1
|
Osborn A, Caruana D, Furness DN, Evans MG. Electrical and Immunohistochemical Properties of Cochlear Fibrocytes in 3D Cell Culture and in the Excised Spiral Ligament of Mice. J Assoc Res Otolaryngol 2022; 23:183-193. [PMID: 35041102 PMCID: PMC8964888 DOI: 10.1007/s10162-021-00833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Fibrocyte degeneration in the cochlear lateral wall is one possible pathology of age-related metabolic hearing loss (presbycusis). Within the lateral wall fibrocytes play a role in potassium recycling and maintenance of the endocochlear potential. It has been proposed that cell replacement therapy could prevent fibrocyte degeneration in the CD/1 mouse model of hearing loss. For this to work, the replacement fibrocytes would need to take over the structural and physiological role of those lost. We have grown lateral wall fibrocytes from neonatal CD/1 mice in a 3D-collagen gel culture with the aim of assessing their functional similarity to native lateral wall fibrocytes, the latter in a slice preparation and in excised spiral ligament pieces. We have compared cultured and native fibrocytes using both immuno-labelling of characteristic proteins and single cell electrophysiology. Cultured fibrocytes exhibited rounded cell bodies with extending processes. They labelled with marker antibodies targeting aquaporin 1 and calcium-binding protein S-100, precluding an unambiguous identification of fibrocyte type. In whole-cell voltage clamp, both native and cultured fibrocytes exhibited non-specific currents and voltage-dependent K+ currents. The non-specific currents from gel-cultured and excised spiral ligament fibrocytes were partially and reversibly blocked by external TEA (10 mM). The TEA-sensitive current had a mean reversal potential of + 26 mV, suggesting a permeability sequence of Na+ > K+. These findings indicate that 3D-cultured fibrocytes share a number of characteristics with native spiral ligament fibrocytes and thus might represent a suitable population for transplantation therapy aimed at treating age-related hearing loss.
Collapse
Affiliation(s)
- A Osborn
- School of Life Sciences, Keele University, Stoke-on-Trent, ST5 5BG, UK
| | - D Caruana
- School of Life Sciences, Keele University, Stoke-on-Trent, ST5 5BG, UK.,Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - D N Furness
- School of Life Sciences, Keele University, Stoke-on-Trent, ST5 5BG, UK
| | - M G Evans
- School of Life Sciences, Keele University, Stoke-on-Trent, ST5 5BG, UK.
| |
Collapse
|
2
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Self-protection of type III fibrocytes against severe 3-nitropropionic-acid-induced cochlear damage in mice. Neuroreport 2018; 29:252-258. [PMID: 29280748 DOI: 10.1097/wnr.0000000000000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
After intense sound exposure, the lack of obvious degeneration in type III fibrocytes suggests that they might protect themselves against acoustic trauma. However, it is unknown whether and how type III fibrocytes play this role in other cochlear damage models. In this study, we investigated the self-protection of type III fibrocytes against severe cochlear energy failure induced by local administration of 3-nitropropionic acid to the inner ear. We detected that the type III fibrocytes did not degenerate significantly after 500 mM 3-nitropropionic acid application, and showed increased expression of proliferation marker Ki67. Moreover, low immunoreactivity for inducible nitric oxide synthase and cleaved caspase-3 was observed in type III fibrocytes 2 days after damage. These results indicate that after severe cochlear energy failure type III fibrocytes possess obvious proliferation activity, as well as strong antioxidant and antiapoptotic capacity, which can protect them from degeneration.
