1
|
Serrats J, Vadodaria KC, Brubaker W, Barker-Haliski M, White HS, Evrard A, Roucard C, Taylor E, Vanover KE, Cunningham S, Sudarsan V, Rogawski MA. ENX-101, a GABA A receptor α2,3,5-selective positive allosteric modulator, displays antiseizure effects in rodent seizure and epilepsy models. Epilepsia 2025; 66:2124-2136. [PMID: 40088186 DOI: 10.1111/epi.18340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE γ-Aminobutyric acid type A (GABAA) receptor positive allosteric modulators (PAMs) that lack α-subunit selectivity, including benzodiazepines such as diazepam, exhibit antiseizure actions in animal models and in humans. ENX-101 is a deuterated analog of the ⍺2,3,5-selective GABAA receptor PAM L-838,417. The purpose of this study was to characterize the α-subunit selectivity of ENX-101 and evaluate its antiseizure potential in preclinical seizure and epilepsy models. METHODS ENX-101 potentiation of GABA chloride current responses in cells expressing recombinant GABAA receptors were evaluated using an automated patch clamp assay. Antiseizure effects of ENX-101 were examined in the mouse 6 Hz test at 32 and 44 mA, amygdala kindled rats, and Genetic Absence Epilepsy Rat from Strasbourg (GAERS). RESULTS ENX-101 displayed partial PAM activity with respect to diazepam at GABAA receptors containing α2, α3, or α5 subunits but did not enhance GABA responses of GABAA receptors containing α1 subunits. ENX-101 (30, 100, and 300 mg/kg, i.p.) and diazepam protected most animals in the 6 Hz model at 32 mA but was less effective at 44 mA. In amygdala kindled rats, ENX-101 (1-100 mg/kg, p.o.) reduced behavioral seizure severity and afterdischarge duration in a dose-dependent manner. ENX-101 (0.075-100 mg/kg, p.o.) caused dose-dependent, persistent (>130 min) inhibition of spontaneous spike-and-wave discharges (SWDs) in GAERS, whereas diazepam transiently inhibited discharges. ENX-101 did not cause motor impairment, as measured by performance in the rotarod assay. SIGNIFICANCE ENX-101 is an α2,α3,α5-selective GABAA receptor PAM that has high potency and partial efficacy. The drug is highly effective in rodent seizure and epilepsy models. ENX-101 is most potent in the GAERS model of absence epilepsy, and active in the 6 Hz model and amygdala kindled rats. These results demonstrate that a partial, subtype-selective GABAA receptor PAM has activity in translationally validated preclinical epilepsy screening models. Clinical evaluation of ENX-101 as a treatment for focal and generalized epilepsies is warranted.
Collapse
Affiliation(s)
| | | | | | - Melissa Barker-Haliski
- Department of Pharmaceutics, Center for Epilepsy Drug Discovery, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - H Steve White
- Department of Pharmacy, Center for Epilepsy Drug Discovery, School of Pharmacy, University of Washington, Seattle, Washinton, USA
| | | | | | - Eve Taylor
- Engrail Therapeutics, San Diego, California, USA
| | | | | | | | - Michael A Rogawski
- Department of Neurology and Pharmacology, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
2
|
Dervinis M, Crunelli V. Spike-and-wave discharges of absence seizures in a sleep waves-constrained corticothalamic model. CNS Neurosci Ther 2024; 30:e14204. [PMID: 37032628 PMCID: PMC10915988 DOI: 10.1111/cns.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS Recurrent network activity in corticothalamic circuits generates physiological and pathological EEG waves. Many computer models have simulated spike-and-wave discharges (SWDs), the EEG hallmark of absence seizures (ASs). However, these models either provided detailed simulated activity only in a selected territory (i.e., cortical or thalamic) or did not test whether their corticothalamic networks could reproduce the physiological activities that are generated by these circuits. METHODS Using a biophysical large-scale corticothalamic model that reproduces the full extent of EEG sleep waves, including sleep spindles, delta, and slow (<1 Hz) waves, here we investigated how single abnormalities in voltage- or transmitter-gated channels in the neocortex or thalamus led to SWDs. RESULTS We found that a selective increase in the tonic γ-aminobutyric acid type A receptor (GABA-A) inhibition of first-order thalamocortical (TC) neurons or a selective decrease in cortical phasic GABA-A inhibition is sufficient to generate ~4 Hz SWDs (as in humans) that invariably start in neocortical territories. Decreasing the leak conductance of higher-order TC neurons leads to ~7 Hz SWDs (as in rodent models) while maintaining sleep spindles at 7-14 Hz. CONCLUSION By challenging key features of current mechanistic views, this simulated ictal corticothalamic activity provides novel understanding of ASs and makes key testable predictions.
