1899-912. [PMID: 25772366 DOI: 10.1016/j.celrep.2015.02.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/16/2015] [Accepted: 02/14/2015] [Indexed: 01/19/2023] Open
Abstract
The availability of adult malignant glioma stem cells (GSCs) has provided unprecedented opportunities to identify the mechanisms underlying treatment resistance. Unfortunately, there is a lack of comparable reagents for the study of pediatric low-grade glioma (LGG). Leveraging a neurofibromatosis 1 (Nf1) genetically engineered mouse LGG model, we report the isolation of CD133(+) multi-potent low-grade glioma stem cells (LG-GSCs), which generate glioma-like lesions histologically similar to the parent tumor following injection into immunocompetent hosts. In addition, we demonstrate that these LG-GSCs harbor selective resistance to currently employed conventional and biologically targeted anti-cancer agents, which reflect the acquisition of new targetable signaling pathway abnormalities. Using transcriptomic analysis to identify additional molecular properties, we discovered that mouse and human LG-GSCs harbor high levels of Abcg1 expression critical for protecting against ER-stress-induced mouse LG-GSC apoptosis. Collectively, these findings establish that LGG cancer stem cells have unique molecular and functional properties relevant to brain cancer treatment.
Collapse
Affiliation(s)
- Yi-Hsien Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Patrick J Cimino
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey R Leonard
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Da Yong Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Kaul A, Toonen JA, Gianino SM, Gutmann DH. The impact of coexisting genetic mutations on murine optic glioma biology. Neuro Oncol 2014; 17:670-7. [PMID: 25246427 DOI: 10.1093/neuonc/nou287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/26/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Children with the neurofibromatosis type 1 (NF1) tumor predisposition syndrome are prone to the development of optic pathway gliomas resulting from biallelic inactivation of the NF1 gene. Recent studies have revealed the presence of other molecular alterations in a small portion of these NF1-associated brain tumors. The purpose of this study was to leverage Nf1 genetically engineered mouse strains to define the functional significance of these changes to optic glioma biology. METHODS Nf1+/- mice were intercrossed with Nf1(flox/flox) mice, which were then crossed with Nf1(flox/flox); GFAP-Cre mice, to generate Nf1(flox/mut); GFAP-Cre (FMC) mice. These mice were additionally mated with conditional KIAA1549:BRAF knock-in or Pten(flox/wt) mice to generate Nf1(flox/mut); f-BRAF; GFAP-Cre (FMBC) mice or Nf1(flox/mut); Pten(flox/wt); GFAP-Cre (FMPC) mice, respectively. The resulting optic gliomas were analyzed for changes in tumor volume, proliferation, and retinal ganglion cell loss. RESULTS While KIAA1549:BRAF conferred no additional biological properties on Nf1 optic glioma, FMPC mice had larger optic gliomas with greater proliferative indices and microglial infiltration. In addition, all 3 Nf1 murine optic glioma strains exhibited reduced retinal ganglion cell survival and numbers; however, FMPC mice had greater retinal nerve fiber layer thinning near the optic head relative to FMC and FMBC mice. CONCLUSIONS Collectively, these experiments demonstrate genetic cooperativity between Nf1 loss and Pten heterozygosity relevant to optic glioma biology and further underscore the value of employing genetically engineered mouse strains to define the contribution of discovered molecular alterations to brain tumor pathogenesis.
Collapse
Affiliation(s)
- Aparna Kaul
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph A Toonen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Scott M Gianino
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Diggs-Andrews KA, Brown JA, Gianino SM, Rubin JB, Wozniak DF, Gutmann DH. Sex Is a major determinant of neuronal dysfunction in neurofibromatosis type 1. Ann Neurol 2014; 75:309-16. [PMID: 24375753 DOI: 10.1002/ana.24093] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/06/2013] [Accepted: 12/06/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Children with neurofibromatosis-1 (NF1) are at risk for developing numerous nervous system abnormalities, including cognitive problems and brain tumors (optic pathway glioma). Currently, there are few prognostic factors that predict clinical manifestations or outcomes in patients, even in families with an identical NF1 gene mutation. In this study, we leveraged Nf1 genetically engineered mice (GEM) to define the potential role of sex as a clinically relevant modifier of NF1-associated neuronal dysfunction. METHODS Deidentified clinical data were analyzed to determine the impact of sex on optic glioma-associated visual decline in children with NF1. In addition, Nf1 GEM were employed as experimental platforms to investigate sexually dimorphic differences in learning/memory, visual acuity, retinal ganglion cell (RGC) death, and Nf1 protein (neurofibromin)-regulated signaling pathway function (Ras activity, cyclic adenosine monophosphate [cAMP], and dopamine levels). RESULTS Female patients with NF1-associated optic glioma were twice as likely to undergo brain magnetic resonance imaging for visual symptoms and 3× more likely to require treatment for visual decline than their male counterparts. As such, only female Nf1 GEM exhibited a decrement in optic glioma-associated visual acuity, shorter RGC axons, and attenuated cAMP levels. In contrast, only male Nf1 GEM showed spatial learning/memory deficits, increased Ras activity, and reduced dopamine levels. INTERPRETATION Collectively, these observations establish sex as a major prognostic factor underlying neuronal dysfunction in NF1, and suggest that sex should be considered when interpreting future preclinical and clinical study results.