Collapse
|
4
|
Abstract
Cochlear spiral ligament fibrocytes (SLFs) play essential roles in the physiology of hearing including ion recycling and the generation of endocochlear potential. In adult animals, SLFs can repopulate after damages, yet little is known about the characteristics of proliferating cells that support SLFs' self-renewal. Here we report in detail about the characteristics of cycling cells in the spiral ligament (SL). Fifteen P6 mice and six noise-exposed P28 mice were injected with 5-bromo-2'-deoxyuridine (BrdU) for 7 days and we chased BrdU retaining cells for as long as 60 days. Immunohistochemistry revealed that the BrdU positive IB4 (an endotherial marker) negative cells expressed an early SLF marker Pou3f4 but negative for cleaved-Caspase 3. Marker studies revealed that type 3 SLFs displayed significantly higher percentage of BrdU+ cells compared to other subtypes. Notably, the cells retained BrdU until P72, demonstrating they were dividing slowly. In the noise-damaged mice, in contrast to the loss of the other types, the number of type 3 SLFs did not altered and the BrdU incorporating- phosphorylated Histone H3 positive type 3 cells were increased from day 1 to 14 after noise exposure. Furthermore, the cells repopulating type 1 area, where the cells diminished profoundly after damage, were positive for the type 3 SLF markers. Collectively, in the latral wall of the cochlea, type 3 SLFs have the stem cell capacity and may contribute to the endogenous regeneration of lateral wall spiral ligament. Manipulating type 3 cells may be employed for potential regenerative therapies.
Collapse
Affiliation(s)
- Yang Li
- Department of Otorhinolaryngology, School of Medicine, Keio University,35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi Wu Lu, Xi'an, China
| | - Kotaro Watanabe
- Department of Otorhinolaryngology, School of Medicine, Keio University,35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, School of Medicine, Keio University,35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, School of Medicine, Keio University,35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
Differential effects of pannexins on noise-induced hearing loss. Biochem J 2016; 473:4665-4680. [PMID: 27784763 DOI: 10.1042/bcj20160668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Hearing loss, including noise-induced hearing loss, is highly prevalent and severely hinders an individual's quality of life, yet many of the mechanisms that cause hearing loss are unknown. The pannexin (Panx) channel proteins, Panx1 and Panx3, are regionally expressed in many cell types along the auditory pathway, and mice lacking Panx1 in specific cells of the inner ear exhibit hearing loss, suggesting a vital role for Panxs in hearing. We proposed that Panx1 and/or Panx3 null mice would exhibit severe hearing loss and increased susceptibility to noise-induced hearing loss. Using the auditory brainstem response, we surprisingly found that Panx1-/- and Panx3-/- mice did not harbor hearing or cochlear nerve deficits. Furthermore, while Panx1-/- mice displayed no protection against loud noise-induced hearing loss, Panx3-/- mice exhibited enhanced 16- and 24-kHz hearing recovery 7 days after a loud noise exposure (NE; 12 kHz tone, 115 dB sound pressure level, 1 h). Interestingly, Cx26, Cx30, Cx43, and Panx2 were up-regulated in Panx3-/- mice compared with wild-type and/or Panx1-/- mice, and assessment of the auditory tract revealed morphological changes in the middle ear bones of Panx3-/- mice. It is unclear if these changes alone are sufficient to provide protection against loud noise-induced hearing loss. Contrary to what we expected, these data suggest that Panx1 and Panx3 are not essential for baseline hearing in mice tested, but the therapeutic targeting of Panx3 may prove protective against mid-high-frequency hearing loss caused by loud NE.
Collapse
|
6
|
Cazals Y, Bévengut M, Zanella S, Brocard F, Barhanin J, Gestreau C. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing. Nat Commun 2015; 6:8780. [PMID: 26549439 PMCID: PMC4659937 DOI: 10.1038/ncomms9780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/01/2015] [Indexed: 01/03/2023] Open
Abstract
In the cochlea, K(+) is essential for mechano-electrical transduction. Here, we explore cochlear structure and function in mice lacking K(+) channels of the two-pore domain family. A profound deafness associated with a decrease in endocochlear potential is found in adult Kcnk5(-/-) mice. Hearing occurs around postnatal day 19 (P19), and completely disappears 2 days later. At P19, Kcnk5(-/-) mice have a normal endolymphatic [K(+)] but a partly lowered endocochlear potential. Using Lac-Z as a gene reporter, KCNK5 is mainly found in outer sulcus Claudius', Boettcher's and root cells. Low levels of expression are also seen in the spiral ganglion, Reissner's membrane and stria vascularis. Essential channels (KCNJ10 and KCNQ1) contributing to K(+) secretion in stria vascularis have normal expression in Kcnk5(-/-) mice. Thus, KCNK5 channels are indispensable for the maintenance of hearing. Among several plausible mechanisms, we emphasize their role in K(+) recycling along the outer sulcus lateral route.
