1
|
Kundu D, Acharya S, Wang S, Cao Y, Kim HJ, Cheong JH, Kim KM. Roles of metabotropic signaling of nicotine receptors in the development and maintenance of nicotine reward through regulation of dopamine D 3 receptor expression. J Neurochem 2025; 169:e16271. [PMID: 39696743 DOI: 10.1111/jnc.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR), an ionophore, has been suggested to signal through metabotropic pathways and interact with other receptor families, such as dopamine receptors. In this study, the interaction between α4β2 nAChR and dopamine receptors was investigated through in vivo and in vitro studies. Nicotine exposure in adolescent rats is known to induce a sustained increase in nicotine's rewarding effects which was assessed by conditioned place preference (CPP) assay. The expression levels of α4β2 nAChR and dopamine D2/D3 receptors (D2R, D3R) increased after nicotine treatment. To determine which of these two dopamine receptors was increased by nicotine treatment, a newly developed ligand with high selectivity for D3R was used in the radioligand binding assay. Although the expression of both α4β2 nAChR and D3R was enhanced by nicotine exposure during adolescence, only the elevated level of D3R persisted into adulthood. In experiments conducted on mice, D3R knockout mice showed significantly lower CPP scores in adulthood compared to wild-type mice. Cellular studies showed that an increase in D3R expression was attributed to enhanced D3R promoter activity, regulated by a signaling cascade composed of Src, Syk, PKC, and NF-κB. These results demonstrate that the metabotropic signaling pathway is involved in the interaction between α4β2 nAChR and D3R, and also suggest how nicotine reward initiated in adolescence could relapse after a long abstinence period. Given the significance of adolescent nicotine exposure on nicotine addiction, this study is thought to offer a novel mechanistic perspective for understanding nicotine reward and relapse.
Collapse
Affiliation(s)
- Dooti Kundu
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Srijan Acharya
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shujie Wang
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Yongkai Cao
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Hee Jin Kim
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- College of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyeong-Man Kim
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Colyer-Patel K, Kuhns L, Weidema A, Lesscher H, Cousijn J. Age-dependent effects of tobacco smoke and nicotine on cognition and the brain: A systematic review of the human and animal literature comparing adolescents and adults. Neurosci Biobehav Rev 2023; 146:105038. [PMID: 36627063 DOI: 10.1016/j.neubiorev.2023.105038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Cigarette smoking is often initiated during adolescence and an earlier age of onset is associated with worse health outcomes later in life. Paradoxically, the transition towards adulthood also marks the potential for recovery, as the majority of adolescents are able to quit smoking when adulthood emerges. This systematic review aimed to evaluate the evidence from both human and animal studies for the differential impact of adolescent versus adult repeated and long-term tobacco and nicotine exposure on cognitive and brain outcomes. The limited human studies and more extensive yet heterogeneous animal studies, provide preliminary evidence of heightened fear learning, anxiety-related behaviour, reward processing, nicotinic acetylcholinergic receptors expression, dopamine expression and serotonin functioning after adolescent compared to adult exposure. Effects of nicotine or tobacco use on impulsivity were comparable across age groups. These findings provide novel insights into the mechanisms underlying adolescents' vulnerability to tobacco and nicotine. Future research is needed to translate animal to human findings, with a focus on directly linking a broader spectrum of brain and behavioural outcomes.