Collapse
Affiliation(s)
- Kelly A Diggs-Andrews
- Departments of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St Louis, MO
| | | | | | | | | | | |
Collapse
|
20
|
Cameron JD, Rodriguez FJ, Rushing E, Horkayne-Szakaly I, Eberhart C. An 80-year experience with optic nerve glioma cases at the Armed Forces Institute of Pathology: evolution from museum to molecular evaluation suggests possibe interventions in the cellular senescence and microglial pathways (an American Ophthalmological Society thesis). TRANSACTIONS OF THE AMERICAN OPHTHALMOLOGICAL SOCIETY 2014; 112:11-25. [PMID: 25411512 PMCID: PMC4234453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE To determine whether p16, a molecular marker of cellular senescence, and CD68, a microglial marker, are detectible in optic nerve glioma tissue stored for decades, thus providing potential targets for pharmacologic intervention. METHODS Cases were retrieved from the Armed Forces Institute of Pathology Registry of Ophthalmic Pathology. Clinical information was tabulated. In specimens with sufficient tissue, a tissue microarray was constructed to conduct molecular studies. RESULTS Ninety-two cases were included: gender distribution was in a ratio of one male to 1.6 females, and age range was 2 months to 50 years (average age, 10.8 years). Neurofibromatosis type 1 was identified in 10 cases (10.8%). The majority presented with decreased vision and exophthalmos. Forty-eight cases were studied by a tissue microarray construction. Glial fibrillary acidic protein, a control for immunoreactivity, was positive in 46 cases (96%). Immunoreactivity for p16 protein was seen in 36 cases (75%) and CD68-positive cells in 34 (71%). Limitations include referral bias, limited clinical information, limited amount of tissue, and extended period of tissue preservation. CONCLUSIONS Optic nerve glioma is a tumor of the visual axis in young individuals, which is generally indolent but with a variable clinical course. Traditional histopathologic techniques have not been reliably predictive of clinical course. This microarray contains tumors with representative demographic, clinical, and histologic characteristics for optic nerve glioma. Immunoreactivity for p16 protein and CD68 is positive in the majority. These findings suggest a possible explanation for the variable clinical course and identify therapeutic targets in the cell senescence and microglial pathways.
Collapse
Affiliation(s)
- J Douglas Cameron
- Departments of Ophthalmology & Visual Neurosciences and Laboratory Medicine & Pathology, University of Minnesota School of Medicine, Minneapolis
| | - Fausto J Rodriguez
- Department of Pathology, Division of Neuropathology, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Elisabeth Rushing
- Department of Pathology, University of Zurich, and Department of Neuropathology, University Hospital Zurich, Switzerland
| | | | - Charles Eberhart
- Departments of Pathology, Ophthalmology, and Oncology, Division of Neuropathology, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
21
|
Nf1 loss and Ras hyperactivation in oligodendrocytes induce NOS-driven defects in myelin and vasculature. Cell Rep 2013; 4:1197-212. [PMID: 24035394 PMCID: PMC3982616 DOI: 10.1016/j.celrep.2013.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 06/26/2013] [Accepted: 08/02/2013] [Indexed: 01/05/2023] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB) developed, implicating a soluble mediator. Nitric oxide (NO) can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3) were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that anti-oxidants may improve some behavioral deficits in Rasopathy patients.
Collapse
|
22
|
Gutmann DH, McLellan MD, Hussain I, Wallis JW, Fulton LL, Fulton RS, Magrini V, Demeter R, Wylie T, Kandoth C, Leonard JR, Guha A, Miller CA, Ding L, Mardis ER. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res 2012; 23:431-9. [PMID: 23222849 PMCID: PMC3589532 DOI: 10.1101/gr.142604.112] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Low-grade brain tumors (pilocytic astrocytomas) arising in the neurofibromatosis type 1 (NF1) inherited cancer predisposition syndrome are hypothesized to result from a combination of germline and acquired somatic NF1 tumor suppressor gene mutations. However, genetically engineered mice (GEM) in which mono-allelic germline Nf1 gene loss is coupled with bi-allelic somatic (glial progenitor cell) Nf1 gene inactivation develop brain tumors that do not fully recapitulate the neuropathological features of the human condition. These observations raise the intriguing possibility that, while loss of neurofibromin function is necessary for NF1-associated low-grade astrocytoma development, additional genetic changes may be required for full penetrance of the human brain tumor phenotype. To identify these potential cooperating genetic mutations, we performed whole-genome sequencing (WGS) analysis of three NF1-associated pilocytic astrocytoma (PA) tumors. We found that the mechanism of somatic NF1 loss was different in each tumor (frameshift mutation, loss of heterozygosity, and methylation). In addition, tumor purity analysis revealed that these tumors had a high proportion of stromal cells, such that only 50%–60% of cells in the tumor mass exhibited somatic NF1 loss. Importantly, we identified no additional recurrent pathogenic somatic mutations, supporting a model in which neuroglial progenitor cell NF1 loss is likely sufficient for PA formation in cooperation with a proper stromal environment.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thangarajh M, Gutmann DH. Review: low-grade gliomas as neurodevelopmental disorders: insights from mouse models of neurofibromatosis-1. Neuropathol Appl Neurobiol 2012; 38:241-53. [PMID: 22035280 DOI: 10.1111/j.1365-2990.2011.01230.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over the past few years, the traditional view of brain tumorigenesis has been revolutionized by advances in genomic medicine, molecular biology, stem cell biology and genetically engineered small-animal modelling. We now appreciate that paediatric brain tumours arise following specific genetic mutations in specialized groups of progenitor cells in concert with permissive changes in the local tumour microenvironment. This interplay between preneoplastic/neoplastic cells and non-neoplastic stromal cells is nicely illustrated by the neurofibromatosis type 1-inherited cancer syndrome, in which affected children develop low-grade astrocytic gliomas. In this review, we will use neurofibromatosis type 1 as a model system to highlight the critical role of growth control pathways, non-neoplastic cellular elements and brain region-specific properties in the development of childhood gliomas. The insights derived from examining each of these contributing factors will be instructive in the design of new therapies for gliomas in the paediatric population.
