1
|
Yokoo S, Higo T, Gerard-Mercier F, Oguchi M, Sakagami M, Bito H, Sakamoto M, Ichinohe N, Tanaka K. Projection-specific and reversible functional blockage in the association cortex of macaque monkeys. Neurosci Res 2025; 217:104909. [PMID: 40381890 DOI: 10.1016/j.neures.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The functional manipulation techniques based on optogenetics have been widely and effectively utilized in the rodent brain. However, the applications of these techniques to the macaque cerebral cortex, particularly those to the prefrontal cortex, have been limited due to the extensive size and complex functional organization of each prefrontal area. In this study, we developed projection-specific and reversible functional blockade methods applicable to areas of the macaque prefrontal cortex, based on chemogenetic techniques. In chemogenetics, once a pair of viral vectors has been injected into the regions of projection source and target, the projection-specific functional blockage can be initiated through the oral, intravenous, or intramuscular administration of an appropriate pharmaceutical agent. Two methods were developed using two different effector proteins, an inhibitory DREADD, hM4Di, and tetanus toxin, given the substantial discrepancy in the on-off time course of functional blockade between the two. The Cre-DIO system was combined with hM4Di, and the Tet-On system with tetanus toxin. The effectiveness of these methods was evaluated by developing an electrophysiological assay using photic stimulation and field potential recordings.
Collapse
Affiliation(s)
- Seiichirou Yokoo
- Cognitive Brain Mapping Laboratory, RIKEN Center for Brain Science, Japan
| | - Takayasu Higo
- Cognitive Brain Mapping Laboratory, RIKEN Center for Brain Science, Japan; Department of Neuroscience, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | - Haruhiko Bito
- Graduate School of Medicine, The University of Tokyo, Japan
| | - Masayuki Sakamoto
- Graduate School of Medicine, The University of Tokyo, Japan; Graduate School of Biostudies, Kyoto University, Japan
| | - Noritake Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Keiji Tanaka
- Cognitive Brain Mapping Laboratory, RIKEN Center for Brain Science, Japan.
| |
Collapse
|
2
|
Mei C, Magliocca V, Chen X, Massey K, Gonzalez-Cordero A, Gray SJ, Tartaglia M, Bertini ES, Corti S, Compagnucci C. Riboflavin transporter deficiency: AAV9-SLC52A2 gene therapy as a new therapeutic strategy. Front Cell Neurosci 2025; 19:1523773. [PMID: 40134705 PMCID: PMC11933037 DOI: 10.3389/fncel.2025.1523773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Riboflavin transporter deficiency syndrome (RTD) is a rare childhood-onset neurodegenerative disorder caused by mutations in SLC52A2 and SLC52A3 genes, encoding the riboflavin (RF) transporters hRFVT2 and hRFVT3. In the present study we focused on RTD Type 2, which is due to variants in SLC52A2 gene. There is no cure for RTD patients and, although studies have reported clinical improvements with administration of RF, an effective treatment is still unavailable. Here we tested gene augmentation therapy on RTD type 2 patient-derived motoneurons using an adeno-associated viral vector 2/9 (AAV9) carrying the human codon optimized SLC52A2 cDNA. We optimized the in vitro transduction of motoneurons using sialidase treatment. Treated RTD motoneurons showed a significant increase in neurite's length when compared to untreated samples demonstrating that AAV9-SLC52A2 gene therapy can rescue RTD motoneurons. This leads the path towards in vivo studies offering a potential treatment for RTD patients.
Collapse
Affiliation(s)
- Cecilia Mei
- Department of Pathophysiology and Transplantation (DEPT), Università degli studi di Milano, Milan, Italy
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina Magliocca
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Università degli studi di Milano, Milan, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Kraynak M, Willging MM, Uhlrich DJ, Shapiro RA, Flowers MT, Manning KA, John SD, Williams SM, Henjum LJ, Marrah RC, Yohnk HR, Berg CB, Brunner K, Colman RJ, Alexander AL, Abbott DH, Levine JE. Hypothalamic Estrogen Receptor α Is Essential for Female Marmoset Sexual Behavior Without Protecting From Obesity. J Endocr Soc 2025; 9:bvaf012. [PMID: 39911518 PMCID: PMC11795203 DOI: 10.1210/jendso/bvaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Indexed: 02/07/2025] Open
Abstract
Context Estrogen receptor α (ERα) in the ventromedial (VMN) and arcuate (ARC) nuclei of female rodent mediobasal hypothalami (MBHs) provides a crucial molecular gateway facilitating estradiol (E2) regulation of sexual behavior, reproductive neuroendocrinology, and metabolic function. In female nonhuman primates (NHPs) and women, however, its hypothalamic counterpart remains unknown. Objective We hypothesized that knockdown (KD) of ERα expression in the hypothalamic VMN and ARC of female marmosets would diminish sexual receptivity, while simultaneously disrupting gonadotropic and metabolic homeostasis. Methods We ovariectomized (OVX) adult female marmosets of comparable age and weight, immediately replaced E2 at midcycle levels, and approximately 1 month later assigned monkeys to diet-induced obesity (DIO) within group (1) control, receiving scrambled short hairpin RNA (shRNA), or (2) ERαKD, receiving selective ERα gene silencing shRNA. Magnetic resonance imaging-guided neural surgery enabled hypothalamic infusion of viral vector shRNA and subsequent brain immunohistochemistry enabled observer-validated, NIS-elements computer software quantification of ERα knockdown. Results ERα expression was significantly diminished in the VMN and ARC, but not the preoptic area (POA), of ERαKD females coincident with elimination of timely female sexual responses, more than 80% loss of female receptivity, modestly elevated gonadotropin levels, hyperglycemia, and diminished calorie consumption. Density and intensity of ERα-expressing cells in the VMN correlated positively with female sexual receptivity and calorie consumption, negatively with timeliness of female sexual responses, and in the ARC, correlated negatively with calorie consumption. Conclusion ERα activation in the female NHP MBH is critically important for female sexual behavior and modestly contributes to gonadotropic and metabolic control.
Collapse
Affiliation(s)
- Marissa Kraynak
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Molly M Willging
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Robert A Shapiro
- Department of Neuroscience, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Matthew T Flowers
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Sara D John
- Department of Radiology, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Samantha M Williams
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Lukas J Henjum
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Rebecca C Marrah
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Hannah R Yohnk
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Carter B Berg
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Kevin Brunner
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Andrew L Alexander
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Neuroscience, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Chocarro J, Lanciego JL. Adeno-associated viral vectors for modeling Parkinson's disease in non-human primates. Neural Regen Res 2025; 21:01300535-990000000-00683. [PMID: 39885675 PMCID: PMC12094566 DOI: 10.4103/nrr.nrr-d-24-00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/29/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor, but extremely challenging. Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials. While these failures have many possible explanations, it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate. In other words, the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials. However, this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes. Although still facing several limitations, these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy, delineating a more optimistic scenario for the near future.
Collapse
Affiliation(s)
- Julia Chocarro
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - José L. Lanciego
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
5
|
Matsuzaki Y, Fukai Y, Konno A, Hirai H. Optimal different adeno-associated virus capsid/promoter combinations to target specific cell types in the common marmoset cerebral cortex. Mol Ther Methods Clin Dev 2024; 32:101337. [PMID: 39391837 PMCID: PMC11466621 DOI: 10.1016/j.omtm.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
To achieve cell-type-specific gene expression, using target cell-type-tropic different adeno-associated virus (AAV) capsids is advantageous. However, their tropism across brain cell types in nonhuman primates has not been fully elucidated. We assessed the tropism of nine AAV serotype capsids (AAV1, 2, 5, 6, 7, 8, 9, rh10, and DJ) expressing EGFP by chicken β-actin hybrid (CBh) promoter in marmoset cerebral cortical cells. All nine AAV capsid vectors, especially AAV9 and AAVrh10, caused highly neuron-selective EGFP expression. Some AAV capsids, including AAV5, induced EGFP expression to a lesser extent in oligodendrocytes. Different ubiquitous cytomegalovirus (CMV) and CMV early enhancer/chicken β-actin (CAG) promoters exhibited similar neuron-predominant transgene expression. Conversely, all nine AAV capsid vectors with the astrocyte-specific hGFA(ABC1D) promoter selectively expressed EGFP in astrocytes, except AAV5, which modestly expressed EGFP in oligodendrocytes. Oligodendrocyte-specific mouse myelin basic protein (mMBP) promoter in AAV5 vectors expressed EGFP in oligodendrocytes specifically and efficiently. The following are optimal combinations of capsids and promoters for cell-type-specific expression: AAV9 or AAVrh10 and ubiquitous CBh or CMV promoter for neuron-specific transgene expression, AAV2 or AAV7 and hGFA(ABC1D) promoters for astrocyte-specific transgene expression, and AAV5 and mMBP promoters for oligodendrocyte-specific transgene expression.