Collapse
Affiliation(s)
- Karis Colyer-Patel
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Lauren Kuhns
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Alix Weidema
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands
| | - Heidi Lesscher
- Department Population Health Sciences, Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janna Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Little HJ. L-Type Calcium Channel Blockers: A Potential Novel Therapeutic Approach to Drug Dependence. Pharmacol Rev 2021; 73:127-154. [PMID: 34663686 DOI: 10.1124/pharmrev.120.000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review describes interactions between compounds, primarily dihydropyridines, that block L-type calcium channels and drugs that cause dependence, and the potential importance of these interactions. The main dependence-inducing drugs covered are alcohol, psychostimulants, opioids, and nicotine. In preclinical studies, L-type calcium channel blockers prevent or reduce important components of dependence on these drugs, particularly their reinforcing actions and the withdrawal syndromes. The channel blockers also reduce the development of tolerance and/or sensitization, and they have no intrinsic dependence liability. In some instances, their effects include reversal of brain changes established during drug dependence. Prolonged treatment with alcohol, opioids, psychostimulant drugs, or nicotine causes upregulation of dihydropyridine binding sites. Few clinical studies have been carried out so far, and reports are conflicting, although there is some evidence of effectiveness of L-channel blockers in opioid withdrawal. However, the doses of L-type channel blockers used clinically so far have necessarily been limited by potential cardiovascular problems and may not have provided sufficient central levels of the drugs to affect neuronal dihydropyridine binding sites. New L-type calcium channel blocking compounds are being developed with more selective actions on subtypes of L-channel. The preclinical evidence suggests that L-type calcium channels may play a crucial role in the development of dependence to different types of drugs. Mechanisms for this are proposed, including changes in the activity of mesolimbic dopamine neurons, genomic effects, and alterations in synaptic plasticity. Newly developed, more selective L-type calcium channel blockers could be of considerable value in the treatment of drug dependence. SIGNIFICANCE STATEMENT: Dependence on drugs is a very serious health problem with little effective treatment. Preclinical evidence shows drugs that block particular calcium channels, the L-type, reduce dependence-related effects of alcohol, opioids, psychostimulants, and nicotine. Clinical studies have been restricted by potential cardiovascular side effects, but new, more selective L-channel blockers are becoming available. L-channel blockers have no intrinsic dependence liability, and laboratory evidence suggests they reverse previously developed effects of dependence-inducing drugs. They could provide a novel approach to addiction treatment.
Collapse
Affiliation(s)
- Hilary J Little
- Section of Alcohol Research, National Addiction Centre, Institute of Psychiatry, King's College, London, United Kingdom
| |
Collapse
|
4
|
Seo YS, Chang YP. Racial and Ethnic Differences in E-Cigarette and Cigarette Use Among Adolescents. J Immigr Minor Health 2021; 24:713-720. [PMID: 34106360 DOI: 10.1007/s10903-021-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
This study examined whether e-cigarette/cigarette use status would differ by student race/ethnicity. Using the 2017 Youth risk behavior survey (YRBS), weighted Chi-square tests with Rao-Scott adjustments and adjusted weighted multinomial logistic regression analysis were conducted to examine the relationship. Weighted Chi-square tests showed that American Indian/Alaska Native (AI/AN) students had the highest prevalence rates among dual users (16.2%) and e-cigarette only users (11.3%), while White peers had the highest prevalence rates among cigarette only users (3.5%). The results of weighted multinomial logistic regression indicated that AI/AN students had higher odds than White peers of being dual users (Relative risk ratio (RRR), 2.10, 95% CI, 1.01, 4.39), while Black, Hispanic, Asian and multi-racial groups had lower odds than White peers of being dual users. Additionally, Asian students had lower odds than White students of being e-cigarette only users, whereas Black and Asian students had lower odds than their White peers of being cigarette only users. Given that AI/AN students are most vulnerable to e-cigarette/cigarette use, there should be comprehensive tobacco prevention and intervention approaches that could narrow racial/ethnic differences among both youths and adults at population level.
Collapse
Affiliation(s)
- Young S Seo
- Health Behavior Department, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Yu-Ping Chang
- School of Nursing, The State University of New York at Buffalo, 3435 Main Street Wende Hall 101C, Buffalo, NY, 14214, USA
| |
Collapse
|
5
|
Misganaw D. Heteromerization of dopaminergic receptors in the brain: Pharmacological implications. Pharmacol Res 2021; 170:105600. [PMID: 33836279 DOI: 10.1016/j.phrs.2021.105600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
Dopamine exerts its physiological effects through two subtypes of receptors, i.e. the receptors of the D1 family (D1R and D5R) and the D2 family (D2R, D3R, and D4R), which differ in their pattern of distribution, affinity, and signaling. The D1-like subfamily (D1R and D5R) are coupled to Gαs/olf proteins to activate adenylyl cyclase whereas the D2-like receptors are coupled to Gαi/o subunits and suppress the activity of adenylyl cyclase. Dopamine receptors are capable of forming homodimers, heterodimers, and higher-order oligomeric complexes, resulting in a change in the individual protomers' recognition, signaling, and pharmacology. Heteromerization has the potential to modify the canonical pharmacological features of individual monomeric units such as ligand affinity, activation, signaling, and cellular trafficking through allosteric interactions, reviving the field and introducing a new pharmacological target. Since heteromers are expressed and formed in a tissue-specific manner, they could provide the framework to design selective and effective drug candidates, such as brain-penetrant heterobivalent drugs and interfering peptides, with limited side effects. Therefore, heteromerization could be a promising area of pharmacology research, as it could contribute to the development of novel pharmacological interventions for dopamine dysregulated brain disorders such as addiction, schizophrenia, cognition, Parkinson's disease, and other motor-related disorders. This review is articulated based on the three criteria established by the International Union of Basic and Clinical Pharmacology for GPCR heterodimers (IUPHAR): evidence of co-localization and physical interactions in native or primary tissue, presence of a new physiological and functional property than the individual protomers, and loss of interaction and functional fingerprints upon heterodimer disruption.
