1
|
Ye J, Dai X, Zhang C, Duan Z, Zhou G, Wang J. Investigating the causal relationships between mitochondrial proteins and dementia with Lewy bodies. J Alzheimers Dis 2025; 105:378-386. [PMID: 40111912 DOI: 10.1177/13872877251328882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundDisruptions in mitochondrial function have been implicated in various neurodegenerative diseases. However, the specific role of mitochondrial proteins in the pathogenesis of dementia with Lewy bodies (DLB) remains poorly understood.ObjectiveThis study aims to investigate potential causal relationships between mitochondrial proteins and DLB risk using Mendelian randomization (MR) analysis.MethodsCausal associations between 66 mitochondrial proteins (MPs) and DLB were assessed by MR analysis, utilizing data from comprehensive genome-wide association studies (GWAS), with various analytical methods, including the inverse variance weighted, MR-Egger, and weighted median. Cochran's Q statistics assessed the heterogeneity of instrumental variables.ResultsGenetic predispositions to increased levels of ES1 protein homolog and apoptosis-inducing factor 1 (AIF-1) were associated with an elevated risk of DLB. Conversely, genetic predispositions to increased levels of glutaredoxin-2 (GLRX-2), complement component 1 Q subcomponent-binding protein (C1QBP), and mitochondrial glutamate carrier 2 (GC2) were found to be protective against DLB. Sensitivity analyses revealed no heterogeneity or horizontal pleiotropy among the selected instrumental variables.ConclusionsOur MR study identifies specific MPs potentially causally linked to DLB risk. These findings offer new insights into the MP-related mechanisms underlying DLB pathogenesis and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Jingna Ye
- Department of Neurology, Luoyang Center Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xuelian Dai
- Department of Neurology, Luoyang Center Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Canwen Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Zhihui Duan
- Department of Neurology, Luoyang Center Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Guoqing Zhou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Juan Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
2
|
Li X, Wu Y, Zhang M, Wang F, Yin H, Zhang Y, Zhao S, Ma J, Lv M, Lu C. A new peptide inhibitor of C1QBP exhibits potent anti-tumour activity against triple negative breast cancer by impairing mitochondrial function and suppressing homologous recombination repair. Clin Transl Med 2025; 15:e70162. [PMID: 39748215 PMCID: PMC11695203 DOI: 10.1002/ctm2.70162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy. PDBAG1 has demonstrated substantial efficacy in suppressing triple-negative breast cancer (TNBC) both in vitro and in vivo. Its mechanism of action involves mitochondrial impairment and the inhibition of oxidative phosphorylation (OXPHOS), achieved through direct binding to C1QBP, thereby promoting its ubiquitin-dependent degradation. Concomitantly, due to metabolic adaptability, we have observed an up-regulation of glycolysis to compensate for OXPHOS inhibition. We observed an aberrant phenomenon wherein the hypoxia signalling pathway in tumour cells exhibited significant activation under normoxic conditions following PDBAG1 treatment. Through size-exclusion chromatography (SEC) and isothermal titration calorimetry (ITC) assays, we have validated that PDBAG1 is capable of binding C1QBP with a Kd value of 334 nM. Furthermore, PDBAG1 inhibits homologous recombination repair proteins and facilitates synergism with poly-ADP-ribose polymerase inhibitors in cancer therapy. This underscores that PDBAG1 ultimately induces insurmountable survival stress through multiple mechanisms while concurrently engendering therapeutic vulnerabilities specific to TNBC. KEY POINTS: The newly discovered peptide PDBAG1 is the first small molecule substance found to directly target and degrade C1QBP, demonstrating significant tumour inhibitory effects and therapeutic potential.
Collapse
Affiliation(s)
- Xingxing Li
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Yue Wu
- The State Key Laboratory of Pharmaceutical BiotechnologyDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Min Zhang
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Fengliang Wang
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Hong Yin
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Yanrong Zhang
- Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Shuli Zhao
- General Clinical Research CenterNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jiehua Ma
- Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
- Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Cheng Lu
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| |
Collapse
|
3
|
Ren YL, Jiang Z, Wang JY, He Q, Li SX, Gu XJ, Qi YR, Zhang M, Yang WJ, Cao B, Li JY, Wang Y, Chen YP. Loss of CHCHD2 Stability Coordinates with C1QBP/CHCHD2/CHCHD10 Complex Impairment to Mediate PD-Linked Mitochondrial Dysfunction. Mol Neurobiol 2024; 61:7968-7988. [PMID: 38453793 DOI: 10.1007/s12035-024-04090-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Novel CHCHD2 mutations causing C-terminal truncation and interrupted CHCHD2 protein stability in Parkinson's disease (PD) patients were previously found. However, there is limited understanding of the underlying mechanism and impact of subsequent CHCHD2 loss-of-function on PD pathogenesis. The current study further identified the crucial motif (aa125-133) responsible for diminished CHCHD2 expression and the molecular interplay within the C1QBP/CHCHD2/CHCHD10 complex to regulate mitochondrial functions. Specifically, CHCHD2 deficiency led to decreased neural cell viability and mitochondrial structural and functional impairments, paralleling the upregulation of autophagy under cellular stresses. Meanwhile, as a binding partner of CHCHD2, C1QBP was found to regulate the stability of CHCHD2 and CHCHD10 proteins to maintain the integrity of the C1QBP/CHCHD2/CHCHD10 complex. Moreover, C1QBP-silenced neural cells displayed severe cell death phenotype along with mitochondrial damage that initiated a significant mitophagy process. Taken together, the evidence obtained from our in vitro and in vivo studies emphasized the critical role of CHCHD2 in regulating mitochondria functions via coordination among CHCHD2, CHCHD10, and C1QBP, suggesting the potential mechanism by which CHCHD2 function loss takes part in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Lin Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jia-Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qin He
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No.37. Guoxue AlleySichuan Province, 610041, Chengdu, People's Republic of China
| | - Si-Xu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang-Ran Qi