Collapse
Affiliation(s)
- Yasunori Matsuzaki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Yuuki Fukai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
6
|
Witteveen I, Balmer T. Comparative Analysis of Six Adeno-Associated Viral Vector Serotypes in Mouse Inferior Colliculus and Cerebellum. eNeuro 2024; 11:ENEURO.0391-24.2024. [PMID: 39467650 DOI: 10.1523/eneuro.0391-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Adeno-associated viral vector (AAV) serotypes vary in how effectively they express genes across different cell types and brain regions. Here we report a systematic comparison of the AAV serotypes 1, 2, 5, 8, 9, and the directed evolution derived AAVrg, in the inferior colliculus (IC) and cerebellum. The AAVs were identical apart from their different serotypes, each having a synapsin promotor and expressing GFP (AAV-hSyn-GFP). Identical titers and volumes were injected into the IC and cerebellum of adult male and female mice, and brains were sectioned and imaged 2 weeks later. Transduction efficacy, anterograde labeling of axonal projections, and retrograde labeling of somata were characterized and compared across serotypes. Cell-type tropism was assessed by analyzing the morphology of the GFP-labeled neurons in the cerebellar cortex. In both the cerebellum and IC, AAV1 expressed GFP in more cells, labeled a larger volume, and produced significantly brighter labeling than all other serotypes, indicating superior transgene expression. AAV1 labeled more Purkinje cells, unipolar brush cells, and molecular layer interneurons than the other serotypes, while AAV2 labeled a greater number of granule cells. These results provide guidelines for the use of AAVs as gene delivery tools in these regions.
Collapse
Affiliation(s)
| | - Timothy Balmer
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
7
|
Witteveen I, Balmer T. Comparative analysis of six adeno-associated viral vector serotypes in mouse inferior colliculus and cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618966. [PMID: 39484622 PMCID: PMC11526941 DOI: 10.1101/2024.10.17.618966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adeno-associated viral vector (AAV) serotypes vary in how effectively they express genes across different cell types and brain regions. Here we report a systematic comparison of the AAV serotypes 1, 2, 5, 8, 9, and the directed evolution derived AAVrg, in the inferior colliculus and cerebellum. The AAVs were identical apart from their different serotypes, each having a synapsin promotor and expressing GFP (AAV-hSyn-GFP). Identical titers and volumes were injected into the inferior colliculus and cerebellum of adult male and female mice and brains were sectioned and imaged 2 weeks later. Transduction efficacy, anterograde labeling of axonal projections, and retrograde labeling of somata, were characterized and compared across serotypes. Cell-type tropism was assessed by analyzing the morphology of the GFP-labeled neurons in the cerebellar cortex. In both the cerebellum and inferior colliculus, AAV1 expressed GFP in more cells, labeled a larger volume, and produced significantly brighter labeling than all other serotypes, indicating superior transgene expression. AAV1 labeled more Purkinje cells, unipolar brush cells, and molecular layer interneurons than the other serotypes, while AAV2 labeled a greater number of granule cells. These results provide guidelines for the use of AAVs as gene delivery tools in these regions.
Collapse
Affiliation(s)
- Isabelle Witteveen
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Timothy Balmer
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
8
|
Liang D, Labrakakis C. Multiple Posterior Insula Projections to the Brainstem Descending Pain Modulatory System. Int J Mol Sci 2024; 25:9185. [PMID: 39273133 PMCID: PMC11395413 DOI: 10.3390/ijms25179185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The insular cortex is an important hub for sensory and emotional integration. It is one of the areas consistently found activated during pain. While the insular's connections to the limbic system might play a role in the aversive and emotional component of pain, its connections to the descending pain system might be involved in pain intensity coding. Here, we used anterograde tracing with viral expression of mCherry fluorescent protein, to examine the connectivity of insular axons to different brainstem nuclei involved in the descending modulation of pain in detail. We found extensive connections to the main areas of descending pain control, namely, the periaqueductal gray (PAG) and the raphe magnus (RMg). In addition, we also identified an extensive insular connection to the parabrachial nucleus (PBN). Although not as extensive, we found a consistent axonal input from the insula to different noradrenergic nuclei, the locus coeruleus (LC), the subcoereuleus (SubCD) and the A5 nucleus. These connections emphasize a prominent relation of the insula with the descending pain modulatory system, which reveals an important role of the insula in pain processing through descending pathways.
Collapse
Affiliation(s)
- Despoina Liang
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Rico AJ, Corcho A, Chocarro J, Ariznabarreta G, Roda E, Honrubia A, Arnaiz P, Lanciego JL. Development and characterization of a non-human primate model of disseminated synucleinopathy. Front Neuroanat 2024; 18:1355940. [PMID: 38601798 PMCID: PMC11004326 DOI: 10.3389/fnana.2024.1355940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The presence of a widespread cortical synucleinopathy is the main neuropathological hallmark underlying clinical entities such as Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB). There currently is a pressing need for the development of non-human primate (NHPs) models of PDD and DLB to further overcome existing limitations in drug discovery. Methods Here we took advantage of a retrogradely-spreading adeno-associated viral vector serotype 9 coding for the alpha-synuclein A53T mutated gene (AAV9-SynA53T) to induce a widespread synucleinopathy of cortical and subcortical territories innervating the putamen. Four weeks post-AAV deliveries animals were sacrificed and a comprehensive biodistribution study was conducted, comprising the quantification of neurons expressing alpha-synuclein, rostrocaudal distribution and their specific location. Results Intraputaminal deliveries of AAV9-SynA53T lead to a disseminated synucleinopathy throughout ipsi- and contralateral cerebral cortices, together with transduced neurons located in the ipsilateral caudal intralaminar nuclei and in the substantia nigra pars compacta (leading to thalamostriatal and nigrostriatal projections, respectively). Cortical afferent systems were found to be the main contributors to putaminal afferents (superior frontal and precentral gyri in particular). Discussion Obtained data extends current models of synucleinopathies in NHPs, providing a reproducible platform enabling the adequate implementation of end-stage preclinical screening of new drugs targeting alpha-synuclein.
Collapse
Affiliation(s)
- Alberto J. Rico
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Almudena Corcho
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Julia Chocarro
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Goiaz Ariznabarreta
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Elvira Roda
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Adriana Honrubia
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Patricia Arnaiz
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - José L. Lanciego
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed-ISCIII), Madrid, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
10
|
Chen X, Dong T, Hu Y, De Pace R, Mattera R, Eberhardt K, Ziegler M, Pirovolakis T, Sahin M, Bonifacino JS, Ebrahimi-Fakhari D, Gray SJ. Intrathecal AAV9/AP4M1 gene therapy for hereditary spastic paraplegia 50 shows safety and efficacy in preclinical studies. J Clin Invest 2023; 133:e164575. [PMID: 36951961 PMCID: PMC10178841 DOI: 10.1172/jci164575] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Spastic paraplegia 50 (SPG50) is an ultrarare childhood-onset neurological disorder caused by biallelic loss-of-function variants in the AP4M1 gene. SPG50 is characterized by progressive spastic paraplegia, global developmental delay, and subsequent intellectual disability, secondary microcephaly, and epilepsy. We preformed preclinical studies evaluating an adeno-associated virus (AAV)/AP4M1 gene therapy for SPG50 and describe in vitro studies that demonstrate transduction of patient-derived fibroblasts with AAV2/AP4M1, resulting in phenotypic rescue. To evaluate efficacy in vivo, Ap4m1-KO mice were intrathecally (i.t.) injected with 5 × 1011, 2.5 × 1011, or 1.25 × 1011 vector genome (vg) doses of AAV9/AP4M1 at P7-P10 or P90. Age- and dose-dependent effects were observed, with early intervention and higher doses achieving the best therapeutic benefits. In parallel, three toxicology studies in WT mice, rats, and nonhuman primates (NHPs) demonstrated that AAV9/AP4M1 had an acceptable safety profile up to a target human dose of 1 × 1015 vg. Of note, similar degrees of minimal-to-mild dorsal root ganglia (DRG) toxicity were observed in both rats and NHPs, supporting the use of rats to monitor DRG toxicity in future i.t. AAV studies. These preclinical results identify an acceptably safe and efficacious dose of i.t.-administered AAV9/AP4M1, supporting an investigational gene transfer clinical trial to treat SPG50.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Dong
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yuhui Hu
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kathrin Eberhardt
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marvin Ziegler
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mustafa Sahin
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven J. Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Sinopoulou E, Rosenzweig ES, Conner JM, Gibbs D, Weinholtz CA, Weber JL, Brock JH, Nout-Lomas YS, Royz E, Takashima Y, Biane JS, Kumamaru H, Havton LA, Beattie MS, Bresnahan JC, Tuszynski MH. Rhesus macaque versus rat divergence in the corticospinal projectome. Neuron 2022; 110:2970-2983.e4. [PMID: 35917818 PMCID: PMC9509478 DOI: 10.1016/j.neuron.2022.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/14/2022] [Accepted: 07/06/2022] [Indexed: 01/14/2023]
Abstract
We used viral intersectional tools to map the entire projectome of corticospinal neurons associated with fine distal forelimb control in Fischer 344 rats and rhesus macaques. In rats, we found an extraordinarily diverse set of collateral projections from corticospinal neurons to 23 different brain and spinal regions. Remarkably, the vast weighting of this "motor" projection was to sensory systems in both the brain and spinal cord, confirmed by optogenetic and transsynaptic viral intersectional tools. In contrast, rhesus macaques exhibited far heavier and narrower weighting of corticospinal outputs toward spinal and brainstem motor systems. Thus, corticospinal systems in macaques primarily constitute a final output system for fine motor control, whereas this projection in rats exerts a multi-modal integrative role that accesses far broader CNS regions. Unique structural-functional correlations can be achieved by mapping and quantifying a single neuronal system's total axonal output and its relative weighting across CNS targets.
