1
|
Oliveira MK, Batista TH, Rojas VCT, Vitor-Vieira F, Reis L, Giusti FCV, Giusti-Paiva A. Neuromodulator hydrogen sulfide attenuates sickness behavior induced by lipopolysaccharide. J Neuroimmunol 2024; 389:578324. [PMID: 38422691 DOI: 10.1016/j.jneuroim.2024.578324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Sickness behavior reflects a state of altered physiology and central nervous system function that occurs during systemic infection or inflammation, serving as an adaptive response to illness. This study aims to elucidate the role of hydrogen sulfide (H2S) in regulating sickness behavior and neuroinflammatory responses in a rat model of systemic inflammation. Adult male Wistar rats were treated with lipopolysaccharide (LPS) to induce sickness behavior. Intracerebroventricular (i.c.v.) pretreatments included aminooxyacetic acid (AOAA), an inhibitor of H2S synthesis, and sodium sulfide (NaHS), an H2S donor. Behavioral assays were conducted, along with the assessment of astrocyte activation, as indicated by GFAP expression in the hypothalamus. Pretreatment with NaHS mitigated LPS-induced behavioral changes, including hypophagia, social and exploratory deficits, without affecting peripheral cytokine levels, indicating a central modulatory effect. AOAA, conversely, accentuated certain behavioral responses, suggesting a complex role of endogenous H2S in sickness behavior. These findings were reinforced by a lack of effect on plasma interleukin levels but significant reduction in GFAP expression. Our findings support the central role of H2S in modulating neuroinflammation and sickness behavior, highlighting the therapeutic potential of targeting H2S signaling in neuroinflammatory conditions.
Collapse
Affiliation(s)
- Merelym K Oliveira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Tatiane H Batista
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Viviana Carolina T Rojas
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Fernando Vitor-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Letícia Reis
- Programa de Pós-Graduação em Biociências, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Fabiana Cardoso Vilela Giusti
- Programa de Pós-Graduação em Biociências, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil; Centro de Inovação e Ensaios Pré-Clínicos (CIEnP), Florianópolis, SC, Brazil
| | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Yang T, Wang Z, Li J, Shan F, Huang QY. Cerebral Lactate Participates in Hypoxia-induced Anapyrexia Through its Receptor G Protein-coupled Receptor 81. Neuroscience 2024; 536:119-130. [PMID: 37979840 DOI: 10.1016/j.neuroscience.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Hypoxia-induced anapyrexia is thought to be a regulated decrease in body core temperature (Tcore), but the underlying mechanism remains unclear. Recent evidence suggests that lactate, a glycolysis product, could modulate neuronal excitability through the G protein-coupled receptor 81 (GPR81). The present study aims to elucidate the role of central lactate and GPR81 in a rat model of hypoxia-induced anapyrexia. The findings revealed that hypoxia (11.1% O2, 2 h) led to an increase in lactate in cerebrospinal fluid (CSF) and a decrease in Tcore. Injection of dichloroacetate (DCA, 5 mg/kg, 1 μL), a lactate production inhibitor, to the third ventricle (3 V), alleviated the increase in CSF lactate and the decrease in Tcore under hypoxia. Immunofluorescence staining showed GPR81 was expressed in the preoptic area of hypothalamus (PO/AH), the physiological thermoregulation integration center. Under normoxia, injection of GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA, 0.05 mg/kg, 1 μL) to the 3 V, reduced Tcore significantly. In addition, hypoxia led to a dramatic increase in tail skin temperature and a decrease in interscapular brown adipose tissue skin temperature. The number of c-Fos+ cells in the PO/AH increased after exposure to 11.1% O2 for 2 h, but administration of DCA to the 3 V blunted this response. Injection of CHBA to the 3 V also increased the number of c-Fos+ cells in the PO/AH under normoxia. In light of these, our research has uncovered the pivotal role of central lactate-GPR81 signaling in anapyrexia, thereby providing novel insights into the mechanism of hypoxia-induced anapyrexia.
