1
|
Walker SL, Glasper ER. Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity. Front Neuroendocrinol 2025; 76:101162. [PMID: 39561882 PMCID: PMC11811932 DOI: 10.1016/j.yfrne.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Early-life stress (ELS) affects the development of prosocial behaviors and social-cognitive function, often leading to structural brain changes and increased psychosocial disorders. Recent studies suggest that mother- and father-child relationships independently influence social development in a sex-specific manner, but the effects of impaired father-child relationships are often overlooked. This review examines preclinical rodent studies to explore how parental neglect impacts neuroplasticity and social behaviors in offspring. We highlight that disruptions in maternal interactions may affect male pups more in uniparental rodents, while impaired paternal interactions in biparental rodents tend to impact female pups more. Due to limited research, the separate effects of maternal and paternal neglect on brain development and social behaviors in biparental species remain unclear. Addressing these gaps could clarify the sex-specific mechanisms underlying social and neurobiological deficits following parental neglect.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
2
|
Díez-Solinska A, De Miguel Z, Azkona G, Vegas O. Behavioral coping with chronic defeat stress in mice: A systematic review of current protocols. Neurobiol Stress 2024; 33:100689. [PMID: 39628708 PMCID: PMC11612788 DOI: 10.1016/j.ynstr.2024.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Social stress is the most significant source of chronic stress in humans and is commonly associated with health impairment. Individual differences in the behavioral coping responses to stress have been proposed to mediate the negative effects of stress on physical, behavioral and mental health. Animal models, particularly mice, offer valuable insights into the physiological and neurobiological correlates of behavioral coping strategies in response to chronic social stress. Here we aim to identify differences and similarities among stress protocols in mice, with particular attention to how neuroendocrine and/or behavioral responses vary according to different coping strategies, while highlighting the need for standardized approaches in future research. A systematic review was undertaken following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA statement). A total of 213 references were identified by electronic search, and after the screening, 18 articles were found to meet all the established criteria. We analyzed differences in the stress protocol, the characterization and classification of coping strategies and the physiological and behavioral differences according to coping. The results show that differences in behavioural expression under chronic social stress (coping) may also be associated with physiological differences and differential susceptibility to disease. However, this review also underlines the importance of a cautious interpretation of the results obtained. The lack of consistency in the nomenclature and procedures associated with the study of coping strategies for social stress, as well as the absence of a uniform classification, highlight the importance of using a common language when approaching the study of coping strategies. Thereby, this review encourages the development of a more defined method and criteria for assessing coping strategies, based on both behavioral and biological indicators.
Collapse
Affiliation(s)
- Alina Díez-Solinska
- Department of Basic Psychological Processes and Their Development, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
| | - Zurine De Miguel
- Department of Psychology, California State University, Monterey Bay, CA, USA
- Department of Health Sciences, Public University of Navarre UPNA, 31006, Pamplona, Spain
| | - Garikoitz Azkona
- Department of Basic Psychological Processes and Their Development, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
| | - Oscar Vegas
- Department of Basic Psychological Processes and Their Development, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
- Biogipuzkoa Health Research Institute, 20014, Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Li X, Teng T, Yan W, Fan L, Liu X, Clarke G, Zhu D, Jiang Y, Xiang Y, Yu Y, Zhang Y, Yin B, Lu L, Zhou X, Xie P. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models. Transl Psychiatry 2023; 13:200. [PMID: 37308476 DOI: 10.1038/s41398-023-02486-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Major depressive disorder (MDD) is a highly heterogeneous psychiatric disorder. The pathogenesis of MDD remained unclear, and it may be associated with exposure to different stressors. Most previous studies have focused on molecular changes in a single stress-induced depression model, which limited the identification of the pathogenesis of MDD. The depressive-like behaviors were induced by four well-validated stress models in rats, including chronic unpredictable mild stress, learned helplessness stress, chronic restraint stress and social defeat stress. We applied proteomic and metabolomic to investigate molecular changes in the hippocampus of those four models and revealed 529 proteins and 98 metabolites. Ingenuity Pathways Analysis (IPA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified differentially regulated canonical pathways, and then we presented a schematic model that simulates AKT and MAPK signaling pathways network and their interactions and revealed the cascade reactions. Further, the western blot confirmed that p-AKT, p-ERK12, GluA1, p-MEK1, p-MEK2, p-P38, Syn1, and TrkB, which were changed in at least one depression model. Importantly, p-AKT, p-ERK12, p-MEK1 and p-P38 were identified as common alterations in four depression models. The molecular level changes caused by different stressors may be dramatically different, and even opposite, between four depression models. However, the different molecular alterations converge on a common AKT and MAPK molecular pathway. Further studies of these pathways could contribute to a better understanding of the pathogenesis of depression, with the ultimate goal of helping to develop or select more effective treatment strategies for MDD.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Meyerhoff J, Sowe B, Jett M, Hammamieh R. Potential roles of polyunsaturated fatty acid-enriched diets in modulating social stress-like features. J Nutr Biochem 2023; 116:109309. [PMID: 36871836 DOI: 10.1016/j.jnutbio.2023.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Fish oil or its major constituents, namely omega-3 poly-unsaturated fatty acid (n3-PUFA), are popular supplements to improve neurogenesis, neuroprotection, and overall brain functions. Our objective was to probe the implications of fat enriched diet with variable PUFAs supplements in ameliorating social stress (SS). We fed mice on either of the three diet types, namely the n-3 PUFA-enriched diet (ERD, n3:n6= 7:1), a balanced diet (BLD, n3:n6= 1:1) or a standard lab diet (STD, n3:n6= 1:6). With respect to the gross fat contents, the customized special diets, namely ERD and BLD were extreme diet, not reflecting the typical human dietary composition. Aggressor-exposed SS (Agg-E SS) model triggered behavioral deficiencies that lingered for 6 weeks (6w) post-stress in mice on STD. ERD and BLD elevated bodyweights but potentially helped in building the behavioral resilience to SS. STD adversely affected the gene networks of brain transcriptomics associated with the cell mortality, energy homeostasis and neurodevelopment disorder. Diverging from the ERD's influences on these networks, BLD showed potential long-term benefits in combatting Agg-E SS. The gene networks linked to cell mortality and energy homeostasis, and their subfamilies, such as cerebral disorder and obesity remained at the baseline level of Agg-E SS mice on BLD 6w post-stress. Moreover, neurodevelopment disorder network and its subfamilies like behavioral deficits remained inhibited in the cohort fed on BLD 6w post Agg-E SS.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Seid Muhie
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - James Meyerhoff
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Bintu Sowe
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Marti Jett
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Koskinen MK, Hovatta I. Genetic insights into the neurobiology of anxiety. Trends Neurosci 2023; 46:318-331. [PMID: 36828693 DOI: 10.1016/j.tins.2023.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Anxiety and fear are evolutionarily conserved emotions that increase the likelihood of an organism surviving threatening situations. Anxiety and vigilance states are regulated by neural networks involving multiple brain regions. In anxiety disorders, this intricate regulatory system is disturbed, leading to excessive or prolonged anxiety or fear. Anxiety disorders have both genetic and environmental risk factors. Genetic research has the potential to identify specific genetic variants causally associated with specific phenotypes. In recent decades, genome-wide association studies (GWASs) have revealed variants predisposing to neuropsychiatric disorders, suggesting novel neurobiological pathways in the etiology of these disorders. Here, we review recent human GWASs of anxiety disorders, and genetic studies of anxiety-like behavior in rodent models. These studies are paving the way for a better understanding of the neurobiological mechanisms underlying anxiety disorders.
Collapse
Affiliation(s)
- Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics, Faculty of Medicine, PO Box 21, 00014, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics, Faculty of Medicine, PO Box 21, 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Dulaglutide impedes depressive-like behavior persuaded by chronic social defeat stress model in male C57BL/6 mice: Implications on GLP-1R and cAMP/PKA signaling pathway in the hippocampus. Life Sci 2023; 320:121546. [PMID: 36878280 DOI: 10.1016/j.lfs.2023.121546] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
AIM There is a well-founded relation between bullying and depression, which may eventually lead to suicidal behavior. Repurposing of antidiabetic drugs for the treatment of depression started to glow, which open new horizons to introduce the antidiabetic medications as new treatment picks in depression. Dulaglutide has been approved as remedy of type 2 diabetes mellitus (T2DM). Consequently, our scope of work is to investigate the ability of dulaglutide to indulgence depression via deeply reconnoitering the Glucagon-like peptide-1 receptor and cAMP/PKA Signaling Pathway. MATERIALS AND METHODS Eighty mice were divided into two groups; one with and the other without the induction of chronic social defeat stress (CSDS). Each group was subdivided into two subsets; the first one was treated with saline for 42 days, while the other was treated with saline for 20 days, then with dulaglutide (0.6 mg/kg/week) for four weeks. KEY FINDINGS CSDS group showed a lessening in the social interaction ratio and sucrose consumption. They spent less exploration time in the open arms, and more time in the closed arms in elevated plus maze test as compared to controls. Furthermore, the CSDS group had a higher expression of NOD- like receptor protein-3 which explained the elevation in inflammatory biomarkers (IL-1β, IL-18, IL-6 and TNF-α) along with diminution in GLP-1R, cAMP/PKA levels. Treatment with dulaglutide markedly reversed the above-mentioned parameters via bolstering the GLP-1R/cAMP/PKA pathway. SIGNIFICANCE NLRP3 inflammasome activation expedites depression. Dulaglutide activates the GLP-1R/cAMP/PKA pathway, hence offering a novel therapeutic intervention to hinder depression.
Collapse
|
7
|
Impacts of Subchronic and Mild Social Defeat Stress on Plasma Putrefactive Metabolites and Cardiovascular Structure in Male Mice. Int J Mol Sci 2023; 24:ijms24021237. [PMID: 36674752 PMCID: PMC9866670 DOI: 10.3390/ijms24021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Psychosocial stress precipitates mental illnesses, such as depression, and increases the risk of other health problems, including cardiovascular diseases. In this study, we observed the effects of psychosocial stress on the histopathological features of systemic organs and tissues in a mouse psychosocial stress model, namely the subchronic and mild social defeat stress (sCSDS) model. There were several pathological findings in the tissues of both sCSDS and control mice. Mild fibrosis of the heart was observed in sCSDS mice but not in control mice. Extramedullary hematopoiesis in the spleen and hemorrhage in the lungs were observed in both the control and sCSDS mice. Focal necrosis of the liver was seen only in control mice. Furthermore, putrefactive substances in the blood plasma were analyzed because these metabolites originating from intestinal fermentation might be linked to heart fibrosis. Among them, plasma p-cresyl glucuronide and p-cresyl sulfate concentrations significantly increased owing to subchronic social defeat stress, which might influence cardiac fibrosis in sCSDS mice. In conclusion, several pathological features such as increased cardiac fibrosis and elevated plasma putrefactive substances were found in sCSDS mice. Thus, sCSDS mice are a potential model for elucidating the pathophysiology of psychosocial stress and heart failure.