Collapse
Affiliation(s)
- Eleni Sinopoulou
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ephron S Rosenzweig
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - James M Conner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Gibbs
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Chase A Weinholtz
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Janet L Weber
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - John H Brock
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Administration Medical Center, La Jolla, CA, USA
| | - Yvette S Nout-Lomas
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Eric Royz
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Yoshio Takashima
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jeremy S Biane
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Hiromi Kumamaru
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Leif A Havton
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Veterans Administration Medical Center, Bronx, NY, USA
| | - Michael S Beattie
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | | | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Administration Medical Center, La Jolla, CA, USA.
| |
Collapse
|
12
|
Oguchi M, Sakagami M. Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain-A Review. Front Neurosci 2022; 16:917407. [PMID: 35677354 PMCID: PMC9168219 DOI: 10.3389/fnins.2022.917407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways. To systematically dissect neural circuits responsible for a variety of functions, it is essential to analyze changes in behavior and neural activity through interventions in specific neural pathways. In recent years, an increasing number of studies have applied optogenetics and chemogenetics to achieve fine-grained pathway-selective manipulation in the macaque brain. Here, we review the developments in macaque studies involving pathway-selective operations, with a particular focus on applications to the prefrontal network. Pathway selectivity can be achieved using single viral vector transduction combined with local light stimulation or ligand administration directly into the brain or double-viral vector transduction combined with systemic drug administration. We discuss the advantages and disadvantages of these methods. We also highlight recent technological developments in viral vectors that can effectively infect the macaque brain, as well as the development of methods to deliver photostimulation or ligand drugs to a wide area to effectively manipulate behavior. The development and dissemination of such pathway-selective manipulations of macaque prefrontal networks will enable us to efficiently dissect the neural mechanisms of decision-making and innovate novel treatments for decision-related psychiatric disorders.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | |
Collapse
|
13
|
A Conditioned Place Preference for Heroin Is Signaled by Increased Dopamine and Direct Pathway Activity and Decreased Indirect Pathway Activity in the Nucleus Accumbens. J Neurosci 2022; 42:2011-2024. [PMID: 35031576 PMCID: PMC8916759 DOI: 10.1523/jneurosci.1451-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
Repeated pairing of a drug with a neutral stimulus, such as a cue or context, leads to the attribution of the drug's reinforcing properties to that stimulus, and exposure to that stimulus in the absence of the drug can elicit drug-seeking. A principal role for the NAc in the response to drug-associated stimuli has been well documented. Direct and indirect pathway medium spiny neurons (dMSNs and iMSNs) have been shown to bidirectionally regulate cue-induced heroin-seeking in rats expressing addiction-like phenotypes, and a shift in NAc activity toward the direct pathway has been shown in mice following cocaine conditioned place preference (CPP). However, how NAc signaling guides heroin CPP, and whether heroin alters the balance of signaling between dMSNs and iMSNs, remains unknown. Moreover, the role of NAc dopamine signaling in heroin reinforcement is unclear. Here, we integrate fiber photometry for in vivo monitoring of dopamine and dMSN/iMSN calcium activity with a heroin CPP procedure in rats to begin to address these questions. We identify a sensitization-like response to heroin in the NAc, with prominent iMSN activity during initial heroin exposure and prominent dMSN activity following repeated heroin exposure. We demonstrate a ramp in dopamine activity, dMSN activation, and iMSN inactivation preceding entry into a heroin-paired context, and a decrease in dopamine activity, dMSN inactivation, and iMSN activation preceding exit from a heroin-paired context. Finally, we show that buprenorphine is sufficient to prevent the development of heroin CPP and reduce Fos activation in the NAc after conditioning. Together, these data support the hypothesis that an imbalance in NAc activity contributes to the development of drug-cue associations that can drive addiction processes.SIGNIFICANCE STATEMENT The attribution of the reinforcing effects of drugs to neutral stimuli (e.g., cues and contexts) contributes to the long-standing nature of addiction, as re-exposure to drug-associated stimuli can reinstate drug-seeking and -taking even after long periods of abstinence. The NAc has an established role in encoding the value of drug-associated stimuli, and dopamine release into the NAc is known to modulate the reinforcing effects of drugs, including heroin. Using fiber photometry, we show that entering a heroin-paired context is driven by dopamine signaling and NAc direct pathway activation, whereas exiting a heroin-paired context is driven by NAc indirect pathway activation. This study provides further insight into the role of NAc microcircuitry in encoding the reinforcing properties of heroin.
Collapse
|
14
|
Chen X, Dong T, Hu Y, Shaffo FC, Belur NR, Mazzulli JR, Gray SJ. AAV9/MFSD8 gene therapy is effective in preclinical models of neuronal ceroid lipofuscinosis type 7 disease. J Clin Invest 2022; 132:e146286. [PMID: 35025759 PMCID: PMC8884910 DOI: 10.1172/jci146286] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinosis type 7 (CLN7) disease is a lysosomal storage disease caused by mutations in the facilitator superfamily domain containing 8 (MFSD8) gene, which encodes a membrane-bound lysosomal protein, MFSD8. To test the effectiveness and safety of adeno-associated viral (AAV) gene therapy, an in vitro study demonstrated that AAV2/MFSD8 dose dependently rescued lysosomal function in fibroblasts from a CLN7 patient. An in vivo efficacy study using intrathecal administration of AAV9/MFSD8 to Mfsd8- /- mice at P7-P10 or P120 with high or low dose led to clear age- and dose-dependent effects. A high dose of AAV9/MFSD8 at P7-P10 resulted in widespread MFSD8 mRNA expression, tendency of amelioration of subunit c of mitochondrial ATP synthase accumulation and glial fibrillary acidic protein immunoreactivity, normalization of impaired behaviors, doubled median life span, and extended normal body weight gain. In vivo safety studies in rodents concluded that intrathecal administration of AAV9/MFSD8 was safe and well tolerated. In summary, these results demonstrated that the AAV9/MFSD8 vector is both effective and safe in preclinical models.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Thomas Dong
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Yuhui Hu
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Frances C. Shaffo
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Nandkishore R. Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joseph R. Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Fortino TA, Randelman ML, Hall AA, Singh J, Bloom DC, Engel E, Hoh DJ, Hou S, Zholudeva LV, Lane MA. Transneuronal tracing to map connectivity in injured and transplanted spinal networks. Exp Neurol 2022; 351:113990. [DOI: 10.1016/j.expneurol.2022.113990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
|
16
|
Wang J, Zhang L. Retrograde Axonal Transport Property of Adeno-Associated Virus and Its Possible Application in Future. Microbes Infect 2021; 23:104829. [PMID: 33878458 DOI: 10.1016/j.micinf.2021.104829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
Gene therapy has become a treatment method for many diseases. Adeno-associated virus (AAV) is one of the most common virus vectors, is also widely used in the gene therapy field. During the past 2 decades, the retrograde axonal transportability of AAV has been discovered and utilized. Many studies have worked on the retrograde axonal transportability of AAV, and more and more people are interested in this field. This review described the current application, influence factors, and mechanism of retrograde axonal transportability of AAV and predicted its potential use in disease treatment in near future.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Gastroenterology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Liqin Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Dongcheng Qu, Beijing, 100730, China.
| |
Collapse
|
17
|
A comparison of AAV-vector production methods for gene therapy and preclinical assessment. Sci Rep 2020; 10:21532. [PMID: 33299011 PMCID: PMC7726153 DOI: 10.1038/s41598-020-78521-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Adeno Associated Virus (AAV)-mediated gene expression in the brain is widely applied in the preclinical setting to investigate the therapeutic potential of specific molecular targets, characterize various cellular functions, and model central nervous system (CNS) diseases. In therapeutic applications in the clinical setting, gene therapy offers several advantages over traditional pharmacological based therapies, including the ability to directly manipulate disease mechanisms, selectively target disease-afflicted regions, and achieve long-term therapeutic protein expression in the absence of repeated administration of pharmacological agents. Next to the gold-standard iodixanol-based AAV vector production, we recently published a protocol for AAV production based on chloroform-precipitation, which allows for fast in-house production of small quantities of AAV vector without the need for specialized equipment. To validate our recent protocol, we present here a direct side-by-side comparison between vectors produced with either method in a series of in vitro and in vivo assays with a focus on transgene expression, cell loss, and neuroinflammatory responses in the brain. We do not find differences in transduction efficiency nor in any other parameter in our in vivo and in vitro panel of assessment. These results suggest that our novel protocol enables most standardly equipped laboratories to produce small batches of high quality and high titer AAV vectors for their experimental needs.
