1
|
Jameson AN, Siemann JK, Melchior J, Calipari ES, McMahon DG, Grueter BA. Photoperiod Impacts Nucleus Accumbens Dopamine Dynamics. eNeuro 2023; 10:ENEURO.0361-22.2023. [PMID: 36781229 PMCID: PMC9937087 DOI: 10.1523/eneuro.0361-22.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Circadian photoperiod, or day length, changes with the seasons and influences behavior to allow animals to adapt to their environment. Photoperiod is also associated with seasonal rhythms of affective state, as evidenced by seasonality of several neuropsychiatric disorders. Interestingly, seasonality tends to be more prevalent in women for affective disorders such as major depressive disorder and bipolar disorder (BD). However, the underlying neurobiological processes contributing to sex-linked seasonality of affective behaviors are largely unknown. Mesolimbic dopamine input to the nucleus accumbens (NAc) contributes to the regulation of affective state and behaviors. Additionally, sex differences in the mesolimbic dopamine pathway are well established. Therefore, we hypothesize that photoperiod may drive differential modulation of NAc dopamine in males and females. Here, we used fast-scan cyclic voltammetry (FSCV) to explore whether photoperiod can modulate subsecond dopamine signaling dynamics in the NAc core of male and female mice raised in seasonally relevant photoperiods. We found that photoperiod modulates dopamine signaling in the NAc core, and that this effect is sex-specific to females. Both release and uptake of dopamine were enhanced in the NAc core of female mice raised in long, summer-like photoperiods, whereas we did not find photoperiodic effects on NAc core dopamine in males. These findings uncover a potential neural circuit basis for sex-linked seasonality in affective behaviors.
Collapse
Affiliation(s)
- Alexis N Jameson
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232
| | - Justin K Siemann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232
| | - James Melchior
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Douglas G McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
- Department of Biology, Vanderbilt University, Nashville, TN 37232
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
2
|
Atehortua Martinez LA, Curis E, Mekdad N, Larrieu C, Courtin C, Jourdren L, Blugeon C, Laplanche JL, Megarbane B, Marie-Claire C, Benturquia N. Individual differences in cocaine-induced conditioned place preference in male rats: Behavioral and transcriptomic evidence. J Psychopharmacol 2022; 36:1161-1175. [PMID: 36121009 PMCID: PMC9548661 DOI: 10.1177/02698811221123047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Substance use disorder emerges in a small proportion of drug users and has the characteristics of a chronic relapsing pathology. AIMS Our study aimed to demonstrate and characterize the variability in the expression of the rewarding effects of cocaine in the conditioned place preference (CPP) paradigm. METHODS A cocaine-CPP paradigm in male Sprague-Dawley rats with an extinction period of 12 days and reinstatement was conducted. A statistical model was developed to distinguish rats expressing or not a cocaine-induced place preference. RESULTS Two groups of rats were identified: rats that did express rewarding effects (CPP expression (CPPE), score >102 s) and rats that did not (no CPP expression (nCPPE), score between -85 and 59 s). These two groups did not show significant differences in a battery of behavioral tests. To identify differentially expressed genes in the CPPE and nCPPE groups, a whole-transcriptome ribonucleic acid-sequencing analysis was performed in the nucleus accumbens (NAc) 24 h after the CPP test. Four immediate early genes (Fos, Egr2, Nr4a1, and Zbtb37) were differentially expressed in the NAc of CPPE rats after expression of CPP. Variability in cocaine-induced place preference persisted in the CPPE and nCPPE groups after the extinction and reinstatement phases. Transcriptomic differences observed after reinstatement were distinct from those observed immediately after expression of CPP. CONCLUSION These new findings provide insights into the identification of mechanisms underlying interindividual variability in the response to cocaine's rewarding effects.