Collapse
|
8
|
Lichtenstein JLL, Schmitz OJ. Incorporating neurological and behavioral mechanisms of sociality into predator-prey models. Front Behav Neurosci 2023; 17:1122458. [PMID: 37138660 PMCID: PMC10149790 DOI: 10.3389/fnbeh.2023.1122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Consumer-resource population models drive progress in predicting and understanding predation. However, they are often built by averaging the foraging outcomes of individuals to estimate per capita functional responses (functions that describe predation rate). Reliance on per-capita functional responses rests on the assumption that that individuals forage independently without affecting each other. Undermining this assumption, extensive behavioral neuroscience research has made clear that facilitative and antagonistic interactions among conspecifics frequently alter foraging through interference competition and persistent neurophysiological changes. For example, repeated social defeats dysregulates rodent hypothalamic signaling, modulating appetite. In behavioral ecology, similar mechanisms are studied under the concept of dominance hierarchies. Neurological and behavioral changes in response to conspecifics undoubtedly play some sort of role in the foraging of populations, but modern predator-prey theory does not explicitly include them. Here we describe how some modern approaches to population modeling might account for this. Further, we propose that spatial predator-prey models can be modified to describe plastic changes in foraging behavior driven by intraspecific interaction, namely individuals switching between patches or plastic strategies to avoid competition. Extensive neurological and behavioral ecology research suggests that interactions among conspecifics help shape populations' functional responses. Modeling interdependent functional responses woven together by behavioral and neurological mechanisms may thus be indispensable in predicting the outcome of consumer-resource interactions across systems.
Collapse
Affiliation(s)
- James L. L. Lichtenstein
- Department of Biology, Kenyon College, Gambier, OH, United States
- Yale School of the Environment, Yale University, New Haven, CT, United States
- *Correspondence: James L. L. Lichtenstein,
| | - Oswald J. Schmitz
- Yale School of the Environment, Yale University, New Haven, CT, United States
| |
Collapse
|
9
|
Jarrar Q, Ayoub R, Alhussine K, Goh KW, Moshawih S, Ardianto C, Goh BH, Ming LC. Prolonged Maternal Separation Reduces Anxiety State and Increases Compulsive Burying Activity in the Offspring of BALB/c Mice. J Pers Med 2022; 12:1921. [PMID: 36422097 PMCID: PMC9699014 DOI: 10.3390/jpm12111921] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND The elevated plus maze (EPM) and the marble burying (MB) tests are common behavioral tests used for behavioral phenotyping in mouse models for neurodevelopmental disorders. However, the behavioral effects of maternal separation (MS), a standard paradigm for early life stress in animals, in both the EPM and MB tests remain incompletely known. OBJECTIVES This study aimed to investigate the behavioral effects of prolonged MS in the offspring of mice using the EPM and MB tests. METHODS Male BALB/c mice were isolated from their mothers for 4 h each day during the first 30 days after birth. On day 50 postnatal, groups of separated and non-separated mice (n = 18/each group) were subjected to the EPM and MB tests for comparative behavioral evaluations. In addition, the locomotor activity of mice was evaluated using the actophotometer test. RESULTS The findings of the EPM test revealed that separated mice exhibited anxiolytic-like behaviors, as evidenced by a significant increase in the latency to closed arms and the time spent in the open arms compared with non-separated mice. Separated mice also showed compulsive burying activity in the MB test, as determined by a significant increase in the number of buried marbles. The results of the actophotometer test did not show any significant change in locomotor activity. CONCLUSIONS Prolonged MS caused the adult offspring of mice to exhibit a decrease in anxiety state and increased compulsive burying activity, which were not associated with a change in locomotor activity. Further investigations with validated tests are needed to support these findings.
Collapse
Affiliation(s)
- Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman 11622, Jordan
| | - Rami Ayoub
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman 11622, Jordan
| | - Kawther Alhussine
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman 11622, Jordan
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Said Moshawih
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Petaling Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
10
|
Makarova AA, Diukova GM, Ruchkina IN, Romashkina NV, Indejkina LK, Degterev DA, Dbar SR, Parfenov AI. Visceral sensitivity in diagnostics and treatment of severe irritated bowel syndrome. TERAPEVT ARKH 2022; 94:356-361. [DOI: 10.26442/00403660.2022.02.201394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Background. Irritable bowel syndrome (IBS) is a biopsychosocial model based on the malfunction of "brain-intestinal linking".
Aim. To improve diagnostics of the severe IBS accompanied with somatoform disorders by using balloon dilatation test (BDT) and optimize the therapy by using antidepressants from the serotonin and noradrenaline reuptake inhibitor type.
Materials and methods. 61 patients with severe IBS and diarrhea were examined, among them 29 female with a median age of 31 years old (24; 36), and 31 male with a median age of 31 (24; 36) years old. All patients were randomized into two groups, group 1 consisted of 30 patients (15 female, 15 male), group 2 consisted of 31 patients (15 female, 16 male).
The symptoms of all patients were assessed using the Visual Analogue Pain Scale (VAS Pain), visceral sensitivity index (VIS) was assessed according to the J. Labus questionnaire (2007) and visceral sensitivity threshold was assessed according to the BDT, the psycho-emotional state was assessed using the Beck scale of anxiety and depression and the Spielberger-Khanin scale. Both group patients underwent a comparative effectiveness evaluation between the therapy based on the use of Trimebutine at a dose of 600 mg per day and the SNRI-Duloxetine therapy at a dose of 60 mg per day for 8 weeks.
Results. Patients from group with severe IBS and diarrhea who had undergone the antidepressant therapy showed the decrease of pain syndrome from 7 (5; 7) to 2.5 (2; 3) points according to VAS Pain; normalization of stool frequency from 7 (6; 9) to 2 (1; 2) times a day; normalization of stool consistency from 6 (6; 7) to 3 (3; 4) type; and decrease of VIS: first urge from 56 (34; 74) to 95 (80; 98) ml.; as well as the decrease of the depression level (Beck scale) from 26 (23; 32) to 11.5 (10; 13) points and anxiety according to Beck scale from 38 (31; 45) to 11 (10; 12), the decrease of personal anxiety level (Spielberger-Khanin scale) from 42.5 (35; 53) to 22 (20; 24) points, and the decrease of situational anxiety from 40 (37; 49) to 22 (21; 36) points. During the trimebutine therapy in group 1, the clinical symptoms of IBS have persisted. According to the BDT, the visceral sensitivity (HF) threshold remained at a low level. And the indicators of anxiety and depression remained at a high level according to the psychometric scales.
Conclusion. The insufficient effect of the trimebutine therapy can be explained by the somatoform disorders persistence in patients from group 1. Meanwhile SNRI-duloxetine therapy in group 2 showed a clinical remission of IBS: such as a reliable relief from pain and diarrheal syndrome, as well as an increase in the HF threshold.
Thus, Duloxetine is a promising treatment for severe IBS with somatoform disorders. BDT can be used as an objective criterion to diagnose and evaluate the effectiveness of therapy in patients with IBS.
Collapse
|
11
|
Touchant M, Labonté B. Sex-Specific Brain Transcriptional Signatures in Human MDD and Their Correlates in Mouse Models of Depression. Front Behav Neurosci 2022; 16:845491. [PMID: 35592639 PMCID: PMC9110970 DOI: 10.3389/fnbeh.2022.845491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions affecting several millions of people worldwide every year. Despite the importance of this disease and its impact on modern societies, still very little is known about the etiological mechanisms. Treatment strategies have stagnated over the last decades and very little progress has been made to improve the efficiency of current therapeutic approaches. In order to better understand the disease, it is necessary for researchers to use appropriate animal models that reproduce specific aspects of the complex clinical manifestations at the behavioral and molecular levels. Here, we review the current literature describing the use of mouse models to reproduce specific aspects of MDD and anxiety in males and females. We first describe some of the most commonly used mouse models and their capacity to display unique but also shared features relevant to MDD. We then transition toward an integral description, combined with genome-wide transcriptional strategies. The use of these models reveals crucial insights into the molecular programs underlying the expression of stress susceptibility and resilience in a sex-specific fashion. These studies performed on human and mouse tissues establish correlates into the mechanisms mediating the impact of stress and the extent to which different mouse models of chronic stress recapitulate the molecular changes observed in depressed humans. The focus of this review is specifically to highlight the sex differences revealed from different stress paradigms and transcriptional analyses both in human and animal models.
Collapse
Affiliation(s)
- Maureen Touchant
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
- *Correspondence: Benoit Labonté
| |
Collapse
|
12
|
Caradonna SG, Zhang TY, O’Toole N, Shen MJ, Khalil H, Einhorn NR, Wen X, Parent C, Lee FS, Akil H, Meaney MJ, McEwen BS, Marrocco J. Genomic modules and intramodular network concordance in susceptible and resilient male mice across models of stress. Neuropsychopharmacology 2022; 47:987-999. [PMID: 34848858 PMCID: PMC8938529 DOI: 10.1038/s41386-021-01219-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.
Collapse
Affiliation(s)
- Salvatore G. Caradonna
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Tie-Yuan Zhang
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Nicholas O’Toole
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Mo-Jun Shen
- grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore
| | - Huzefa Khalil
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Nathan R. Einhorn
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Xianglan Wen
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Carine Parent
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Francis S. Lee
- grid.5386.8000000041936877XDepartment of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY USA
| | - Huda Akil
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Michael J. Meaney
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, Singapore, Singapore ,grid.14709.3b0000 0004 1936 8649Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC Canada
| | - Bruce S. McEwen
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Komoto M, Asada A, Ohshima Y, Miyanaga K, Morimoto H, Yasukawa T, Morito K, Takayama K, Uozumi Y, Nagasawa K. Dextran sulfate sodium-induced colitis in C57BL/6J mice increases their susceptibility to chronic unpredictable mild stress that induces depressive-like behavior. Life Sci 2022; 289:120217. [PMID: 34896162 DOI: 10.1016/j.lfs.2021.120217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
AIMS In patients with colitis, the high comorbidity of depressive disorders is well-known, but the detailed mechanisms remain unresolved. In this study, we examined whether colitis induced by dextran sulfate sodium (DSS) increased the susceptibility to chronic unpredictable mild stress (CUMS) in C57BL/6J mice with resilience to CUMS. MAIN METHODS To induce experimental colitis and depressive-like behaviors, male 7-weeks old C57BL/6J mice were administered ad libitum 1% DSS solution for 11 days, and subjected to various mild stressors in a chronic, inevitable and unpredictable way according to a random schedule for 21 days, respectively. KEY FINDINGS In naïve mice exposed to CUMS, their immobility times in a forced swim (FS) test were almost equal to those in control mice. The DSS administration to naïve mice induced colitis without depressive-like behavior, and at 18 days after termination of the DSS administration, the colitis had recovered to control levels, while altered diversity and composition of bacterial genera such as Bacteroides spp., Alistipes spp., etc., were found in the gut microbiota. Exposure of mice with DSS-induced colitis to CUMS (DSS + CUMS) significantly increased the immobility times in the FS test. In the gut microbiota of DSS + CUMS mice, the alteration profile of the relative abundance of bacterial genera differed from in the DSS ones. SIGNIFICANCE These findings indicate that mice with colitis exhibit increased susceptibility to psychological stress, resulting in induction of depressive-like behavior, and this might be due, at least in part, to altered characteristics of the gut microbiota.