Collapse
Affiliation(s)
- Yves Cazals
- Laboratoire de Neurosciences Intégratives et Adaptatives (UMR7260), Fédération de Recherche 3C (Cerveau, Comportement, Cognition), Aix-Marseille-Université and CNRS, Marseille 13331, France
| | - Michelle Bévengut
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
| | - Sébastien Zanella
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille 13005, France
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille 13005, France
| | - Jacques Barhanin
- Laboratoire de Physio-Médecine Moléculaire (UMR7370), Université de Nice-Sophia Antipolis and CNRS, Nice 06107, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, France
| | - Christian Gestreau
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (UMR7286), Aix-Marseille-Université and CNRS, Marseille 13344, France
| |
Collapse
|
7
|
Taylor RR, Jagger DJ, Saeed SR, Axon P, Donnelly N, Tysome J, Moffatt D, Irving R, Monksfield P, Coulson C, Freeman SR, Lloyd SK, Forge A. Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing. Neurobiol Aging 2015; 36:2068-84. [PMID: 25818177 PMCID: PMC4436436 DOI: 10.1016/j.neurobiolaging.2015.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
Abstract
Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice.
Collapse
Affiliation(s)
| | | | - Shakeel R Saeed
- UCL Ear Institute, London, UK; Royal National Throat Nose and Ear Hospital, UCLH NHS Foundation Trust, London, UK
| | - Patrick Axon
- Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Neil Donnelly
- Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - James Tysome
- Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - David Moffatt
- Addenbrooke's Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Richard Irving
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Medical Centre, Birmingham, UK
| | - Peter Monksfield
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Medical Centre, Birmingham, UK
| | - Chris Coulson
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Medical Centre, Birmingham, UK
| | - Simon R Freeman
- Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, UK; Salford Royal Infirmary, Salford Royal NHS Foundation Trust, Salford, UK
| | - Simon K Lloyd
- Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, UK; Salford Royal Infirmary, Salford Royal NHS Foundation Trust, Salford, UK
| | | |
Collapse
|
8
|
Liu WJ, Yang J. Developmental expression of inositol 1, 4, 5-trisphosphate receptor in the post-natal rat cochlea. Eur J Histochem 2015; 59:2486. [PMID: 26150157 PMCID: PMC4503970 DOI: 10.4081/ejh.2015.2486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 11/23/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R) has been established to be essential for hearing. However, the expression of IP3R in the cochlea in the period of auditory development remains unknown. We investigated the expression of IP3R in the developing rat cochlea using immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR). We observed its presence in the developing rat cochlea, and changes in IP3R protein expressions from the early post-natal period to adult. At birth (post-natal day 0, P0), IP3R expression was only found in Hensen's cell. IP3R immunoreactivity first appeared in the sensory hair cells in the organ of Corti at P2. This localization was confirmed by means of double-labeling experiments with Myosin VIIA, a marker for cochlear hair cells. Colocalization of IP3R and Myosin VIIA from P2 to the second post-natal week suggested early expression of IP3R in developing inner and outer hair cells. Claudius' cells near the spiral ligament were labelled for IP3R from P8 onwards. Transient IP3R expression was observed in the stria vascularis in early post-natal rat from P4 to P8. Spiral ganglion neurons also exhibited weaker IP3R fluorescence signals during post-natal development. The results of RT-PCR demonstrated that all three IP3R isoforms (IP3R1, IP3R2, and IP3R3) were present in rat cochlea during four different developmental stages of cochlea, from P0 to P28. Present immunohistochemical evidence for both change and maintenance of expression of IP3R during post-natal development of the rat cochlea indicated the possible involvement of IP3R-mediated calcium signaling in cochlear development.
Collapse
Affiliation(s)
- W J Liu
- Shanghai Jiaotong University.