Collapse
Affiliation(s)
- Desye Misganaw
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Medicine and Health Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
6
|
Sherafat Y, Bautista M, Fowler CD. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Front Behav Neurosci 2021; 15:649129. [PMID: 33828466 PMCID: PMC8019722 DOI: 10.3389/fnbeh.2021.649129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| |
Collapse
|
7
|
Bono F, Mutti V, Fiorentini C, Missale C. Dopamine D3 Receptor Heteromerization: Implications for Neuroplasticity and Neuroprotection. Biomolecules 2020; 10:biom10071016. [PMID: 32659920 PMCID: PMC7407647 DOI: 10.3390/biom10071016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
The dopamine (DA) D3 receptor (D3R) plays a pivotal role in the control of several functions, including motor activity, rewarding and motivating behavior and several aspects of cognitive functions. Recently, it has been reported that the D3R is also involved in the regulation of neuronal development, in promoting structural plasticity and in triggering key intracellular events with neuroprotective potential. A new role for D3R-dependent neurotransmission has thus been proposed both in preserving DA neuron homeostasis in physiological conditions and in preventing pathological alterations that may lead to neurodegeneration. Interestingly, there is evidence that nicotinic acetylcholine receptors (nAChR) located on DA neurons also provide neurotrophic support to DA neurons, an effect requiring functional D3R and suggesting the existence of a positive cross-talk between these receptor systems. Increasing evidence suggests that, as with the majority of G protein-coupled receptors (GPCR), the D3R directly interacts with other receptors to form new receptor heteromers with unique functional and pharmacological properties. Among them, we recently identified a receptor heteromer containing the nAChR and the D3R as the molecular effector of nicotine-mediated neurotrophic effects. This review summarizes the functional and pharmacological characteristics of D3R, including the capability to form active heteromers as pharmacological targets for specific neurodegenerative disorders. In particular, the molecular and functional features of the D3R-nAChR heteromer will be especially discussed since it may represent a possible key etiologic effector for DA-related pathologies, such as Parkinson’s disease (PD), and a target for drug design.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.M.); (C.F.); (C.M.)
- Correspondence: ; Tel.: +39-0303717506
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.M.); (C.F.); (C.M.)
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.M.); (C.F.); (C.M.)
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.M.); (C.F.); (C.M.)
- “C. Golgi” Women Health Center, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
8
|
Thomas AM, Ostroumov A, Kimmey BA, Taormina MB, Holden WM, Kim K, Brown-Mangum T, Dani JA. Adolescent Nicotine Exposure Alters GABA A Receptor Signaling in the Ventral Tegmental Area and Increases Adult Ethanol Self-Administration. Cell Rep 2019; 23:68-77. [PMID: 29617674 PMCID: PMC5983379 DOI: 10.1016/j.celrep.2018.03.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/08/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Adolescent smoking is associated with pathological drinking later in life, but the biological basis for this vulnerability is unknown. To examine how adolescent nicotine exposure influences subsequent ethanol intake, nicotine was administered during adolescence or adulthood, and responses to alcohol were measured 1 month later. We found that adolescent, but not adult, nicotine exposure altered GABA signaling within the ventral tegmental area (VTA) and led to a long-lasting enhancement of alcohol self-administration. We detected depolarizing shifts in GABAA reversal potentials arising from impaired chloride extrusion in VTA GABA neurons. Alterations in GABA signaling were dependent on glucocorticoid receptor activation and were associated with attenuated dopaminergic neuron responses to alcohol in the lateral VTA. Importantly, enhancing chloride extrusion in adolescent nicotine-treated animals restored VTA GABA signaling and alcohol self-administration to control levels. Taken together, this work suggests that adolescent nicotine exposure increases the risk profile for increased alcohol drinking in adulthood.