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Min Zhang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wen-Jie Yang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing-Yu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Egusquiza-Alvarez CA, Moreno-Londoño AP, Alvarado-Ortiz E, Ramos-Godínez MDP, Sarabia-Sánchez MA, Castañeda-Patlán MC, Robles-Flores M. Inhibition of Multifunctional Protein p32/C1QBP Promotes Cytostatic Effects in Colon Cancer Cells by Altering Mitogenic Signaling Pathways and Promoting Mitochondrial Damage. Int J Mol Sci 2024; 25:2712. [PMID: 38473963 DOI: 10.3390/ijms25052712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The protein p32 (C1QBP) is a multifunctional and multicompartmental homotrimer that is overexpressed in many cancer types, including colon cancer. High expression levels of C1QBP are negatively correlated with the survival of patients. Previously, we demonstrated that C1QBP is an essential promoter of migration, chemoresistance, clonogenic, and tumorigenic capacity in colon cancer cells. However, the mechanisms underlying these functions and the effects of specific C1QBP protein inhibitors remain unexplored. Here, we show that the specific pharmacological inhibition of C1QBP with the small molecule M36 significantly decreased the viability rate, clonogenic capacity, and proliferation rate of different colon cancer cell lines in a dose-dependent manner. The effects of the inhibitor of C1QBP were cytostatic and non-cytotoxic, inducing a decreased activation rate of critical pro-malignant and mitogenic cellular pathways such as Akt-mTOR and MAPK in RKO colon cancer cells. Additionally, treatment with M36 significantly affected the mitochondrial integrity and dynamics of malignant cells, indicating that p32/C1QBP plays an essential role in maintaining mitochondrial homeostasis. Altogether, our results reinforce that C1QBP is an important oncogene target and that M36 may be a promising therapeutic drug for the treatment of colon cancer.
Collapse
Affiliation(s)
| | - Angela Patricia Moreno-Londoño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Eduardo Alvarado-Ortiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - María Del Pilar Ramos-Godínez
- Departamento de Microscopía Electrónica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City 14080, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | | | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
5
|
Tio M, Wen R, Choo CN, Tan JB, Chua A, Xiao B, Sundaram JR, Chan CHS, Tan EK. Genetic and pharmacologic p32-inhibition rescue CHCHD2-linked Parkinson's disease phenotypes in vivo and in cell models. J Biomed Sci 2024; 31:24. [PMID: 38395904 PMCID: PMC10893700 DOI: 10.1186/s12929-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Mutations in CHCHD2 have been linked to Parkinson's disease, however, their exact pathophysiologic roles are unclear. The p32 protein has been suggested to interact with CHCHD2, however, the physiological functions of such interaction in the context of PD have not been clarified. METHODS Interaction between CHCHD2 and p32 was confirmed by co-immunoprecipitation experiments. We studied the effect of p32-knockdown in the transgenic Drosophila and Hela cells expressing the wild type and the pathogenic variants of hCHCHD2. We further investigated the rescue ability of a custom generated p32-inhibitor in these models as well as in the human fibroblast derived neural precursor cells and the dopaminergic neurons harboring hCHCHD2-Arg145Gln. RESULTS Our results showed that wildtype and mutant hCHCHD2 could bind to p32 in vitro, supported by in vivo interaction between human CHCHD2 and Drosophila p32. Knockdown of p32 reduced mutant hCHCHD2 levels in Drosophila and in vitro. In Drosophila hCHCHD2 models, inhibition of p32 through genetic knockdown and pharmacological treatment using a customized p32-inhibitor restored dopaminergic neuron numbers and improved mitochondrial morphology. These were correlated with improved locomotor function, reduced oxidative stress and decreased mortality. Consistently, Hela cells expressing mutant hCHCHD2 showed improved mitochondrial morphology and function after treatment with the p32-inhibitor. As compared to the isogenic control cells, large percentage of the mutant neural precursor cells and dopaminergic neurons harboring hCHCHD2-Arg145Gln contained fragmented mitochondria which was accompanied by lower ATP production and cell viability. The NPCs harboring hCHCHD2-Arg145Gln also had a marked increase in α-synuclein expression. The p32-inhibitor was able to ameliorate the mitochondrial fragmentation, restored ATP levels, increased cell viability and reduced α-synuclein level in these cells. CONCLUSIONS Our study identified p32 as a modulator of CHCHD2, possibly exerting its effects by reducing the toxic mutant hCHCHD2 expression and/or mitigating the downstream effects. Inhibition of the p32 pathway can be a potential therapeutic intervention for CHCHD2-linked PD and diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
| | - Rujing Wen
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Cai Ning Choo
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jian Bin Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Chua
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | | | | | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
6
|
Yu CX, Peng ZQ, Wang T, Qu XH, Yang P, Huang SR, Jiang LP, Tou FF, Han XJ. p32/OPA1 axis-mediated mitochondrial dynamics contributes to cisplatin resistance in non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:34-43. [PMID: 38151998 PMCID: PMC10875347 DOI: 10.3724/abbs.2023247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/27/2023] [Indexed: 12/29/2023] Open
Abstract
Cisplatin resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). p32 and OPA1 are the key regulators of mitochondrial morphology and function. This study aims to investigate the role of the p32/OPA1 axis in cisplatin resistance in NSCLC and its underlying mechanism. The levels of p32 protein and mitochondrial fusion protein OPA1 are higher in cisplatin-resistant A549/DDP cells than in cisplatin-sensitive A549 cells, which facilitates mitochondrial fusion in A549/DDP cells. In addition, the expression of p32 and OPA1 protein is also upregulated in A549 cells during the development of cisplatin resistance. Moreover, p32 knockdown effectively downregulates the expression of OPA1, stimulates mitochondrial fission, decreases ATP generation and sensitizes A549/DDP cells to cisplatin-induced apoptosis. Furthermore, metformin significantly downregulates the expressions of p32 and OPA1 and induces mitochondrial fission and a decrease in ATP level in A549/DDP cells. The co-administration of metformin and cisplatin shows a significantly greater decrease in A549/DDP cell viability than cisplatin treatment alone. Moreover, D-erythro-Sphingosine, a potent p32 kinase activator, counteracts the metformin-induced downregulation of OPA1 and mitochondrial fission in A549/DDP cells. Taken together, these findings indicate that p32/OPA1 axis-mediated mitochondrial dynamics contributes to the acquired cisplatin resistance in NSCLC and that metformin resensitizes NSCLC to cisplatin, suggesting that targeting p32 and mitochondrial dynamics is an effective strategy for the prevention of cisplatin resistance.