Collapse
Affiliation(s)
- M Thangarajh
- Department of Neurology, School of Medicine, Washington University, Saint Louis, MO, USA
| | | |
Collapse
|
24
|
Hussain I, Gutmann DH. Molecular genetics of optic glioma: lessons learned from neurofibromatosis-1 genetically engineered mice. EXPERT REVIEW OF OPHTHALMOLOGY 2011. [DOI: 10.1586/eop.11.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Jentoft M, Giannini C, Cen L, Scheithauer BW, Hoesley B, Sarkaria JN, Abell-Aleff PC, Rodriguez EF, Li Y, Rodriguez FJ. Phenotypic variations in NF1-associated low grade astrocytomas: possible role for increased mTOR activation in a subset. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2010; 4:43-57. [PMID: 21228927 PMCID: PMC3016103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/11/2010] [Indexed: 05/30/2023]
Abstract
Low grade astrocytomas are the most common CNS tumors in neurofibromatosis type 1(NF1) patients. While most are classic pilocytic astrocytomas (PA), some are difficult to classify, and have been termed "low grade astrocytoma subtype indeterminate" (LGSI). Some of these tumors exhibit peculiar morphologies, including plump cytoplasmic processes and macronucleoli. In the current study we performed electron microscopy, followed by gene expression, immunohistochemicai and western blot analyses in an effort to identify biological differences underlying phenotypic variation in NF1-associated low grade astrocytoma. Electron microscopy demonstrated intermediate filaments and frequent Rosenthal fiber material in both PA and LGSI. Dense core granules and/or aligned microtubules were present in the LGSI group (2 of 3 cases) and in the PA group (1 of 10 cases). Analysis of global gene expression data obtained using Affymetrix HG-U133 Plus2.0 chips (5 PA, 1 LGSI), and western blot analysis for phospho-S6 (1 LGSI, 2 PA) demonstrated a gene expression profile reflecting "neuronal differentiation" and increased phospho-S6 immunoreactivity consistent with mTOR activation in the LGSI compared with PA. These findings were confirmed by immunohistochemistry for neuronal markers, as well as combined phospho-S6/ phospho-p70S6K immunoreactivity in 4 (of 4) LGSI vs. 5 (of 13) NF1-associated PA (p=0.02), and 13 (of 39) sporadic PA. Phospho-ERK immunoreactivity was uniformly present in PA and LGSI groups, while BRAF duplication was absent by FISH in 8 NF1-associated low grade astrocytomas. In summary, differential expression of neuronal-related genes and increased mTOR activation may underlie phenotypic variations in NF1-associated low grade astrocytomas.
Collapse
Affiliation(s)
- Mark Jentoft
- Departments of Laboratory Medicine and Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Freret ME, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 2007; 61:189-98. [PMID: 17387725 PMCID: PMC5908242 DOI: 10.1002/ana.21107] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optic pathway glioma (OPG), seen in 15% to 20% of individuals with neurofibromatosis type 1 (NF1), account for significant morbidity in young children with NF1. Overwhelmingly a tumor of children younger than 7 years, OPG may present in individuals with NF1 at any age. Although many OPG may remain indolent and never cause signs or symptoms, others lead to vision loss, proptosis, or precocious puberty. Because the natural history and treatment of NF1-associated OPG is different from that of sporadic OPG in individuals without NF1, a task force composed of basic scientists and clinical researchers was assembled in 1997 to propose a set of guidelines for the diagnosis and management of NF1-associated OPG. This new review highlights advances in our understanding of the pathophysiology and clinical behavior of these tumors made over the last 10 years. Controversies in both the diagnosis and management of these tumors are examined. Finally, specific evidence-based recommendations are proposed for clinicians caring for children with NF1.
Collapse
Affiliation(s)
| | - David H. Gutmann
- To whom correspondence should be addressed: Telephone: 314-362-7379, Facsimile: 314-362-2388,
| |
Collapse
|