Collapse
Affiliation(s)
- Luisa Alessandra Atehortua Martinez
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Emmanuel Curis
- UR 7537 BioSTM, Université Paris Cité, Paris, France
- Laboratoire d’Hématologie, Hôpital Lariboisière, APHP, Paris, France
| | - Nawel Mekdad
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Claire Larrieu
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Cindie Courtin
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Laurent Jourdren
- Genomic Facility, Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, PSL Research University, Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, PSL Research University, Paris, France
| | - Jean-Louis Laplanche
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Bruno Megarbane
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Cynthia Marie-Claire
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Nadia Benturquia
- Institut National de la Santé et de la Recherche Médicale UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Pires D, Ambar Akkaoui M, Laaidi K, Chan Chee C, Fifre G, Lejoyeux M, Geoffroy PA. Impact of meteorological factors on alcohol use disorders: A study in emergency departments. Chronobiol Int 2021; 39:456-459. [PMID: 34866498 DOI: 10.1080/07420528.2021.2002351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
No data exist on the influence of meteorological factors on alcohol use disorders (AUD). The aim of this study was to investigate the relationship between meteorological factors and AUD. All patients who were admitted to an emergency department (ED) in the Paris-region for an alcohol-related condition were included using the Oscour® database over the period January 1, 2015 to December 31, 2019. Meteorological data were collected by Météo-France (French Weather service). All data were aggregated by week. We performed Pearson correlations between weather variables and the number of ED visits for AUD. We observed 98,748 ED visits for alcohol-related conditions over the study period. We found significant positive correlations between the number of alcohol-related ED visits and the mean temperature (r = 0.55; p = 1.87e -5, 95% Confidence Interval (CI) = 0.33, 0.72) and the duration of sunlight (r = 0.42; p = .0015, 95% CI = 0.17, 0.62). Negative correlations were also found significant with rain (r = -0.40; p = .0014, 95% CI = -0.62, -0.18), humidity (r = -0.41; p = .0023, 95% CI = -0.62, -0.16) and wind speed (r = -0.40; p = .0031, 95% CI = -0.60, -0.14). Emergency visits for AUD seem to increase with the temperature and duration of sunlight, and decrease with rain, humidity and wind speed. Further studies are needed on a larger scale and taking into account potential confounding factors to confirm these findings.
Collapse
Affiliation(s)
- Damien Pires
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France
| | - Marine Ambar Akkaoui
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France.,Centre Psychiatrique d'Orientation et d'Accueil (CPOA), GHU Paris - Psychiatry & Neurosciences, Paris, France.,Etablissement Publique de Santé Mentale de Ville Evrard, Psychiatric Emergency, CH Delafontaine, EPS Ville Evrard, 93300 Saint Denis, France
| | - Karine Laaidi
- Santé Publique France, direction santé-environnement-travail, Saint-Maurice, France
| | - Christine Chan Chee
- Santé Publique France, direction santé-environnement-travail, Saint-Maurice, France
| | - Grégory Fifre
- Direction des Services de la Météorologie, Météo-France, Toulouse, France
| | - Michel Lejoyeux
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France.,GHU Paris - Psychiatry & Neurosciences, Paris, France
| | - Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France.,GHU Paris - Psychiatry & Neurosciences, Paris, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France.,CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
| |
Collapse
|
4
|
Siemann JK, Grueter BA, McMahon DG. Rhythms, Reward, and Blues: Consequences of Circadian Photoperiod on Affective and Reward Circuit Function. Neuroscience 2020; 457:220-234. [PMID: 33385488 DOI: 10.1016/j.neuroscience.2020.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023]
Abstract