Collapse
Affiliation(s)
- Miki Komoto
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayumi Asada
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yasuyuki Ohshima
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kayo Miyanaga
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hirotoshi Morimoto
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Takeshi Yasukawa
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Katsuya Morito
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kentaro Takayama
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yoshinobu Uozumi
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
14
|
Benham RS, Choi C, Hodgson NW, Hewage NB, Kastli R, Donahue RJ, Muschamp JW, Engin E, Carlezon WA, Hensch TK, Rudolph U. α2-containing γ-aminobutyric acid type A receptors promote stress resiliency in male mice. Neuropsychopharmacology 2021; 46:2197-2206. [PMID: 34408277 PMCID: PMC8505491 DOI: 10.1038/s41386-021-01144-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Brain α2-containing GABAA receptors play a critical role in the modulation of anxiety- and fear-like behavior. However, it is unknown whether these receptors also play a role in modulating resilience to chronic stress, and in which brain areas and cell types such an effect would be mediated. We evaluated the role of α2-containing GABAA receptors following chronic social defeat stress using male mice deficient in the α2 subunit globally or conditionally in dopamine D1- or D2-receptor-expressing neurons, e.g., within the nucleus accumbens (NAc). In addition, we examined the effect of the lack of the α2 subunit on intermediates of the glutathione synthesis pathway. We found that α2-containing GABAA receptors on D2-receptor-positive but not on D1-receptor-positive neurons promote resiliency to chronic social defeat stress, as reflected in social interaction tests. The pro-resiliency effects of α2-containing GABAA receptors on D2-receptor-positive neurons do not appear to be directly related to alterations in anxiety-like behavior, as reflected in the elevated plus-maze, light-dark box, and novel open field tests. Increases in indices of oxidative stress-reflected by increases in cystathionine levels and reductions in GSH/GSSG ratios-were found in the NAc and prefrontal cortex but not in the hippocampus of mice lacking α2-containing GABAA receptors. We conclude that α2-containing GABAA receptors within specific brain areas and cell populations promote stress resiliency independently of direct effects on anxiety-like behaviors. A potential mechanism contributing to this increased resiliency is the protection that α2-containing GABAA receptors provide against oxidative stress in NAc and the prefrontal cortex.
Collapse
Affiliation(s)
- Rebecca S Benham
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Catherine Choi
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Nishani B Hewage
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rahel Kastli
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rachel J Donahue
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Behavioral Genetics, McLean Hospital, Belmont, MA, USA
| | - John W Muschamp
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Behavioral Genetics, McLean Hospital, Belmont, MA, USA
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Elif Engin
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Behavioral Genetics, McLean Hospital, Belmont, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
15
|
Matsumoto K, Takata K, Yamada D, Usuda H, Wada K, Tada M, Mishima Y, Ishihara S, Horie S, Saitoh A, Kato S. Juvenile social defeat stress exposure favors in later onset of irritable bowel syndrome-like symptoms in male mice. Sci Rep 2021; 11:16276. [PMID: 34381165 PMCID: PMC8357959 DOI: 10.1038/s41598-021-95916-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder. Traumatic stress during adolescence increases the risk of IBS in adults. The aim of this study was to characterize the juvenile social defeat stress (SDS)-associated IBS model in mice. Juvenile mice were exposed to an aggressor mouse for 10 min once daily for 10 consecutive days. Behavioral tests, visceral sensitivity, immune responses, and fecal bacteria in the colon were evaluated in 5 weeks after SDS exposure. Social avoidance, anxiety- and depression-like behavior, and visceral hypersensitivity were observed. Juvenile SDS exposure significantly increased the number of 5-HT-containing cells and calcitonin gene-related peptide-positive neurons in the colon. The gut microbiota was largely similar between the control and juvenile SDS groups. The alterations in fecal pellet output, bead expulsion time, plasma corticosterone concentration, and colonic 5-HT content in response to restraint stress were exacerbated in the juvenile SDS group compared with the control group. The combination of juvenile SDS and restraint stress increased the noradrenaline metabolite 3-Methoxy-4-hydroxyphenylglycol (MHPG) content and MHPG/noradrenaline ratio in the amygdala when compared with restraint stress in control mice. These results suggest that juvenile SDS exposure results in later onset of IBS-like symptoms.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi 5, Yamashina, Kyoto, 607-8414, Japan.
| | - Kana Takata
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi 5, Yamashina, Kyoto, 607-8414, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine Graduate School of Medicine, Shimane, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine Graduate School of Medicine, Shimane, Japan
| | - Maaya Tada
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi 5, Yamashina, Kyoto, 607-8414, Japan
| | - Yoshiyuki Mishima
- Department of Internal Medicine II, Shimane University School of Medicine, Shimane, Japan
| | - Shunji Ishihara
- Department of Internal Medicine II, Shimane University School of Medicine, Shimane, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Josai International University, Chiba, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi 5, Yamashina, Kyoto, 607-8414, Japan
| |
Collapse
|
16
|
Wang S, Huang G, Yan J, Li C, Feng J, Chen Q, Zheng X, Li H, Li J, Wang L, Li H. Influence of aging on chronic unpredictable mild stress-induced depression-like behavior in male C57BL/6J mice. Behav Brain Res 2021; 414:113486. [PMID: 34302872 DOI: 10.1016/j.bbr.2021.113486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022]
Abstract
Depression is a common psychiatric disorder that can occur throughout an individual's lifespan. Chronic unpredictable mild stress (CUMS) protocol is currently the most commonly used to develop an animal model of depression. Due to the variable duration and procedure of CUMS, it is difficult to reproduce and explore the mechanism of CUMS-induced depression effectively. In the present study, the CUMS-induced behavioral phenotypes were assessed in male C57BL/6J mice at the age of 9-18 weeks. The mice stressed for 3-8 weeks exhibited lower body weight as well as longer immobility time of forced swim and tail suspension test compared to control mice. Moreover, lessening and impairment of hippocampal neurons was found in stressed mice at the age of 18 weeks, which was correlated with increased relative mRNA expression levels of inflammatory cytokines BDNF, Htr1a, and IL-6 in the hippocampus. Nevertheless, no difference between stressed and control mice was observed neither in the sucrose preference nor in the open field test (except for vertical activity in OFT) at the age of 18 weeks. These findings reveal that 3-8 weeks of chronic stress could induce depression-like alterations in male C57BL/6J mice and the behavioral adaptation of aged mice might fail to the availability of the depression model.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guilan Huang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Changxi Li
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianwen Feng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaomeng Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haobin Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangchao Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huimin Li
- Department of Applied Psychology, School of Humanities and Communication, Guangdong University of Finance & Economics, Guangzhou, 510320, China.
| |
Collapse
|
17
|
Kamimura Y, Kuwagaki E, Hamano S, Kobayashi M, Yamada Y, Takahata Y, Yoshimoto W, Morimoto H, Yasukawa T, Uozumi Y, Nagasawa K. Reproducible induction of depressive-like behavior in C57BL/6J mice exposed to chronic social defeat stress with a modified sensory contact protocol. Life Sci 2021; 282:119821. [PMID: 34271059 DOI: 10.1016/j.lfs.2021.119821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
AIMS C57BL/6J mice are well-known to exhibit resilience to chronic social defeat stress (CSDS) for induction of depressive-like behavior. Establishment of protocols for reproducible induction of depressive-like behavior in C57BL/6J mice would be useful to elucidate the underlying molecular mechanisms using target gene-knock-in and -out mice whose background is generally C57BL/6J. Here, we developed a modified CSDS protocol for reproducible induction of depressive-like behavior in C57BL/6J mice, and compared the profile of their gut microbiota with that with the standard CSDS protocol. MAIN METHODS To prevent acclimation of defeated C57BL/6J mice to aggressive ICR mice, the sensory contact following a daily 10 min-defeat episode was performed by housing an individual defeated mouse in a cage set next to a cage for the aggressor one. KEY FINDINGS The number of attacks by ICR mice on C57BL/6J ones was significantly increased with the modified CSDS protocol, and the susceptible mice exhibited greater hippocampal inflammation and an increased immobility time in the forced swim test, compared in the case of the standard CSDS protocol, and the reproducibility was confirmed in another set of experiments. Both the standard and modified CSDS protocols changed the diversity and relative composition of gut microbiota in the susceptible mice, but there was no apparent difference in them between the standard and modified CSDS-susceptible mice. SIGNIFICANCE We established a CSDS protocol for reproducible induction of depressive-like behavior in C57BL/6J mice, and the features of the gut microbiota were similar in the susceptible mice with and without the depressive-like behavior.
Collapse
Affiliation(s)
- Yusuke Kamimura
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Erina Kuwagaki
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sakika Hamano
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mami Kobayashi
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yukie Yamada
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuka Takahata
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Waka Yoshimoto
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hirotoshi Morimoto
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Takeshi Yasukawa
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Yoshinobu Uozumi
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
18
|
Kennedy-Wood K, Ng CAS, Alaiyed S, Foley PL, Conant K. Increased MMP-9 levels with strain-dependent stress resilience and tunnel handling in mice. Behav Brain Res 2021; 408:113288. [PMID: 33836170 PMCID: PMC8102390 DOI: 10.1016/j.bbr.2021.113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/09/2022]
Abstract
Increased perineuronal net (PNN) deposition has been observed in association with corticosteroid administration and stress in rodent models of depression. PNNs are a specialized form of extracellular matrix (ECM) that may enhance GABA-mediated inhibitory neurotransmission to potentially restrict the excitation and plasticity of pyramidal glutamatergic neurons. In contrast, antidepressant administration increases levels of the PNN-degrading enzyme matrix metalloproteinase-9 (MMP-9), which enhances glutamatergic plasticity and neurotransmission. In the present study, we compare pro-MMP-9 levels and measures of stress in females from two mouse strains, C57BL/6 J and BALB/cJ, in the presence or absence of tail grasping versus tunnel-associated cage transfers. Prior work suggests that C57BL/6 J mice show relatively enhanced neuroplasticity and stress resilience, while BALB/c mice demonstrate enhanced susceptibility to adverse effects of stress. Herein we observe that as compared to the C57BL/6 J strain, BALB/c mice demonstrate a higher level of baseline anxiety as determined by elevated plus maze (EPM) testing. Moreover, as determined by open field testing, anxiety is differentially reduced in BALB/c mice by a choice-driven tunnel-entry cage transfer technique. Additionally, as compared to tail-handled C57BL/6 J mice, tail-handled BALB/c mice have reduced brain levels of pro-MMP-9 and increased levels of its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1); however, tunnel-associated cage transfer increases pro-MMP-9 levels in BALB/c mice. BALB/c mice also show increases in Western blot immunoreactive bands for brevican, a constituent of PNNs. Together, these data support the possibility that MMP-9, an effector of PNN remodeling, contributes to the phenotype of strain and handling-associated differences in behavior.
Collapse
Affiliation(s)
| | - Christi Anne S Ng
- Georgetown University Medical Center, Department of Neuroscience, Washington D.C., United States
| | - Seham Alaiyed
- Georgetown University Medical Center, Department of Neuroscience, Washington D.C., United States; Georgetown University Medical Center, Department of Pharmacology, Washington D.C., United States
| | - Patricia L Foley
- Georgetown University Medical Center, Division of Comparative Medicine, Washington D.C., United States.
| | - Katherine Conant
- Georgetown University Medical Center, Department of Neuroscience, Washington D.C., United States.
| |
Collapse
|
19
|
Toyoda A. Nutritional interventions for promoting stress resilience: Recent progress using psychosocial stress models of rodents. Anim Sci J 2020; 91:e13478. [PMID: 33140549 PMCID: PMC7757237 DOI: 10.1111/asj.13478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/27/2023]
Abstract
Prevention of stress‐induced adverse effects is important for animals and humans to maintain their quality of life (QOL). Stress decreases the productivity of farm animals and induces abnormal behaviors, which is one of the major problems in animal welfare. In humans, stress increases the risk of mental illness which adversely impacts QOL. Stress is, thus, a common health problem for both animals and humans, and stress prevention and promotion of stress resilience could improve animal and human health and QOL. Among various stresses, psychosocial stress experienced by individuals is particularly difficult to prevent and it could, thus, prove beneficial to attempt to increase resilience to psychosocial stress. There exist a few critical interventions for promoting such resilience, environmental enrichment being one. However, this review describes recent progress in nutritional interventions that could confer resilience to psychosocial stress. The efficacy of this intervention is studied in the social defeat model mouse, which is a standard model for studying psychosocial stress. Several nutrients were found to rescue stress vulnerability using the models. Furthermore, probiotics and prebiotics became crucial dietary interventions for combating psychosocial stress. Collectively, dietary intake of appropriate nutrients will be more important for maintaining QOL in animals and humans.