| | | |
Collapse
|
9
|
Differential Gene Expression in the Otic Capsule and the Middle Ear—An Annotation of Bone-Related Signaling Genes. Otol Neurotol 2015; 36:727-32. [DOI: 10.1097/mao.0000000000000664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Locher H, de Groot JCMJ, van Iperen L, Huisman MA, Frijns JHM, Chuva de Sousa Lopes SM. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Dev Neurobiol 2015; 75:1219-40. [PMID: 25663387 PMCID: PMC5024031 DOI: 10.1002/dneu.22279] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/31/2023]
Abstract
Sensorineural hearing loss (SNHL) is one of the most common congenital disorders in humans, afflicting one in every thousand newborns. The majority is of heritable origin and can be divided in syndromic and nonsyndromic forms. Knowledge of the expression profile of affected genes in the human fetal cochlea is limited, and as many of the gene mutations causing SNHL likely affect the stria vascularis or cochlear potassium homeostasis (both essential to hearing), a better insight into the embryological development of this organ is needed to understand SNHL etiologies. We present an investigation on the development of the stria vascularis in the human fetal cochlea between 9 and 18 weeks of gestation (W9–W18) and show the cochlear expression dynamics of key potassium‐regulating proteins. At W12, MITF+/SOX10+/KIT+ neural‐crest‐derived melanocytes migrated into the cochlea and penetrated the basement membrane of the lateral wall epithelium, developing into the intermediate cells of the stria vascularis. These melanocytes tightly integrated with Na+/K+‐ATPase‐positive marginal cells, which started to express KCNQ1 in their apical membrane at W16. At W18, KCNJ10 and gap junction proteins GJB2/CX26 and GJB6/CX30 were expressed in the cells in the outer sulcus, but not in the spiral ligament. Finally, we investigated GJA1/CX43 and GJE1/CX23 expression, and suggest that GJE1 presents a potential new SNHL associated locus. Our study helps to better understand human cochlear development, provides more insight into multiple forms of hereditary SNHL, and suggests that human hearing does not commence before the third trimester of pregnancy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1219–1240, 2015
Collapse
Affiliation(s)
- Heiko Locher
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands.,Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - John C M J de Groot
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Margriet A Huisman
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Johan H M Frijns
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands.,Department for Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| |
Collapse
|
11
|
Abstract
The loss of auditory hair cells triggers repair responses within the population of nonsensory supporting cells. When hair cells are irreversibly lost from the mammalian cochlea, supporting cells expand to fill the resulting lesions in the sensory epithelium, an initial repair process that is dependent on gap junctional intercellular communication (GJIC). In the chicken cochlea (the basilar papilla or BP), dying hair cells are extruded from the epithelium and supporting cells expand to fill the lesions and then replace hair cells via mitotic and/or conversion mechanisms. Here, we investigated the involvement of GJIC in the initial epithelial repair process in the aminoglycoside-damaged BP. Gentamicin-induced hair cell loss was associated with a decrease of chicken connexin43 (cCx43) immunofluorescence, yet cCx30-labeled gap junction plaques remained. Fluorescence recovery after photobleaching experiments confirmed that the GJIC remained robust in gentamicin-damaged explants, but regionally asymmetric coupling was no longer evident. Dye injections in slice preparations from undamaged BP explants identified cell types with characteristic morphologies along the neural-abneural axis, but these were electrophysiologically indistinct. In gentamicin-damaged BP, supporting cells expanded to fill space formerly occupied by hair cells and displayed more variable electrophysiological phenotypes. When GJIC was inhibited during the aminoglycoside damage paradigm, the epithelial repair response halted. Dying hair cells were retained within the sensory epithelium and supporting cells remained unexpanded. These observations suggest that repair of the auditory epithelium shares common mechanisms across vertebrate species and emphasize the importance of functional gap junctions in maintaining a homeostatic environment permissive for subsequent hair cell regeneration.
Collapse
|
12
|
Kelly JJ, Shao Q, Jagger DJ, Laird DW. Cx30 exhibits unique characteristics including a long half-life when assembled into gap junctions. J Cell Sci 2015; 128:3947-60. [DOI: 10.1242/jcs.174698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023] Open
Abstract
In the present study we investigated the life-cycle, trafficking, assembly and cell surface dynamics of a poorly characterized connexin family member, connexin 30 (Cx30), which plays a critical role in skin health and hearing. Unexpectedly, Cx30 localization at the cell surface and gap junctional intercellular communication was not affected by prolonged treatments with the ER-Golgi transport inhibitor brefeldin-A or the protein synthesis inhibitor cycloheximide, whereas Cx43 was rapidly cleared. Fluorescent recovery after photobleaching revealed that Cx30 plaques were rebuilt from the outer edges in keeping with older channels residing in the inner core of the plaque. Expression of a dominant-negative form of Sar1 GTPase led to the accumulation of Cx30 within the ER in contrast to a report that Cx30 traffics via a Golgi-independent pathway. Co-expression of Cx30 with Cx43 revealed that these connexins segregate into distinct domains within common gap junction plaques suggesting their assembly is governed by different mechanisms. In summary, Cx30 was found to be an unusually stable, long-lived connexin (half-life >12 hrs), which may underlie its specific role in the epidermis and cochlea.