Collapse
Affiliation(s)
- Alyse M Thomas
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake A Kimmey
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madison B Taormina
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William M Holden
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen Kim
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Brown-Mangum
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Ren M, Lotfipour S. Nicotine Gateway Effects on Adolescent Substance Use. West J Emerg Med 2019; 20:696-709. [PMID: 31539325 PMCID: PMC6754186 DOI: 10.5811/westjem.2019.7.41661] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022] Open
Abstract
Given the rise in teenage use of electronic nicotine delivery systems ("vaping") in congruence with the increasing numbers of drug-related emergencies, it is critical to expand the knowledge of the physical and behavioral risks associated with developmental nicotine exposure. A further understanding of the molecular and neurochemical underpinnings of nicotine's gateway effects allows emergency clinicians to advise patients and families and adjust treatment accordingly, which may minimize the use of tobacco, nicotine, and future substances. Currently, the growing use of tobacco products and electronic cigarettes among teenagers represents a major public health concern. Adolescent exposure to tobacco or nicotine can lead to subsequent abuse of nicotine and other substances, which is known as the gateway hypothesis. Adolescence is a developmentally sensitive time period when risk-taking behaviors, such as sensation seeking and drug experimentation, often begin. These hallmark behaviors of adolescence are largely due to maturational changes in the brain. The developing brain is particularly vulnerable to the harmful effects of drugs of abuse, including tobacco and nicotine products, which activate nicotinic acetylcholine receptors (nAChRs). Disruption of nAChR development with early nicotine use may influence the function and pharmacology of the receptor subunits and alter the release of reward-related neurotransmitters, including acetylcholine, dopamine, GABA, serotonin, and glutamate. In this review, we emphasize that the effects of nicotine are highly dependent on timing of exposure, with a dynamic interaction of nAChRs with dopaminergic, endocannabinoid, and opioidergic systems to enhance general drug reward and reinforcement. We analyzed available literature regarding adolescent substance use and nicotine's impact on the developing brain and behavior using the electronic databases of PubMed and Google Scholar for articles published in English between January 1968 and November 2018. We present a large collection of clinical and preclinical evidence that adolescent nicotine exposure influences long-term molecular, biochemical, and functional changes in the brain that encourage subsequent drug abuse.
Collapse
Affiliation(s)
- Michelle Ren
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California
| | - Shahrdad Lotfipour
- University of California, Irvine, Department of Emergency Medicine and Pharmaceutical Sciences, Irvine, California
| |
Collapse
|
10
|
Matera C, Bono F, Pelucchi S, Collo G, Bontempi L, Gotti C, Zoli M, De Amici M, Missale C, Fiorentini C, Dallanoce C. The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochem Pharmacol 2019; 163:154-168. [PMID: 30772268 DOI: 10.1016/j.bcp.2019.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
In this paper, we designed, synthesized and tested a small set of three new derivatives potentially targeting the D3R-nAChR heteromer, a receptor complex recently identified and characterized as the molecular entity that, in dopaminergic neurons, mediates the neurotrophic effects of nicotine. By means of a partially rigidified spacer of variable length, we incorporated in the new compounds (1a-c) the pharmacophoric substructure of a known β2-subunit-containing nAChR agonist (A-84543) and that of the D2/D3R agonist drug ropinirole. All the compounds retained the ability to bind with high affinity both β2-subunit-containing nAChR and D3R. Compound 1a, renamed HyNDA-1, which is characterized by the shortest linker moiety, was the most interesting ligand. We found, in fact, that HyNDA-1 significantly modulated structural plasticity on both mice and human dopaminergic neurons, an effect strongly prevented by co-incubating this ligand with either nAChR or D3R antagonists. Moreover, the neurotrophic effects of HyNDA-1 were specifically lost by disrupting the complex with specific interfering peptides. Interestingly, by using the Bioluminescence Resonance Energy Transfer 2 (BRET2) assay in HEK-293 transfected cells, we also found that HyNDA-1 has the ability to increase the affinity of interaction between nAChR and D3R. Overall, our results indicate that the neurotrophic effects of HyNDA-1 are mediated by activation of the D3R-nAChR heteromeric complex specifically expressed on dopaminergic neurons.