Collapse
Affiliation(s)
- Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Zejun Wang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Traumatic Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Qing-Yuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| |
Collapse
|
3
|
Omorou M, Liu N, Huang Y, Al-Ward H, Gao M, Mu C, Zhang L, Hui X. Cystathionine beta-Synthase in hypoxia and ischemia/reperfusion: A current overview. Arch Biochem Biophys 2022; 718:109149. [DOI: 10.1016/j.abb.2022.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
|
4
|
Correlation between convection requirement and carotid body responses to hypoxia and hemoglobin affinity: comparison between two rat strains. J Comp Physiol B 2021; 191:1031-1045. [PMID: 33970341 DOI: 10.1007/s00360-021-01377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
We tested the hypothesis that differences in ventilatory ([Formula: see text]) or convection requirement ([Formula: see text]/[Formula: see text]O2) response to hypoxia would be correlated with differences in hemoglobin (Hb) oxygen affinity between two strains of rats, as they have been shown to be among several species of mammals, birds and reptiles. Brown Norway (BN) rats reduce metabolism more than they increase ventilation in response to hypoxia and both the ventilatory and convection requirement responses to hypoxia are lower in the BN than the Sprague-Dawley (SD) rat. The lower threshold of the ventilation/convection requirement responses of the BN to hypoxia are associated with a higher affinity Hb than the SD rats, (P50 values of 32.4 (± 0.6) versus 34.4 (± 0.5), respectively (P < 0.05), and P75 values of 46.1 (± 0.5) for BN versus 50.7 (± 0.8) for SD (P < 0.001). This significant difference, particularly near the inflection point of the dissociation curve, supported our hypothesis. A reduced sensitivity of BN compared to SD carotid bodies was found. BN carotid bodies (from 36 20-60-day-olds) had a mean estimated volume of 26.64 ± 1.47 × 106 μm3, significantly (P < 0.0001) smaller than SD carotid bodies (from 46 16-40-day-olds) at 50.66 ± 3.41 × 106 μm3. Both genetic and epigenetic/developmental mechanisms may account for the observed inter-strain differences.
Collapse
|
5
|
The Hypothermic Effect of Hydrogen Sulfide Is Mediated by the Transient Receptor Potential Ankyrin-1 Channel in Mice. Pharmaceuticals (Basel) 2021; 14:ph14100992. [PMID: 34681216 PMCID: PMC8538668 DOI: 10.3390/ph14100992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has been shown in previous studies to cause hypothermia and hypometabolism in mice, and its thermoregulatory effects were subsequently investigated. However, the molecular target through which H2S triggers its effects on deep body temperature has remained unknown. We investigated the thermoregulatory response to fast-(Na2S) and slow-releasing (GYY4137) H2S donors in C57BL/6 mice, and then tested whether their effects depend on the transient receptor potential ankyrin-1 (TRPA1) channel in Trpa1 knockout (Trpa1−/−) and wild-type (Trpa1+/+) mice. Intracerebroventricular administration of Na2S (0.5–1 mg/kg) caused hypothermia in C57BL/6 mice, which was mediated by cutaneous vasodilation and decreased thermogenesis. In contrast, intraperitoneal administration of Na2S (5 mg/kg) did not cause any thermoregulatory effect. Central administration of GYY4137 (3 mg/kg) also caused hypothermia and hypometabolism. The hypothermic response to both H2S donors was significantly (p < 0.001) attenuated in Trpa1−/− mice compared to their Trpa1+/+ littermates. Trpa1 mRNA transcripts could be detected with RNAscope in hypothalamic and other brain neurons within the autonomic thermoeffector pathways. In conclusion, slow- and fast-releasing H2S donors induce hypothermia through hypometabolism and cutaneous vasodilation in mice that is mediated by TRPA1 channels located in the brain, presumably in hypothalamic neurons within the autonomic thermoeffector pathways.