Collapse
Affiliation(s)
- Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, Japan
| |
Collapse
|
20
|
Cojocariu RO, Balmus IM, Lefter R, Ababei DC, Ciobica A, Hritcu L, Kamal F, Doroftei B. Behavioral and Oxidative Stress Changes in Mice Subjected to Combinations of Multiple Stressors Relevant to Irritable Bowel Syndrome. Brain Sci 2020; 10:brainsci10110865. [PMID: 33212821 PMCID: PMC7698185 DOI: 10.3390/brainsci10110865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Irritable bowel syndrome (IBS) is a well-known functional gastrointestinal (GI) disorder exhibiting a wide range of symptoms due to individual variability and multifactorial etiology. Stress exposure is a major risk factor for the development of IBS. Here, we investigate the differential effects of psychological stress exposures on behavior and oxidative status in mice by using increasingly complex combinations of etiologic IBS-relevant stressors (maternal separation and chronic unpredictable mild stress combinations). Materials and Methods: Mice were subjected to three different combinations of psychological stress factors and subsequent behavioral cognitive and affective parameters and oxidative status markers (superoxide dismutase and glutathione peroxidase antioxidant activity and malondialdehyde level) in the brain and bowel tissues of the animals were analyzed. Results: GI transit modifications reflected by decreased fecal output, cognitive and affective behavioral deficits were observed in all stress exposed groups, but were more evident for the more complex combinations of stressors. Behavioral deficits were accompanied by mild oxidative stress occurring in the bowel and to a greater extent in brain tissue. Conclusions: The presented data depict the effect of various associations in mimicking IBS symptoms and comorbidities and suggest that an all-inclusive combination of early and adult-life psychological stressors is more effective in IBS symptoms modulation. Oxidative stress in both brain and bowel, suggestive for brain-gut molecular connectivity, may play an important role in IBS mechanistic.
Collapse
Affiliation(s)
- Roxana Oana Cojocariu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania;
| | - Ioana Miruna Balmus
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, no. 11, 700506 Iasi, Romania;
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania;
| | - Daniela Carmen Ababei
- “Grigore T. Popa” University of Medicine and Pharmacy, 16th Universitatii Street, 700115 Iasi, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania;
- Correspondence: (A.C.); (L.H.)
| | - Luminita Hritcu
- Faculty of Veterinary Medicine, University of Agricultural Sciencies and Veterinary Medicine “Ion Ionescu de la Brad” of Iasi, 3rd Mihail Sadoveanu, 700490 Iasi, Romania
- Correspondence: (A.C.); (L.H.)
| | - Fatimazahra Kamal
- Faculty of Sciences and Technology Settat, University of Hasan I, B.P. 539, 26000 Settat, Morocco;
| | - Bogdan Doroftei
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iasi, Romania;
- Origyn Fertility Center, Human Reproduction, Palace Street, No. 3C, 700032 Iasi, Romania
| |
Collapse
|
21
|
Nakatake Y, Furuie H, Yamada M, Kuniishi H, Ukezono M, Yoshizawa K, Yamada M. The effects of emotional stress are not identical to those of physical stress in mouse model of social defeat stress. Neurosci Res 2020; 158:56-63. [DOI: 10.1016/j.neures.2019.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
|
22
|
Ito N, Sasaki K, Takemoto H, Kobayashi Y, Isoda H, Odaguchi H. Emotional Impairments and Neuroinflammation are Induced in Male Mice Invulnerable to Repeated Social Defeat Stress. Neuroscience 2020; 443:148-163. [PMID: 32707290 DOI: 10.1016/j.neuroscience.2020.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
Prolonged stress triggers neuroinflammation, which plays a significant role in the development of depression; however, stressed people do not always suffer from depression because of individual differences in stress vulnerability. Negative cognitive bias (NCB) toward pessimistic judgment often underlies depressive episodes. However, a relationship between stress vulnerability, neuroinflammation, and NCB remains elusive. In addition, an animal model with all the traits would be a powerful tool for studying the etiology of depression and its therapeutic approaches. Accordingly, this study evaluated the effect of stress vulnerability on neuroinflammation and depression-related behaviors, including NCB in males, using a modified version of repeated social defeat stress (mRSDS) paradigm, a validated animal model of psychosocial stress. Exposure to mRSDS, consisting of 5 min of social defeat by unfamiliar CD-1 aggressor mice for five consecutive days, caused NCB, which co-occurred with depressive- and anxiety-like behaviors, and neuroinflammation in male BALB/c mice. Treatment with minocycline, an antibiotic with anti-inflammatory property, blocked mRSDS-induced depressive-like behaviors and neuroinflammation, but not NCB, indicating the limited effect of an anti-inflammatory intervention. In addition, marked differences were found in neuroinflammatory profiles and hippocampal gene expression patterns between resilient and unstressed mice, as well as between susceptible and resilient mice. Therefore, mice resilient to mRSDS are indeed not intact. Our findings provide insights into the unique features of the mRSDS model in male BALB/c mice, which could be used to investigate the etiological mechanisms underlying depression as well as bridge the gap in the relationship between stress vulnerability, neuroinflammation, and NCB in males.
Collapse
Affiliation(s)
- Naoki Ito
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Minato-ku, Tokyo 108-8642, Japan.
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba-shi, Ibaraki 305-8572, Japan; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba-shi, Ibaraki 305-8565, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8571, Japan
| | - Hiroaki Takemoto
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8642, Japan
| | - Yoshinori Kobayashi
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Minato-ku, Tokyo 108-8642, Japan; School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8642, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba-shi, Ibaraki 305-8572, Japan; Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba-shi, Ibaraki 305-8565, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8572, Japan
| | - Hiroshi Odaguchi
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Minato-ku, Tokyo 108-8642, Japan
| |
Collapse
|
23
|
Bouter Y, Brzózka MM, Rygula R, Pahlisch F, Leweke FM, Havemann-Reinecke U, Rohleder C. Chronic Psychosocial Stress Causes Increased Anxiety-Like Behavior and Alters Endocannabinoid Levels in the Brain of C57Bl/6J Mice. Cannabis Cannabinoid Res 2020; 5:51-61. [PMID: 32322676 DOI: 10.1089/can.2019.0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Introduction: Chronic stress causes a variety of physiological and behavioral alterations, including social impairments, altered endocrine function, and an increased risk for psychiatric disorders. Thereby, social stress is one of the most effective stressful stimuli among mammals and considered to be one of the major risk factors for the onset and progression of neuropsychiatric diseases. For analyzing the effects of social stress in mice, the resident/intruder paradigm of social defeat is a widely used model. Although the chronic social defeat stress model has been extensively studied, little is known about the effects of repeated or chronic social defeat stress on the endocannabinoid system (ECS). The present study aimed to understand the effects of chronic social stress on anxiety behavior and the levels of endocannabinoids (ECs) and two N-acylethanolamines (NAEs) in different brain regions of mice. Materials and Methods: Two-month-old, male C57Bl/6J mice were exposed to chronic psychosocial stress for 3 weeks. The effects of stress on anxiety behavior were measured using the light-dark box and hole board test. The EC levels of 2-arachidonoyl glycerol (2-AG) and anandamide (N-arachidonoylethanolamine [AEA]), as well as the levels of two NAEs (oleoylethanolamide [OEA] and palmitoylethanolamide), were analyzed by liquid chromatography-tandem mass spectrometry in the hippocampus, cerebellum, and cortex. Results: In comparison with control mice (n=12), mice exposed to social defeat stress (n=11) showed increased anxiety behaviors in the light-dark box and hole board test and gained significantly more weight during the experimental period. Additionally, chronic social stress induced differential alterations in the brain levels of 2-AG and AEA. More precisely, 2-AG levels were higher in the cortex and cerebellum, whereas reduced AEA levels were found in the hippocampus. Furthermore, we observed lower OEA levels in the hippocampus. Conclusion: The current study confirms that the ECS plays an essential role in stress responses, whereby its modulation seems to be brain region dependent.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
| | - Magdalena M Brzózka
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Rafal Rygula
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August University of Göttingen, Göttingen, Germany.,Affective Cognitive Neuroscience Laboratory, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Franziska Pahlisch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Mannheim, Germany
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Mannheim, Germany.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ursula Havemann-Reinecke
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Mannheim, Germany.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Wegner S, Uhlemann R, Boujon V, Ersoy B, Endres M, Kronenberg G, Gertz K. Endothelial Cell-Specific Transcriptome Reveals Signature of Chronic Stress Related to Worse Outcome After Mild Transient Brain Ischemia in Mice. Mol Neurobiol 2019; 57:1446-1458. [PMID: 31758402 PMCID: PMC7060977 DOI: 10.1007/s12035-019-01822-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Vascular mechanisms underlying the adverse effects that depression and stress-related mental disorders have on stroke outcome are only partially understood. Identifying the transcriptomic signature of chronic stress in endothelium harvested from the ischemic brain is an important step towards elucidating the biological processes involved. Here, we subjected male 129S6/SvEv mice to a 28-day model of chronic stress. The ischemic lesion was quantified after 30 min filamentous middle cerebral artery occlusion (MCAo) and 48 h reperfusion by T2-weighted MRI. RNA sequencing was used to profile transcriptomic changes in cerebrovascular endothelial cells (ECs) from the infarct. Mice subjected to the stress procedure displayed reduced weight gain, increased adrenal gland weight, and increased hypothalamic FKBP5 mRNA and protein expression. Chronic stress conferred increased lesion volume upon MCAo. Stress-exposed mice showed a higher number of differentially expressed genes between ECs isolated from the ipsilateral and contralateral hemisphere than control mice. The genes in question are enriched for roles in biological processes closely linked to endothelial proliferation and neoangiogenesis. MicroRNA-34a was associated with nine of the top 10 biological process Gene Ontology terms selectively enriched in ECs from stressed mice. Moreover, expression of mature miR-34a-5p and miR-34a-3p in ischemic brain tissue was positively related to infarct size and negatively related to sirtuin 1 (Sirt1) mRNA transcription. In conclusion, this study represents the first EC-specific transcriptomic analysis of chronic stress in brain ischemia. The stress signature uncovered relates to worse stroke outcome and is directly relevant to endothelial mechanisms in the pathogenesis of stroke.