Collapse
|
18
|
Albaugh DL, Smith Y, Galvan A. Comparative analyses of transgene expression patterns after intra-striatal injections of rAAV2-retro in rats and rhesus monkeys: A light and electron microscopic study. Eur J Neurosci 2020; 52:4824-4839. [PMID: 33113247 PMCID: PMC7902345 DOI: 10.1111/ejn.15027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Retrogradely-transducing viral vectors are versatile tools for anatomical and functional interrogations of neural circuits. These vectors can be applied in nonhuman primates (NHPs), powerful model species for neuroscientific studies with limited genetic tractability, but limited data are available regarding the tropism and transgene expression patterns of such viruses after injections in NHP brains. Consequently, NHP researchers must often rely on related data available from other species for experimental planning. To evaluate the suitability of rAAV2-retro in the NHP basal ganglia, we studied the transgene expression patterns at the light and electron microscope level after injections of rAAV2-retro vector encoding the opsin Jaws conjugated to a green fluorescent protein (GFP) in the putamen of rhesus macaques. For inter-species comparison, we injected the same vector in the rat dorsal striatum. In both species, GFP expression was observed in numerous cortical and subcortical regions with known striatal projections. However, important inter-species differences in pathway transduction were seen, including labeling of the intralaminar thalamostriatal projection in rats, but not monkeys. Electron microscopic ultrastructural observations within the basal ganglia revealed GFP labeling in both postsynaptic dendrites and presynaptic axonal terminals; the latter likely derived from anterograde transgene transport in neurons that project to the striatum, and from collaterals of these neurons. Our results suggest that certain neural pathways may be refractory to transduction by retrograde vectors in a species-specific manner, highlighting the need for caution when determining the suitability of a retrograde vector for NHP studies based solely on rodent data.
Collapse
Affiliation(s)
- Daniel L Albaugh
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Udall Center of Excellence for Parkinson's Disease Research, Atlanta, GA, USA
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Udall Center of Excellence for Parkinson's Disease Research, Atlanta, GA, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Udall Center of Excellence for Parkinson's Disease Research, Atlanta, GA, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Chen X, Snanoudj-Verber S, Pollard L, Hu Y, Cathey SS, Tikkanen R, Gray SJ. Pre-clinical Gene Therapy with AAV9/AGA in Aspartylglucosaminuria Mice Provides Evidence for Clinical Translation. Mol Ther 2020; 29:989-1000. [PMID: 33186692 PMCID: PMC7934581 DOI: 10.1016/j.ymthe.2020.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal storage disease caused by loss of the enzyme aspartylglucosaminidase (AGA), resulting in AGA substrate accumulation. AGU patients have a slow but progressive neurodegenerative disease course, for which there is no approved disease-modifying treatment. In this study, AAV9/AGA was administered to Aga−/− mice intravenously (i.v.) or intrathecally (i.t.), at a range of doses, either before or after disease pathology begins. At either treatment age, AAV9/AGA administration led to (1) dose dependently increased and sustained AGA activity in body fluids and tissues; (2) rapid, sustained, and dose-dependent elimination of AGA substrate in body fluids; (3) significantly rescued locomotor activity; (4) dose-dependent preservation of Purkinje neurons in the cerebellum; and (5) significantly reduced gliosis in the brain. Treated mice had no abnormal neurological phenotype and maintained body weight throughout the whole experiment to 18 months old. In summary, these results demonstrate that treatment of Aga−/− mice with AAV9/AGA is effective and safe, providing strong evidence that AAV9/AGA gene therapy should be considered for human translation. Further, we provide a direct comparison of the efficacy of an i.v. versus i.t. approach using AAV9, which should greatly inform the development of similar treatments for other related lysosomal storage diseases.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA
| | | | | | - Yuhui Hu
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA
| | | | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Steven J Gray
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Cushnie AK, El-Nahal HG, Bohlen MO, May PJ, Basso MA, Grimaldi P, Wang MZ, de Velasco Ezequiel MF, Sommer MA, Heilbronner SR. Using rAAV2-retro in rhesus macaques: Promise and caveats for circuit manipulation. J Neurosci Methods 2020; 345:108859. [PMID: 32668316 PMCID: PMC7539563 DOI: 10.1016/j.jneumeth.2020.108859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs. NEW METHOD: rAAV2-retro, a popular new capsid variant, produces robust retrograde labeling in rodents. Whether rAAV2-retro's highly efficient retrograde transport would translate to NHPs was unknown. Here, we characterized the anatomical distribution of labeling following injections of rAAV2-retro encoding opsins or DREADDs in the cortico-basal ganglia and oculomotor circuits of rhesus macaques. RESULTS rAAV2-retro injections in striatum, frontal eye field, and superior colliculus produced local labeling at injection sites and robust retrograde labeling in many afferent regions. In every case, however, a few brain regions with well-established projections to the injected structure lacked retrogradely labeled cells. We also observed robust terminal field labeling in downstream structures. COMPARISON WITH EXISTING METHOD(S) Patterns of labeling were similar to those obtained with traditional tract-tracers, except for some afferent labeling that was noticeably absent. CONCLUSIONS rAAV2-retro promises to be useful for circuit manipulation via retrograde transduction in NHPs, but caveats were revealed by our findings. Some afferently connected regions lacked retrogradely labeled cells, showed robust axon terminal labeling, or both. This highlights the importance of anatomically characterizing rAAV2-retro's expression in target circuits in NHPs before moving to manipulation studies.
Collapse
Affiliation(s)
- Adriana K Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, 39216, United States
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Piercesare Grimaldi
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Maya Zhe Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
21
|
Sano H, Kobayashi K, Yoshioka N, Takebayashi H, Nambu A. Retrograde gene transfer into neural pathways mediated by adeno-associated virus (AAV)-AAV receptor interaction. J Neurosci Methods 2020; 345:108887. [DOI: 10.1016/j.jneumeth.2020.108887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
|
22
|
Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex. Nat Commun 2020; 11:3253. [PMID: 32591505 PMCID: PMC7319997 DOI: 10.1038/s41467-020-16883-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Optogenetics has become an indispensable tool for investigating brain functions. Although non-human primates are particularly useful models for understanding the functions and dysfunctions of the human brain, application of optogenetics to non-human primates is still limited. In the present study, we generate an effective adeno-associated viral vector serotype DJ to express channelrhodopsin-2 (ChR2) under the control of a strong ubiquitous CAG promoter and inject into the somatotopically identified forelimb region of the primary motor cortex in macaque monkeys. ChR2 is strongly expressed around the injection sites, and optogenetic intracortical microstimulation (oICMS) through a homemade optrode induces prominent cortical activity: Even single-pulse, short-duration oICMS evokes long-lasting repetitive firings of cortical neurons. In addition, oICMS elicits distinct forelimb movements and muscle activity, which are comparable to those elicited by conventional electrical ICMS. The present study removes obstacles to optogenetic manipulation of neuronal activity and behaviors in non-human primates. Non-human primates are useful models for understanding the human brain but application of optogenetics to non-human primates is challenging. The authors used optogenetic intracortical microstimulation in the primary motor cortex of macaques to elicit distinct forelimb movements and muscle activity.
Collapse
|
23
|
Haggerty DL, Grecco GG, Reeves KC, Atwood B. Adeno-Associated Viral Vectors in Neuroscience Research. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:69-82. [PMID: 31890742 PMCID: PMC6931098 DOI: 10.1016/j.omtm.2019.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adeno-associated viral vectors (AAVs) are increasingly useful preclinical tools in neuroscience research studies for interrogating cellular and neurocircuit functions and mapping brain connectivity. Clinically, AAVs are showing increasing promise as viable candidates for treating multiple neurological diseases. Here, we briefly review the utility of AAVs in mapping neurocircuits, manipulating neuronal function and gene expression, and activity labeling in preclinical research studies as well as AAV-based gene therapies for diseases of the nervous system. This review highlights the vast potential that AAVs have for transformative research and therapeutics in the neurosciences.