Collapse
Affiliation(s)
- John J. Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Kelly JJ, Simek J, Laird DW. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res 2014; 360:701-21. [DOI: 10.1007/s00441-014-2024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|
14
|
Jagger DJ, Forge A. Connexins and gap junctions in the inner ear--it's not just about K⁺ recycling. Cell Tissue Res 2014; 360:633-44. [PMID: 25381570 PMCID: PMC4452565 DOI: 10.1007/s00441-014-2029-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
Normal development, function and repair of the sensory epithelia in the inner ear are all dependent on gap junctional intercellular communication. Mutations in the connexin genes GJB2 and GJB6 (encoding CX26 and CX30) result in syndromic and non-syndromic deafness via various mechanisms. Clinical vestibular defects, however, are harder to connect with connexin dysfunction. Cx26 and Cx30 proteins are widely expressed in the epithelial and connective tissues of the cochlea, where they may form homomeric or heteromeric gap junction channels in a cell-specific and spatiotemporally complex fashion. Despite the study of mutant channels and animal models for both recessive and dominant autosomal deafness, it is still unclear why gap junctions are essential for auditory function, and why Cx26 and Cx30 do not compensate for each other in vivo. Cx26 appears to be essential for normal development of the auditory sensory epithelium, but may be dispensable during normal hearing. Cx30 appears to be essential for normal repair following sensory cell loss. The specific modes of intercellular signalling mediated by inner ear gap junction channels remain undetermined, but they are hypothesised to play essential roles in the maintenance of ionic and metabolic homeostasis in the inner ear. Recent studies have highlighted involvement of gap junctions in the transfer of essential second messengers between the non-sensory cells, and have proposed roles for hemichannels in normal hearing. Here, we summarise the current knowledge about the molecular and functional properties of inner ear gap junctions, and about tissue pathologies associated with connexin mutations.
Collapse
Affiliation(s)
- Daniel J Jagger
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK,
| | | |
Collapse
|
15
|
Chen J, Zhao HB. The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss. Neuroscience 2014; 265:137-46. [PMID: 24480364 DOI: 10.1016/j.neuroscience.2014.01.036] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 11/18/2022]
Abstract
The KCNJ10 gene which encodes an inwardly rectifying K(+) channel Kir4.1 subunit plays an essential role in the inner ear and hearing. Mutations or deficiency of KCNJ10 can cause hearing loss with EAST or SeSAME syndromes. This review mainly focuses on the expression and function of Kir4.1 potassium channels in the inner ear and hearing. We first introduce general information about inwardly rectifying potassium (Kir) channels. Then, we review the expression and function of Kir4.1 channels in the inner ear, especially in endocochlear potential (EP) generation. Finally, we review KCNJ10 mutation-induced hearing loss and functional impairments. Kir4.1 is strongly expressed on the apical membrane of intermediate cells in the stria vascularis and in the satellite cells of cochlear ganglia. Functionally, Kir4.1 has critical roles in cochlear development and hearing through two distinct aspects of extracellular K(+) homeostasis: First, it participates in the generation and maintenance of EP and high K(+) concentration in the endolymph inside the scala media. Second, Kir4.1 is the major K(+) channel in satellite glial cells surrounding spiral ganglion neurons to sink K(+) ions expelled by the ganglion neurons during excitation. Kir4.1 deficiency leads to hearing loss with the absence of EP and spiral ganglion neuron degeneration. Deafness mutants show loss-of-function and reduced channel membrane-targeting and currents, which can be rescued upon by co-expression with wild-type Kir4.1. This review provides insights for further understanding Kir potassium channel function in the inner ear and the pathogenesis of deafness due to KCNJ10 deficiency, and also provides insights for developing therapeutic strategies targeting this deafness.