Collapse
Affiliation(s)
- Carlo Matera
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Federica Bono
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Silvia Pelucchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Ginetta Collo
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Leonardo Bontempi
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cecilia Gotti
- Istituto di Neuroscienze, CNR, Via Vanvitelli 32, 20129 Milan, Italy
| | - Michele Zoli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Cristina Missale
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| |
Collapse
|
11
|
Comparison between dopaminergic and non-dopaminergic neurons in the VTA following chronic nicotine exposure during pregnancy. Sci Rep 2019; 9:445. [PMID: 30679632 PMCID: PMC6345743 DOI: 10.1038/s41598-018-37098-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023] Open
Abstract
Exposure to nicotine during pregnancy through maternal smoking or nicotine replacement therapy is associated with adverse birth outcomes as well as several cognitive and neurobehavioral deficits. Several studies have shown that nicotine produces long-lasting effects on gene expression within many brain regions, including the ventral tegmental area (VTA), which is the origin of dopaminergic neurons and the dopamine reward pathway. Using a well-established rat model for perinatal nicotine exposure, we sought to investigate altered biological pathways using mRNA and miRNA expression profiles of dopaminergic (DA) and non-dopaminergic (non-DA) neurons in this highly-valuable area. Putative miRNA-gene target interactions were assessed as well as miRNA-pathway interactions. Our results indicate that extracellular matrix (ECM) receptor interactions were significantly altered in DA and non-DA neurons due to chronic nicotine exposure during pregnancy. They also show that the PI3K/AKT signaling pathway was enriched in DA neurons with multiple significant miRNA-gene targets, but the same changes were not seen in non-DA neurons. We speculate that nicotine exposure during pregnancy could differentially affect the gene expression of DA and non-DA neurons in the VTA.
Collapse
|
12
|
Keller RF, Dragomir A, Yantao F, Akay YM, Akay M. Investigating the genetic profile of dopaminergic neurons in the VTA in response to perinatal nicotine exposure using mRNA-miRNA analyses. Sci Rep 2018; 8:13769. [PMID: 30213973 PMCID: PMC6137108 DOI: 10.1038/s41598-018-31882-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an increased risk of developmental, behavioral, and cognitive deficits. Nicotine, the primary addictive component in tobacco, has been shown to modulate changes in gene expression when exposure occurs during neurodevelopment. The ventral tegmental area (VTA) is believed to be central to the mechanism of addiction because of its involvement in the reward pathway. The purpose of this study was to build a genetic profile for dopamine (DA) neurons in the VTA and investigate the disruptions to the molecular pathways after perinatal nicotine exposure. Initially, we isolated the VTA from rat pups treated perinatally with either nicotine or saline (control) and collected DA neurons using fluorescent-activated cell sorting. Using microarray analysis, we profiled the differential expression of mRNAs and microRNAs from DA neurons in the VTA in order to explore potential points of regulation and enriched pathways following perinatal nicotine exposure. Furthermore, mechanisms of miRNA-mediated post-transcriptional regulation were investigated using predicted and validated miRNA-gene targets in order to demonstrate the role of miRNAs in the mesocorticolimbic DA pathway. This study provides insight into the genetic profile as well as biological pathways of DA neurons in the VTA of rats following perinatal nicotine exposure.
Collapse
Affiliation(s)
- Renee F Keller
- University of Houston, Department of Biomedical Engineering, Houston, TX, 77204, USA
| | - Andrei Dragomir
- University of Houston, Department of Biomedical Engineering, Houston, TX, 77204, USA
| | - Fan Yantao
- University of Houston, Department of Biomedical Engineering, Houston, TX, 77204, USA
| | - Yasemin M Akay
- University of Houston, Department of Biomedical Engineering, Houston, TX, 77204, USA
| | - Metin Akay
- University of Houston, Department of Biomedical Engineering, Houston, TX, 77204, USA.