Collapse
Affiliation(s)
- David L. Haggerty
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gregory G. Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kaitlin C. Reeves
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brady Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
- Corresponding author: Brady Atwood, PhD, Department of Pharmacology & Toxicology, Indiana University School of Medicine, 320 West 15th Street, NB-400C, Indianapolis, IN 46202, USA.
| |
Collapse
|
24
|
Haery L, Deverman BE, Matho KS, Cetin A, Woodard K, Cepko C, Guerin KI, Rego MA, Ersing I, Bachle SM, Kamens J, Fan M. Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation. Front Neuroanat 2019; 13:93. [PMID: 31849618 PMCID: PMC6902037 DOI: 10.3389/fnana.2019.00093] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed.
Collapse
Affiliation(s)
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Kenton Woodard
- Penn Vector Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Connie Cepko
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Chai Z, Zhang X, Dobbins AL, Rigsbee KM, Wang B, Samulski RJ, Li C. Optimization of Dexamethasone Administration for Maintaining Global Transduction Efficacy of Adeno-Associated Virus Serotype 9. Hum Gene Ther 2019; 30:829-840. [PMID: 30700148 DOI: 10.1089/hum.2018.233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids have been commonly used in clinic for their anti-inflammatory and immunosuppressive effects, and it has been proposed that they be used to prevent liver toxicity when systemic administration of adeno-associated virus (AAV) vectors is needed in patients with central nervous system diseases and muscular disorders. Glucocorticoids also enable modulation of vascular permeability. First, this study investigated the impact of dexamethasone on AAV vascular permeability after systemic injection. When a low dose of AAV9 was injected into mice treated with dexamethasone, global transduction and vector biodistribution were not significantly different in most tissues, other than the liver and the heart, when compared to control mice. When AAV9 vectors were used at a high dose, both the transgene expression and the AAV vector genome copy number were significantly decreased in the majority of murine tissues. However, no effect on global transduction was observed when dexamethasone was administered 2 h after AAV vector injection. The study on the kinetics of AAV virus clearance demonstrated that dexamethasone slowed down the clearance of AAV9 in the blood after systemic application. The mechanism study showed that dexamethasone inhibited the enhancement of AAV9 vascular permeability mediated by serum proteins. The findings indicate that dexamethasone is able to inhibit the vascular permeability of AAV and compromise the therapeutic effect after systemic administration of AAV vector. In conclusion, this study provides valuable information for the design of future clinical studies when glucocorticoids are needed to be compatible with the systemic administration of AAV vectors in patients with central nervous system and muscular diseases.
Collapse
Affiliation(s)
- Zheng Chai
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xintao Zhang
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amanda Lee Dobbins
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kelly Michelle Rigsbee
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bing Wang
- 2Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard Jude Samulski
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,3Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chengwen Li
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,4Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,5Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
|
27
|
Blessing D, Vachey G, Pythoud C, Rey M, Padrun V, Wurm FM, Schneider BL, Déglon N. Scalable Production of AAV Vectors in Orbitally Shaken HEK293 Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:14-26. [PMID: 30591923 PMCID: PMC6305802 DOI: 10.1016/j.omtm.2018.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/16/2018] [Indexed: 01/30/2023]
Abstract
Adeno-associated virus (AAV) vectors are currently among the most commonly applied for in vivo gene therapy approaches. The evaluation of vectors during clinical development requires the production of considerable amounts of highly pure and potent vectors. Here, we set up a scalable process for AAV production, using orbitally shaken bioreactors and a fully characterized suspension-adapted cell line, HEKExpress. We conducted a proof-of-concept production of AAV2/8 and AAV2/9 vectors using HEKExpress cells. Furthermore, we compared the production of AAV2/9 vectors using this suspension cell line to classical protocols based on adherent HEK293 cells to demonstrate bioequivalence in vitro and in vivo. Following upstream processing, we purified vectors via gradient centrifugation and immunoaffinity chromatography. The in vitro characterization revealed differences due to the purification method, as well as the transfection protocol and the corresponding HEK293 cell line. The purification method and cell line used also affected in vivo transduction efficiency after bilateral injection of AAV2/9 vectors expressing a GFP reporter fused with a nuclear localization signal (AAV2/9-CBA-nlsGFP) into the striatum of adult mice. These results show that AAV vectors deriving from suspension HEKExpress cells are bioequivalent and may exhibit higher potency than vectors produced with adherent HEK293 cells.
Collapse
Affiliation(s)
- Daniel Blessing
- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neurosciences Research Center (CRN), Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Gabriel Vachey
- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neurosciences Research Center (CRN), Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Catherine Pythoud
- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neurosciences Research Center (CRN), Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Maria Rey
- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neurosciences Research Center (CRN), Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Vivianne Padrun
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florian M. Wurm
- ExcellGene SA, 1870 Monthey, Switzerland
- Faculty of Life Science, Ecole Polytechnique Fédérale de Lausanne (EFPL), 1015 Lausanne, Switzerland
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author: Bernard Schneider, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neurosciences Research Center (CRN), Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital, 1011 Lausanne, Switzerland
- Corresponding author: Nicole Déglon, Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital (CHUV), Avenue de Beaumont, Pavillon 3, 1011 Lausanne, Switzerland.
| |
Collapse
|
28
|
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17:641-659. [DOI: 10.1038/nrd.2018.110] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Munoz F, Aurup C, Konofagou EE, Ferrera VP. Modulation of Brain Function and Behavior by Focused Ultrasound. Curr Behav Neurosci Rep 2018; 5:153-164. [PMID: 30393592 PMCID: PMC6208352 DOI: 10.1007/s40473-018-0156-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The past decade has seen rapid growth in the application of focused ultrasound (FUS) as a tool for basic neuroscience research and potential treatment of brain disorders. Here, we review recent developments in our understanding of how FUS can alter brain activity, perception and behavior when applied to the central nervous system, either alone or in combination with circulating agents. RECENT FINDINGS Focused ultrasound in the central nervous system can directly excite or inhibit neuronal activity, as well as affect perception and behavior. Combining FUS with intravenous microbubbles to open the blood-brain barrier also affects neural activity and behavior, and the effects may be more sustained than FUS alone. Opening the BBB also allows delivery of drugs that do not cross the intact BBB including viral vectors for gene delivery. SUMMARY While further research is needed to elucidate the biophysical mechanisms, focused ultrasound, alone or in combination with other factors, is rapidly maturing as an effective technology for altering brain activity. Future challenges include refining control over targeting specificity, the volume of affected tissue, cell-type specificity (excitatory or inhibitory), and the duration of neural and behavioral effects.
Collapse
Affiliation(s)
- Fabian Munoz
- Department of Neuroscience, Columbia University, New York, NY, 10027 USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027 USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, 10027 USA
| | - Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027 USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027 USA
- Department of Radiology, Columbia University, New York, NY, 10027 USA
| | - Vincent P Ferrera
- Department of Neuroscience, Columbia University, New York, NY, 10027 USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027 USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, 10027 USA
- Department of Psychiatry, Columbia University, New York, NY, 10027 USA
| |
Collapse
|
30
|
Locally induced neuronal synchrony precisely propagates to specific cortical areas without rhythm distortion. Sci Rep 2018; 8:7678. [PMID: 29769630 PMCID: PMC5956081 DOI: 10.1038/s41598-018-26054-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/03/2018] [Indexed: 11/26/2022] Open
Abstract
Propagation of oscillatory spike firing activity at specific frequencies plays an important role in distributed cortical networks. However, there is limited evidence for how such frequency-specific signals are induced or how the signal spectra of the propagating signals are modulated during across-layer (radial) and inter-areal (tangential) neuronal interactions. To directly evaluate the direction specificity of spectral changes in a spiking cortical network, we selectively photostimulated infragranular excitatory neurons in the rat primary visual cortex (V1) at a supra-threshold level with various frequencies, and recorded local field potentials (LFPs) at the infragranular stimulation site, the cortical surface site immediately above the stimulation site in V1, and cortical surface sites outside V1. We found a significant reduction of LFP powers during radial propagation, especially at high-frequency stimulation conditions. Moreover, low-gamma-band dominant rhythms were transiently induced during radial propagation. Contrastingly, inter-areal LFP propagation, directed to specific cortical sites, accompanied no significant signal reduction nor gamma-band power induction. We propose an anisotropic mechanism for signal processing in the spiking cortical network, in which the neuronal rhythms are locally induced/modulated along the radial direction, and then propagate without distortion via intrinsic horizontal connections for spatiotemporally precise, inter-areal communication.