Collapse
Affiliation(s)
- Martynas Dervinis
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
- Present address:
School of Physiology, Pharmacology and NeuroscienceBiomedical BuildingBristolBS8 1TDUK
| | - Vincenzo Crunelli
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
3
|
OUP accepted manuscript. Brain 2022; 145:1978-1991. [DOI: 10.1093/brain/awab438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/14/2022] Open
|
4
|
Crunelli V, Lőrincz ML, McCafferty C, Lambert RC, Leresche N, Di Giovanni G, David F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020; 143:2341-2368. [PMID: 32437558 PMCID: PMC7447525 DOI: 10.1093/brain/awaa072] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Absence seizures in children and teenagers are generally considered relatively benign because of their non-convulsive nature and the large incidence of remittance in early adulthood. Recent studies, however, show that 30% of children with absence seizures are pharmaco-resistant and 60% are affected by severe neuropsychiatric comorbid conditions, including impairments in attention, cognition, memory and mood. In particular, attention deficits can be detected before the epilepsy diagnosis, may persist even when seizures are pharmacologically controlled and are aggravated by valproic acid monotherapy. New functional MRI-magnetoencephalography and functional MRI-EEG studies provide conclusive evidence that changes in blood oxygenation level-dependent signal amplitude and frequency in children with absence seizures can be detected in specific cortical networks at least 1 min before the start of a seizure, spike-wave discharges are not generalized at seizure onset and abnormal cortical network states remain during interictal periods. From a neurobiological perspective, recent electrical recordings and imaging of large neuronal ensembles with single-cell resolution in non-anaesthetized models show that, in contrast to the predominant opinion, cortical mechanisms, rather than an exclusively thalamic rhythmogenesis, are key in driving seizure ictogenesis and determining spike-wave frequency. Though synchronous ictal firing characterizes cortical and thalamic activity at the population level, individual cortico-thalamic and thalamocortical neurons are sparsely recruited to successive seizures and consecutive paroxysmal cycles within a seizure. New evidence strengthens previous findings on the essential role for basal ganglia networks in absence seizures, in particular the ictal increase in firing of substantia nigra GABAergic neurons. Thus, a key feature of thalamic ictogenesis is the powerful increase in the inhibition of thalamocortical neurons that originates at least from two sources, substantia nigra and thalamic reticular nucleus. This undoubtedly provides a major contribution to the ictal decrease in total firing and the ictal increase of T-type calcium channel-mediated burst firing of thalamocortical neurons, though the latter is not essential for seizure expression. Moreover, in some children and animal models with absence seizures, the ictal increase in thalamic inhibition is enhanced by the loss-of-function of the astrocytic GABA transporter GAT-1 that does not necessarily derive from a mutation in its gene. Together, these novel clinical and experimental findings bring about paradigm-shifting views of our understanding of absence seizures and demand careful choice of initial monotherapy and continuous neuropsychiatric evaluation of affected children. These issues are discussed here to focus future clinical and experimental research and help to identify novel therapeutic targets for treating both absence seizures and their comorbidities.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - Magor L Lőrincz
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Cian McCafferty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Régis C Lambert
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Nathalie Leresche
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - François David
- Cerebral dynamics, learning and plasticity, Integrative Neuroscience and Cognition Center - UMR 8002, Paris, France
| |
Collapse
|
5
|
Williams MS, Lecas S, Charpier S, Mahon S. Phase-dependent modulation of cortical and thalamic sensory responses during spike-and-wave discharges. Epilepsia 2020; 61:330-341. [PMID: 31912497 DOI: 10.1111/epi.16422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The neuronal underpinnings of impaired consciousness during absence seizures remain largely unknown. Spike-and-wave (SW) activity associated with absences imposes two extremely different states in cortical neurons, which transition from suprathreshold synaptic depolarizations during spike phases to membrane hyperpolarization and electrical silence during wave phases. To investigate whether this rhythmic alternation of neuronal states affects the processing of sensory information during seizures, we examined cortical and thalamic responsiveness to brief sensory stimuli in the different phases of the epileptic cycle. METHODS Electrocorticographic (ECoG) monitoring from the primary somatosensory cortex combined with intracellular recordings of subjacent pyramidal neurons, or extracellular recordings of somatosensory thalamic neurons, were performed in the Genetic Absence Epilepsy Rat From Strasbourg. Sensory stimuli consisted of pulses of compressed air applied to the contralateral whiskers. RESULTS Whisker stimuli delivered during spike phases evoked smaller depolarizing synaptic potentials and fewer action potentials in cortical neurons compared to stimuli occurring during wave phases. This spike-related attenuation of cortical responsiveness was accompanied by a reduced neuronal membrane resistance, likely due to the large increase in synaptic conductance. Sensory-evoked firing in thalamocortical neurons was also decreased during ECoG spikes as compared to wave phases, indicating that time-to-time changes in the thalamocortical volley may also contribute to the variability of cortical responses during seizures. SIGNIFICANCE These findings demonstrate that thalamocortical sensory processing during absence seizures is nonstationary and strongly suggest that the cortical impact of a given environmental stimulus is conditioned by its exact timing relative to the SW cycle. The lack of stability of thalamic and cortical responses along seizures may contribute to impaired conscious sensory perception during absences.