Collapse
|
6
|
Sabino JPJ, Oliveira LVDC, Soriano RN, Kwiatkoski M, Branco LGS, da Silva GSF. Role of hydrogen sulfide in ventilatory responses to hypercapnia in the medullary raphe of adult rats. Exp Physiol 2021; 106:1992-2001. [PMID: 34159656 DOI: 10.1113/ep089335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/18/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? There is evidence that H2 S plays a role in the control of breathing: what are its actions on the ventilatory and thermoregulatory responses to hypercapnia via effects in the medullary raphe, a brainstem region that participates in the ventilatory adjustments to hypercapnia? What is the main finding and its importance? Hypercapnia increased the endogenous production of H2 S in the medullary raphe. Inhibition of endogenous H2 S attenuated the ventilatory response to hypercapnia in unanaesthetized rats, suggesting its excitatory action via the cystathionine β-synthase-H2 S pathway in the medullary raphe. ABSTRACT Hydrogen sulfide (H2 S) has been recently recognized as a gasotransmitter alongside carbon monoxide (CO) and nitric oxide (NO). H2 S seems to modulate the ventilatory and thermoregulatory responses to hypoxia and hypercapnia. However, the action of the H2 S in the medullary raphe (MR) on the ventilatory responses to hypercapnia remains to be elucidated. The present study aimed to assess the role of H2 S in the MR (a brainstem region that contains CO2 -sensitive cells and participates in the ventilatory adjustments to hypercapnia) in the ventilatory responses to hypercapnia in adult unanaesthetized Wistar rats. To do so, aminooxyacetic acid (AOA; a cystathionine β-synthase (CBS) enzyme inhibitor), propargylglycine (PAG; a cystathionine γ-lyase enzyme inhibitor) and sodium sulfide (Na2 S; an H2 S donor) were microinjected into the MR. Respiratory frequency (fR ), tidal volume (VT ), ventilation ( V ̇ E ), oxygen consumption ( V ̇ O 2 ) and body temperature (Tb ) were measured under normocapnic (room air) and hypercapnic (7% CO2 ) conditions. H2 S concentration within the MR was determined. Microinjection of the drugs did not affect fR , VT and V ̇ E during normocapnia when compared to the control group. However, the microinjection of AOA, but not PAG, attenuated fR and V ̇ E during hypercapnia in comparison to the vehicle group, but had no effects on Tb . In addition, we observed an increase in the endogenous production of H2 S in the MR during hypercapnia. Our findings indicate that endogenously produced H2 S in the MR plays an excitatory role in the ventilatory response to hypercapnia, acting through the CBS-H2 S pathway.
Collapse
Affiliation(s)
- João Paulo Jacob Sabino
- Department of Biophysics and Physiology, Graduate Program in Pharmaceutical Sciences, Federal University of Piaui, Teresina, PI, Brazil
| | - Lucas Vaz de Castro Oliveira
- Department of Biophysics and Physiology, Graduate Program in Pharmaceutical Sciences, Federal University of Piaui, Teresina, PI, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | | | - Luiz G S Branco
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Science Federal, University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Skandalis DA, Dobell CD, Shaw JC, Tattersall GJ. Hydrogen sulfide exposure reduces thermal set point in zebrafish. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200416. [PMID: 33391778 PMCID: PMC7735326 DOI: 10.1098/rsos.200416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/06/2020] [Indexed: 05/26/2023]
Abstract
Behavioural flexibility allows ectotherms to exploit the environment to govern their metabolic physiology, including in response to environmental stress. Hydrogen sulfide (H2S) is a widespread environmental toxin that can lethally inhibit metabolism. However, H2S can also alter behaviour and physiology, including a hypothesized induction of hibernation-like states characterized by downward shifts of the innate thermal set point (anapyrexia). Support for this hypothesis has proved controversial because it is difficult to isolate active and passive components of thermoregulation, especially in animals with high resting metabolic heat production. Here, we directly test this hypothesis by leveraging the natural behavioural thermoregulatory drive of fish to move between environments of different temperatures in accordance with their current physiological state and thermal preference. We observed a decrease in adult zebrafish (Danio rerio) preferred body temperature with exposure to 0.02% H2S, which we interpret as a shift in the thermal set point. Individuals exhibited consistent differences in shuttling behaviour and preferred temperatures, which were reduced by a constant temperature magnitude during H2S exposure. Seeking lower temperatures alleviated H2S-induced metabolic stress, as measured by reduced rates of aquatic surface respiration. Our findings highlight the interactions between individual variation and sublethal impacts of environmental toxins on behaviour.