Collapse
|
31
|
Keplinger S, Beiderbeck B, Michalakis S, Biel M, Grothe B, Kunz L. Optogenetic Control of Neural Circuits in the Mongolian Gerbil. Front Cell Neurosci 2018; 12:111. [PMID: 29740286 PMCID: PMC5928259 DOI: 10.3389/fncel.2018.00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
The Mongolian gerbil (Meriones unguiculatus) is widely used as a model organism for the human auditory system. Its hearing range is very similar to ours and it uses the same mechanisms for sound localization. The auditory circuits underlying these functions have been characterized. However, important mechanistic details are still under debate. To elucidate these issues, precise and reversible optogenetic manipulation of neuronal activity in this complex circuitry is required. However, genetic and genomic resources for the Mongolian gerbil are poorly developed. Here, we demonstrate a reliable gene delivery system using an AAV8(Y337F)-pseudotyped recombinant adeno-associated virus (AAV) 2-based vector in which the pan-neural human synapsin (hSyn) promoter drives neuron-specific expression of CatCH (Ca2+-permeable channelrhodopsin) or NpHR3.0 (Natronomonas pharaonis halorhodopsin). After stereotactic injection into the gerbil’s auditory brainstem (medial nucleus of the trapezoid body, dorsal nucleus of the lateral lemniscus) and midbrain [inferior colliculus (IC)], we characterized CatCH- and/or NpHR3.0-transduced neurons in acute brain slices by means of whole-cell patch-clamp recordings. As the response properties of optogenetic tools strongly depend on neuronal biophysics, this parameterization is crucial for their in vivo application. In a proof-of-principle experiment in anesthetized gerbils, we observed strong suppression of sound-evoked neural responses in the dorsal nucleus of the lateral lemniscus (DNLL) and IC upon light activation of NpHR3.0. The successful validation of gene delivery and optogenetic tools in the Mongolian gerbil paves the way for future studies of the auditory circuits in this model system.
Collapse
Affiliation(s)
- Stefan Keplinger
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| | - Barbara Beiderbeck
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, GSN-LMU, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy, Center for Drug Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy, Center for Drug Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lars Kunz
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
32
|
O'Shea DJ, Kalanithi P, Ferenczi EA, Hsueh B, Chandrasekaran C, Goo W, Diester I, Ramakrishnan C, Kaufman MT, Ryu SI, Yeom KW, Deisseroth K, Shenoy KV. Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys. Sci Rep 2018; 8:6775. [PMID: 29712920 PMCID: PMC5928036 DOI: 10.1038/s41598-018-24362-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the common squirrel monkey Saimiri sciureus. We observed opsin expression around the local injection site and in axonal projections to downstream regions, as well as transduction to thalamic neurons, resembling expression patterns observed in macaques. Optical stimulation drove strong, reliable excitatory responses in local neural populations for two depolarizing opsins in anesthetized monkeys. Finally, we observed continued, healthy opsin expression for at least one year. These data suggest that optogenetic tools can be readily applied in squirrel monkeys, an important first step in enabling precise, targeted manipulation of neural circuits in these highly trainable, cognitively sophisticated animals. In conjunction with similar approaches in macaques and marmosets, optogenetic manipulation of neural circuits in squirrel monkeys will provide functional, comparative insights into neural circuits which subserve dextrous motor control as well as other adaptive behaviors across the primate lineage. Additionally, development of these tools in squirrel monkeys, a well-established model system for several human neurological diseases, can aid in identifying novel treatment strategies.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Paul Kalanithi
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Werapong Goo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ilka Diester
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Otophysiologie, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Matthew T Kaufman
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Endo K, Ishigaki S, Masamizu Y, Fujioka Y, Watakabe A, Yamamori T, Hatanaka N, Nambu A, Okado H, Katsuno M, Watanabe H, Matsuzaki M, Sobue G. Silencing of FUS in the common marmoset (Callithrix jacchus) brain via stereotaxic injection of an adeno-associated virus encoding shRNA. Neurosci Res 2017; 130:56-64. [PMID: 28842245 DOI: 10.1016/j.neures.2017.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Fused in sarcoma (FUS) is an RNA binding protein that is involved in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). To establish the common marmoset (Callithrix jacchus) as a model for FTLD, we generated a stereotaxic injection-based marmoset model of FUS-silencing. We designed shRNAs against the marmoset FUS gene and generated an AAV9 virus encoding the most effective shRNA against FUS (shFUS). The AAV encoding shFUS (AAV-shFUS) was introduced into the frontal cortex of young adult marmosets, whereas AAV encoding a control shRNA was injected into the contralateral side. We obtained approximately 70-80% silencing of FUS following AAV-shFUS injection. Interestingly, FUS-silencing provoked a proliferation of astrocytes and microglias. Since FTLD is characterized by various emotional deficits, it would be helpful to establish a marmoset model of FUS-silencing in various brain tissues for investigating the pathomechanism of higher cognitive and behavioral dysfunction.
Collapse
Affiliation(s)
- Kuniyuki Endo
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Department of Therapeutics for Intractable Neurological Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| | - Yoshito Masamizu
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yusuke Fujioka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Nobuhiko Hatanaka
- Division of System Neurophysiology, National Institute for Physiological Sciences, Department of Physiological Sciences, Okazaki, Aichi 444-8585, Japan, and SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Department of Physiological Sciences, Okazaki, Aichi 444-8585, Japan, and SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Haruo Okado
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi 466-8550, Japan; Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
34
|
Kobayashi K, Inoue KI, Tanabe S, Kato S, Takada M, Kobayashi K. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions. Front Neuroanat 2017; 11:65. [PMID: 28824385 PMCID: PMC5539090 DOI: 10.3389/fnana.2017.00065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.
Collapse
Affiliation(s)
- Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological SciencesOkazaki, Japan.,SOKENDAI (The Graduate University for Advanced Studies)Hayama, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto UniversityInuyama, Japan
| | - Soshi Tanabe
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto UniversityInuyama, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of MedicineFukushima, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto UniversityInuyama, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of MedicineFukushima, Japan
| |
Collapse
|
35
|
Galvan A, Caiola MJ, Albaugh DL. Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates. J Neural Transm (Vienna) 2017; 125:547-563. [PMID: 28238201 DOI: 10.1007/s00702-017-1697-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Over the last 10 years, the use of opto- and chemogenetics to modulate neuronal activity in research applications has increased exponentially. Both techniques involve the genetic delivery of artificial proteins (opsins or engineered receptors) that are expressed on a selective population of neurons. The firing of these neurons can then be manipulated using light sources (for opsins) or by systemic administration of exogenous compounds (for chemogenetic receptors). Opto- and chemogenetic tools have enabled many important advances in basal ganglia research in rodent models, yet these techniques have faced a slow progress in non-human primate (NHP) research. In this review, we present a summary of the current state of these techniques in NHP research and outline some of the main challenges associated with the use of these genetic-based approaches in monkeys. We also explore cutting-edge developments that will facilitate the use of opto- and chemogenetics in NHPs, and help advance our understanding of basal ganglia circuits in normal and pathological conditions.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA. .,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Michael J Caiola
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Daniel L Albaugh
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| |
Collapse
|
36
|
Pignataro D, Sucunza D, Vanrell L, Lopez-Franco E, Dopeso-Reyes IG, Vales A, Hommel M, Rico AJ, Lanciego JL, Gonzalez-Aseguinolaza G. Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Front Neuroanat 2017; 11:2. [PMID: 28239341 PMCID: PMC5301009 DOI: 10.3389/fnana.2017.00002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Adeno-associated viruses (AAVs) have become highly promising tools for research and clinical applications in the central nervous system (CNS). However, specific delivery of genes to the cell type of interest is essential for the success of gene therapy and therefore a correct selection of the promoter plays a very important role. Here, AAV8 vectors carrying enhanced green fluorescent protein (eGFP) as reporter gene under the transcriptional control of different CNS-specific promoters were used and compared with a strong ubiquitous promoter. Since one of the main limitations of AAV-mediated gene delivery lies in its restricted cloning capacity, we focused our work on small-sized promoters. We tested the transduction efficacy and specificity of each vector after stereotactic injection into the mouse striatum. Three glia-specific AAV vectors were generated using two truncated forms of the human promoter for glial fibrillar acidic protein (GFAP) as well as a truncated form of the murine GFAP promoter. All three vectors resulted in predominantly glial expression; however we also observed eGFP expression in other cell-types such as oligodendrocytes, but never in neurons. In addition, robust and neuron-specific eGFP expression was observed using the minimal promoters for the neural protein BM88 and the neuronal nicotinic receptor β2 (CHRNB2). In summary, we developed a set of AAV vectors designed for specific expression in cells of the CNS using minimal promoters to drive gene expression when the size of the therapeutic gene matters.