Collapse
Affiliation(s)
- Chun-Xia Yu
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Zhe-Qing Peng
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Tao Wang
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Xin-Hui Qu
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Ping Yang
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Shao-Rong Huang
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Li-Ping Jiang
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Fang-Fang Tou
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of OncologyJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Xiao-Jian Han
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| |
Collapse
|
7
|
Lee JH, Kim KM, Jung EH, Lee HR, Yang JH, Cho SS, Ki SH. Parkin-Mediated Mitophagy by TGF-β Is Connected with Hepatic Stellate Cell Activation. Int J Mol Sci 2023; 24:14826. [PMID: 37834275 PMCID: PMC10573240 DOI: 10.3390/ijms241914826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the main contributors to the development and progression of liver fibrosis. Parkin is an E3 ligase involved in mitophagy mediated by lysosomes that maintains mitochondrial homeostasis. Unfortunately, there is little information regarding the regulation of parkin by transforming growth factor-β (TGF-β) and its association with HSC trans-differentiation. This study showed that parkin is upregulated in fibrotic conditions and elucidated the underlying mechanism. Parkin was observed in the cirrhotic region of the patient liver tissues and visualized using immunostaining and immunoblotting of mouse fibrotic liver samples and primary HSCs. The role of parkin-mediated mitophagy in hepatic fibrogenesis was examined using TGF-β-treated LX-2 cells with mitophagy inhibitor, mitochondrial division inhibitor 1. Parkin overexpression and its colocalization with desmin in human tissues were found. Increased parkin in fibrotic liver homogenates of mice was observed. Parkin was expressed more abundantly in HSCs than in hepatocytes and was upregulated under TGF-β. TGF-β-induced parkin was due to Smad3. TGF-β facilitated mitochondrial translocation, leading to mitophagy activation, reversed by mitophagy inhibitor. However, TGF-β did not change mitochondrial function. Mitophagy inhibitor suppressed profibrotic genes and HSC migration mediated by TGF-β. Collectively, parkin-involved mitophagy by TGF-β facilitates HSC activation, suggesting mitophagy may utilize targets for liver fibrosis.
Collapse
Affiliation(s)
- Ji Hyun Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea (E.H.J.); (H.R.L.); (S.S.C.)
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea (E.H.J.); (H.R.L.); (S.S.C.)
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Eun Hee Jung
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea (E.H.J.); (H.R.L.); (S.S.C.)
| | - Hye Rim Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea (E.H.J.); (H.R.L.); (S.S.C.)
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Sam Seok Cho
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea (E.H.J.); (H.R.L.); (S.S.C.)
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea (E.H.J.); (H.R.L.); (S.S.C.)
| |
Collapse
|
8
|
Tian H, Chai D, Wang G, Wang Q, Sun N, Jiang G, Li H, Song J, Fang L, Wang M, Guo Z, Zheng J. Mitochondrial C1QBP is essential for T cell antitumor function by maintaining mitochondrial plasticity and metabolic fitness. Cancer Immunol Immunother 2023; 72:2151-2168. [PMID: 36828964 PMCID: PMC10992850 DOI: 10.1007/s00262-023-03407-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/11/2023] [Indexed: 02/26/2023]
Abstract
The metabolic stress present in the tumor microenvironment of many cancers can attenuate T cell antitumor activity, which is intrinsically controlled by the mitochondrial plasticity, dynamics, metabolism, and biogenesis within these T cells. Previous studies have reported that the complement C1q binding protein (C1QBP), a mitochondrial protein, is responsible for maintenance of mitochondrial fitness in tumor cells; however, its role in T cell mitochondrial function, particularly in the context of an antitumor response, remains unclear. Here, we show that C1QBP is indispensable for T cell antitumor immunity by maintaining mitochondrial integrity and homeostasis. This effect holds even when only one allele of C1qbp is functional. Further analysis of C1QBP in the context of chimeric antigen receptor (CAR) T cell therapy against the murine B16 melanoma model confirmed the cell-intrinsic role of C1QBP in regulating the antitumor functions of CAR T cells. Mechanistically, we found that C1qbp knocking down impacted mitochondrial biogenesis via the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha signaling pathway, as well as mitochondrial morphology via the phosphorylation of mitochondrial dynamics protein dynamin-related protein 1. In summary, our study provides a novel mitochondrial target to potentiate the plasticity and metabolic fitness of mitochondria within T cells, thus improving the immunotherapeutic potential of these T cells against tumors.