Collapse
Affiliation(s)
- Stephanie Wegner
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ria Uhlemann
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Valérie Boujon
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Burcu Ersoy
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Endres
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Berlin, 10115, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 10117, Berlin, Germany
| | - Golo Kronenberg
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,University of Leicester and Leicestershire Partnership NHS Trust, Leicester, UK
| | - Karen Gertz
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,DZHK (German Center for Cardiovascular Research), Partner site Berlin, 10115, Berlin, Germany.
| |
Collapse
|
25
|
Stenman LK, Patterson E, Meunier J, Roman FJ, Lehtinen MJ. Strain specific stress-modulating effects of candidate probiotics: A systematic screening in a mouse model of chronic restraint stress. Behav Brain Res 2019; 379:112376. [PMID: 31765723 DOI: 10.1016/j.bbr.2019.112376] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Changes in the gut microbiota have been implicated in mood and cognition. In rodents, supplementation with certain bacteria have been shown to alleviate adverse effects of stress on gut microbiota composition and behaviour, but little is known of how the performance of different strains compare to each other. We took a systematic approach to test the efficacy of twelve candidate probiotic strains from ten species/sub-species of Bifidobacterium and Lactobacillus on behaviours and neuroendocrine responses of chronically stressed mice. METHODS The strains were tested in four screening experiments with non-stressed and chronically stressed vehicle groups. The three most efficacious strains were re-tested to validate the results. Mice were administered a daily oral gavage containing either 1 × 109 colony forming units (CFU) of selected candidate probiotic or saline solution for one week prior to and for three weeks during daily chronic restraint stress. Behavioural tests including the elevated plus maze, open field, novel object recognition, and forced swim test were applied during week five. Corticosterone and adrenocorticotropic hormone (ACTH) were analysed to measure the neuroendocrine response to stress. Plasma and tissue samples were collected for biomarker analyses. RESULTS Of the twelve candidate probiotics, Lactobacillus paracasei Lpc-37, Lactobacillus plantarum LP12407, Lactobacillus plantarum LP12418 and Lactobacillus plantarum LP12151 prevented stress-associated anxiety and depression-related behaviours from developing compared with chronically stressed vehicle mice. In addition, Lpc-37 improved cognition. CONCLUSION This systematic screening indicates species- and strain-dependent effects on behavioural outcomes related to stress and further suggests that strains differ from each other in their effects on potential mechanistic outcomes.
Collapse
Affiliation(s)
- Lotta K Stenman
- DuPont Nutrition & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Elaine Patterson
- DuPont Nutrition & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland.
| | - Johann Meunier
- Amylgen SAS, 2196 Boulevard de la Lironde, 34980 Montferrier-sur-Lez, France
| | - Francois J Roman
- Amylgen SAS, 2196 Boulevard de la Lironde, 34980 Montferrier-sur-Lez, France
| | - Markus J Lehtinen
- DuPont Nutrition & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| |
Collapse
|
26
|
Oizumi H, Kuriyama N, Imamura S, Tabuchi M, Omiya Y, Mizoguchi K, Kobayashi H. Influence of aging on the behavioral phenotypes of C57BL/6J mice after social defeat. PLoS One 2019; 14:e0222076. [PMID: 31479487 PMCID: PMC6719861 DOI: 10.1371/journal.pone.0222076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Depression and anxiety are common psychiatric disorders that can occur throughout an individual’s lifetime. Numerous pathways underlying the onset of these diseases have been identified in rodents using a social defeat stress protocol, whereby socially defeated individuals exhibit depression- and/or anxiety-like phenotypes that typically manifest as social avoidance behavior. However, most studies in this field have been conducted using young adult mice; therefore, information about social defeat stress-related behavioral phenotypes in older mice is limited. In this study, we exposed groups of young adult (8–16 weeks old) and aged (24 months old) C57BL/6J mice to mild social defeat stress by challenging them with aggressive CD1 mice while restricting the intensity of aggression to protect the animals from severe injuries. We then identified stress-induced behavioral changes and compared their expression between the age groups and with a non-defeated (non-stressed) control group. We found that the stressed mice in both age groups exhibited similar reduced social interactions that were indicative of increased social avoidance behavior. Moreover, unlike the young stressed and control groups, only the aged stressed group showed a reduced preference for sucrose, which was correlated with social avoidance behavior. Also, the aged stressed mice exhibited an attenuated defeat-induced increase in water intake. These findings reveal that aging alters behavioral phenotypes after social defeat and that the hedonic behavior of aged mice is more vulnerable to social defeat compared with younger mice.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
- * E-mail:
| | - Nae Kuriyama
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Sachiko Imamura
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Masahiro Tabuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Hiroyuki Kobayashi
- Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Ayuob NN, Abdel-Tawab HS, El-Mansy AA, Ali SS. The protective role of musk on salivary glands of mice exposed to chronic unpredictable mild stress. J Oral Sci 2019; 61:95-102. [PMID: 30918218 DOI: 10.2334/josnusd.17-0440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study assessed the impact of chronic unpredictable mild stress (CUMS) on the structure of mouse salivary glands and the role of musk in alleviating this impact. Forty male albino mice were distributed equally into four groups; control (untreated), CUMS (exposed to CUMS for 4 weeks), CUMS+fluoxetine (FLU) (exposed to CUMS then treated with FLU, CUMS+musk (exposed to CUMS then treated with musk). Behavioral changes and serum corticosterone levels were assessed at the end of the experiment. The submandibular and parotid glands were dissected out and processed for histopathological and immunohistochemical examination using antibodies against alpha smooth muscle actin (ASMA) and brain-derived neurotropic factor (BDNF). Exposure to CUMS significantly (P < 0.001) increased the serum corticosterone level and induced depression. CUMS also induced vacuolation in acinar cells along with a significant (P < 0.001) reduction of ASMA immunoexpression, indicating an effect on myoepithelial cells, and a significant (P < 0.001) increase of BDNF expression in the gland ductal system. Both FLU and musk alleviated the CUMS-induced behavioral, biochemical and histopathological changes in the salivary glands. In conclusion, musk ameliorates stress-induced structural changes in mouse salivary glands. This effect might be mediated through up-regulation of BDNF secretion by the glands.
Collapse
Affiliation(s)
- Nasra N Ayuob
- Anatomy Department, Faculty of Medicine, King Abdulaziz University.,Histology Department, Faculty of Medicine, Mansoura University
| | | | - Ahmed A El-Mansy
- Histology Department, Faculty of Medicine, Mansoura University.,Department of Basic Medical Science, Horus University
| | - Soad S Ali
- Anatomy Department, Faculty of Medicine, King Abdulaziz University.,Histology Department, Faculty of Medicine, Assuit University.,Yousef Abdullatif Jameel, Chair of Prophetic Medical Applications, King Abdulaziz University
| |
Collapse
|
28
|
Shoji H, Miyakawa T. Increased depression-related behavior during the postpartum period in inbred BALB/c and C57BL/6 strains. Mol Brain 2019; 12:70. [PMID: 31399102 PMCID: PMC6688268 DOI: 10.1186/s13041-019-0490-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Pregnancy and lactation are characterized by dramatic changes in the endocrine system and brain in mammalian females. These changes, with stress before pregnancy, are potential risk factors for the development of postpartum depression (PPD). A valid animal model of PPD is needed to understand the neurobiological basis of the depressive state of females. To explore a mouse model of PPD, we first assessed anxiety-like and depression-related behaviors in nulliparous (virgin), nonlactating primiparous, and lactating primiparous females in four inbred strains of mice (C57BL/6J, C57BL/6JJcl, BALB/cAnNCrlCrlj, and BALB/cAJcl). Pups from the nonlactating female group were removed one day after parturition to examine the effects of physical interaction with pups on the postpartum behaviors. Second, we investigated the additional effects of prepregnancy stress (restraint stress for 6 h/day for 21 days) on postpartum behaviors in the BALB/cAJcl strain. We found that females of the two BALB/c substrains showed decreased locomotor activity and increased anxiety-like and depression-related behaviors compared with females of the two C57BL/6 substrains. Behavioral differences were also observed between the two substrains of each strain. Additionally, pregnancy- and lactation-dependent behavioral differences were found in some strains: lactating BALB/cAJcl females traveled shorter distance than the females of the other reproductive state groups, while nonlactating and lactating BALB/cAJcl and C57BL/6J females showed increased depression-related behavior compared with nulliparous females. Lactating BALB/cAJcl and C57BL/6JJcl females exhibited decreased sucrose preference or anhedonia-like behavior compared with nulliparous and nonlactating females, although these results did not reach statistical significance after correction for multiple testing. An additional independent experiment replicated the marked behavioral changes in lactating BALB/cAJcl females. Moreover, increased anxiety-like behavior was observed in lactating BALB/cAJcl females that experienced prepregnancy stress. These results suggest genetic contributions to the regulation of anxiety-like and depression-related behaviors in female mice. Furthermore, this study suggests that pregnancy and lactation cause decreased locomotor activity and increased depression-related behaviors, which was consistently found in our results, and that prepregnancy stress enhances anxiety-like behavior in the BALB/cAJcl strain. The inbred strain of female mice may be used as a potential model of PPD to further study the genetic and neurobiological mechanisms underlying the development of this disorder.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
29
|
Gururajan A, van de Wouw M, Boehme M, Becker T, O'Connor R, Bastiaanssen TFS, Moloney GM, Lyte JM, Ventura Silva AP, Merckx B, Dinan TG, Cryan JF. Resilience to chronic stress is associated with specific neurobiological, neuroendocrine and immune responses. Brain Behav Immun 2019; 80:583-594. [PMID: 31059807 DOI: 10.1016/j.bbi.2019.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Research into the molecular basis of stress resilience is a novel strategy to identify potential therapeutic strategies to treat stress-induced psychopathologies such as anxiety and depression. Stress resilience is a phenomenon which is not solely driven by effects within the central nervous system (CNS) but involves multiple systems, central and peripheral, which interact with and influence each other. Accordingly, we used the chronic social defeat stress paradigm and investigated specific CNS, endocrine and immune responses to identify signatures of stress-resilience and stress susceptibility in mice. Our results showed that mice behaviourally susceptible to stress (indexed by a reduction in social interaction behaviour) had higher plasma corticosterone levels and adrenal hypertrophy. An increase in inflammatory circulating monocytes was another hallmark of stress susceptibility. Furthermore, prefrontal cortex mRNA expression of corticotrophin-releasing factor (Crf) was increased in susceptible mice relative to resilient mice. We also report differences in hippocampal synaptic plasticity between resilient and susceptible mice. Ongoing studies will interpret the functional relevance of these signatures which could potentially inform the development of novel psychotherapeutic strategies.
Collapse
Affiliation(s)
- Anand Gururajan
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Marcel van de Wouw
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Marcus Boehme
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Thorsten Becker
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Rory O'Connor
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Barbara Merckx
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
30
|
Richey JA, Brewer JA, Sullivan-Toole H, Strege MV, Kim-Spoon J, White SW, Ollendick TH. Sensitivity shift theory: A developmental model of positive affect and motivational deficits in social anxiety disorder. Clin Psychol Rev 2019; 72:101756. [DOI: 10.1016/j.cpr.2019.101756] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023]
|
31
|
Prabhu VV, Nguyen TB, Cui Y, Oh YE, Piao YH, Baek HM, Kim JY, Shin KH, Kim JH, Lee KH, Chung YC. Metabolite signature associated with stress susceptibility in socially defeated mice. Brain Res 2019; 1708:171-180. [DOI: 10.1016/j.brainres.2018.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 11/13/2018] [Accepted: 12/15/2018] [Indexed: 01/10/2023]
|
32
|
Chronic unpredictable stress promotes cell-specific plasticity in prefrontal cortex D1 and D2 pyramidal neurons. Neurobiol Stress 2019; 10:100152. [PMID: 30937357 PMCID: PMC6430618 DOI: 10.1016/j.ynstr.2019.100152] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/24/2022] Open
Abstract
Exposure to unpredictable environmental stress is widely recognized as a major determinant for risk and severity in neuropsychiatric disorders such as major depressive disorder, anxiety, schizophrenia, and PTSD. The ability of ostensibly unrelated disorders to give rise to seemingly similar psychiatric phenotypes highlights a need to identify circuit-level concepts that could unify diverse factors under a common pathophysiology. Although difficult to disentangle a causative effect of stress from other factors on medial prefrontal cortex (PFC) dysfunction, a wealth of data from humans and rodents demonstrates that the PFC is a key target of stress. The present study sought to identify a model of chronic unpredictable stress (CUS) which induces affective behaviors in C57BL6J mice and once established, measure stress-related alterations in intrinsic excitability and synaptic regulation of mPFC layer 5/6 pyramidal neurons. Adult male mice received 2 weeks of 'less intense' stress or 2 or 4 weeks of 'more intense' CUS followed by sucrose preference for assessment of anhedonia, elevated plus maze for assessment of anxiety and forced swim test for assessment of depressive-like behaviors. Our findings indicate that more intense CUS exposure results in increased anhedonia, anxiety, and depressive behaviors, while the less intense stress results in no measured behavioral phenotypes. Once a behavioral model was established, mice were euthanized approximately 21 days post-stress for whole-cell patch clamp recordings from layer 5/6 pyramidal neurons in the prelimbic (PrL) and infralimbic (IL) cortices. No significant differences were initially observed in intrinsic cell excitability in either region. However, post-hoc analysis and subsequent confirmation using transgenic mice expressing tdtomato or eGFP under control of dopamine D1-or D2-type receptor showed that D1-expressing pyramidal neurons (D1-PYR) in the PrL exhibit reduced thresholds to fire an action potential (increased excitability) but impaired firing capacity at more depolarized potentials, whereas D2-expressing pyramidal neurons (D2-PYR) showed an overall reduction in excitability and spike firing frequency. Examination of synaptic transmission showed that D1-and D2-PYR exhibit differences in basal excitatory and inhibitory signaling under naïve conditions. In CUS mice, D1-PYR showed increased frequency of both miniature excitatory and inhibitory postsynaptic currents, whereas D2-PYR only showed a reduction in excitatory currents. These findings demonstrate that D1-and D2-PYR subpopulations differentially undergo stress-induced intrinsic and synaptic plasticity that may have functional implications for stress-related pathology, and that these adaptations may reflect unique differences in basal properties regulating output of these cells.