Collapse
Affiliation(s)
| | | | | | - Glenn J. Tattersall
- Department of Biological Sciences, Brock University, St Catharines, 500 Glenridge Avenue, St Catharines, Ontario, CanadaL2S 3A1
| |
Collapse
|
8
|
Sabino JPJ, Soriano RN, Santos BM, Donatti AF, Fernandez RR, da Silva GS, Branco LG. Central administration of aminooxyacetate, an inhibitor of H2S production, affects thermoregulatory but not cardiovascular and ventilatory responses to hypercapnia in spontaneously hypertensive rats. Respir Physiol Neurobiol 2019; 263:38-46. [DOI: 10.1016/j.resp.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/07/2019] [Accepted: 03/01/2019] [Indexed: 01/18/2023]
|
9
|
Coletti R, de Lima JBM, Vechiato FMV, de Oliveira FL, Debarba LK, Almeida-Pereira G, Elias LLK, Antunes-Rodrigues J. Nitric oxide acutely modulates hypothalamic and neurohypophyseal carbon monoxide and hydrogen sulphide production to control vasopressin, oxytocin and atrial natriuretic peptide release in rats. J Neuroendocrinol 2019; 31:e12686. [PMID: 30633838 DOI: 10.1111/jne.12686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) negatively modulates the secretion of vasopressin (AVP), oxytocin (OT) and atrial natriuretic peptide (ANP) induced by the increase in extracellular osmolality, whereas carbon monoxide (CO) and hydrogen sulphide (H2 S) act to potentiate it; however, little information is available for the osmotic challenge model about whether and how such gaseous systems modulate each other. Therefore, using an acute ex vivo model of hypothalamic and neurohypophyseal explants (obtained from male 6/7-week-old Wistar rats) under conditions of extracellular iso- and hypertonicity, we determined the effects of NO (600 μmol L-1 sodium nitroprusside), CO (100 μmol L-1 tricarbonylchloro[glycinato]ruthenium [II]) and H2 S (10 mmol L-1 sodium sulphide) donors and nitric oxide synthase (NOS) (300 μmol L-1 Nω -methyl-l-arginine [LNMMA]), haeme oxygenase (HO) (200 μmol L-1 Zn(II) deuteroporphyrin IX 2,4-bis-ethylene glycol [ZnDPBG]) and cystathionine β-synthase (CBS) (100 μmol L-1 aminooxyacetate [AOA]) inhibitors on the release of hypothalamic ANP and hypothalamic and neurohypophyseal AVP and OT, as well as on the activities of NOS, HO and CBS. LNMMA reversed hyperosmolality-induced NOS activity, and enhanced hormonal release by the hypothalamus and neurohypophysis, in addition to increasing CBS and hypothalamic HO activity. AOA decreased hypothalamic and neurohypophyseal CBS activity and hormonal release, whereas ZnDPBG inhibited HO activity and hypothalamic hormone release; however, in both cases, AOA did not modulate NOS and HO activity and ZnDPBG did not affect NOS and CBS activity. Thus, our data indicate that, although endogenous CO and H2 S positively modulate AVP, OT and ANP release, only NO plays a concomitant role of modulator of hormonal release and CBS activity in the hypothalamus and neurohypophysis and that of HO activity in the hypothalamus during an acute osmotic stimulus, which suggests that NO is a key gaseous controller of the neuroendocrine system.
Collapse
Affiliation(s)
- Ricardo Coletti
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Lucas Kniess Debarba
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gislaine Almeida-Pereira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Exogenous hydrogen sulfide gas does not induce hypothermia in normoxic mice. Sci Rep 2018; 8:3855. [PMID: 29497053 PMCID: PMC5832815 DOI: 10.1038/s41598-018-21729-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S, 80 ppm) gas in an atmosphere of 17.5% oxygen reportedly induces suspended animation in mice; a state analogous to hibernation that entails hypothermia and hypometabolism. However, exogenous H2S in combination with 17.5% oxygen is able to induce hypoxia, which in itself is a trigger of hypometabolism/hypothermia. Using non-invasive thermographic imaging, we demonstrated that mice exposed to hypoxia (5% oxygen) reduce their body temperature to ambient temperature. In contrast, animals exposed to 80 ppm H2S under normoxic conditions did not exhibit a reduction in body temperature compared to normoxic controls. In conclusion, mice induce hypothermia in response to hypoxia but not H2S gas, which contradicts the reported findings and putative contentions.