Circadian disruptions, along with altered affective and reward states, are commonly associated with psychiatric disorders. In addition to genetics, the enduring influence of environmental factors in programming neural networks is of increased interest in assessing the underpinnings of mental health. The duration of daylight or photoperiod is known to impact both the serotonin and dopamine systems, which are implicated in mood and reward-based disorders. This review first examines the effects of circadian disruption and photoperiod in the serotonin system in both human and preclinical studies. We next highlight how brain regions crucial for the serotoninergic system (i.e., dorsal raphe nucleus; DRN), and dopaminergic (i.e., nucleus accumbens; NAc and ventral tegmental area; VTA) system are intertwined in overlapping circuitry, and play influential roles in the pathology of mood and reward-based disorders. We then focus on human and animal studies that demonstrate the impact of circadian factors on the dopaminergic system. Lastly, we discuss how environmental factors such as circadian photoperiod can impact the neural circuits that are responsible for regulating affective and reward states, offering novel insights into the biological mechanisms underlying the pathophysiology, systems, and therapeutic treatments necessary for mood and reward-based disorders.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Anesthesiology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
5
|
Barbosa-Méndez S, Salazar-Juárez A. Melatonin decreases cocaine-induced locomotor activity in pinealectomized rats. ACTA ACUST UNITED AC 2019; 42:295-308. [PMID: 31859790 PMCID: PMC7236171 DOI: 10.1590/1516-4446-2018-0400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
Objective: Several studies have shown that the time of day regulates the reinforcing effects of cocaine. Additionally, melatonin and its MT1 and MT2 receptors have been found to participate in modulation of the reinforcing effects of such addictive drugs as cocaine. Loss of the diurnal variation in cocaine-induced locomotor sensitization and cocaine-induced place preference has been identified in pinealectomized mice. In addition, several studies in rodents have shown that administration of melatonin decreased the reinforcing effects of cocaine. The objective of this study was to evaluate the effect of melatonin on cocaine-induced locomotor activity in pinealectomized rats at different times of day (zeitgeber time [ZT]4, ZT10, ZT16, and ZT22). Methods: Naïve, pinealectomized Wistar rats received cocaine at different times of day. Melatonin was administered 30 min before cocaine; luzindole was administered 15 min prior to melatonin and 45 min before cocaine. After administration of each treatment, locomotor activity for each animal was recorded for a total of 30 min. Pinealectomy was confirmed at the end of the experiment through melatonin quantitation by ELISA. Results: Cocaine-induced locomotor activity varied according to the time of day. Continuous lighting and pinealectomy increased cocaine-induced locomotor activity. Melatonin administration decreased cocaine-induced locomotor activity in naïve and pinealectomized rats at different times of day. Luzindole blocked the melatonin-induced reduction in cocaine-induced locomotor activity in pinealectomized rats. Conclusion: Given its ability to mitigate various reinforcing effects of cocaine, melatonin could be a useful therapy for cocaine abuse.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, Mexico
| | - Alberto Salazar-Juárez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, Mexico
| |
Collapse
|
6
|
Gillman AG, Rebec GV, Pecoraro NC, Kosobud AEK. Circadian entrainment by food and drugs of abuse. Behav Processes 2019; 165:23-28. [PMID: 31132444 DOI: 10.1016/j.beproc.2019.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Circadian rhythms organize behavior and physiological processes to be appropriate to the predictable cycle of daily events. These rhythms are entrained by stimuli that provide time of day cues (zeitgebers), such as light, which regulates the sleep-wake cycle and associated rhythms. But other events, including meals, social cues, and bouts of locomotor activity, can act as zeitgebers. Recent evidence shows that most organs and tissues contain cells that are capable of some degree of independent circadian cycling, suggesting the circadian system is broadly and diffusely distributed. Within laboratory studies of behavior, circadian rhythms tend to be treated as a complication to be minimized, but they offer a useful model of predictable shifts in behavioral tendencies. In the present review, we summarize the evidence that formed the basis for a hypothesis that drugs of abuse can entrain circadian rhythms and describe the outcome of a series of experiments designed to test that hypothesis. We propose that such drug-entrained rhythms may contribute to demonstrated daily variations in drug metabolism, tolerance, and sensitivity to drug reward. Of particular importance, these rhythms may be evoked by a single episode of drug taking, strengthen with repeated episodes, and re-emerge after long periods of abstinence, thereby contributing to drug abuse, addiction, and relapse.
Collapse
Affiliation(s)
- Andrea G Gillman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Norman C Pecoraro
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Ann E K Kosobud
- Dept. of Neurology, IU School of Medicine, 362 W 15th St, GH 4600, Indianapolis, Indiana, 46202-2266, United States.