Collapse
|
33
|
Wassouf Z, Hentrich T, Casadei N, Jaumann M, Knipper M, Riess O, Schulze-Hentrich JM. Distinct Stress Response and Altered Striatal Transcriptome in Alpha-Synuclein Overexpressing Mice. Front Neurosci 2019; 12:1033. [PMID: 30686992 PMCID: PMC6336091 DOI: 10.3389/fnins.2018.01033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with motor symptoms and a plethora of non-motor and neuropsychiatric features that accompany the disease from prodromal to advanced stages. While several genetic defects have been identified in familial forms of PD, the predominance of cases are sporadic and result from a complex interplay of genetic and non-genetic factors. Clinical evidence, moreover, indicates a role of environmental stress in PD, supported by analogies between stress-induced pathological consequences and neuronal deterioration observed in PD. From this perspective, we set out to investigate the effects of chronic stress exposure in the context of PD by using a genetic mouse model that overexpresses human wildtype SNCA. Mimicking chronic stress was achieved by adapting a chronic unpredictable mild stress protocol (CUMS) comprising eight different stressors that were applied randomly over a period of eight weeks starting at an age of four months. A distinctive stress response with an impact on anxiety-related behavior was observed upon SNCA overexpression and CUMS exposure. SNCA-overexpressing mice showed prolonged elevation of cortisol metabolites during CUMS exposure, altered anxiety-related traits, and declined motor skills surfacing with advanced age. To relate our phenotypic observations to molecular events, we profiled the striatal and hippocampal transcriptome and used a 2 × 2 factorial design opposing genotype and environment to determine differentially expressed genes. Disturbed striatal gene expression and minor hippocampal gene expression changes were observed in SNCA-overexpressing mice at six months of age. Irrespective of the CUMS-exposure, genes attributed to the terms neuroinflammation, Parkinson's signaling, and plasticity of synapses were altered in the striatum of SNCA-overexpressing mice.
Collapse
Affiliation(s)
- Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mirko Jaumann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
34
|
Effects of social defeat stress on dopamine D2 receptor isoforms and proteins involved in intracellular trafficking. Behav Brain Funct 2018; 14:16. [PMID: 30296947 PMCID: PMC6176509 DOI: 10.1186/s12993-018-0148-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022] Open
Abstract
Background Chronic social defeat stress induces depression and anxiety-like behaviors in rodents and also responsible for differentiating defeated animals into stress susceptible and resilient groups. The present study investigated the effects of social defeat stress on a variety of behavioral parameters like social behavior, spatial learning and memory and anxiety like behaviors. Additionally, the levels of various dopaminergic markers, including the long and short form of the D2 receptor, and total and phosphorylated dopamine and cyclic adenosine 3′,5′-monophosphate regulated phosphoprotein-32, and proteins involved in intracellular trafficking were assessed in several key brain regions in young adult mice. Methods Mouse model of chronic social defeat was established by resident-intruder paradigm, and to evaluate the effect of chronic social defeat, mice were subjected to behavioral tests like spontaneous locomotor activity, elevated plus maze (EPM), social interaction and Morris water maze tests. Results Mice were divided into susceptible and unsusceptible groups after 10 days of social defeat stress. The susceptible group exhibited greater decreases in time spent in the open and closed arms compared to the control group on the EPM. In the social interaction test, the susceptible group showed greater increases in submissive and neutral behaviors and greater decreases in social behaviors relative to baseline compared to the control group. Furthermore, increased expression of D2L, D2S, Rab4, and G protein-coupled receptor associated sorting protein-1 was observed in the amygdala of the susceptible group compared to the control group. Conclusion These findings suggest that social defeat stress induce anxiety-like and altered social interacting behaviors, and changes in dopaminergic markers and intracellular trafficking-related proteins. Electronic supplementary material The online version of this article (10.1186/s12993-018-0148-5) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Keenan RJ, Chan J, Donnelly PS, Barnham KJ, Jacobson LH. The social defeat/overcrowding murine psychosocial stress model results in a pharmacologically reversible body weight gain but not depression - related behaviours. Neurobiol Stress 2018; 9:176-187. [PMID: 30450383 PMCID: PMC6234278 DOI: 10.1016/j.ynstr.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022] Open
Abstract
Depression is a highly prevalent psychiatric disorder, yet its etiology is not well understood. The validation of animal models is therefore a critical step towards advancing knowledge about the neurobiology of depression. Psychosocial stress has been promoted as a prospective animal model of depression, however, different protocols exist with variable responses, and further investigations are therefore required. We aimed to characterise the behavioural and body weight responses to the social defeat/overcrowding (SD/OC) model and to explore the effects of the antidepressant fluoxetine and the peroxynitrite scavenger, CuII(atsm), therein. Male C57BL/6JArc mice were exposed to a 19 day SD/OC protocol at two levels of aggression, determined by terminating SD bouts after one, or approximately five social defeat postures. This was followed by a battery of behavioural tests including social interaction test (SIT), locomotor activity (LMA), light-dark box test (LDB), saccharin preference test (SPT) and the forced swim test (FST). Mice were dosed daily with vehicle, fluoxetine (20 mg/kg) or CuII(atsm) (30 mg/kg) throughout the protocol. SD/OC increased body weight compared to controls, which was abolished by fluoxetine and attenuated by CuII(atsm). Weight gain specifically peaked during OC sessions but was not affected by either drug treatment. Fluoxetine reduced the number of defeat postures during fight bouts on some days. SD/OC otherwise failed to elicit depression- or anxiety-like behaviour in the tests measured. These data raise questions over the SD/OC model as an etiological model of depression-related behaviours but highlight the potential of this model for investigations into mechanisms regulating binge eating and weight gain under conditions of chronic social stress.
Collapse
Affiliation(s)
- Ryan J Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jacky Chan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - Paul S Donnelly
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kevin J Barnham
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| |
Collapse
|
36
|
Genetic Control of Myelin Plasticity after Chronic Psychosocial Stress. eNeuro 2018; 5:eN-NWR-0166-18. [PMID: 30073192 PMCID: PMC6071195 DOI: 10.1523/eneuro.0166-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Anxiety disorders often manifest in genetically susceptible individuals after psychosocial stress, but the mechanisms underlying these gene-environment interactions are largely unknown. We used the chronic social defeat stress (CSDS) mouse model to study resilience and susceptibility to chronic psychosocial stress. We identified a strong genetic background effect in CSDS-induced social avoidance (SA) using four inbred mouse strains: 69% of C57BL/6NCrl (B6), 23% of BALB/cAnNCrl, 19% of 129S2/SvPasCrl, and 5% of DBA/2NCrl (D2) mice were stress resilient. Furthermore, different inbred mouse strains responded differently to stress, suggesting they use distinct coping strategies. To identify biological pathways affected by CSDS, we used RNA-sequencing (RNA-seq) of three brain regions of two strains, B6 and D2: medial prefrontal cortex (mPFC), ventral hippocampus (vHPC), and bed nucleus of the stria terminalis (BNST). We discovered overrepresentation of oligodendrocyte (OLG)-related genes in the differentially expressed gene population. Because OLGs myelinate axons, we measured myelin thickness and found significant region and strain-specific differences. For example, in resilient D2 mice, mPFC axons had thinner myelin than controls, whereas susceptible B6 mice had thinner myelin than controls in the vHPC. Neither myelin-related gene expression in several other regions nor corpus callosum thickness differed between stressed and control animals. Our unbiased gene expression experiment suggests that myelin plasticity is a substantial response to chronic psychosocial stress, varies across brain regions, and is genetically controlled. Identification of genetic regulators of the myelin response will provide mechanistic insight into the molecular basis of stress-related diseases, such as anxiety disorders, a critical step in developing targeted therapy.
Collapse
|
37
|
Naringenin attenuates behavioral derangements induced by social defeat stress in mice via inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines. Biomed Pharmacother 2018; 105:714-723. [PMID: 29906750 DOI: 10.1016/j.biopha.2018.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/14/2023] Open
Abstract
The effects of naringenin; a dietary flavonoid, with potent anti-oxidant and anti-inflammatory activities on social defeat stress (SDS)-induced neurobehavioral and biochemical changes were evaluated in mice using resident-intruder paradigm. The intruder male mice were distributed into 6 groups (n = 6). Mice in group 1 (control) received vehicle (3% DMSO, i.p), group 2 (SDS-control) were also given vehicle, groups 3-5 received naringenin (10, 25 and 50 mg/kg, i.p.) while group 6 had ginseng (50 mg/kg, i.p) daily for 14 days. However, 30 min after treatment on day 7, mice in groups 2-6 were exposed to SDS for a period of 10 min confrontation with aggressive counterparts for 7 consecutive days. Neurobehavioral phenotypes: spontaneous motor activity (SMA), memory, anxiety and depression were then evaluated on day 14. Malondialdehyde (MDA), glutathione (GSH), catalase and superoxide dismutase (SOD) were then estimated in the brain tissues. Acetylcholinesterase (AChE) activity and the concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) were also determined. SDS-induced neurobehavioral deficits were significantly (p < 0.05) attenuated by naringenin. The increased brain level of MDA (13.00 ± 0.63 μmol/g tissue) relative to vehicle-control (6.50 ± 0.43 μmol/g tissue) was significantly (p < 0.05) reduced to 5.50 ± 0.22 μmol/g tissue by naringenin (50 mg/kg). Mice exposed to SDS had decreased brain GSH level (5.17 ± 0.40 μmol/g tissue) relative to control (11.67 ± 0.84 μmol/g tissue). However, naringenin (50 mg/kg) significantly (p < 0.05) elevated GSH content (13.33 ± 0.88 μmol/g tissue) in the brains of SDS-mice. Moreover, 50 mg/Kg of naringenin (38.13 ± 2.38 ρg/mL) attenuated (p < 0.05) increased TNF-α level when compared with SDS (49.69 ± 2.81 ρg/mL). SDS-induced increase in brain level of IL-1β (236.5 ± 6.92 ρg/mL) was significantly (p < 0.05) reduced by naringenin (219.90 ± 15.25 ρg/mL). Naringenin also elevated antioxidant enzymes and decreased AChE activity in the brains of mice exposed to SDS (p < 0.05). These findings suggest that naringenin attenuates SDS-induced neurobehavioral deficits through inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines.