Collapse
|
11
|
Nakayama S, Taguchi N, Tanaka M. Role of Cranial Temperature in Neuroprotection by Sodium Hydrogen Sulfide After Cardiac Arrest in Mice. Ther Hypothermia Temp Manag 2018; 8:203-210. [PMID: 29431591 DOI: 10.1089/ther.2017.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The hydrogen sulfide donor sodium hydrogen sulfide (NaHS) is recognized as a neuroprotective agent, which induces a hibernation-like metabolic state and hypothermia. However, it remains unclear whether it is the sulfide itself or the hypothermia induced by the sulfide that mediates treatment outcomes following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). We therefore tested whether NaHS improved outcomes following CA/CPR in mice maintained at 35.0°C by active warming during recovery. Adult male mice were subjected to 8 minutes CA/CPR and randomly treated intraperitoneally with either implantation of miniosmotic pump with NaHS (50 μmol/kg/day) for 3 days or vehicle 30 minutes after CPR. A normothermia group had cranial temperatures kept >35.0°C for 6 hours with a heat pad, and a hypothermia group was allowed to spontaneous hypothermia at room temperature (26.0°C). Behavioral testing and histological evaluation of neurons in the CA1 hippocampal region and striatum were performed on days 4 and 12 after CA/CPR. Both cranial and body temperature decreased following CA/CPR in the hypothermia group, and this was enhanced by NaHS treatment. In the active warming (normothermia) group, NaHS protected striatal neurons and improved long-term survival, which was comparable to the hypothermia groups. No differences were found in the CA1 region. Following CA/CPR, NaHS treatment decreased the heart rate, but not the mean arterial pressure. Our study demonstrated that post-CPR treatment with NaHS exerted neuroprotection in mice while maintaining a normal cranial temperature, indicating that NaHS-related neuroprotection is independent of the known protective effect of spontaneous hypothermia.
Collapse
Affiliation(s)
- Shin Nakayama
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Noriko Taguchi
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Tanaka
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Abstract
In some organisms and cells, oxygen availability influences oxygen consumption. In this review, we examine this phenomenon of hypoxic hypometabolism (HH), discussing its features, mechanisms, and implications. Small mammals and other vertebrate species exhibit "oxyconformism," a downregulation of metabolic rate and body temperature during hypoxia which is sensed by the central nervous system. Smaller body mass and cooler ambient temperature contribute to a high metabolic rate in mammals. It is this hypermetabolic state that is suppressed by hypoxia leading to HH. Larger mammals including humans do not exhibit HH. Tissues and cells also exhibit reductions in respiration during hypoxia in vitro, even at oxygen levels ample for mitochondrial oxidative phosphorylation. The mechanisms of cellular HH involve intracellular oxygen sensors including hypoxia-inducible factors, AMP-activated protein kinase (AMPK), and mitochondrial reactive oxygen species (ROS) which downregulate mitochondrial activity and ATP utilization. HH has a profound impact on cardiovascular, respiratory, and metabolic physiology in rodents. Therefore, caution should be exercised when extrapolating the results of rodent hypoxia studies to human physiology.
Collapse
|
13
|
Seo Y, Gerhart HD, Vaughan J, Kim JH, Glickman EL. Does Acute Normobaric Hypoxia Induce Anapyrexia in Adult Humans? High Alt Med Biol 2017; 18:185-190. [PMID: 28346847 PMCID: PMC10542910 DOI: 10.1089/ham.2016.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seo, Yongsuk, Hayden D. Gerhart, Jeremiah Vaughan, Jung-Hyun Kim, and Ellen L. Glickman. Does acute normobaric hypoxia induce anapyrexia in adult humans? High Alt Med Biol. 18:185-190, 2017.-Exposure to hypoxia is known to induce a reduction in core body temperature as a protective mechanism, which has been shown in both animals and humans. The purpose of this study was to test if acute exposure to normobaric hypoxia (NH) induces anapyrexia in adult humans in association with decreased peripheral oxygen saturation (SpO2). Ten healthy male subjects were seated in atmospheres of normobaric normoxia 21% (NN21), NH 17% (NH17), and 13% (NH13) O2 for 60 minutes in a counterbalanced manner. Rectal temperature (Tre) was continuously monitored together with the quantification of metabolic heat production (MHP) and body heat storage (S). Baseline physiological measurements showed no differences between the three conditions. SpO2 was significantly decreased in NH17 and NH13 compared with NN21 (p ≤ 0.001). Tre decreased following 60 minutes of resting in all conditions, but, independent of the conditions, showed no association between Tre and levels of hypoxic SpO2. There was also no significant difference in either MHP or S between conditions. The present results showed no evidence of hypoxia-induced anapyrexia in adult humans during 1 hour of resting after exposure to NH either at 13% or 17% O2.