Collapse
Affiliation(s)
- Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Qiping Wang
- Jiangyin Clinical Medical College, Jiangsu University, Jiangyin City, 214400, Jiangsu, People's Republic of China
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jingyuan Song
- School of Nursing, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Zengli Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Wang Q, Chai D, Sobhani N, Sun N, Neeli P, Zheng J, Tian H. C1QBP regulates mitochondrial plasticity to impact tumor progression and antitumor immune response. Front Physiol 2022; 13:1012112. [PMID: 36467687 PMCID: PMC9713694 DOI: 10.3389/fphys.2022.1012112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 12/22/2024] Open
Abstract
Mitochondrial plasticity including mitochondrial dynamics, metabolic flexibility, and mitochondrial quality control, impact tumor cells' progression and determine immune cells' fate. Complement C1q binding protein (C1QBP) plays an indispensable role through regulating mitochondrial morphology, metabolism, and autophagy. C1QBP promotes mitochondrial plasticity to impact tumor metastasis and their therapeutic response. At the same time, C1QBP is involved in regulating immune cells' maturation, differentiation, and effector function through the enhancement of mitochondrial function. In this regard, manipulation of C1QBP has been shown to adjust the competitive balance between tumor cells and immune cells. In the course of evolution, mitochondrial plasticity has endowed numerous advantages against the relentless microenvironment of tumors. In this current review, we summarize the current knowledge of the mechanism of C1QBP regulation of cancer and immunity. We explain this process in vision of potentially new anticancer therapies.
Collapse
Affiliation(s)
- Qiping Wang
- Jiangyin Clinical Medical College, Jiangsu University, Jiangyin, Jiangsu, China
| | - Dafei Chai
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
11
|
Adachi Y, Sato N, Oba T, Amaike T, Kudo Y, Kohi S, Nakayama T, Hirata K. Prognostic and functional role of hyaluronan‑binding protein 1 in pancreatic ductal adenocarcinoma. Oncol Lett 2022; 24:222. [PMID: 35720501 PMCID: PMC9178692 DOI: 10.3892/ol.2022.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan-binding protein 1 (HABP1) is among the molecules known to bind to hyaluronan and is involved in a variety of cellular processes, including cell proliferation and migration. HABP1 has been implicated in the progression of various cancers; however, there have been (to the best of our knowledge) few studies on the expression and function of HABP1 in pancreatic ductal adenocarcinoma (PDAC), a topic that is examined in the present study. Immunohistochemical analysis of HABP1 protein was conducted in archival tissues from 105 patients with PDAC. Furthermore, the functional effect of HABP1 on proliferation, colony formation, and migration in PDAC cells was examined by knockdown of HABP1. It was revealed that HABP1 was overexpressed in 49 (46.2%) out of 105 patients with PDAC. Overall survival was significantly shorter in patients with high HABP1 expression than in those with low HABP1 expression (median survival time of 12.8 months vs. 28.5 months; log-rank test, P=0.004). Knockdown of HABP1 expression in PDAC cells resulted in decreased cell proliferation, colony formation, and cell migration activity. Thus, HABP1 may serve as a prognostic factor in PDAC and may be of use as a novel therapeutic target.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Norihiro Sato
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takuya Oba
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takao Amaike
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yuzan Kudo
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Shiro Kohi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Keiji Hirata
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
12
|
Ruan Y, Hu J, Che Y, Liu Y, Luo Z, Cheng J, Han Q, He H, Zhou Q. CHCHD2 and CHCHD10 regulate mitochondrial dynamics and integrated stress response. Cell Death Dis 2022; 13:156. [PMID: 35173147 PMCID: PMC8850591 DOI: 10.1038/s41419-022-04602-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction is becoming one of the main pathology factors involved in the etiology of neurological disorders. Recently, mutations of the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) which encode two homologous proteins that belong to the mitochondrial CHCH domain protein family, are linked to Parkinson's disease and amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), respectively. However, the physiological and pathological roles of these twin proteins have not been well elaborated. Here, we show that, in physiological conditions, CHCHD2 and CHCHD10 interact with OMA1 and suppress its enzyme activity, which not only restrains the initiation of the mitochondrial integrated response stress (mtISR), but also suppresses the processing of OPA1 for mitochondrial fusion. Further, during mitochondria stress-induced by carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, CHCHD2 and CHCHD10 translocate to the cytosol and interacte with eIF2a, which attenuates mtISR overactivation by suppressing eIF2a phosphorylation and its downstream response. As such, knockdown of CHCHD2 and CHCHD10 triggers mitochondrial ISR, and such cellular response is enhanced by CCCP treatment. Therefore, our findings demonstrate the first "mtISR suppressor" localized in mitochondria for regulating stress responses in mammalian cells, which has a profound pathological impact on the CHCH2/CHCH10-linked neurodegenerative disorder.
Collapse
Affiliation(s)
- Yu Ruan
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiaqiao Hu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yaping Che
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yanyan Liu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhenhuan Luo
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jin Cheng
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - He He
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, 523560, China.
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
13
|
Tian H, Wang G, Wang Q, Zhang B, Jiang G, Li H, Chai D, Fang L, Wang M, Zheng J. C1QBP regulates T cells mitochondrial fitness to affect their survival, proliferation and anti-tumor immune function. Cancer Sci 2022; 113:875-890. [PMID: 34978120 PMCID: PMC8898709 DOI: 10.1111/cas.15261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
T cells survival, proliferation, and anti–tumor response are closely linked to their mitochondrial health. Complement C1q binding protein (C1QBP) promotes mitochondrial fitness through regulation of mitochondrial metabolism and morphology. However, whether C1QBP regulates T cell survival, proliferation, and anti–tumor immune function remains unclear. Our data demonstrated that C1QBP knockdown induced the accumulation of reactive oxygen species (ROS) and the loss of mitochondrial membrane potential to impair T cell mitochondrial fitness. At the same time, C1QBP insufficiency reduced the recruitment of the anti–apoptotic proteins, including Bcl‐2 and Bcl‐XL, and repressed caspase‐3 activation and poly (ADP‐ribose) polymerase cleavage, which consequently accelerated the T cell apoptotic process. In contrast, C1QBP knockdown rendered T cells with relatively weaker proliferation due to the inhibition of AKT/mTOR signaling pathway. To investigate the exact role of C1QBP in anti–tumor response, C1QBP+/− and C1QBP+/+ mice were given a subcutaneous injection of murine MC38 cells. We found that C1QBP deficiency attenuated T cell tumor infiltration and aggravated tumor‐infiltrating T lymphocytes (TIL) exhaustion. Moreover, we further clarified the potential function of C1QBP in chimeric antigen receptor (CAR) T cell immunotherapy. Our data showed that C1QBP+/− CAR T cells exhibited relatively weaker anti–tumor response than the corresponding C1QBP+/+ CAR T cells. Given that C1QBP knockdown impairs T cells’ anti–apoptotic capacity, proliferation as well as anti–tumor immune function, development of the strategy for potentiation of T cells’ mitochondrial fitness through C1QBP could potentially optimize the efficacy of the related immunotherapy.