Collapse
|
38
|
McVey Neufeld KA, Kay S, Bienenstock J. Mouse Strain Affects Behavioral and Neuroendocrine Stress Responses Following Administration of Probiotic Lactobacillus rhamnosus JB-1 or Traditional Antidepressant Fluoxetine. Front Neurosci 2018; 12:294. [PMID: 29867313 PMCID: PMC5952003 DOI: 10.3389/fnins.2018.00294] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
Currently, there is keen interest in the development of alternative therapies in the treatment of depression. Given the explosion of research focused on the microbiota-gut-brain axis, consideration has turned to the potential of certain probiotics to improve patient outcomes for those suffering from mood disorders. Here we examine the abilities of a known antidepressant, fluoxetine, and the probiotic Lactobacillus rhamnosus JB-1™, to attenuate responses to two established criteria for depressive-like behavior in animal models, the tail suspension test (TST) and the corticosterone response to an acute restraint stressor. We examine two different strains of mice known to differ in the extent to which they express both anxiety-like behavior and measures of despair—BALB/c and Swiss Webster—with respectively high and normal behavioral phenotypes for each. While adult male BALB/c mice responded with increased antidepressive-like behavior to both fluoxetine and L. rhamnosus JB-1 in both the TST and the corticosterone stress response, SW mice did not respond to either treatment as compared to controls. These findings highlight the importance of investigating putative antidepressants in mouse strains known to express face validity for some markers of depression. Clinical studies examining the activity of L. rhamnosus JB-1 in patients suffering from mood disorders are warranted, as well as further pre-clinical work examining how interactions between host genotype and intestinal microbial alterations may impact behavioral responses. This study adds to the literature supporting the possibility that modifying the intestinal microbiota via probiotics represents a promising potential therapeutic breakthrough in the treatment of psychiatric disease.
Collapse
Affiliation(s)
- Karen-Anne McVey Neufeld
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Brain-Body Institute, St. Joseph's Healthcare at McMaster University, Hamilton, ON, Canada
| | - Sebastian Kay
- Brain-Body Institute, St. Joseph's Healthcare at McMaster University, Hamilton, ON, Canada
| | - John Bienenstock
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Brain-Body Institute, St. Joseph's Healthcare at McMaster University, Hamilton, ON, Canada
| |
Collapse
|
39
|
Silverman HA, Stiegler A, Tsaava T, Newman J, Steinberg BE, Masi EB, Robbiati S, Bouton C, Huerta PT, Chavan SS, Tracey KJ. Standardization of methods to record Vagus nerve activity in mice. Bioelectron Med 2018; 4:3. [PMID: 32232079 PMCID: PMC7098227 DOI: 10.1186/s42234-018-0002-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Background The vagus nerve plays an important role in the regulation of organ function, including reflex pathways that regulate immunity and inflammation. Recent studies using genetically modified mice have improved our understanding of molecular mechanisms in the neural control of immunity. However, mapping neural signals transmitted in the vagus nerve in mice has been limited by technical challenges. Here, we have standardized an experimental protocol to record compound action potentials transmitted in the vagus nerve. Methods The vagus nerve was isolated in Balb/c and B6.129S mice, and placed either on a hook or cuff electrode. The electrical signals from the vagus nerve were digitized using either a Neuralynx or Plexon data acquisition system. Changes in the vagus nerve activity in response to anesthesia, feeding and administration of bacterial endotoxin were analyzed. Results We have developed an electrophysiological recording system to record compound action potentials from the cervical vagus nerve in mice. Cuff electrodes significantly reduce background noise and increase the signal to noise ratio as compared to hook electrodes. Baseline vagus nerve activity varies in response to anesthesia depth and food intake. Analysis of vagus neurograms in different mouse strains (Balb/c and C57BL/6) reveal no significant differences in baseline activity. Importantly, vagus neurogramactivity in wild type and TLR4 receptor knock out mice exhibits receptor dependency of endotoxin mediated signals. Conclusions These methods for recording vagus neurogram in mice provide a useful tool to further delineate the role of vagus neural pathways in a standardized murine disease model.
Collapse
Affiliation(s)
- Harold A Silverman
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Hofstra Northwell Health School of Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Andrew Stiegler
- Circulatory Technologies, Inc., 350 Community Drive, Manhasset, NY 11030 USA
| | - Téa Tsaava
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Justin Newman
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Benjamin E Steinberg
- 4Department of Anesthesia, University of Toronto, 150 College Street, Toronto, ON M5S 3E2 Canada
| | - Emily Battinelli Masi
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Hofstra Northwell Health School of Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Sergio Robbiati
- 5Laboratory of Immune & Neural Networks, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Chad Bouton
- 6Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Patricio T Huerta
- 5Laboratory of Immune & Neural Networks, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Sangeeta S Chavan
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Hofstra Northwell Health School of Medicine, 350 Community Drive, Manhasset, NY 11030 USA.,6Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Kevin J Tracey
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Hofstra Northwell Health School of Medicine, 350 Community Drive, Manhasset, NY 11030 USA.,6Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| |
Collapse
|
40
|
Fernandes SS, Koth AP, Parfitt GM, Cordeiro MF, Peixoto CS, Soubhia A, Moreira FP, Wiener CD, Oses JP, Kaszubowski E, Barros DM. Enhanced cholinergic-tone during the stress induce a depressive-like state in mice. Behav Brain Res 2018; 347:17-25. [PMID: 29501509 DOI: 10.1016/j.bbr.2018.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/06/2023]
Abstract
Major depressive disorder has a heterogeneous etiology, since it arises from the interaction of multiple factors and different pathophysiological mechanisms are involved in the symptomatology. This study aimed to investigate the role of the cholinergic system in the susceptibility to stress and, consequently, in the depression-like behavior. C57BL/6 mice were treated with Physostigmine (PHYS), an acetylcholinesterase (AChE) inhibitor, and were submitted to the social defeat stress. For the behavioral evaluation of the locomotor activity, anxiety-like and depression-like behaviors the open field, elevated plus maze, sucrose preference, social interaction and forced swim were used. Hippocampus and prefrontal cortex samples were collected for evaluation of AChE activity, as well as blood samples for analysis of serum cortisol levels. Our results showed that 15 min after the injection of PHYS there was a significant inhibition of AChE activity in the hippocampus and in the prefrontal cortex. On the other hand, in the end of the experimental design, day 12, there was no difference in AChE activity levels. Inhibition of AChE and exposure to the stress led to an increase in cortisol levels. Animals that received PHYS and were exposed to stress showed less social interaction and greater learned helplessness, anhedonia and anxious-like behavior. Taken together, our findings suggest that increasing the cholinergic tone shortly before stress induction impacts on the ability to cope with upcoming stressful situations, leading to a depressive-like state.
Collapse
Affiliation(s)
- Sara S Fernandes
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - André P Koth
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Gustavo M Parfitt
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcos F Cordeiro
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Carolina S Peixoto
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Andréa Soubhia
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Fernanda P Moreira
- Translational Science on Brain Disorders, Clinical Neuroscience Lab., Department of Health and Behavior, Catholic University of Pelotas (UCPel), Pelotas, RS, Brazil
| | - Carolina D Wiener
- Post-Graduation Program in Epidemiology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jean P Oses
- Translational Science on Brain Disorders, Clinical Neuroscience Lab., Department of Health and Behavior, Catholic University of Pelotas (UCPel), Pelotas, RS, Brazil
| | - Erikson Kaszubowski
- Department of Psychology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Daniela M Barros
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil; Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil; Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
41
|
Bergamini G, Mechtersheimer J, Azzinnari D, Sigrist H, Buerge M, Dallmann R, Freije R, Kouraki A, Opacka-Juffry J, Seifritz E, Ferger B, Suter T, Pryce CR. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiol Stress 2018; 8:42-56. [PMID: 29888303 PMCID: PMC5991330 DOI: 10.1016/j.ynstr.2018.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/19/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA) neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS) on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc) to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The model can now be applied to investigate causality and, if demonstrated, underlying mechanisms in specific steps of this immune-neural-behavioural pathway, and thereby to identify potential therapeutic targets. Mouse chronic social stress (CSS) leads to spleen and liver immune activation. Mouse CSS leads to mesolimbic immune activation and blunted dopamine function. Mouse CSS leads to reduced reward-directed behaviour in operant tests. This constitutes an important model for the study of pathophysiological mechanisms.
Collapse
Affiliation(s)
- Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Jonas Mechtersheimer
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Damiano Azzinnari
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Michaela Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Afroditi Kouraki
- Department of Life Sciences, University of Roehampton, London, UK
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Boris Ferger
- CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH & Co. KG., Biberach, Germany
| | - Tobias Suter
- Neuroimmunology and MS Research, Neurology, and Clinical Research Priority Program Multiple Sclerosis, University Hospital Zurich, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
42
|
Heinla I, Åhlgren J, Vasar E, Voikar V. Behavioural characterization of C57BL/6N and BALB/c female mice in social home cage - Effect of mixed housing in complex environment. Physiol Behav 2018; 188:32-41. [PMID: 29382562 DOI: 10.1016/j.physbeh.2018.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
Developing reliable mouse models for social behaviour is challenging. Different tests have been proposed, but most of them consist of rather artificial confrontations of unfamiliar mice in novel arenas or are relying on social stress induced by aggressive conspecifics. Natural social interaction in home cage in laboratory has not been investigated well. IntelliCage is a fully automated home-cage system, where activity of the group-housed mice can be monitored along with various cognitive tasks. Here we report the behavioural profile of C57BL/6N (B6) and BALB/c (BALB) female mice in IntelliCage when separated by strain, followed by monitoring of activity and formation of 'home-base' after mixing two strains. For that purpose, 3 cages were connected. Significant differences between the strains were established in baseline behaviour in conventional tests and in IntelliCage. The B6 mice showed reduced anxiety-like behaviour in open field and light-dark box, slightly enhanced exploratory activity in IntelliCage during initial adaptation and clearly distinct circadian activity. Mixing of two strains resulted in reduction of body weight and anhedonia in B6 mice. In addition, the B6 mice showed clear preference to previous home-cage, and formed a new home-base faster than BALB mice. In contrast, BALB mice showed enhanced activity and moving between the cages without showing any preference to previous home-cage. It could be argued that social challenge caused changes in both strains and different coping styles are responsible for behavioural manifestations. Altogether, this approach could be useful in modelling and validating mouse models for disorders with disturbed social behaviour.