Collapse
Affiliation(s)
- Yongsuk Seo
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Hayden D. Gerhart
- Department of Exercise Physiology, Kent State University, Kent, Ohio
- Kinesiology, Health, and Sport Science, Indiana University of Pennsylvania, Indiana, Pennsylvania
| | - Jeremiah Vaughan
- Department of Exercise Physiology, Kent State University, Kent, Ohio
| | - Jung-Hyun Kim
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Ellen L. Glickman
- Department of Exercise Physiology, Kent State University, Kent, Ohio
| |
Collapse
|
14
|
Sabino JPJ, Soriano RN, Donatti AF, Fernandez RR, Kwiatkoski M, Francescato HD, Coimbra TM, Branco LG. Involvement of endogenous central hydrogen sulfide (H2S) in hypoxia-induced hypothermia in spontaneously hypertensive rats. Can J Physiol Pharmacol 2017; 95:157-162. [DOI: 10.1139/cjpp-2016-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneously hypertensive rats (SHR) display autonomic imbalance and abnormal body temperature (Tb) adjustments. Hydrogen sulfide (H2S) modulates hypoxia-induced hypothermia, but its role in SHR thermoregulation is unknown. We tested the hypothesis that SHR display peculiar thermoregulatory response to hypoxia and that endogenous H2S overproduced in the caudal nucleus of the solitary tract (NTS) of SHR modulates this response. SHR and Wistar rats were microinjected into the fourth ventricle with aminooxyacetate (AOA, H2S-synthezing enzyme inhibitor) or sodium sulfide (Na2S, H2S donor) and exposed to normoxia (21% inspired O2) or hypoxia (10% inspired O2, 30 min). Tb was continuously measured, and H2S production rate was assessed in caudal NTS homogenates. In both groups, AOA, Na2S, or saline (i.e., control; 1 μL) did not affect euthermia. Hypoxia caused similar decreases in Tb in both groups. AOA presented a longer latency to potentiate hypoxic hypothermia in SHR. Caudal NTS H2S production rate was higher in SHR. We suggest that increased bioavailability of H2S in the caudal NTS of SHR enables the adequate modulation of excitability of peripheral chemoreceptor-activated NTS neurons that ultimately induce suppression of brown adipose tissue thermogenesis, thus accounting for the normal hypoxic hypothermia.
Collapse
Affiliation(s)
- João Paulo J. Sabino
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato N. Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, 35020-220, Governador Valadares, MG, Brazil
| | - Alberto F. Donatti
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Marcelo Kwiatkoski
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Heloísa D.C. Francescato
- School of Medicine of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Terezila M. Coimbra
- School of Medicine of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G.S. Branco
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
15
|
Nogueira JE, Soriano RN, Fernandez RAR, Francescato HDC, Saia RS, Coimbra TM, Antunes-Rodrigues J, Branco LGS. Effect of Physical Exercise on the Febrigenic Signaling is Modulated by Preoptic Hydrogen Sulfide Production. PLoS One 2017; 12:e0170468. [PMID: 28118407 PMCID: PMC5261610 DOI: 10.1371/journal.pone.0170468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that the neuromodulator hydrogen sulfide (H2S) in the preoptic area (POA) of the hypothalamus modulates the febrigenic signaling differently in sedentary and trained rats. Besides H2S production rate and protein expressions of H2S-related synthases cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MPST) and cystathionine γ-lyase (CSE) in the POA, we also measured deep body temperature (Tb), circulating plasma levels of cytokines and corticosterone in an animal model of systemic inflammation. Rats run on a treadmill before receiving an intraperitoneal injection of lipopolysaccharide (LPS, 100 μg/kg) or saline. The magnitude of changes of Tb during the LPS-induced fever was found to be similar between sedentary and trained rats. In sedentary rats, H2S production was not affected by LPS. Conversely, in trained rats LPS caused a sharp increase in H2S production rate that was accompanied by an increased CBS expression profile, whereas 3-MPST and CSE expressions were kept relatively constant. Sedentary rats showed a significant LPS-induced release of cytokines (IL-1β, IL-6, and TNF-α) which was virtually abolished in the trained animals. Correlation between POA H2S and IL-6 as well as TNF-α was observed. Corticosterone levels were augmented after LPS injection in both groups. We found correlations between H2S and corticosterone, and corticosterone and IL-1β. These data are consistent with the notion that the responses to systemic inflammation are tightly regulated through adjustments in POA H2S production which may play an anti-inflammatory role downmodulating plasma cytokines levels and upregulating corticosterone release.