Collapse
Affiliation(s)
- Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Qiping Wang
- Jiangyin Clinical Medical College, Jiangsu University, Jiangyin city, Jiangsu, 221002, P.R. China
| | - Baofu Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| |
Collapse
|
14
|
Murillo-González FE, García-Aguilar R, Vega L, Elizondo G. Regulation of Parkin expression as the key balance between neural survival and cancer cell death. Biochem Pharmacol 2021; 190:114650. [PMID: 34111426 DOI: 10.1016/j.bcp.2021.114650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
Parkin is a cytosolic E3 ubiquitin ligase that plays an important role in neuroprotection by targeting several proteins to be degraded by the 26S proteasome. Its dysfunction has been associated not only with Parkinson's disease (PD) but also with other neurodegenerative pathologies, such as Alzheimer's disease and Huntington's disease. More recently, Parkin has been identified as a tumor suppressor gene implicated in cancer development. Due to the important roles that this E3 ubiquitin ligase plays in cellular homeostasis, its expression, activity, and turnover are tightly regulated. Several reviews have addressed Parkin regulation; however, genetic and epigenetic regulation have been excluded. In addition to posttranslational modifications (PTMs), this review examines the regulatory mechanisms that control Parkin function through gene expression, epigenetic regulation, and degradation. Furthermore, the consequences of disrupting these regulatory processes on human health are discussed.
Collapse
Affiliation(s)
| | | | - Libia Vega
- Department of Toxicology, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Mexico City, Mexico
| | - Guillermo Elizondo
- Department of Cellular Biology, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Mexico City, Mexico.
| |
Collapse
|
15
|
Koo BH, Won MH, Kim YM, Ryoo S. Arginase II protein regulates Parkin-dependent p32 degradation that contributes to Ca2+-dependent eNOS activation in endothelial cells. Cardiovasc Res 2021; 118:1344-1358. [PMID: 33964139 PMCID: PMC8953445 DOI: 10.1093/cvr/cvab163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Aims Arginase II (ArgII) plays a key role in the regulation of Ca2+ between the cytosol and mitochondria in a p32-dependent manner. p32 contributes to endothelial nitric oxide synthase (eNOS) activation through the Ca2+/CaMKII/AMPK/p38MAPK/Akt signalling cascade. Therefore, we investigated a novel function of ArgII in the regulation of p32 stability. Methods and results mRNA levels were measured by quantitative reverse transcription-PCR, and protein levels and activation were confirmed by western blot analysis. Ca2+ concentrations were measured by FACS analysis and a vascular tension assay was performed. ArgII bound to p32, and ArgII protein knockdown using siArgII facilitated the ubiquitin-dependent proteasomal degradation of p32. β-lactone, a proteasome inhibitor, inhibited the p32 degradation associated with endothelial dysfunction in a Ca2+-dependent manner. The amino acids Lys154, Lys 180, and Lys220 of the p32 protein were identified as putative ubiquitination sites. When these sites were mutated, p32 was resistant to degradation in the presence of siArgII, and endothelial function was impaired. Knockdown of Pink/Parkin as an E3-ubiquitin ligase with siRNAs resulted in increased p32, decreased [Ca2+]c, and attenuated CaMKII-dependent eNOS activation by siArgII. siArgII-dependent Parkin activation was attenuated by KN93, a CaMKII inhibitor. Knockdown of ArgII mRNA and its gene, but not inhibition of its activity, accelerated the interaction between p32 and Parkin and reduced p32 levels. In aortas of ArgII−/− mice, p32 levels were reduced by activated Parkin and inhibition of CaMKII attenuated Parkin-dependent p32 lysis. siParkin blunted the phosphorylation of the activated CaMKII/AMPK/p38MAPK/Akt/eNOS signalling cascade. However, ApoE−/− mice fed a high-cholesterol diet had greater ArgII activity, significantly attenuated phosphorylation of Parkin, and increased p32 levels. Incubation with siArgII augmented p32 ubiquitination through Parkin activation, and induced signalling cascade activation. Conclusion The results suggest a novel function for ArgII protein in Parkin-dependent ubiquitination of p32 that is associated with Ca2+-mediated eNOS activation in endothelial cells.