Collapse
Affiliation(s)
- Mark S Williams
- Brain and Spine Institute, National Institute of Health and Medical Research Mixed Unit of Research 1127, National Center for Scientific Research Mixed Unit of Research 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Sarah Lecas
- Brain and Spine Institute, National Institute of Health and Medical Research Mixed Unit of Research 1127, National Center for Scientific Research Mixed Unit of Research 7225, Pitié-Salpêtrière Hospital, Paris, France.,Sorbonne University, Pierre and Marie Curie University, Paris, France
| | - Stéphane Charpier
- Brain and Spine Institute, National Institute of Health and Medical Research Mixed Unit of Research 1127, National Center for Scientific Research Mixed Unit of Research 7225, Pitié-Salpêtrière Hospital, Paris, France.,Sorbonne University, Pierre and Marie Curie University, Paris, France
| | - Séverine Mahon
- Brain and Spine Institute, National Institute of Health and Medical Research Mixed Unit of Research 1127, National Center for Scientific Research Mixed Unit of Research 7225, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
6
|
Studer F, Laghouati E, Jarre G, David O, Pouyatos B, Depaulis A. Sensory coding is impaired in rat absence epilepsy. J Physiol 2019; 597:951-966. [PMID: 30548850 DOI: 10.1113/jp277297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/12/2018] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Absence epilepsy is characterized by the occurrence of spike-and-wave discharges concomitant with an alteration of consciousness and is associated with cognitive comorbidities. In a genetic model of absence epilepsy in the rat, the genetic absence epilepsy rat from Strasbourg (GAERS), spike-and-wave discharges are shown to be initiated in the barrel field primary somatosensory cortex that codes whisker-related information, therefore playing an essential role in the interactions of rodents with their environment. Sensory-information processing is impaired in the epileptic barrel field primary somatosensory cortex of GAERS, with a delayed sensory-evoked potential and a duplicated neuronal response to whisker stimulation in in vivo extracellular recordings. Yet, GAERS present no defaults of performance in a texture discrimination task, suggesting the existence of a compensatory mechanism within the epileptic neuronal network. The results of the present study indicate that physiological primary functions are processed differently in an epileptic cortical network. ABSTRACT Several neurodevelopmental pathologies are associated with disorganized cortical circuits that may alter primary functions such as sensory processes. In the present study, we investigated whether the function of a cortical area is altered in the seizure onset zone of absence epilepsy, a prototypical form of childhood genetic epilepsy associated with cognitive impairments. We first combined in vivo multichannel electrophysiological recordings and histology to precisely localize the seizure onset zone in the genetic absence epilepsy rat from Strasbourg (GAERS). We then investigated the functionality of this epileptic zone using extracellular silicon probe recordings of sensory-evoked local field potentials and multi-unit activity, as well as a behavioural test of texture discrimination. We show that seizures in this model are initiated in the barrel field part of the primary somatosensory cortex and are associated with high-frequency oscillations. In this cortex, we found an increased density of parvalbumin-expressing interneurons in layer 5 in GAERS compared to non-epileptic Wistar rats. Its functional investigation revealed that sensory abilities of GAERS are not affected in a texture-discrimination task, whereas the intracortical processing of sensory-evoked information is delayed and duplicated. Altogether, these results suggest that absence seizures are associated with an increase of parvalbumin-inhibitory neurons, which may promote the functional relationship between epileptic oscillations and high-frequency activities. Our findings suggest that cortical circuits operate differently in the epileptic onset zone and may adapt to maintain their ability to process highly specialized information.