Collapse
Affiliation(s)
- Jonatas E. Nogueira
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo, Ribeirão Preto, SP, Brazil
- School of Physical Education and Sports of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato N. Soriano
- Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Rodrigo A. R. Fernandez
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Heloísa D. C. Francescato
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael S. Saia
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Terezila M. Coimbra
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G. S. Branco
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Morphology, Physiology, and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Schieber AMP, Ayres JS. Thermoregulation as a disease tolerance defense strategy. Pathog Dis 2016; 74:ftw106. [PMID: 27815313 PMCID: PMC5975229 DOI: 10.1093/femspd/ftw106] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/03/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
Physiological responses that occur during infection are most often thought of in terms of effectors of microbial destruction through the execution of resistance mechanisms, due to a direct action of the microbe, or are maladaptive consequences of host-pathogen interplay. However, an examination of the cellular and organ-level consequences of one such response, thermoregulation that leads to fever or hypothermia, reveals that these actions cannot be readily explained within the traditional paradigms of microbial killing or maladaptive consequences of host-pathogen interactions. In this review, the concept of disease tolerance is applied to thermoregulation during infection, inflammation and trauma, and we discuss the physiological consequences of thermoregulation during disease including tissue susceptibility to damage, inflammation, behavior and toxin neutralization.
Collapse
Affiliation(s)
- Alexandria M Palaferri Schieber
- The Salk Institute for Biological Studies, Immunobiology and Microbial Pathogenesis, 10010 North Torrey Pines Road, San DIego CA, USA
| | - Janelle S Ayres
- The Salk Institute for Biological Studies, Immunobiology and Microbial Pathogenesis, 10010 North Torrey Pines Road, San DIego CA, USA
| |
Collapse
|
17
|
Fernández RAR, Soriano RN, Francescato HDC, Sabino JP, Coimbra TM, Branco LGS. Cryogenic role of central endogenous hydrogen sulfide in the rat model of endotoxic shock. Brain Res 2016; 1650:218-223. [PMID: 27592137 DOI: 10.1016/j.brainres.2016.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/13/2016] [Accepted: 08/30/2016] [Indexed: 01/25/2023]
Abstract
Thermoregulatory responses to lipopolysaccharide (LPS) are affected by modulators that increase (propyretic) or decrease (cryogenic) body temperature (Tb). We tested the hypothesis that central hydrogen sulfide (H2S) acts as a thermoregulatory modulator and that H2S production in the anteroventral preoptic region of the hypothalamus (AVPO) is increased during hypothermia and decreased during fever induced by bacterial lipopolysaccharide (LPS, 2.5mg/kg i.p.) in rats kept at an ambient temperature of 25°C. Deep Tb was recorded before and after pharmacological inhibition of the enzyme cystathionine β-synthase (CBS - responsible for H2S endogenous production in the brain) combined or not with LPS administration. To further investigate the mechanisms responsible for these thermoregulatory adjustments, we also measured prostaglandin D2 (PGD2) production in the AVPO. LPS caused typical hypothermia followed by fever. Levels of AVPO H2S were significantly increased during hypothermia when compared to both euthermic and febrile rats. Intracerebroventricular (icv) microinjection of aminooxyacetate (AOA, a CBS inhibitor; 100 pmol) neither affected Tb nor basal PGD2 production during euthermia. In LPS-treated rats, AOA caused increased Tb values during hypothermia, along with enhanced PGD2 production. We conclude that the gaseous messenger H2S modulates hypothermia during endotoxic shock, acting as a cryogenic molecule.