Collapse
Affiliation(s)
| | | | - Young-Myeong Kim
- Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, 24341, Korea
| | | |
Collapse
|
16
|
p32/C1QBP regulates OMA1-dependent proteolytic processing of OPA1 to maintain mitochondrial connectivity related to mitochondrial dysfunction and apoptosis. Sci Rep 2020; 10:10618. [PMID: 32606429 PMCID: PMC7327069 DOI: 10.1038/s41598-020-67457-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission in response to various physiological and stress stimuli, which play key roles in diverse mitochondrial functions such as energy metabolism, intracellular signaling, and apoptosis. OPA1, a mitochondrial dynamin-like GTPase, is responsible for the inner membrane fusion of mitochondria, and the function of OPA1 is regulated by proteolytic cleavage in response to various metabolic stresses. Growing evidences highlighted the importance of mitochondrial adaptation in response to metabolic stimuli. Here, we demonstrated the role of p32/C1QBP in mitochondrial morphology by regulating OMA1-dependent proteolytic processing of OPA1. Genetic ablation of p32/C1QBP activates OMA1, cleaves OPA1, and leads mitochondrial fragmentation and swelling. The loss of p32/C1QBP decreased mitochondrial respiration and lipid utilization, sensitized cells to mitochondrial stress, and triggered a metabolic shift from oxidative phosphorylation to glycolysis, which were correlated with apoptosis in cancer cells and the inhibition of 3D-spheroid formation. These results suggest a unique regulation of cell physiology by mitochondria and provide a basis for a new therapeutic strategy for cancer.
Collapse
|
17
|
Yuan L, Liu Q, Wang Z, Hou J, Xu P. EI24 tethers endoplasmic reticulum and mitochondria to regulate autophagy flux. Cell Mol Life Sci 2020; 77:1591-1606. [PMID: 31332481 PMCID: PMC11104867 DOI: 10.1007/s00018-019-03236-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Etoposide-induced protein 2.4 (EI24), located on the endoplasmic reticulum (ER) membrane, has been proposed to be an essential autophagy protein. Specific ablation of EI24 in neuronal and liver tissues causes deficiency of autophagy flux. However, the molecular mechanism of the EI24-mediated autophagy process is still poorly understood. Like neurons and hepatic cells, pancreatic β cells are also secretory cells. Pancreatic β cells contain large amounts of ER and continuously synthesize and secrete insulin to maintain blood glucose homeostasis. Yet, the effect of EI24 on autophagy of pancreatic β cells has not been reported. Here, we show that the autophagy process is inhibited in EI24-deficient primary pancreatic β cells. Further mechanistic studies demonstrate that EI24 is enriched at the ER-mitochondria interface and that the C-terminal domain of EI24 is important for the integrity of the mitochondria-associated membrane (MAM) and autophagy flux. Overexpression of EI24, but not the EI24-ΔC mutant, can rescue MAM integrity and decrease the aggregation of p62 and LC3II in the EI24-deficient group. By mass spectrometry-based proteomics following immunoprecipitation, EI24 was found to interact with voltage-dependent anion channel 1 (VDAC1), inositol 1,4,5-trisphosphate receptor (IP3R), and the outer mitochondrial membrane chaperone GRP75. Knockout of EI24 impairs the interaction of IP3R with VDAC1, indicating that these proteins may form a quaternary complex to regulate MAM integrity and the autophagy process.
Collapse
Affiliation(s)
- Lin Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhe Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Junjie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Cockova Z, Ujcikova H, Telensky P, Novotny J. Protein profiling of SH-SY5Y neuroblastoma cells: The effect of rhein. J Biosci 2019. [DOI: 10.1007/s12038-019-9908-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Barna J, Dimén D, Puska G, Kovács D, Csikós V, Oláh S, Udvari EB, Pál G, Dobolyi Á. Complement component 1q subcomponent binding protein in the brain of the rat. Sci Rep 2019; 9:4597. [PMID: 30872665 PMCID: PMC6418184 DOI: 10.1038/s41598-019-40788-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
Complement component 1q subcomponent binding protein (C1qbp) is a multifunctional protein involved in immune response, energy homeostasis of cells as a plasma membrane receptor, and a nuclear, cytoplasmic or mitochondrial protein. Recent reports suggested its neuronal function, too, possibly in axon maintenance, synaptic function, and neuroplasticity. Therefore, we addressed to identify C1qbp in the rat brain using in situ hybridization histochemistry and immunolabelling at light and electron microscopic level. C1qbp has a topographical distribution in the brain established by the same pattern of C1qbp mRNA-expressing and protein-containing neurons with the highest abundance in the cerebral cortex, anterodorsal thalamic nucleus, hypothalamic paraventricular (PVN) and arcuate nuclei, spinal trigeminal nucleus. Double labelling of C1qbp with the neuronal marker NeuN, with the astrocyte marker S100, and the microglia marker Iba1 demonstrated the presence of C1qbp in neurons but not in glial cells in the normal brain, while C1qbp appeared in microglia following their activation induced by focal ischemic lesion. Only restricted neurons expressed C1qbp, for example, in the PVN, magnocellular neurons selectively contained C1qbp. Further double labelling by using the mitochondria marker Idh3a antibody suggested the mitochondrial localization of C1qbp in the brain, confirmed by correlated light and electron microscopy at 3 different brain regions. Post-embedding immunoelectron microscopy also suggested uneven C1qbp content of mitochondria in different brain areas but also heterogeneity within single neurons. These data suggest a specific function of C1qbp in the brain related to mitochondria, such as the regulation of local energy supply in neuronal cells.