Collapse
Affiliation(s)
- Florian Studer
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| | - Emel Laghouati
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| | - Guillaume Jarre
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| | - Olivier David
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| | - Benoît Pouyatos
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France.,Present address: INRS, F-54519, Vandoeuvre Les Nancy, France
| | - Antoine Depaulis
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| |
Collapse
|
7
|
Cain SM, Tyson JR, Choi H, Ko R, Lin PJC, LeDue JM, Powell KL, Bernier L, Rungta RL, Yang Y, Cullis PR, O'Brien TJ, MacVicar BA, Snutch TP. Ca V 3.2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons. Epilepsia 2018; 59:778-791. [PMID: 29468672 PMCID: PMC5900875 DOI: 10.1111/epi.14018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Genetic alterations have been identified in the CACNA1H gene, encoding the CaV 3.2 T-type calcium channel in patients with absence epilepsy, yet the precise mechanisms relating to seizure propagation and spike-wave-discharge (SWD) pacemaking remain unknown. Neurons of the thalamic reticular nucleus (TRN) express high levels of CaV 3.2 calcium channels, and we investigated whether a gain-of-function mutation in the Cacna1h gene in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) contributes to seizure propagation and pacemaking in the TRN. METHODS Pathophysiological contributions of CaV 3.2 calcium channels to burst firing and absence seizures were assessed in vitro using acute brain slice electrophysiology and quantitative real-time polymerase chain reaction (PCR) and in vivo using free-moving electrocorticography recordings. RESULTS TRN neurons from GAERS display sustained oscillatory burst-firing that is both age- and frequency-dependent, occurring only in the frequencies overlapping with GAERS SWDs and correlating with the expression of a CaV 3.2 mutation-sensitive splice variant. In vivo knock-down of CaV 3.2 using direct thalamic injection of lipid nanoparticles containing CaV 3.2 dicer small interfering (Dsi) RNA normalized TRN burst-firing, and in free-moving GAERS significantly shortened seizures. SIGNIFICANCE This supports a role for TRN CaV 3.2 T-type channels in propagating thalamocortical network seizures and setting the pacemaking frequency of SWDs.
Collapse
Affiliation(s)
- Stuart M. Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - John R. Tyson
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Hyun‐Beom Choi
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Rebecca Ko
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Paulo J. C. Lin
- Life Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Jeffrey M. LeDue
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Kim L. Powell
- The Department of NeuroscienceCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Louis‐Philippe Bernier
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Ravi L. Rungta
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Yi Yang
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Pieter R. Cullis
- Life Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Terence J. O'Brien
- The Department of NeuroscienceCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Brian A. MacVicar
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Terrance P. Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
8
|
Pathophysiology of absence epilepsy: Insights from genetic models. Neurosci Lett 2018; 667:53-65. [DOI: 10.1016/j.neulet.2017.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 11/21/2022]
|
9
|
Altwegg-Boussac T, Schramm AE, Ballestero J, Grosselin F, Chavez M, Lecas S, Baulac M, Naccache L, Demeret S, Navarro V, Mahon S, Charpier S. Cortical neurons and networks are dormant but fully responsive during isoelectric brain state. Brain 2017; 140:2381-2398. [PMID: 29050394 DOI: 10.1093/brain/awx175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/29/2017] [Indexed: 01/30/2023] Open
Abstract
A continuous isoelectric electroencephalogram reflects an interruption of endogenously-generated activity in cortical networks and systematically results in a complete dissolution of conscious processes. This electro-cerebral inactivity occurs during various brain disorders, including hypothermia, drug intoxication, long-lasting anoxia and brain trauma. It can also be induced in a therapeutic context, following the administration of high doses of barbiturate-derived compounds, to interrupt a hyper-refractory status epilepticus. Although altered sensory responses can be occasionally observed on an isoelectric electroencephalogram, the electrical membrane properties and synaptic responses of individual neurons during this cerebral state remain largely unknown. The aim of the present study was to characterize the intracellular correlates of a barbiturate-induced isoelectric electroencephalogram and to analyse the sensory-evoked synaptic responses that can emerge from a brain deprived of spontaneous electrical activity. We first examined the sensory responsiveness from patients suffering from intractable status epilepticus and treated by administration of thiopental. Multimodal sensory responses could be evoked on the flat electroencephalogram, including visually-evoked potentials that were significantly amplified and delayed, with a high trial-to-trial reproducibility compared to awake healthy subjects. Using an analogous pharmacological procedure to induce prolonged electro-cerebral inactivity in the rat, we could describe its cortical and subcortical intracellular counterparts. Neocortical, hippocampal and thalamo-cortical neurons were all silent during the isoelectric state and displayed a flat membrane potential significantly hyperpolarized compared with spontaneously active control states. Nonetheless, all recorded neurons could fire action potentials in response to intracellularly injected depolarizing current pulses and their specific intrinsic electrophysiological features were preserved. Manipulations of the membrane potential and intracellular injection of chloride in neocortical neurons failed to reveal an augmented synaptic inhibition during the isoelectric condition. Consistent with the sensory responses recorded from comatose patients, large and highly reproducible somatosensory-evoked potentials could be generated on the inactive electrocorticogram in rats. Intracellular recordings revealed that the underlying neocortical pyramidal cells responded to sensory stimuli by complex synaptic potentials able to trigger action potentials. As in patients, sensory responses in the isoelectric state were delayed compared to control responses and exhibited an elevated reliability during repeated stimuli. Our findings demonstrate that during prolonged isoelectric brain state neurons and synaptic networks are dormant rather than excessively inhibited, conserving their intrinsic properties and their ability to integrate and propagate environmental stimuli.