| |
Collapse
|
13
|
Kota D, Alajaji M, Bagdas D, Selley DE, Sim-Selley LJ, Damaj MI. Early adolescent nicotine exposure affects later-life hippocampal mu-opioid receptors activity and morphine reward but not physical dependence in male mice. Pharmacol Biochem Behav 2018; 173:58-64. [PMID: 30125591 DOI: 10.1016/j.pbb.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE There is extensive literature regarding nicotine-opioid functional interactions. The possibility that use of nicotine products during adolescence might increase the risk of substance abuse such as morphine later in adulthood is particularly relevant to the current opioid crisis. OBJECTIVES To investigate the effects of nicotine exposure for seven days during adolescence in mice on morphine reward as well as morphine physical dependence later in adulthood. METHODS Mice were exposed to nicotine in either early or late adolescence then evaluated for morphine reward and withdrawal symptoms in adulthood. A separate group of mice was exposed to nicotine during adolescent and tissue was evaluated for changes in MOR-mediated G-protein activity using [35S]GTPγS binding assays. RESULTS We report that a 7-day exposure to a low dose of nicotine during early adolescence significantly enhanced morphine preference in the CPP test in adult mice. In contrast, the same treatment with nicotine had no effect on expression of somatic withdrawal signs in morphine-dependent adult mice. MOR-mediated G-protein activity in hippocampus, but not thalamus and striatum of adult mice, was significantly altered by adolescent nicotine treatment. CONCLUSIONS Adolescence is a unique developmental stage during which nicotine has long-term effects on future drug-taking behavior. Further studies are needed to identify the neurotransmitters and mechanisms involved in increased vulnerability to drug abuse.
Collapse
Affiliation(s)
- Dena Kota
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Mai Alajaji
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Deniz Bagdas
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Dana E Selley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Laura J Sim-Selley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - M Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
14
|
Dopamine D3 and acetylcholine nicotinic receptor heteromerization in midbrain dopamine neurons: Relevance for neuroplasticity. Eur Neuropsychopharmacol 2017; 27:313-324. [PMID: 28187919 DOI: 10.1016/j.euroneuro.2017.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 11/22/2022]
Abstract
Activation of nicotinic acetylcholine receptors (nAChR) promotes the morphological remodeling of cultured dopamine (DA) neurons, an effect requiring functional DA D3 receptors (D3R). The aim of this study was to investigate the mechanisms mediating D3R-nAChR cross-talk in the modulation of DA neuron structural plasticity. By using bioluminescence resonance energy transfer2 (BRET2) and proximity ligation assay (PLA), evidence for the existence of D3R-nAChR heteromers has been obtained. In particular, BRET2 showed that the D3R directly and specifically interacts with the β2 subunit of the nAChR. The D3R-nAChR complex was also identified in cultured DA neurons and in mouse Substantia Nigra/Ventral Tegmental Area by PLA. Cell permeable interfering peptides, containing highly charged amino acid sequences from the third intracellular loop of D3R (TAT-D3R) or the second intracellular loop of the β2 subunit (TAT-β2), were developed. Both peptides, but not their scrambled counterparts, significantly reduced the BRET2 signal generated by D3R-GFP2 and β2-Rluc. Similarly, the PLA signal was undetectable in DA neurons exposed to the interfering peptides. Moreover, interfering peptides abolished the neurotrophic effects of nicotine on DA neurons. Taken together these data first demonstrate that a D3R-nAChR heteromer is present in DA neurons and represents the functional unit mediating the neurotrophic effects of nicotine.