| |
Collapse
|
7
|
Logan RW, Hasler BP, Forbes EE, Franzen PL, Torregrossa MM, Huang YH, Buysse DJ, Clark DB, McClung CA. Impact of Sleep and Circadian Rhythms on Addiction Vulnerability in Adolescents. Biol Psychiatry 2018; 83:987-996. [PMID: 29373120 PMCID: PMC5972052 DOI: 10.1016/j.biopsych.2017.11.035] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
Sleep homeostasis and circadian function are important maintaining factors for optimal health and well-being. Conversely, sleep and circadian disruptions are implicated in a variety of adverse health outcomes, including substance use disorders. These risks are particularly salient during adolescence. Adolescents require 8 to 10 hours of sleep per night, although few consistently achieve these durations. A mismatch between developmental changes and social/environmental demands contributes to inadequate sleep. Homeostatic sleep drive takes longer to build, circadian rhythms naturally become delayed, and sensitivity to the phase-shifting effects of light increases, all of which lead to an evening preference (i.e., chronotype) during adolescence. In addition, school start times are often earlier in adolescence and the use of electronic devices at night increases, leading to disrupted sleep and circadian misalignment (i.e., social jet lag). Social factors (e.g., peer influence) and school demands further impact sleep and circadian rhythms. To cope with sleepiness, many teens regularly consume highly caffeinated energy drinks and other stimulants, creating further disruptions in sleep. Chronic sleep loss and circadian misalignment enhance developmental tendencies toward increased reward sensitivity and impulsivity, increasing the likelihood of engaging in risky behaviors and exacerbating the vulnerability to substance use and substance use disorders. We review the neurobiology of brain reward systems and the impact of sleep and circadian rhythms changes on addiction vulnerability in adolescence and suggest areas that warrant additional research.
Collapse
Affiliation(s)
- Ryan W Logan
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; The Jackson Laboratory, Bar Harbor, Maine
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary M Torregrossa
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yanhua H Huang
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; The Jackson Laboratory, Bar Harbor, Maine.
| |
Collapse
|
8
|
Gulick D, Gamsby JJ. Racing the clock: The role of circadian rhythmicity in addiction across the lifespan. Pharmacol Ther 2018; 188:124-139. [PMID: 29551440 DOI: 10.1016/j.pharmthera.2018.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although potent effects of psychoactive drugs on circadian rhythms were first described over 30 years ago, research into the reciprocal relationship between the reward system and the circadian system - and the impact of this relationship on addiction - has only become a focus in the last decade. Nonetheless, great progress has been made in that short time toward understanding how drugs of abuse impact the molecular and physiological circadian clocks, as well as how disruption of normal circadian rhythm biology may contribute to addiction and ameliorate the efficacy of treatments for addiction. In particular, data have emerged demonstrating that disrupted circadian rhythms, such as those observed in shift workers and adolescents, increase susceptibility to addiction. Furthermore, circadian rhythms and addiction impact one another longitudinally - specifically from adolescence to the elderly. In this review, the current understanding of how the circadian clock interacts with substances of abuse within the context of age-dependent changes in rhythmicity, including the potential existence of a drug-sensitive clock, the correlation between chronotype and addiction vulnerability, and the importance of rhythmicity in the mesocorticolimbic dopamine system, is discussed. The primary focus is on alcohol addiction, as the preponderance of research is in this area, with references to other addictions as warranted. The implications of clock-drug interactions for the treatment of addiction will also be reviewed, and the potential of therapeutics that reset the circadian rhythm will be highlighted.
Collapse
Affiliation(s)
- Danielle Gulick
- Byrd Alzheimer's Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Joshua J Gamsby
- Byrd Alzheimer's Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Morales-Muñoz I, Koskinen S, Partonen T. Seasonal affective disorder and alcohol abuse disorder in a population-based study. Psychiatry Res 2017; 253:91-98. [PMID: 28364591 DOI: 10.1016/j.psychres.2017.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/06/2017] [Accepted: 03/16/2017] [Indexed: 01/31/2023]
Abstract
Seasonal affective disorder (SAD) is a recurrent major depressive disorder with a seasonal pattern, which is characterized by sad mood, low energy, longer sleep duration and carbohydrate craving. Furthermore, seasonal changes in mood and behavior may be closely related to alcohol use disorder (AUD). Nevertheless, there is scarce research on the study of cognitive impairments in SAD and AUD. We aimed to examine the relationship between the prevalence between SAD and AUD patients, and how cognitive functioning might be related to these variables. To do this, a sample of 8135 Finnish subjects was invited to take part in the population-based Health 2011 Survey, of whom 5903 did participate and 4554 were interviewed for mental health status with the Munich version of Composite International Diagnostic Interview. They also completed the modified Seasonal Pattern Assessment Questionnaire, the Mini-Mental State Examination, the category (animals) verbal fluency test, and the Rey Auditory Verbal Learning Test. Our results reveal the existence of a strong link between SAD and AUD in a large sample of Finnish population, as well as association between SAD and short-term memory problems.