Collapse
Affiliation(s)
- Tristan Altwegg-Boussac
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Adrien E Schramm
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Jimena Ballestero
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Fanny Grosselin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mario Chavez
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Sarah Lecas
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,UPMC Univ Paris 06, F-75005, Paris, France
| | - Michel Baulac
- Epilepsy Unit, Clinical Neurophysiology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Lionel Naccache
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Evoked Potential Unit, Neurophysiology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Sophie Demeret
- Intensive Care Unit of Neurology, Neurology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Vincent Navarro
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Epilepsy Unit, Clinical Neurophysiology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Séverine Mahon
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Stéphane Charpier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,UPMC Univ Paris 06, F-75005, Paris, France
| |
Collapse
|
10
|
Jarre G, Altwegg-Boussac T, Williams MS, Studer F, Chipaux M, David O, Charpier S, Depaulis A, Mahon S, Guillemain I. Building Up Absence Seizures in the Somatosensory Cortex: From Network to Cellular Epileptogenic Processes. Cereb Cortex 2017; 27:4607-4623. [DOI: 10.1093/cercor/bhx174] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/22/2017] [Indexed: 01/14/2023] Open
Affiliation(s)
- Guillaume Jarre
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Tristan Altwegg-Boussac
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mark S. Williams
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Florian Studer
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Mathilde Chipaux
- Pediatric Neurosurgery Department, Fondation Ophtalmologique A. de Rothschild, 75019 Paris, France
| | - Olivier David
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU de Grenoble, F-38000 Grenoble, France
| | - Stéphane Charpier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- UPMC Univ Paris 06, F-75005, Paris, France
| | - Antoine Depaulis
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU de Grenoble, F-38000 Grenoble, France
| | - Séverine Mahon
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Isabelle Guillemain
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| |
Collapse
|
11
|
Arakaki T, Mahon S, Charpier S, Leblois A, Hansel D. The Role of Striatal Feedforward Inhibition in the Maintenance of Absence Seizures. J Neurosci 2016; 36:9618-32. [PMID: 27629713 PMCID: PMC6601939 DOI: 10.1523/jneurosci.0208-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Absence seizures are characterized by brief interruptions of conscious experience accompanied by oscillations of activity synchronized across many brain areas. Although the dynamics of the thalamocortical circuits are traditionally thought to underlie absence seizures, converging experimental evidence supports the key involvement of the basal ganglia (BG). In this theoretical work, we argue that the BG are essential for the maintenance of absence seizures. To this end, we combine analytical calculations with numerical simulations to investigate a computational model of the BG-thalamo-cortical network. We demonstrate that abnormally strong striatal feedforward inhibition can promote synchronous oscillatory activity that persists in the network over several tens of seconds as observed during seizures. We show that these maintained oscillations result from an interplay between the negative feedback through the cortico-subthalamo-nigral pathway and the striatal feedforward inhibition. The negative feedback promotes epileptic oscillations whereas the striatal feedforward inhibition suppresses the positive feedback provided by the cortico-striato-nigral pathway. Our theory is consistent with experimental evidence regarding the influence of BG on seizures (e.g., with the fact that a pharmacological blockade of the subthalamo-nigral pathway suppresses seizures). It also accounts for the observed strong suppression of the striatal output during seizures. Our theory predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures. In contrast with the thalamocortical theory, it also predicts that reducing the synaptic transmission along the cortico-subthalamo-nigral pathway while keeping constant the average firing rate of substantia nigra pars reticulata reduces the incidence of seizures. SIGNIFICANCE STATEMENT Absence seizures are characterized by brief interruptions of consciousness accompanied by abnormal brain oscillations persisting tens of seconds. Thalamocortical circuits are traditionally thought to underlie absence seizures. However, recent experiments have highlighted the key role of the basal ganglia (BG). This work argues for a novel theory according to which the BG drive the oscillatory patterns of activity occurring during the seizures. It demonstrates that abnormally strong striatal feedforward inhibition promotes synchronous oscillatory activity in the BG-thalamo-cortical network and relate this property to the observed strong suppression of the striatal output during seizures. The theory is compatible with virtually all known experimental results, and it predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures.