Collapse
Affiliation(s)
- J Chen
- Department of Morphology, Medical College of China Three Gorges University, Yichang, Hubei 443002, PR China; Department of Otolaryngology, University of Kentucky Medical Center, Lexington, KY 40536-0293, USA
| | - H-B Zhao
- Department of Otolaryngology, University of Kentucky Medical Center, Lexington, KY 40536-0293, USA.
| |
Collapse
|
16
|
Jagger DJ, Forge A. The enigmatic root cell – Emerging roles contributing to fluid homeostasis within the cochlear outer sulcus. Hear Res 2013; 303:1-11. [DOI: 10.1016/j.heares.2012.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 12/20/2022]
|
17
|
Masuda M, Kanzaki J. Cause of idiopathic sudden sensorineural hearing loss: The stress response theory. World J Otorhinolaryngol 2013; 3:42-57. [DOI: 10.5319/wjo.v3.i3.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/14/2013] [Accepted: 07/25/2013] [Indexed: 02/06/2023] Open
Abstract
The stress response theory is a relatively new concept about the cause of idiopathic sudden sensorineural hearing loss (ISHL). A number of possible etiologies have been proposed in the literature, as discussed in this paper, but each proposed etiology has been both supported and refuted in the literature. However, the stress response theory can integrate hypotheses that have been advocated so far. The word “stress” refers to a constellation of physical and psychological stimuli including systemic viral and bacterial illness, systemic inflammatory disorders, and physical, mental or metabolic stress. Numerous studies have demonstrated adverse effects of systemic stress on health. Stress causes changes in the immune system and cytokine network through activation of the hypothalamus-pituitary-adrenal axis and the sympathetic nervous system. Several types of catecholamine and cytokine receptors are in the cochlea cells other than capillary cells, and then they can respond to systemic stressors. However, there are few studies examining how systemic stress is associated with cochlear dysfunction. The stress response theory addresses this question. In the theory, a variety of stressors and risk factors contribute to the onset of ISHL in varying degrees. The lateral wall of the cochlea has very unique responses to systemic stressors. It plays a critical role in causing ISHL. Systemic stressors converge at the lateral wall and trigger pathological activation of nuclear factor κ-light-chain-enhancer of activated B cells, a transcriptional factor known as a stress sensor. This activation enhances local expression of genes associated with immune and inflammatory system, resulting in cochlear dysfunction. We review the original stress response theory advocated by Adams et al and the integrative stress response theory that integrates our knowledge about the etiologies of ISHL so far.
Collapse
|
18
|
Mammano F. ATP-dependent intercellular Ca2+ signaling in the developing cochlea: facts, fantasies and perspectives. Semin Cell Dev Biol 2012; 24:31-9. [PMID: 23022499 DOI: 10.1016/j.semcdb.2012.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
Hearing relies on a sensitive mechanoelectrical transduction process in the cochlea of the inner ear. The cochlea contains sensory, secretory, neural, supporting and epithelial cells which are all essential to the sound transduction process. It is well known that a complex extracellular purinergic signaling system contributes to cochlear homeostasis, altering cochlear sensitivity and neural output via ATP-gated ion channels (P2X receptors) and G protein-coupled P2Y receptors. This review focuses on the emerging roles of ATP that are currently under investigation in the developing sensory epithelium, with particular emphasis on the link between ATP release, Ca(2+) signaling, the expression and function of gap junction proteins connexin26 and connexin30, and the acquisition of hearing.
Collapse
Affiliation(s)
- Fabio Mammano
- Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, 35131 Padova, Italy.