Collapse
Affiliation(s)
- Isabel Morales-Muñoz
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | - Seppo Koskinen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
10
|
Flôres DEFL, Bettilyon CN, Jia L, Yamazaki S. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study. Front Behav Neurosci 2016; 10:143. [PMID: 27458354 PMCID: PMC4932273 DOI: 10.3389/fnbeh.2016.00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 12/23/2022] Open
Abstract
Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.
Collapse
Affiliation(s)
- Danilo E F L Flôres
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA; Institute of Biosciences, University of São PauloSão Paulo, Brazil
| | - Crystal N Bettilyon
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Lori Jia
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA; Hockaday SchoolDallas, TX, USA
| | - Shin Yamazaki
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
11
|
Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav 2015; 133:1-6. [DOI: 10.1016/j.pbb.2015.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 11/21/2022]
|
12
|
Doyle SE, Feng H, Garber G, Menaker M, Lynch WJ. Effects of circadian disruption on methamphetamine consumption in methamphetamine-exposed rats. Psychopharmacology (Berl) 2015; 232:2169-79. [PMID: 25543849 PMCID: PMC4433617 DOI: 10.1007/s00213-014-3845-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/06/2023]
Abstract
RATIONALE A substantial number of clinical studies indicate associations between sleep abnormalities and drug abuse; however, the role played by the circadian system in the development of addiction is largely unknown. OBJECTIVE The aim of this study was to examine the effects of experimentally induced chronic jet lag on methamphetamine consumption in a rat model of methamphetamine drinking. METHODS Male Sprague-Dawley rats (n = 32) were housed in running wheel cages in a 12:12 h light:dark cycle. One group of rats (n = 16) was given 2 weeks of forced methamphetamine consumption (0.01 % in drinking water; meth pre-exposed) while a second group (n = 16, not pre-exposed) received water only. This was followed by a 2-week abstinence period during which half of the animals from each group were exposed to four consecutive 6-h advancing phase shifts of the light:dark cycle, while the other half remained on the original light:dark cycle. Methamphetamine consumption was assessed in all rats following the deprivation period using a two-bottle choice paradigm. RESULTS Methamphetamine consumption was initially lower in methamphetamine pre-exposed versus not pre-exposed rats. However, during the second week following abstinence, consumption was significantly higher in phase-shifted rats of the methamphetamine pre-exposed group compared to all other groups. CONCLUSIONS These data reveal an effect of circadian rhythm disturbance on methamphetamine consumption and suggest that dysregulation of the circadian system be considered in the etiology of relapse and addiction.
Collapse
Affiliation(s)
- Susan E. Doyle
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Hanting Feng
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Garrett Garber
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Michael Menaker
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Wendy J. Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
13
|
Stowie AC, Amicarelli MJ, Prosser RA, Glass JD. Chronic cocaine causes long-term alterations in circadian period and photic entrainment in the mouse. Neuroscience 2014; 284:171-179. [PMID: 25301751 DOI: 10.1016/j.neuroscience.2014.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 11/17/2022]
Abstract
The disruptive effects of cocaine on physiological, behavioral and genetic processes are well established. However, few studies have focused on the actions of cocaine on the adult circadian timekeeping system, and none have explored the circadian implications of long-term (weeks to months) cocaine exposure. The present study was undertaken to explore the actions of such long-term cocaine administration on core circadian parameters in mice, including rhythm period, length of the nocturnal activity period and photic entrainment. For cocaine dosing over extended periods, cocaine was provided in drinking water using continuous and scheduled regimens. The impact of chronic cocaine on circadian regulation was evidenced by disruptions of the period of circadian entrainment and intrinsic free-running circadian period. Specifically, mice under a skeleton photoperiod (1-min pulse of dim light delivered daily) receiving continuous ad libitum cocaine entrained rapidly to the light pulse at activity onset. Conversely, water controls entrained more slowly at activity offset through a process of phase-delays, which resulted in their activity rhythms being entrained 147° out of phase with the cocaine group. This pattern persisted after cocaine withdrawal. Next, mice exposed to scheduled daily cocaine presentations exhibited free-running periods under constant darkness that were significantly longer than water controls and which also persisted after cocaine withdrawal. These cocaine-induced perturbations of clock timing could produce chronic psychological and physiological stress, contributing to increased cocaine use and dependence.