Collapse
Affiliation(s)
- Takafumi Arakaki
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France
| | - Séverine Mahon
- Sorbonne Universités, Université Paris 06, UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, F-75013 Paris, France, and
| | - Stéphane Charpier
- Sorbonne Universités, Université Paris 06, UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, F-75013 Paris, France, and UPMC Université Paris 06, F-75005 Paris, France
| | - Arthur Leblois
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France
| | - David Hansel
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France,
| |
Collapse
|
12
|
Williams MS, Altwegg-Boussac T, Chavez M, Lecas S, Mahon S, Charpier S. Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model. J Physiol 2016; 594:6733-6751. [PMID: 27311433 DOI: 10.1113/jp272162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Absence seizures are accompanied by spike-and-wave discharges in cortical electroencephalograms. These complex paroxysmal activities, affecting the thalamocortical networks, profoundly alter cognitive performances and preclude conscious perception. Here, using a well-recognized genetic model of absence epilepsy, we investigated in vivo how information processing was impaired in the ictogenic neurons, i.e. the population of cortical neurons responsible for seizure initiation. In between seizures, ictogenic neurons were more prone to generate bursting activity and their firing response to weak depolarizing events was considerably facilitated compared to control neurons. In the course of seizures, information processing became unstable in ictogenic cells, alternating between an increased and a decreased responsiveness to excitatory inputs, depending on the spike and wave patterns. The state-dependent modulation in the excitability of ictogenic neurons affects their inter-seizure transfer function and their time-to-time responsiveness to incoming inputs during absences. ABSTRACT Epileptic seizures result from aberrant cellular and/or synaptic properties that can alter the capacity of neurons to integrate and relay information. During absence seizures, spike-and-wave discharges (SWDs) interfere with incoming sensory inputs and preclude conscious experience. The Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established animal model of absence epilepsy, allows exploration of the cellular basis of this impaired information processing. Here, by combining in vivo electrocorticographic and intracellular recordings from GAERS and control animals, we investigated how the pro-ictogenic properties of seizure-initiating cortical neurons modify their integrative properties and input-output operation during inter-ictal periods and during the spike (S-) and wave (W-) cortical patterns alternating during seizures. In addition to a sustained depolarization and an excessive firing rate in between seizures, ictogenic neurons exhibited a pronounced hyperpolarization-activated depolarization compared to homotypic control neurons. Firing frequency versus injected current relations indicated an increased sensitivity of GAERS cells to weak excitatory inputs, without modifications in the trial-to-trial variability of current-induced firing. During SWDs, the W-component resulted in paradoxical effects in ictogenic neurons, associating an increased membrane input resistance with a reduction in the current-evoked firing responses. Conversely, the collapse of cell membrane resistance during the S-component was accompanied by an elevated current-evoked firing relative to W-sequences, which remained, however, lower compared to inter-ictal periods. These findings show a dynamic modulation of ictogenic neurons' intrinsic properties that may alter inter-seizure cortical function and participate in compromising information processing in cortical networks during absences.
Collapse
Affiliation(s)
- Mark S Williams
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Tristan Altwegg-Boussac
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mario Chavez
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Sarah Lecas
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,UPMC Univ Paris 06, F-75005, Paris, France
| | - Séverine Mahon
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Stéphane Charpier
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,UPMC Univ Paris 06, F-75005, Paris, France
| |
Collapse
|
13
|
Leal A, Vieira JP, Lopes R, Nunes RG, Gonçalves SI, Lopes da Silva F, Figueiredo P. Dynamics of epileptic activity in a peculiar case of childhood absence epilepsy and correlation with thalamic levels of GABA. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 5:57-65. [PMID: 27144122 PMCID: PMC4840417 DOI: 10.1016/j.ebcr.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/14/2016] [Accepted: 03/25/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Childhood absence epilepsy (CAE) is a syndrome with well-defined electroclinical features but unknown pathological basis. An increased thalamic tonic GABA inhibition has recently been discovered on animal models (Cope et al., 2009), but its relevance for human CAE is unproven. METHODS We studied an 11-year-old boy, presenting the typical clinical features of CAE, but spike-wave discharges (SWD) restricted to one hemisphere. RESULTS High-resolution EEG failed to demonstrate independent contralateral hemisphere epileptic activity. Consistently, simultaneous EEG-fMRI revealed the typical thalamic BOLD activation, associated with caudate and default mode network deactivation, but restricted to the hemisphere with SWD. Cortical BOLD activations were localized on the ipsilateral pars transverse. Magnetic resonance spectroscopy, using MEGA-PRESS, showed that the GABA/creatine ratio was 2.6 times higher in the hemisphere with SWD than in the unaffected one, reflecting a higher GABA concentration. Similar comparisons for the patient's occipital cortex and thalamus of a healthy volunteer yielded asymmetries below 25%. SIGNIFICANCE In a clinical case of CAE with EEG and fMRI-BOLD manifestations restricted to one hemisphere, we found an associated increase in thalamic GABA concentration consistent with a role for this abnormality in human CAE.