Collapse
|
15
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|
16
|
Alajaji M, Lazenka MF, Kota D, Wise LE, Younis RM, Carroll FI, Levine A, Selley DE, Sim-Selley LJ, Damaj MI. Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology 2016; 105:308-317. [DOI: 10.1016/j.neuropharm.2016.01.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 11/17/2022]
|
17
|
Cadet JL. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Mol Neurobiol 2016; 53:545-560. [PMID: 25502297 PMCID: PMC4703633 DOI: 10.1007/s12035-014-9040-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 12/12/2022]
Abstract
Substance use disorders (SUDs) are highly prevalent. SUDs involve vicious cycles of binges followed by occasional periods of abstinence with recurrent relapses despite treatment and adverse medical and psychosocial consequences. There is convincing evidence that early and adult stressful life events are risks factors for the development of addiction and serve as cues that trigger relapses. Nevertheless, the fact that not all individuals who face traumatic events develop addiction to licit or illicit drugs suggests the existence of individual and/or familial resilient factors that protect these mentally healthy individuals. Here, I give a brief overview of the epigenetic bases of responses to stressful events and of epigenetic changes associated with the administration of drugs of abuse. I also discuss the psychobiology of resilience and alterations in epigenetic markers that have been observed in models of resilience. Finally, I suggest the possibility that treatment of addiction should involve cognitive and pharmacological approaches that enhance resilience in at risk individuals. Similar approaches should also be used with patients who have already succumbed to the nefarious effects of addictive substances.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
18
|
Fiorentini C, Savoia P, Bono F, Tallarico P, Missale C. The D3 dopamine receptor: From structural interactions to function. Eur Neuropsychopharmacol 2015; 25:1462-9. [PMID: 25532864 DOI: 10.1016/j.euroneuro.2014.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 01/17/2023]
Abstract
Novel structural and functional aspects of the dopamine (DA) D3 receptors (D3R) have been recently described. D3R expressed in dopaminergic neurons have been classically considered to play the role of autoreceptors inhibiting, as the D2R, DA release. However, evidence for D3R-mediated neurotrophic and neuroprotective effects on DA neurons suggests their involvement in preventing pathological alterations leading to neurodegeneration. On the other hand, given its localization and functional role at postsynaptic striatal levels, the D3R may also be involved in the pathogenesis of movement disorders and psychiatric diseases. Functional interactions of D3R with other receptor systems are crucial for the modulation of several physiological events. On this line, the discovery that the D3R can form heteromers with other receptors has opened the possibility of uncover novel molecular mechanisms of brain functions and dysfunctions. This paper summarizes the functional and physical interactions of D3R with other receptors both at pre-synaptic sites, where it is co-expressed with the D2R and nicotinic receptors, and at post-synaptic sites where it interacts with the DA D1 receptors (D1R). The biochemical and functional properties of the D1R-D3R heteromer will be especially discussed. Both D1R and D3R have been in fact implicated in several disorders, including schizophrenia and motor dysfunctions. Therefore, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases.
Collapse
Affiliation(s)
- Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Paola Savoia
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federica Bono
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paola Tallarico
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
19
|
Collo G, Bono F, Cavalleri L, Plebani L, Mitola S, Merlo Pich E, Millan MJ, Zoli M, Maskos U, Spano P, Missale C. Nicotine-induced structural plasticity in mesencephalic dopaminergic neurons is mediated by dopamine D3 receptors and Akt-mTORC1 signaling. Mol Pharmacol 2013; 83:1176-89. [PMID: 23543412 DOI: 10.1124/mol.113.084863] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Although long-term exposure to nicotine is highly addictive, one beneficial consequence of chronic tobacco use is a reduced risk for Parkinson's disease. Of interest, these effects both reflect structural and functional plasticity of brain circuits controlling reward and motor behavior and, specifically, recruitment of nicotinic acetylcholine receptors (nAChR) in mesencephalic dopaminergic neurons. Because the underlying cellular mechanisms are poorly understood, we addressed this issue with use of primary cultures of mouse mesencephalic dopaminergic neurons. Exposure to nicotine (1-10 μM) for 72 hours in vitro increased dendritic arborization and soma size in primary cultures. These effects were blocked by mecamylamine and dihydro-β-erythroidine, but not methyllycaconitine. The involvement of α4β2 nAChR was supported by the lack of nicotine-induced structural remodeling in neurons from α4 null mutant mice (KO). Challenge with nicotine triggered phosphorylation of the extracellular signal-regulated kinase (ERK) and the thymoma viral proto-oncogene (Akt), followed by activation of the mammalian target of rapamycin complex 1 (mTORC1)-dependent p70 ribosomal S6 protein kinase. Upstream pathway blockade using the phosphatidylinositol 3-kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hydrochloride] resulted in suppression of nicotine-induced phosphorylations and structural plasticity. These effects were dependent on functional DA D3 receptor (D3R), because nicotine was inactive both in cultures from D3R KO mice and after pharmacologic blockade with D3R antagonist trans-N-4-2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethylcyclohexyl-4-quinolinecarboxamide (SB-277011-A) (50 nM). Finally, exposure to nicotine in utero (5 mg/kg/day for 5 days) resulted in increased soma area of DAergic neurons of newborn mice, effects not observed in D3 receptor null mutant mice mice. These findings indicate that nicotine-induced structural plasticity at mesencephalic dopaminergic neurons involves α4β2 nAChRs together with dopamine D3R-mediated recruitment of ERK/Akt-mTORC1 signaling.