Collapse
Affiliation(s)
- János Barna
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Diána Dimén
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Dávid Kovács
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Edina B Udvari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Pál
- Hungarian Defence Forces Military Hospital, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
20
|
Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 2018. [PMID: 29535843 PMCID: PMC5828189 DOI: 10.18632/oncotarget.24082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
21
|
Melanoma addiction to the long non-coding RNA SAMMSON. Nature 2016; 531:518-22. [DOI: 10.1038/nature17161] [Citation(s) in RCA: 422] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/21/2016] [Indexed: 01/02/2023]
|
22
|
Meparishvili M, Nozadze M, Margvelani G, McCabe BJ, Solomonia RO. A Proteomic Study of Memory After Imprinting in the Domestic Chick. Front Behav Neurosci 2015; 9:319. [PMID: 26635566 PMCID: PMC4660867 DOI: 10.3389/fnbeh.2015.00319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022] Open
Abstract
The intermediate and medial mesopallium (IMM) of the domestic chick forebrain has previously been shown to be a memory system for visual imprinting. Learning-related changes occur in certain plasma membrane and mitochondrial proteins in the IMM. Two-dimensional gel electrophoresis/mass spectrometry has been employed to identify more comprehensively learning-related expression of proteins in the membrane-mitochondrial fraction of the IMM 24 h after training. We inquired whether amounts of these proteins in the IMM and a control region (posterior pole of the nidopallium, PPN) are correlated with a behavioral estimate of memory for the imprinting stimulus. Learning-related increases in amounts of the following proteins were found in the left IMM, but not the right IMM or the left or right PPN: (i) membrane cognin; (ii) a protein resembling the P32 subunit of splicing factor SF2; (iii) voltage-dependent anionic channel-1; (iv) dynamin-1; (v) heterogeneous nuclear ribonucleoprotein A2/B1. Learning-related increases in some transcription factors involved in mitochondrial biogenesis were also found, without significant change in mitochondrial DNA copy number. The results indicate that the molecular processes involved in learning and memory underlying imprinting include protein stabilization, increased mRNA trafficking, synaptic vesicle recycling, and specific changes in the mitochondrial proteome.
Collapse
Affiliation(s)
- Maia Meparishvili
- School of Natural Sciences and Engineering, Institute of Chemical Biology, Ilia State University Tbilisi, Georgia
| | - Maia Nozadze
- School of Natural Sciences and Engineering, Institute of Chemical Biology, Ilia State University Tbilisi, Georgia ; I. Beritashvili Institute of Experimental Biomedicine Tbilisi, Georgia
| | - Giorgi Margvelani
- School of Natural Sciences and Engineering, Institute of Chemical Biology, Ilia State University Tbilisi, Georgia
| | - Brian J McCabe
- Department of Zoology, Sub-Department of Animal Behavior, University of Cambridge Cambridge, UK
| | - Revaz O Solomonia
- School of Natural Sciences and Engineering, Institute of Chemical Biology, Ilia State University Tbilisi, Georgia ; I. Beritashvili Institute of Experimental Biomedicine Tbilisi, Georgia
| |
Collapse
|
23
|
Roloff GA, Henry MF. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria. Mol Biol Cell 2015; 26:2885-94. [PMID: 26108620 PMCID: PMC4571327 DOI: 10.1091/mbc.e15-04-0222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Expression of genes encoded by the mitochondrial genome is dependent on gene-specific translational activators. Mam33, the yeast homologue of p32/gC1qR/C1QBP/HABP1, promotes the translation of Cox1, a core catalytic subunit of respiratory chain complex IV. Three mitochondrial DNA–encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1.
Collapse
Affiliation(s)
- Gabrielle A Roloff
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, and Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Michael F Henry
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, and Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
24
|
Mishra AK, ur Rasheed MS, Shukla S, Tripathi MK, Dixit A, Singh MP. Aberrant Autophagy and Parkinsonism: Does Correction Rescue from Disease Progression? Mol Neurobiol 2014; 51:893-908. [DOI: 10.1007/s12035-014-8744-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
|
25
|
Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 2014; 171:1917-42. [PMID: 24720258 PMCID: PMC3976613 DOI: 10.1111/bph.12503] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a progressive microvascular complication arising from diabetes. Within the kidney, the glomeruli, tubules, vessels and interstitium are disrupted, ultimately impairing renal function and leading to end-stage renal disease (ESRD). Current pharmacological therapies used in individuals with DN do not prevent the inevitable progression to ESRD; therefore, new targets of therapy are urgently required. Studies from animal models indicate that disturbances in mitochondrial homeostasis are central to the pathogenesis of DN. Since renal proximal tubule cells rely on oxidative phosphorylation to provide adequate ATP for tubular reabsorption, an impairment of mitochondrial bioenergetics can result in renal functional decline. Defects at the level of the electron transport chain have long been established in DN, promoting electron leakage and formation of superoxide radicals, mediating microinflammation and contributing to the renal lesion. More recent studies suggest that mitochondrial-associated proteins may be directly involved in the pathogenesis of tubulointerstitial fibrosis and glomerulosclerosis. An accumulation of fragmented mitochondria are found in the renal cortex in both humans and animals with DN, suggesting that in tandem with a shift in dynamics, mitochondrial clearance mechanisms may be impaired. The process of mitophagy is the selective targeting of damaged or dysfunctional mitochondria to autophagosomes for degradation through the autophagy pathway. The current review explores the concept that an impairment in the mitophagy system leads to the accelerated progression of renal pathology. A better understanding of the cellular and molecular events that govern mitophagy and dynamics in DN may lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- G C Higgins
- Glycation, Nutrition & Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
26
|
Saha P, Chowdhury AR, Dutta S, Chatterjee S, Ghosh I, Datta K. Autophagic vacuolation induced by excess ROS generation in HABP1/p32/gC1qR overexpressing fibroblasts and its reversal by polymeric hyaluronan. PLoS One 2013; 8:e78131. [PMID: 24205125 PMCID: PMC3799741 DOI: 10.1371/journal.pone.0078131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/17/2013] [Indexed: 01/24/2023] Open
Abstract