Collapse
Affiliation(s)
- Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal`
| | - José P Vieira
- Department of Pediatric Neurology, Hospital Dona Estefânia, Lisbon, Portugal
| | - Ricardo Lopes
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Rita G Nunes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia I Gonçalves
- Institute of Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fernando Lopes da Silva
- Center of Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands; Department of Bioengineering and Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Patrícia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
14
|
Depaulis A, David O, Charpier S. The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods 2015; 260:159-74. [PMID: 26068173 DOI: 10.1016/j.jneumeth.2015.05.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
First characterized in 1982, the genetic absence epilepsy rat from Strasbourg (GAERS) has emerged as an animal model highly reminiscent of a specific form of idiopathic generalized epilepsy. Both its electrophysiological (spike-and-wave discharges) and behavioral (behavioral arrest) features fit well with those observed in human patients with typical absence epilepsy and required by clinicians for diagnostic purposes. In addition, its sensitivity to antiepileptic drugs closely matches what has been described in the clinic, making this model one of the most predictive. Here, we report how the GAERS, thanks to its spontaneous, highly recurrent and easily recognizable seizures on electroencephalographic recordings, allows to address several key-questions about the pathophysiology and genetics of absence epilepsy. In particular, it offers the unique possibility to explore simultaneously the neural circuits involved in the generation of seizures at different levels of integration, using multiscale methodologies, from intracellular recording to functional magnetic resonance imaging. In addition, it has recently allowed to perform proofs of concept for innovative therapeutic strategies such as responsive deep brain stimulation or synchrotron-generated irradiation based radiosurgery.
Collapse
Affiliation(s)
- Antoine Depaulis
- Inserm, U836, F-38000 Grenoble, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; CHU de Grenoble, Hôpital Michallon, F-38000 Grenoble, France.
| | - Olivier David
- Inserm, U836, F-38000 Grenoble, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, F-38000 Grenoble, France
| | - Stéphane Charpier
- Brain and Spine Institute, Pitié-Salpêtrière Hospital, Paris, France; Pierre and Marie Curie University, Paris, France
| |
Collapse
|
15
|
Cortical alterations in a model for absence epilepsy and febrile seizures: in vivo findings in mice carrying a human GABA(A)R gamma2 subunit mutation. Neurobiol Dis 2015; 77:62-70. [PMID: 25731747 DOI: 10.1016/j.nbd.2015.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 01/21/2023] Open
Abstract
Childhood absence epilepsy (CAE) is one of the most common forms of epilepsy among children. The study of a large Australian family demonstrated that a point mutation in the gene encoding the gamma2 subunit of the GABA(A) receptor (G2R43Q) leads to an autosomal dominantly inherited form of CAE and febrile seizures (FS). In a transgenic mouse model carrying the gamma2 (R43Q) mutation heterozygous animals recapitulate the human phenotype. In-vitro experiments indicated that this point mutation impairs cortical inhibition and thus increases the likelihood of seizures. Here, using whole-cell (WC) and extracellular (EC) recordings as well as voltage-sensitive dye imaging (VSDI), we systematically searched for an in vivo correlate of cortical alterations caused by the G2R43Q mutation, as suggested by the mentioned in vitro results. We measured spontaneous and whisker-evoked activity in the primary somatosensory cortex and ventral posteriomedial nucleus of the thalamus (VPM) before and after intraperitoneal injection of the ictogenic substance pentylenetetrazol (PTZ) in urethane-anesthetized G2R43Q mice and controls in a blinded setting. Compared to wildtype controls in G2R43Q mice after PTZ injection we found 1.) Increased cortical spontaneous activity in layer 2/3 and layer 5/6 pyramidal neurons (increased standard deviation of the mean membrane potential in WC recordings), 2.) Increased variance of stimulus evoked cortical responses in VSDI experiments. 3.) The cortical effects are not due to increased strength or precision of thalamic output. In summary our findings support the hypothesis of a cortical pathology in this mouse model of human genetic absence epilepsy. Further study is needed to characterize underlying molecular mechanisms.