Collapse
Affiliation(s)
- A C Stowie
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - M J Amicarelli
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - R A Prosser
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - J D Glass
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
14
|
Logan RW, Williams WP, McClung CA. Circadian rhythms and addiction: mechanistic insights and future directions. Behav Neurosci 2014; 128:387-412. [PMID: 24731209 DOI: 10.1037/a0036268] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes may increase the risk for substance abuse and relapse. Moreover, polymorphisms in circadian genes and an evening chronotype have been linked to mood and addiction disorders, and recent efforts suggest an association with the function of reward neurocircuitry. Animal studies are beginning to determine how altered circadian gene function results in drug-induced neuroplasticity and behaviors. Many studies suggest a critical role for circadian rhythms in reward-related pathways in the brain and indicate that drugs of abuse directly affect the central circadian pacemaker. In this review, we highlight key findings demonstrating the importance of circadian rhythms in addiction and how future studies will reveal important mechanistic insights into the involvement of circadian rhythms in drug addiction.
Collapse
Affiliation(s)
- Ryan W Logan
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Wilbur P Williams
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
15
|
Davis C. A narrative review of binge eating and addictive behaviors: shared associations with seasonality and personality factors. Front Psychiatry 2013; 4:183. [PMID: 24409156 PMCID: PMC3873524 DOI: 10.3389/fpsyt.2013.00183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/14/2013] [Indexed: 12/27/2022] Open
Abstract
Binge-eating disorder and seasonal affective disorder were first described as clinically relevant conditions in very close temporal proximity a few decades ago. Both disorders have a higher prevalence rate in woman than in men, are characterized by a high proneness-to-stress and manifest heightened responsiveness to high-calorie, hyper-palatable foods. In recent years, a compelling body of evidence suggests that foods high in sugar and fat have the potential to alter brain reward circuitry in a manner similar to that seen when addictive drugs like alcohol and heroin are consumed in excess. These findings have led to suggestions that some cases of compulsive overeating may be understood as an addiction to sweet, fatty, and salty foods. In this paper, it is proposed that high seasonality is a risk factor for binge eating, especially in those characterized by anxious and impulsive personality traits - associations that could only occur in an environment with a superfluity of, and easy access to, rich and tasty foods. Given the well-established links between binge eating and addiction disorders [Ref. (1-3) for reviews], it is also suggested that seasonality, together with the same high-risk psychological profile, exacerbates the likelihood of engaging in a broad range of addictive behaviors. Data from a community sample (n = 412) of adults tested these models using linear regression procedures. Results confirmed that symptoms of binge eating and other addictive behaviors were significantly inter-correlated, and that seasonality, gender, and addictive personality traits were strong statistical predictors of the variance in binge-eating scores. Seasonality and addictive personality traits also accounted for a significant proportion of the variance in the measure of addictive behaviors. Conclusions are discussed in the context of brain reward mechanisms, motivational alternations in response to chronic over-consumption, and their relevance for the treatment of excessive appetitive behaviors.