The ubiquitous hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) upon stable overexpression in normal fibroblasts (F-HABP07) has been reported to induce mitochondrial dysfunction, growth retardation and apoptosis after 72 h of growth. HABP1 has been observed to accumulate in the mitochondria resulting in generation of excess Reactive Oxygen Species (ROS), mitochondrial Ca++ efflux and drop in mitochondrial membrane potential. In the present study, autophagic vacuolation was detected with monodansylcadaverin (MDC) staining from 36 h to 60 h of culture period along with elevated level of ROS in F-HABP07 cells. Increased expression of autophagic markers like MAP-LC3-II, Beclin 1 and autophagic modulator, DRAM confirmed the occurrence of the phenomenon. Reduced vacuole formation was observed upon treatment with 3-MA, a known PI3 kinase inhibitor, only at 32 h and was ineffective if treated later, as high ROS level was already attained. Treatment of F111 and F-HABP07 cells with bafilomycin A1 further indicated an increase in autophagosome formation along with autophagic degradation in HABP1 overexpressed fibroblasts. Comparison between normal fibroblast (F111) and F-HABP07 cells indicate reduced level of polymeric HA, its depolymerization and perturbed HA-HABP1 interaction in F-HABP07. Interestingly, supplementation of polymeric HA, an endogenous ROS scavenger, in the culture medium prompted reduction in number of vacuoles in F-HABP07 along with drop in ROS level, implying that excess ROS generation triggers initiation of autophagic vacuole formation prior to apoptosis due to overexpression of HABP1. Thus, the phenomenon of autophagy takes place prior to apoptosis induction in the HABP1 overexpressing cell line, F-HABP07.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anindya Roy Chowdhury
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shubhra Dutta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Chatterjee
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (KD); (IG)
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (KD); (IG)
| |
Collapse
|
27
|
p32 protein levels are integral to mitochondrial and endoplasmic reticulum morphology, cell metabolism and survival. Biochem J 2013; 453:381-91. [PMID: 23692256 PMCID: PMC3727215 DOI: 10.1042/bj20121829] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
p32 [also known as HABP1 (hyaluronan-binding protein 1), gC1qR (receptor for globular head domains complement 1q) or C1qbp (complement 1q-binding protein)] has been shown previously to have both mitochondrial and non-mitochondrial localization and functions. In the present study, we show for the first time that endogenous p32 protein is a mitochondrial protein in HeLa cells under control and stress conditions. In defining the impact of altering p32 levels in these cells, we demonstrate that the overexpression of p32 increased mitochondrial fibrils. Conversely, siRNA-mediated p32 knockdown enhanced mitochondrial fragmentation accompanied by a loss of detectable levels of the mitochondrial fusion mediator proteins Mfn (mitofusin) 1 and Mfn2. More detailed ultrastructure analysis by transmission electron microscopy revealed aberrant mitochondrial structures with less and/or fragmented cristae and reduced mitochondrial matrix density as well as more punctate ER (endoplasmic reticulum) with noticeable dissociation of their ribosomes. The analysis of mitochondrial bioenergetics showed significantly reduced capacities in basal respiration and oxidative ATP turnover following p32 depletion. Furthermore, siRNA-mediated p32 knockdown resulted in differential stress-dependent effects on cell death, with enhanced cell death observed in the presence of hyperosmotic stress or cisplatin treatment, but decreased cell death in the presence of arsenite. Taken together, our studies highlight the critical contributions of the p32 protein to the morphology of mitochondria and ER under normal cellular conditions, as well as important roles of the p32 protein in cellular metabolism and various stress responses.
Collapse
|
28
|
Brandi J, Dando I, Palmieri M, Donadelli M, Cecconi D. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists. Electrophoresis 2013; 34:1359-68. [PMID: 23463621 DOI: 10.1002/elps.201200402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 01/06/2023]
Abstract
The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Jessica Brandi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | | | | | | | | |
Collapse
|
29
|
Abstract
Two genes responsible for the juvenile Parkinson’s disease (PD), PINK1 and Parkin, have been implicated in mitochondrial quality control. The inactivation of PINK1, which encodes a mitochondrial kinase, leads to age-dependent mitochondrial degeneration in Drosophila. The phenotype is closely associated with the impairment of mitochondrial respiratory chain activity and defects in mitochondrial dynamics. Drosophila genetic studies have further revealed that PINK1 is an upstream regulator of Parkin and is involved in the mitochondrial dynamics and motility. A series of cell biological studies have given rise to a model in which the activation of PINK1 in damaged mitochondria induces the selective elimination of mitochondria in cooperation with Parkin through the ubiquitin-proteasome and autophagy machineries. Although the relevance of this pathway to PD etiology is still unclear, approaches using stem cells from patients and animal models will help to understand the significance of mitochondrial quality control by the PINK1-Parkin pathway in PD and in healthy individuals. Here I will review recent advances in our understanding of the PINK1-Parkin signaling and will discuss the roles of PINK1-Parkin signaling for mitochondrial maintenance and how the failure of this signaling leads to neurodegeneration.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
30
|
Xie W, Chung KKK. Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson's disease. J Neurochem 2012; 122:404-14. [PMID: 22537068 DOI: 10.1111/j.1471-4159.2012.07769.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alpha-synuclein (α-syn) is a synaptic protein that mutations have been linked to Parkinson's disease (PD), a common neurodegenerative disorder that is caused by the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). How α-syn can contribute to neurodegeneration in PD is not conclusive but it is agreed that mutations or excessive accumulation of α-syn can lead to the formation of α-syn oligomers or aggregates that interfere with normal cellular function and contribute to the degeneration of dopaminergic neurons. In this study, we found that α-syn can impair the normal dynamics of mitochondria and this effect is particular prominent in A53T α-syn mutant. In mice expressing A53T α-syn, age-dependent changes in both mitochondrial morphology and proteins that regulate mitochondrial fission and fusion were observed. In the cellular model of PD, we found that α-syn reduces the movement of mitochondria in both SH-SY5Y neuroblastoma and hippocampal neurons. Taken together, our study provides a new mechanism of how α-syn can contribute to PD through the impairment of normal dynamics of mitochondria.
Collapse
Affiliation(s)
- Weilin Xie
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | | |
Collapse
|