Collapse
Affiliation(s)
- Ginetta Collo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Moylan S, Jacka FN, Pasco JA, Berk M. How cigarette smoking may increase the risk of anxiety symptoms and anxiety disorders: a critical review of biological pathways. Brain Behav 2013; 3:302-26. [PMID: 23785661 PMCID: PMC3683289 DOI: 10.1002/brb3.137] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 12/24/2022] Open
Abstract
Multiple studies have demonstrated an association between cigarette smoking and increased anxiety symptoms or disorders, with early life exposures potentially predisposing to enhanced anxiety responses in later life. Explanatory models support a potential role for neurotransmitter systems, inflammation, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophins and neurogenesis, and epigenetic effects, in anxiety pathogenesis. All of these pathways are affected by exposure to cigarette smoke components, including nicotine and free radicals. This review critically examines and summarizes the literature exploring the role of these systems in increased anxiety and how exposure to cigarette smoke may contribute to this pathology at a biological level. Further, this review explores the effects of cigarette smoke on normal neurodevelopment and anxiety control, suggesting how exposure in early life (prenatal, infancy, and adolescence) may predispose to higher anxiety in later life. A large heterogenous literature was reviewed that detailed the association between cigarette smoking and anxiety symptoms and disorders with structural brain changes, inflammation, and cell-mediated immune markers, markers of oxidative and nitrosative stress, mitochondrial function, neurotransmitter systems, neurotrophins and neurogenesis. Some preliminary data were found for potential epigenetic effects. The literature provides some support for a potential interaction between cigarette smoking, anxiety symptoms and disorders, and the above pathways; however, limitations exist particularly in delineating causative effects. The literature also provides insight into potential effects of cigarette smoke, in particular nicotine, on neurodevelopment. The potential treatment implications of these findings are discussed in regards to future therapeutic targets for anxiety. The aforementioned pathways may help mediate increased anxiety seen in people who smoke. Further research into the specific actions of nicotine and other cigarette components on these pathways, and how these pathways interact, may provide insights that lead to new treatment for anxiety and a greater understanding of anxiety pathogenesis.
Collapse
Affiliation(s)
- Steven Moylan
- Deakin University School of Medicine Barwon Health, Geelong, Victoria, Australia
| | | | | | | |
Collapse
|
21
|
Kendler KS, Myers J, Damaj MI, Chen X. Early smoking onset and risk for subsequent nicotine dependence: a monozygotic co-twin control study. Am J Psychiatry 2013; 170:408-13. [PMID: 23318372 PMCID: PMC3615117 DOI: 10.1176/appi.ajp.2012.12030321] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Early onset of regular smoking is associated with an elevated risk for later nicotine dependence. Whether or not this association is causal is unknown and has substantial public policy implications. METHOD The authors used a monozygotic co-twin control study design. Pairs were selected from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders for discordance in age at onset of regular smoking. Nicotine dependence was measured by the Fagerström test for nicotine dependence and level of craving. RESULTS The authors identified 175 male-male and 69 female-female monozygotic twin pairs who differed by at least 2 years in age at onset of regular smoking. During their period of heaviest smoking, the twin who began smoking earlier had significantly higher Fagerström test scores in both the male-male (Cohen's d=0.20) and female-female twin pairs (d=0.26). Craving for cigarettes when unable to smoke was also higher in the early-onset member in both groups (male pairs, d=0.38; female pairs, d=0.25). The early-onset smoking twin did not differ from the later-onset twin in symptoms of alcohol or cannabis abuse or dependence, current alcohol use, or maximal level of cannabis, sedative, stimulant, or cocaine use. CONCLUSIONS Controlling for genetic and familial-environmental effects, age at onset of regular smoking predicted level of nicotine dependence. Consistent with the animal literature, these findings suggest that in humans, early nicotine exposure directly increases level of later nicotine dependence. These results should be interpreted in the context of the methodological strengths and limitations of the monozygotic co-twin design.
Collapse
Affiliation(s)
- Kenneth S Kendler
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, USA.
| | | | | | | |
Collapse
|