Collapse
Affiliation(s)
- Diego Pignataro
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical ResearchPamplona, Spain; Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain
| | - Diego Sucunza
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical ResearchPamplona, Spain; Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain
| | - Lucia Vanrell
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research Pamplona, Spain
| | | | - Iria G Dopeso-Reyes
- Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| | - Africa Vales
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research Pamplona, Spain
| | - Mirja Hommel
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical ResearchPamplona, Spain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| | - Alberto J Rico
- Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| | - Jose L Lanciego
- Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| |
Collapse
|
37
|
Hao F, Yang C, Chen SS, Wang YY, Zhou W, Hao Q, Lu T, Hoffer B, Zhao LR, Duan WM, Xu QY. Long-term protective effects of AAV9-mesencephalic astrocyte-derived neurotrophic factor gene transfer in parkinsonian rats. Exp Neurol 2017; 291:120-133. [PMID: 28131727 DOI: 10.1016/j.expneurol.2017.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 12/29/2022]
Abstract
Intrastriatal injection of mesencephalic astrocyte-derived neurotrophic factor (MANF) protein has been shown to provide neuroprotective and neurorestorative effects in a 6-hydroxydopamine (6-OHDA) - lesioned rat model of Parkinson's disease. Here, we used an adeno-associated virus serotype 9 (AAV9) vector to deliver the human MANF (hMANF) gene into the rat striatum 10days after a 6-OHDA lesion to examine long-term effects of hMANF on nigral dopaminergic neurons and mechanisms underlying MANF neuroprotection. Intrastriatal injection of AAV9-hMANF vectors led to a robust and widespread expression of the hMANF gene in the injected striatum up to 24weeks. Increased levels of hMANF protein were also detected in the ipsilateral substantia nigra. The hMANF gene transfer promoted the survival of nigral dopaminergic neurons, regeneration of striatal dopaminergic fibers and an upregulation of striatal dopamine levels, resulting in a long-term improvement of rotational behavior up to 16weeks after viral injections. By using SH-SY5Y cells, we found that intra- and extracellular application of MANF protected cells against 6-OHDA-induced toxicity via inhibiting the endoplasmic reticulum stress and activating the PI3K/Akt/mTOR pathway. Our results suggest that AAV9-mediated hMANF gene delivery into the striatum exerts long-term neuroprotective and neuroregenerative effects on the nigrostriatal dopaminergic system in parkinsonian rats, and provide insights into mechanisms responsible for MANF neuroprotection.
Collapse
Affiliation(s)
- Fei Hao
- Department of Anatomy, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Department of Anatomy, Capital Medical University, Beijing 100069, China
| | - Sha-Sha Chen
- Department of Anatomy, Capital Medical University, Beijing 100069, China
| | - Yan-Yan Wang
- Department of Neurobiology, Capital Medical University, Beijing 100069, China
| | - Wei Zhou
- Department of Anatomy, Capital Medical University, Beijing 100069, China
| | - Qiang Hao
- Department of Anatomy, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Department of Anatomy, Capital Medical University, Beijing 100069, China
| | - Barry Hoffer
- Department of Neurosurgery, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Wei-Ming Duan
- Department of Anatomy, Capital Medical University, Beijing 100069, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China; Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Cleveland, OH 44122, USA.
| | - Qun-Yuan Xu
- Department of Anatomy, Capital Medical University, Beijing 100069, China; Department of Neurobiology, Capital Medical University, Beijing 100069, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100069, China; Beijing Center of Neural Regeneration and Repair, Beijing 100069, China; Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing 100069, China.
| |
Collapse
|
38
|
Kobayashi K, Kato S, Kobayashi K. Genetic manipulation of specific neural circuits by use of a viral vector system. J Neural Transm (Vienna) 2017; 125:67-75. [DOI: 10.1007/s00702-016-1674-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/30/2016] [Indexed: 01/05/2023]
|
39
|
Watakabe A, Sadakane O, Hata K, Ohtsuka M, Takaji M, Yamamori T. Application of viral vectors to the study of neural connectivities and neural circuits in the marmoset brain. Dev Neurobiol 2016; 77:354-372. [PMID: 27706918 PMCID: PMC5324647 DOI: 10.1002/dneu.22459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 01/20/2023]
Abstract
It is important to study the neural connectivities and functions in primates. For this purpose, it is critical to be able to transfer genes to certain neurons in the primate brain so that we can image the neuronal signals and analyze the function of the transferred gene. Toward this end, our team has been developing gene transfer systems using viral vectors. In this review, we summarize our current achievements as follows. 1) We compared the features of gene transfer using five different AAV serotypes in combination with three different promoters, namely, CMV, mouse CaMKII (CaMKII), and human synapsin 1 (hSyn1), in the marmoset cortex with those in the mouse and macaque cortices. 2) We used target‐specific double‐infection techniques in combination with TET‐ON and TET‐OFF using lentiviral retrograde vectors for enhanced visualization of neural connections. 3) We used an AAV‐mediated gene transfer method to study the transcriptional control for amplifying fluorescent signals using the TET/TRE system in the primate neocortex. We also established systems for shRNA mediated gene targeting in a neocortical region where a gene is significantly expressed and for expressing the gene using the CMV promoter for an unexpressed neocortical area in the primate cortex using AAV vectors to understand the regulation of downstream genes. Our findings have demonstrated the feasibility of using viral vector mediated gene transfer systems for the study of primate cortical circuits using the marmoset as an animal model. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 354–372, 2017
Collapse
Affiliation(s)
- Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Osamu Sadakane
- Laboratory for Molecular Analysis of Higher Brain Function, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Katsusuke Hata
- Laboratory for Molecular Analysis of Higher Brain Function, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masanari Ohtsuka
- Laboratory for Molecular Analysis of Higher Brain Function, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masafumi Takaji
- Laboratory for Molecular Analysis of Higher Brain Function, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
40
|
Murlidharan G, Crowther A, Reardon RA, Song J, Asokan A. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight 2016; 1:e88034. [PMID: 27699236 DOI: 10.1172/jci.insight.88034] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4-/- mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4-/- mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.
Collapse
Affiliation(s)
| | - Andrew Crowther
- Neurobiology Curriculum.,University of North Carolina Neuroscience Center
| | | | - Juan Song
- Department of Pharmacology.,University of North Carolina Neuroscience Center
| | - Aravind Asokan
- Gene Therapy Center.,Department of Genetics, and.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
MacDougall M, Nummela SU, Coop S, Disney A, Mitchell JF, Miller CT. Optogenetic manipulation of neural circuits in awake marmosets. J Neurophysiol 2016; 116:1286-94. [PMID: 27334951 DOI: 10.1152/jn.00197.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022] Open
Abstract
Optogenetics has revolutionized the study of functional neuronal circuitry (Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Nat Neurosci 8: 1263-1268, 2005; Deisseroth K. Nat Methods 8: 26-29, 2011). Although these techniques have been most successfully implemented in rodent models, they have the potential to be similarly impactful in studies of nonhuman primate brains. Common marmosets (Callithrix jacchus) have recently emerged as a candidate primate model for gene editing, providing a potentially powerful model for studies of neural circuitry and disease in primates. The application of viral transduction methods in marmosets for identifying and manipulating neuronal circuitry is a crucial step in developing this species for neuroscience research. In the present study we developed a novel, chronic method to successfully induce rapid photostimulation in individual cortical neurons transduced by adeno-associated virus to express channelrhodopsin (ChR2) in awake marmosets. We found that large proportions of neurons could be effectively photoactivated following viral transduction and that this procedure could be repeated for several months. These data suggest that techniques for viral transduction and optical manipulation of neuronal populations are suitable for marmosets and can be combined with existing behavioral preparations in the species to elucidate the functional neural circuitry underlying perceptual and cognitive processes.
Collapse
Affiliation(s)
- Matthew MacDougall
- Department of Neurosurgery, University of California, San Diego, La Jolla, California; Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California
| | - Samuel U Nummela
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California
| | - Shanna Coop
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California
| | - Anita Disney
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jude F Mitchell
- Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, California; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California; Neurosciences Graduate Program, University of California, San Diego, La Jolla, California; Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, California;
| |
Collapse
|
42
|
El-Shamayleh Y, Ni AM, Horwitz GD. Strategies for targeting primate neural circuits with viral vectors. J Neurophysiol 2016; 116:122-34. [PMID: 27052579 PMCID: PMC4961743 DOI: 10.1152/jn.00087.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level.