Collapse
Affiliation(s)
- Indrek Heinla
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Estonia
| | - Johanna Åhlgren
- Laboratory Animal Center, HiLIFE, University of Helsinki, Finland
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Estonia
| | - Vootele Voikar
- Laboratory Animal Center, HiLIFE, University of Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Finland.
| |
Collapse
|
43
|
Caruso MJ, Crowley NA, Reiss DE, Caulfield JI, Luscher B, Cavigelli SA, Kamens HM. Adolescent Social Stress Increases Anxiety-like Behavior and Alters Synaptic Transmission, Without Influencing Nicotine Responses, in a Sex-Dependent Manner. Neuroscience 2018; 373:182-198. [PMID: 29343455 DOI: 10.1016/j.neuroscience.2018.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 11/27/2022]
Abstract
Early-life stress is a risk factor for comorbid anxiety and nicotine use. Because little is known about the factors underlying this comorbidity, we investigated the effects of adolescent stress on anxiety-like behavior and nicotine responses within individual animals. Adolescent male and female C57BL/6J mice were exposed to chronic variable social stress (CVSS; repeated cycles of social isolation + social reorganization) or control conditions from postnatal days (PND) 25-59. Anxiety-like behavior and social avoidance were measured in the elevated plus-maze (PND 61-65) and social approach-avoidance test (Experiment 1: PND 140-144; Experiment 2: 95-97), respectively. Acute nicotine-induced locomotor, hypothermic, corticosterone responses, (Experiment 1: PND 56-59; Experiment 2: PND 65-70) and voluntary oral nicotine consumption (Experiment 1: PND 116-135; Experiment 2: 73-92) were also examined. Finally, we assessed prefrontal cortex (PFC) and nucleus accumbens (NAC) synaptic transmission (PND 64-80); brain regions that are implicated in anxiety and addiction. Mice exposed to adolescent CVSS displayed increased anxiety-like behavior relative to controls. Further, CVSS altered synaptic excitability in PFC and NAC neurons in a sex-specific manner. For males, CVSS decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents in the PFC and NAC, respectively. In females, CVSS decreased the amplitude of spontaneous inhibitory postsynaptic currents in the NAC. Adolescent CVSS did not affect social avoidance or nicotine responses and anxiety-like behavior was not reliably associated with nicotine responses within individual animals. Taken together, complex interactions between PFC and NAC function may contribute to adolescent stress-induced anxiety-like behavior without influencing nicotine responses.
Collapse
Affiliation(s)
- Michael J Caruso
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Nicole A Crowley
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Dana E Reiss
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Jasmine I Caulfield
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA 16892, USA
| | - Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, University Park, PA 16802, USA
| | - Sonia A Cavigelli
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, University Park, PA 16802, USA
| | - Helen M Kamens
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
44
|
Groves NJ, Zhou M, Jhaveri DJ, McGrath JJ, Burne THJ. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice. Psychoneuroendocrinology 2017; 86:53-63. [PMID: 28915381 DOI: 10.1016/j.psyneuen.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/18/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023]
Abstract
Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes.
Collapse
Affiliation(s)
- Natalie J Groves
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Mei Zhou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Mater Research Institute, The University of Queensland, South Brisbane, QLD, Australia
| | - John J McGrath
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD, Australia; National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD, Australia.
| |
Collapse
|
45
|
Laman-Maharg A, Trainor BC. Stress, sex, and motivated behaviors. J Neurosci Res 2017; 95:83-92. [PMID: 27870436 DOI: 10.1002/jnr.23815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
Stress is a major risk factor for development of psychiatric disorders such as depression and development of substance use disorder. Although there are important sex differences in the prevalence of these disorders, most preclinical models used to study stress-induced disorders have used males only. Social defeat stress is a commonly used method to induce stress in an ethologically relevant way but has only recently begun to be used in female rodents. Using these new female models, recent studies have examined how social defeat stress affects males and females differently at the behavioral, circuit, and molecular levels. This Mini-Review discusses sex differences in the effects of social defeat stress on social behavior and drug-seeking behavior as well as its impact on the mesolimbic dopamine system and the highly connected region of the bed nucleus of the stria terminalis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abigail Laman-Maharg
- Neuroscience Graduate Group, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California.,Center for Neuroscience, University of California, Davis, Davis, California
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California.,Center for Neuroscience, University of California, Davis, Davis, California
| |
Collapse
|
46
|
Caruso MJ, Kamens HM, Cavigelli SA. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice. Dev Psychobiol 2017; 59:679-687. [PMID: 28678409 DOI: 10.1002/dev.21541] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/09/2017] [Indexed: 01/09/2023]
Abstract
Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled.
Collapse
Affiliation(s)
- Michael J Caruso
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, Pennsylvania
| | - Helen M Kamens
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, Pennsylvania
| | - Sonia A Cavigelli
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, Pennsylvania.,The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
47
|
Ito N, Hirose E, Ishida T, Hori A, Nagai T, Kobayashi Y, Kiyohara H, Oikawa T, Hanawa T, Odaguchi H. Kososan, a Kampo medicine, prevents a social avoidance behavior and attenuates neuroinflammation in socially defeated mice. J Neuroinflammation 2017; 14:98. [PMID: 28468634 PMCID: PMC5415730 DOI: 10.1186/s12974-017-0876-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/26/2017] [Indexed: 11/24/2022] Open
Abstract
Background Kososan, a Kampo (traditional Japanese herbal) medicine, has been used for the therapy of depressive mood in humans. However, evidence for the antidepressant efficacy of kososan and potential mechanisms are lacking. Recently, it has been recognized that stress triggers neuroinflammation and suppresses adult neurogenesis, leading to depression and anxiety. Here, we examined whether kososan extract affected social behavior in mice exposed to chronic social defeat stress (CSDS), an animal model of prolonged psychosocial stress, and neuroinflammation induced by CSDS. Methods In the CSDS paradigm, C57BL/6J mice were exposed to 10 min of social defeat stress from an aggressive CD-1 mouse for 10 consecutive days (days 1–10). Kososan extract (1.0 g/kg) was administered orally once daily for 12 days (days 1–12). On day 11, the social avoidance test was performed to examine depressive- and anxious-like behaviors. To characterize the impacts of kososan on neuroinflammation and adult neurogenesis, immunochemical analyses and ex vivo microglial stimulation assay with lipopolysaccharide (LPS) were performed on days 13–15. Results Oral administration of kososan extract alleviated social avoidance, depression- and anxiety-like behaviors, caused by CSDS exposure. CSDS exposure resulted in neuroinflammation, as indicated by the increased accumulation of microglia, the resident immune cells of the brain, and their activation in the hippocampus, which was reversed to normal levels by treatment with kososan extract. Additionally, in ex vivo studies, CSDS exposure potentiated the microglial pro-inflammatory response to a subsequent LPS challenge, an effect that was also blunted by kososan extract treatment. Indeed, the modulatory effect of kososan extract on neuroinflammation appears to be due to a hippocampal increase in an anti-inflammatory phenotype of microglia while sparing an increased pro-inflammatory phenotype of microglia caused by CSDS. Moreover, reduced adult hippocampal neurogenesis in defeated mice was recovered by kososan extract treatment. Conclusions Our findings suggest that kososan extract prevents a social avoidant behavior in socially defeated mice that is partially mediated by the downregulation of hippocampal neuroinflammation, presumably by the relative increased anti-inflammatory microglia and regulation of adult hippocampal neurogenesis. Our present study also provides novel evidence for the beneficial effects of kososan on depression/anxiety and the possible underlying mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0876-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naoki Ito
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan.
| | - Eiji Hirose
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Tatsuya Ishida
- Laboratory of Pharmacognosy, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Atsushi Hori
- Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
| | - Takayuki Nagai
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan.,Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan.,Laboratory of Biochemical Pharmacology for Phytomedicines, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Yoshinori Kobayashi
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan.,Laboratory of Pharmacognosy, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Hiroaki Kiyohara
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan.,Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan.,Laboratory of Biochemical Pharmacology for Phytomedicines, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Tetsuro Oikawa
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - Toshihiko Hanawa
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan.,Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
| | - Hiroshi Odaguchi
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| |
Collapse
|
48
|
Slattery DA, Cryan JF. Modelling depression in animals: at the interface of reward and stress pathways. Psychopharmacology (Berl) 2017; 234:1451-1465. [PMID: 28224183 DOI: 10.1007/s00213-017-4552-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
RATIONALE Despite substantial research efforts the aetiology of major depressive disorder (MDD) remains poorly understood, which is due in part to the heterogeneity of the disorder and the complexity of designing appropriate animal models. However, in the last few decades, a focus on the development of novel stress-based paradigms and a focus on using hedonic/anhedonic behaviour have led to renewed optimism in the use of animal models to assess aspects of MDD. OBJECTIVES Therefore, in this review article, dedicated to Athina Markou, we summarise the use of stress-based animal models for studying MDD in rodents and how reward-related readouts can be used to validate/assess the model and/or treatment. RESULTS We reveal the use and limitations of chronic stress paradigms, which we split into non-social (i.e. chronic mild stress), social (i.e. chronic social defeat) and drug-withdrawal paradigms for studying MDD and detail numerous reward-related readouts that are employed in preclinical research. Finally, we finish with a section regarding important factors to consider when using animal models. CONCLUSIONS One of the most consistent findings following chronic stress exposure in rodents is a disruption of the brain reward system, which can be easily assessed using sucrose, social interaction, food, drug of abuse or intracranial self-stimulation as a readout. Probing the underlying causes of such alterations is providing a greater understanding of the potential systems and processes that are disrupted in MDD.
Collapse
Affiliation(s)
- D A Slattery
- Laboratory of Translational Psychiatry, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany.
| | - J F Cryan
- APC Microbiome Institute, Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
49
|
Toyoda A. Social defeat models in animal science: What we have learned from rodent models. Anim Sci J 2017; 88:944-952. [PMID: 28436163 PMCID: PMC5518448 DOI: 10.1111/asj.12809] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
Studies on stress and its impacts on animals are very important in many fields of science, including animal science, because various stresses influence animal production and animal welfare. In particular, the social stresses within animal groups have profound impact on animals, with the potential to induce abnormal behaviors and health problems. In humans, social stress induces several health problems, including psychiatric disorders. In animal stress models, social defeat models are well characterized and used in various research fields, particularly in studies concerning mental disorders. Recently, we have focused on behavior, nutrition and metabolism in rodent models of social defeat to elucidate how social stresses affect animals. In this review, recent significant progress in studies related to animal social defeat models are described. In the field of animal science, these stress models may contribute to advances in the development of functional foods and in the management of animal welfare.
Collapse
Affiliation(s)
- Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan.,Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, Japan
| |
Collapse
|
50
|
Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, Koren O, Forsythe P, Bienenstock J. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun 2017; 8:15062. [PMID: 28375200 PMCID: PMC5382287 DOI: 10.1038/ncomms15062] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/24/2017] [Indexed: 12/29/2022] Open
Abstract
There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria. There is concern about potential long-term effects of antibiotics on children's health. Here Leclercq et al. show, in mice, that low doses of penicillin during late pregnancy and early life induce lasting effects on the offspring, including alterations in gut microbiota, brain cytokine levels and behaviour.
Collapse
Affiliation(s)
- Sophie Leclercq
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, 50 Charlton Avenue East T3304, Hamilton, Ontario, Canada L8N 4A6.,Department of Pathology and Molecular Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, Ontario, Canada L8N 4A6
| | - Firoz M Mian
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, 50 Charlton Avenue East T3304, Hamilton, Ontario, Canada L8N 4A6
| | - Andrew M Stanisz
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, 50 Charlton Avenue East T3304, Hamilton, Ontario, Canada L8N 4A6
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 73, Brussels 1200, Belgium
| | - Emmanuel Cambier
- Faculty of Medicine, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Hila Ben-Amram
- Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 1311502, Israel
| | - Omry Koren
- Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 1311502, Israel
| | - Paul Forsythe
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, 50 Charlton Avenue East T3304, Hamilton, Ontario, Canada L8N 4A6.,Firestone Institute for Respiratory Health and Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, Ontario, Canada L8N 4A6
| | - John Bienenstock
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, 50 Charlton Avenue East T3304, Hamilton, Ontario, Canada L8N 4A6.,Department of Pathology and Molecular Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, Ontario, Canada L8N 4A6
| |
Collapse
|