Collapse
Affiliation(s)
- Caroline Davis
- Kinesiology and Health Sciences, York University , Toronto, ON , Canada
| |
Collapse
|
16
|
Abstract
Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or mice) increase on drug withdrawal in a manner that suggests correlation with the behavioural and symptomatic sequelae both in man and in experimental animals. Corticosteroid levels fall back to normal values in resumption of drug intake. The possible interactions between brain corticotrophin releasing hormone (CRH) and proopiomelanocortin (POMC) products and the systemic HPA, and additionally with the local CRH–POMC system in the adrenal gland itself, are complex. Nevertheless, the evidence increasingly suggests that all may be interlinked and that CRH in the brain and brain POMC products interact with the blood-borne HPA directly or indirectly. Corticosteroids themselves are known to affect mood profoundly and may themselves be addictive. Additionally, there is a heightened susceptibility for addicted subjects to relapse in conditions that are associated with change in HPA activity, such as in stress, or at different times of the day. Recent studies give compelling evidence that a significant part of the array of addictive symptoms is directly attributable to the secretory activity of the adrenal cortex and the actions of corticosteroids. Additionally, sex differences in addiction may also be attributable to adrenocortical function: in humans, males may be protected through higher secretion of DHEA (and DHEAS), and in rats, females may be more susceptible because of higher corticosterone secretion.
Collapse
|
17
|
Jansen HT, Sergeeva A, Stark G, Sorg BA. Circadian discrimination of reward: evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat. Chronobiol Int 2012; 29:454-68. [PMID: 22475541 DOI: 10.3109/07420528.2012.667467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A unique extra-suprachiasmatic nucleus (SCN) oscillator, operating independently of the light-entrainable oscillator, has been hypothesized to generate feeding and drug-related rhythms. To test the validity of this hypothesis, sham-lesioned (Sham) and SCN-lesioned (SCNx) rats were housed in constant dim-red illumination (LL(red)) and received a daily cocaine injection every 24 h for 7 d (Experiment 1). In a second experiment, rats underwent 3-h daily restricted feeding (RF) followed 12 d later by the addition of daily cocaine injections given every 25 h in combination with RF until the two schedules were in antiphase. In both experiments, body temperature and total activity were monitored continuously. Results from Experiment 1 revealed that cocaine, but not saline, injections produced anticipatory increases in temperature and activity in SCNx and Sham rats. Following withdrawal from cocaine, free-running temperature rhythms persisted for 2-10 d in SCNx rats. In Experiment 2, robust anticipatory increases in temperature and activity were associated with RF and cocaine injections; however, the feeding periodicity (23.9 h) predominated over the cocaine periodicity. During drug withdrawal, the authors observed two free-running rhythms of temperature and activity that persisted for >14 d in both Sham and SCNx rats. The periods of the free-running rhythms were similar to the feeding entrainment (period = 23.7 and 24.0 h, respectively) and drug entrainment (period = 25.7 and 26.1 h, respectively). Also during withdrawal, the normally close correlation between activity and temperature was greatly disrupted in Sham and SCNx rats. Taken together, these results do not support the existence of a single oscillator mediating the rewarding properties of both food and cocaine. Rather, they suggest that these two highly rewarding behaviors can be temporally isolated, especially during drug withdrawal. Under stable dual-entrainment conditions, food reward appears to exhibit a slightly greater circadian influence than drug reward. The ability to generate free-running temperature rhythms of different frequencies following combined food and drug exposures could reflect a state of internal desynchrony that may contribute to the addiction process and drug relapse.
Collapse
Affiliation(s)
- Heiko T Jansen
- Neuroscience Program, Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, 99164-6520, USA.
| | | | | | | |
Collapse
|
18
|
Praschak-Rieder N, Willeit M. Imaging of seasonal affective disorder and seasonality effects on serotonin and dopamine function in the human brain. Curr Top Behav Neurosci 2012; 11:149-167. [PMID: 22218931 DOI: 10.1007/7854_2011_174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
According to current knowledge, disturbances in brain monoamine transmission play a major role in many psychiatric disorders, and many of the radioligands used for investigating these disorders bind to targets within the brain monoamine systems. However, a phylogenetically ancient and prevailing function of monoamines is to mediate the adaptation of organisms and cells to rhythmical changes in light conditions, and to other environmental rhythms, such as changes in temperature, or the availability of energy resources throughout the seasons. The physiological systems mediating these changes are highly conserved throughout species, including humans. Here we review the literature on seasonal changes in binding of monoaminergic ligands in the human brain. Moreover, we argue for the importance of considering possible effects of season when investigating brain monoamines in healthy subjects and subjects with psychiatric disorders.
Collapse
Affiliation(s)
- Nicole Praschak-Rieder
- Department of Biological Psychiatry, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria,
| | | |
Collapse
|