Collapse
|
16
|
Gigout S, Louvel J, Rinaldi D, Martin B, Pumain R. Thalamocortical relationships and network synchronization in a new genetic model "in mirror" for absence epilepsy. Brain Res 2013; 1525:39-52. [PMID: 23743261 DOI: 10.1016/j.brainres.2013.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/25/2013] [Accepted: 05/27/2013] [Indexed: 11/19/2022]
Abstract
Electroencephalographic generalized spike and wave discharges (SWD), the hallmark of human absence seizures, are generated in thalamocortical networks. However, the potential alterations in these networks in terms of the efficacy of the reciprocal synaptic activities between the cortex and the thalamus are not known in this pathology. Here, the efficacy of these reciprocal connections is assessed in vitro in thalamocortical slices obtained from BS/Orl mice, which is a new genetic model of absence epilepsy. These mice show spontaneous SWD, and their features can be compared to that of BR/Orl mice, which are free of SWD. In addition, since gap junctions may modulate the efficacy of these connections, their implications in pharmacologically-induced epileptiform discharges were studied in the same slices. The thalamus and neocortex were independently stimulated and the electrically-evoked responses in both structures were recorded from the same slice. The synaptic efficacy of thalamocortical and corticothalamic connections were assessed by measuring the dynamic range of synaptic field potential changes in response to increasing stimulation strengths. The connection efficacy was weaker in epileptic mice however, this decrease in efficacy was more pronounced in thalamocortical afferents, thus introducing an imbalance in the reciprocal connections between the cortex and thalamus. However, short-term facilitation of the thalamocortical responses were increased in epileptic mice compared to non-epileptic animals. These features may favor occurrence of rhythmical activities in thalamocortical networks. In addition, carbenoxolone (a gap junction blocker) decreased the cumulative duration of 4-aminopyridine-induced ictal-like activities, with a slower time course in epileptic mice. However, the 4-aminopyridine-induced GABA-dependent negative potentials, which appeared to trigger the ictal-like activities, remained. Our results show that the balance of the reciprocal connections between the thalamus and cortex is altered in favor of the corticothalamic connections in epileptic mice, and suggest that gap junctions mediate a stronger cortical synchronization in this strain.
Collapse
Affiliation(s)
- Sylvain Gigout
- Epilepsie de l'Enfant et Plasticité Cérébrale, INSERM U 663, Paris, France.
| | | | | | | | | |
Collapse
|
17
|
Chipaux M, Vercueil L, Kaminska A, Mahon S, Charpier S. Persistence of cortical sensory processing during absence seizures in human and an animal model: evidence from EEG and intracellular recordings. PLoS One 2013; 8:e58180. [PMID: 23483991 PMCID: PMC3587418 DOI: 10.1371/journal.pone.0058180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/31/2013] [Indexed: 11/19/2022] Open
Abstract
Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs) in the electroencephalogram (EEG). SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external stimuli. It is largely considered that the paroxysmal synchronizations during the epileptic episode transiently render the thalamocortical system incapable of transmitting primary sensory information to the cortex. Here, we examined in young patients and in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established genetic model of absence epilepsy, how sensory inputs are processed in the related cortical areas during SWDs. In epileptic patients, visual event-related potentials (ERPs) were still present in the occipital EEG when the stimuli were delivered during seizures, with a significant increase in amplitude compared to interictal periods and a decrease in latency compared to that measured from non-epileptic subjects. Using simultaneous in vivo EEG and intracellular recordings from the primary somatosensory cortex of GAERS and non-epileptic rats, we found that ERPs and firing responses of related pyramidal neurons to whisker deflection were not significantly modified during SWDs. However, the intracellular subthreshold synaptic responses in somatosensory cortical neurons during seizures had larger amplitude compared to quiescent situations. These convergent findings from human patients and a rodent genetic model show the persistence of cortical responses to sensory stimulations during SWDs, indicating that the brain can still process external stimuli during absence seizures. They also demonstrate that the disruption of conscious perception during absences is not due to an obliteration of information transfer in the thalamocortical system. The possible mechanisms rendering the cortical operation ineffective for conscious perception are discussed, but their definite elucidation will require further investigations.
Collapse
Affiliation(s)
- Mathilde Chipaux
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- Pediatric Neurosurgery Unit, Fondation Ophtalmologique A. de Rothschild, Paris, France
| | - Laurent Vercueil
- Grenoble Institute of Neurosciences, Centre de Recherche INSERM U 836-UJF-CEA-CHU, Equipe 9, Grenoble, France
| | - Anna Kaminska
- AP-HP, Service d'explorations fonctionnelles, laboratoire de neurophysiologie clinique, Hôpital Necker Enfants Malades, Paris, France
| | - Séverine Mahon
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Charpier
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- UPMC University Paris 06, Paris, France
- * E-mail:
| |
Collapse
|
18
|
T-type calcium channels in burst-firing, network synchrony, and epilepsy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1572-8. [PMID: 22885138 DOI: 10.1016/j.bbamem.2012.07.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/23/2022]
Abstract
Low voltage-activated (LVA) T-type calcium channels are well regarded as a key mechanism underlying the generation of neuronal burst-firing. Their low threshold for activation combined with a rapid and transient calcium conductance generates low-threshold calcium potentials (LTCPs), upon the crest of which high frequency action potentials fire for a brief period. Experiments using simultaneous electroencephalography (EEG) and intracellular recordings demonstrate that neuronal burst-firing is a likely causative component in the generation of normal sleep patterns as well as some pathophysiological conditions, such as epileptic seizures. However, less is known as to how these neuronal bursts impact brain behavior, in particular network synchronization. In this review we summarize recent findings concerning the role of T-type calcium channels in burst-firing and discuss how they likely contribute to the generation of network synchrony. We further outline the function of burst-firing and network synchrony in terms of epileptic seizures. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|