| |
Collapse
|
19
|
Xu J, Nicholson BJ. The role of connexins in ear and skin physiology - functional insights from disease-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:167-78. [PMID: 22796187 DOI: 10.1016/j.bbamem.2012.06.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/23/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022]
Abstract
Defects in several different connexins have been associated with several different diseases. The most common of these is deafness, where a few mutations in connexin (Cx) 26 have been found to contribute to over 50% of the incidence of non-syndromic deafness in different human populations. Other mutations in Cx26 or Cx30 have also been associated with various skin phenotypes linked to deafness (palmoplanta keratoderma, Bart-Pumphrey syndrome, Vohwinkel syndrome, keratitis-ichthyosis-deafness syndrome, etc.). The large array of disease mutants offers unique opportunities to gain insights into the underlying function of gap junction proteins and their channels in the normal and pathogenic physiologies of the cochlea and epidermis. This review focuses on those mutants where the impact on channel function has been assessed, and correlated with the disease phenotype, or organ function in knock-out mouse models. These approaches have provided evidence supporting a role of gap junctions and hemichannels in K(+) removal and recycling in the ear, as well as possible roles for nutrient passage, in the cochlea. In contrast, increases in hemichannel opening leading to increased cell death, were associated with several keratitis-ichthyosis-deafness syndrome skin disease/hearing mutants. In addition to providing clues for therapeutic strategies, these findings allow us to better understand the specific functions of connexin channels that are important for normal tissue function. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Ji Xu
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
20
|
Kelly JJ, Forge A, Jagger DJ. Contractility in type III cochlear fibrocytes is dependent on non-muscle myosin II and intercellular gap junctional coupling. J Assoc Res Otolaryngol 2012; 13:473-84. [PMID: 22476723 DOI: 10.1007/s10162-012-0322-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 03/14/2012] [Indexed: 12/18/2022] Open
Abstract
The cochlear spiral ligament is a connective tissue that plays diverse roles in normal hearing. Spiral ligament fibrocytes are classified into functional sub-types that are proposed to carry out specialized roles in fluid homeostasis, the mediation of inflammatory responses to trauma, and the fine tuning of cochlear mechanics. We derived a secondary sub-culture from guinea pig spiral ligament, in which the cells expressed protein markers of type III or "tension" fibrocytes, including non-muscle myosin II (nmII), α-smooth muscle actin (αsma), vimentin, connexin43 (cx43), and aquaporin-1. The cells formed extensive stress fibers containing αsma, which were also associated intimately with nmII expression, and the cells displayed the mechanically contractile phenotype predicted by earlier modeling studies. cx43 immunofluorescence was evident within intercellular plaques, and the cells were coupled via dye-permeable gap junctions. Coupling was blocked by meclofenamic acid (MFA), an inhibitor of cx43-containing channels. The contraction of collagen lattice gels mediated by the cells could be prevented reversibly by blebbistatin, an inhibitor of nmII function. MFA also reduced the gel contraction, suggesting that intercellular coupling modulates contractility. The results demonstrate that these cells can impart nmII-dependent contractile force on a collagenous substrate, and support the hypothesis that type III fibrocytes regulate tension in the spiral ligament-basilar membrane complex, thereby determining auditory sensitivity.
Collapse
Affiliation(s)
- John J Kelly
- Centre for Auditory Research, UCL Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | | | | |
Collapse
|
21
|
Crispino G, Di Pasquale G, Scimemi P, Rodriguez L, Galindo Ramirez F, De Siati RD, Santarelli RM, Arslan E, Bortolozzi M, Chiorini JA, Mammano F. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice. PLoS One 2011; 6:e23279. [PMID: 21876744 PMCID: PMC3158073 DOI: 10.1371/journal.pone.0023279] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/11/2011] [Indexed: 11/24/2022] Open
Abstract
The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26(Sox10Cre) mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10-Cre line. Cx26(Sox10Cre) mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26(Sox10Cre) mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans.
Collapse
Affiliation(s)
- Giulia Crispino
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
- Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy
| | - Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pietro Scimemi
- Dipartimento di Specialità Medico–Chirurgiche e Servizio di Audiologia, Università di Padova, Padova, Italy
| | - Laura Rodriguez
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
- Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy
| | - Fabian Galindo Ramirez
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
| | - Romolo Daniele De Siati
- Dipartimento di Specialità Medico–Chirurgiche e Servizio di Audiologia, Università di Padova, Padova, Italy
| | - Rosa Maria Santarelli
- Dipartimento di Specialità Medico–Chirurgiche e Servizio di Audiologia, Università di Padova, Padova, Italy
| | - Edoardo Arslan
- Dipartimento di Specialità Medico–Chirurgiche e Servizio di Audiologia, Università di Padova, Padova, Italy
| | - Mario Bortolozzi
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
- Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy
- Istituto CNR di Neuroscienze, Padova, Italy
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fabio Mammano
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
- Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy
- Istituto CNR di Neuroscienze, Padova, Italy
| |
Collapse
|