Collapse
Affiliation(s)
- Yasmine El-Shamayleh
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Amy M Ni
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregory D Horwitz
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| |
Collapse
|
43
|
Transduction Profile of the Marmoset Central Nervous System Using Adeno-Associated Virus Serotype 9 Vectors. Mol Neurobiol 2016; 54:1745-1758. [DOI: 10.1007/s12035-016-9777-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/03/2016] [Indexed: 01/22/2023]
|
44
|
Sadakane O, Masamizu Y, Watakabe A, Terada SI, Ohtsuka M, Takaji M, Mizukami H, Ozawa K, Kawasaki H, Matsuzaki M, Yamamori T. Long-Term Two-Photon Calcium Imaging of Neuronal Populations with Subcellular Resolution in Adult Non-human Primates. Cell Rep 2015; 13:1989-99. [PMID: 26655910 DOI: 10.1016/j.celrep.2015.10.050] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/28/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022] Open
Abstract
Two-photon imaging with genetically encoded calcium indicators (GECIs) enables long-term observation of neuronal activity in vivo. However, there are very few studies of GECIs in primates. Here, we report a method for long-term imaging of a GECI, GCaMP6f, expressed from adeno-associated virus vectors in cortical neurons of the adult common marmoset (Callithrix jacchus), a small New World primate. We used a tetracycline-inducible expression system to robustly amplify neuronal GCaMP6f expression and up- and downregulate it for more than 100 days. We succeeded in monitoring spontaneous activity not only from hundreds of neurons three-dimensionally distributed in layers 2 and 3 but also from single dendrites and axons in layer 1. Furthermore, we detected selective activities from somata, dendrites, and axons in the somatosensory cortex responding to specific tactile stimuli. Our results provide a way to investigate the organization and plasticity of cortical microcircuits at subcellular resolution in non-human primates.
Collapse
Affiliation(s)
- Osamu Sadakane
- Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), Aichi 444-8585, Japan; Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshito Masamizu
- Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), Aichi 444-8585, Japan; Division of Brain Circuits, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), Aichi 444-8585, Japan; Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Shin-Ichiro Terada
- Division of Brain Circuits, National Institute for Basic Biology, Aichi 444-8585, Japan; Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Masanari Ohtsuka
- Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan; Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan; Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-8640, Japan
| | - Masanori Matsuzaki
- Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), Aichi 444-8585, Japan; Division of Brain Circuits, National Institute for Basic Biology, Aichi 444-8585, Japan.
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), Aichi 444-8585, Japan; Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| |
Collapse
|
45
|
Cook-Snyder DR, Jones A, Reijmers LG. A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons. Front Mol Neurosci 2015; 8:56. [PMID: 26557053 PMCID: PMC4617378 DOI: 10.3389/fnmol.2015.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023] Open
Abstract
The brain contains a large variety of projection neurons with different functional properties. The functional properties of projection neurons arise from their connectivity with other neurons and their molecular composition. We describe a novel tool for obtaining the gene expression profiles of projection neurons that are anatomically defined by the location of their soma and axon terminals. Our tool utilizes adeno-associated virus serotype 9 (AAV9), which we found to retrogradely transduce projection neurons after injection at the site of the axon terminals. We used AAV9 to express Enhanced Green Fluorescent Protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a), which enables the immunoprecipitation of EGFP-tagged ribosomes and associated mRNA with a method known as Translating Ribosome Affinity Purification (TRAP). To achieve high expression of the EGFP-L10a protein in projection neurons, we placed its expression under control of a 1.3 kb alpha-calcium/calmodulin-dependent protein kinase II (Camk2a) promoter. We injected the AAV9-Camk2a-TRAP virus in either the hippocampus or the bed nucleus of the stria terminalis (BNST) of the mouse brain. In both brain regions the 1.3 kb Camk2a promoter did not confer complete cell-type specificity around the site of injection, as EGFP-L10a expression was observed in Camk2a-expressing neurons as well as in neuronal and non-neuronal cells that did not express Camk2a. In contrast, cell-type specific expression was observed in Camk2a-positive projection neurons that were retrogradely transduced by AAV9-Camk2a-TRAP. Injection of AAV9-Camk2a-TRAP into the BNST enabled the use of TRAP to collect ribosome-bound mRNA from basal amygdala projection neurons that innervate the BNST. AAV9-Camk2a-TRAP provides a single-virus system that can be used for the molecular profiling of anatomically defined projection neurons in mice and other mammalian model organisms. In addition, AAV9-Camk2a-TRAP may enable the discovery of protein synthesis events that support information storage in projection neurons.
Collapse
Affiliation(s)
- Denise R Cook-Snyder
- Department of Neuroscience, School of Medicine, Tufts University Boston, MA, USA ; Department of Biology and Neuroscience Program, Carthage College Kenosha, WI, USA
| | - Alexander Jones
- Department of Neuroscience, School of Medicine, Tufts University Boston, MA, USA ; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Leon G Reijmers
- Department of Neuroscience, School of Medicine, Tufts University Boston, MA, USA
| |
Collapse
|
46
|
Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N, Kato S, Kobayashi K, Sakagami M. Double Virus Vector Infection to the Prefrontal Network of the Macaque Brain. PLoS One 2015; 10:e0132825. [PMID: 26193102 PMCID: PMC4507872 DOI: 10.1371/journal.pone.0132825] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/19/2015] [Indexed: 01/05/2023] Open
Abstract
To precisely understand how higher cognitive functions are implemented in the prefrontal network of the brain, optogenetic and pharmacogenetic methods to manipulate the signal transmission of a specific neural pathway are required. The application of these methods, however, has been mostly restricted to animals other than the primate, which is the best animal model to investigate higher cognitive functions. In this study, we used a double viral vector infection method in the prefrontal network of the macaque brain. This enabled us to express specific constructs into specific neurons that constitute a target pathway without use of germline genetic manipulation. The double-infection technique utilizes two different virus vectors in two monosynaptically connected areas. One is a vector which can locally infect cell bodies of projection neurons (local vector) and the other can retrogradely infect from axon terminals of the same projection neurons (retrograde vector). The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors. We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field. As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan
| | - Miku Okajima
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Shingo Tanaka
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan
| | - Masashi Koizumi
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan
| | - Takefumi Kikusui
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Nobutsune Ichihara
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Fukushima, Japan
| | | |
Collapse
|
47
|
Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral! Front Neuroanat 2015; 9:80. [PMID: 26190977 PMCID: PMC4486834 DOI: 10.3389/fnana.2015.00080] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/25/2015] [Indexed: 02/03/2023] Open
Abstract
The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.
Collapse
Affiliation(s)
- Jonathan J Nassi
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies La Jolla, CA, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School Boston, MA, USA ; Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School Boston, MA, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School Boston, MA, USA ; Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Kevin T Beier
- Department of Psychiatry and Behavioral Sciences and Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
48
|
The non-human primate experimental glaucoma model. Exp Eye Res 2015; 141:57-73. [PMID: 26070984 DOI: 10.1016/j.exer.2015.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 01/05/2023]
Abstract
The purpose of this report is to summarize the current strengths and weaknesses of the non-human primate (NHP) experimental glaucoma (EG) model through sections devoted to its history, methods, important findings, alternative optic neuropathy models and future directions. NHP EG has become well established for studying human glaucoma in part because the NHP optic nerve head (ONH) shares a close anatomic association with the human ONH and because it provides the only means of systematically studying the very earliest visual system responses to chronic intraocular pressure (IOP) elevation, i.e. the conversion from ocular hypertension to glaucomatous damage. However, NHPs are impractical for studies that require large animal numbers, demonstrate spontaneous glaucoma only rarely, do not currently provide a model of the neuropathy at normal levels of IOP, and cannot easily be genetically manipulated, except through tissue-specific, viral vectors. The goal of this summary is to direct NHP EG and non-NHP EG investigators to the previous, current and future accomplishment of clinically relevant knowledge in this model.
Collapse
|
49
|
Snowball A, Schorge S. Changing channels in pain and epilepsy: Exploiting ion channel gene therapy for disorders of neuronal hyperexcitability. FEBS Lett 2015; 589:1620-34. [PMID: 25979170 DOI: 10.1016/j.febslet.2015.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022]
Abstract
Chronic pain and epilepsy together affect hundreds of millions of people worldwide. While traditional pharmacotherapy provides essential relief to the majority of patients, a large proportion remains resistant, and surgical intervention is only possible for a select few. As both disorders are characterised by neuronal hyperexcitability, manipulating the expression of the most direct modulators of excitability - ion channels - represents an attractive common treatment strategy. A number of viral gene therapy approaches have been explored to achieve this. These range from the up- or down-regulation of channels that control excitability endogenously, to the delivery of exogenous channels that permit manipulation of excitability via optical or chemical means. In this review we highlight the key experimental successes of each approach and discuss the challenges facing their clinical translation.
Collapse
Affiliation(s)
- Albert Snowball
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
50
|
Fang YL, Chen XG, W T G. Gene delivery in tissue engineering and regenerative medicine. J Biomed Mater Res B Appl Biomater 2014; 103:1679-99. [PMID: 25557560 DOI: 10.1002/jbm.b.33354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle.
Collapse
Affiliation(s)
- Y L Fang
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - X G Chen
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - Godbey W T
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| |
Collapse
|