Collapse
Affiliation(s)
- Rodrigo A R Fernández
- Medical School of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Renato N Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, 35020-220 Governador Valadares, MG, Brazil
| | - Heloísa D C Francescato
- Medical School of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - João P Sabino
- Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, São Paulo, Brazil
| | - Terezila M Coimbra
- Medical School of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Luiz G S Branco
- Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
18
|
Ruginsk SG, Mecawi ADS, da Silva MP, Reis WL, Coletti R, de Lima JBM, Elias LLK, Antunes-Rodrigues J. Gaseous modulators in the control of the hypothalamic neurohypophyseal system. Physiology (Bethesda) 2015; 30:127-38. [PMID: 25729058 DOI: 10.1152/physiol.00040.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous molecules produced by the brain. Within the hypothalamus, gaseous molecules have been highlighted as autocrine and paracrine factors regulating endocrine function. Therefore, in the present review, we briefly discuss the main findings linking NO, CO, and H2S to the control of body fluid homeostasis at the hypothalamic level, with particular emphasis on the regulation of neurohypophyseal system output.
Collapse
Affiliation(s)
- Silvia Graciela Ruginsk
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Andre de Souza Mecawi
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Melina Pires da Silva
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Wagner Luis Reis
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and Physiology Department, Georgia Regents University, Augusta, Georgia
| | - Ricardo Coletti
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | | | - Lucila Leico Kagohara Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| |
Collapse
|
19
|
Dirkes MC, Milstein DM, Heger M, van Gulik TM. Absence of Hydrogen Sulfide-Induced Hypometabolism in Pigs: A Mechanistic Explanation in Relation to Small Nonhibernating Mammals. Eur Surg Res 2015; 54:178-91. [DOI: 10.1159/000369795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/09/2014] [Indexed: 11/19/2022]
Abstract
Artificially induced hypometabolism in nonhibernating mammals may have considerable clinical implications. Numerous studies in small rodent models have demonstrated that hydrogen sulfide (H2S) induces hypometabolism, supposedly as a result of histotoxic hypoxia. However, the induction of hypometabolism is absent in large animals following H2S administration. To determine the cause of this animal size-dependent discrepancy in H2S pharmacodynamics, the effects of sodium H2S (NaSH; 5 mg/kg/h, 4-hour intravenous administration) on systemic, pneumocardial, hematological, biochemical, microvascular (sublingual), and histological parameters were investigated in pigs. After 4 h, no differences were observed between the NaSH and control group with respect to systemic, pneumocardial, hematological, biochemical, and histological parameters. However, NaSH triggered significant hyperperfusion in the sublingual microcirculation, as evidenced by an increased blood vessel diameter (154 ± 16 and 85 ± 25% vs. baseline for NaSH and NaCl, respectively), total vessel density (139 ± 18 and 98 ± 13%, respectively), and perfused vessel density (139 ± 18 and 99 ± 13%, respectively). These phenomena are consistent with microvascular changes that occur during a panting response, an important heat loss mechanism (i.e., thermoregulatory effector) in pigs that is controlled by the thermoneutral zone (Ztn). On the basis of our findings and the literature, a mechanistic explanation is provided for the differential manifestation of hypometabolism between small and large animals. In large animals, H2S does not act via histotoxic hypoxia but likely triggers carotid bodies to transmit a hypoxic signal, which subsequently lowers the Ztn and activates heat loss mechanisms (e.g., panting) to align ATP consumption with ATP production through hypothermia. Since large animals have a small surface:size ratio, the cooling rate is too inefficient to accommodate hypothermia and subsequent hypometabolism. This is why large animals do not exhibit hypometabolism, despite the activation of thermoregulatory effectors. This is also a reason for the poor translatability of artificial hypometabolism to the clinical setting.
Collapse
|
20
|
Abstract
SIGNIFICANCE Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. RECENT ADVANCES The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. CRITICAL ISSUES Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. FUTURE DIRECTIONS Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend , South Bend, India na
| |
Collapse
|
21
|
Fournier S, Gulemetova R, Baldy C, Joseph V, Kinkead R. Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia. Am J Physiol Regul Integr Comp Physiol 2015; 308:R659-67. [PMID: 25652536 DOI: 10.1152/ajpregu.00418.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022]
Abstract
Human and animal studies on sleep-disordered breathing and respiratory regulation show that the effects of sex hormones are heterogeneous. Because neonatal stress results in sex-specific disruption of the respiratory control in adult rats, we postulate that it might affect respiratory control modulation induced by ovarian steroids in female rats. The hypoxic ventilatory response (HVR) of adult female rats exposed to neonatal maternal separation (NMS) is ∼30% smaller than controls (24), but consequences of NMS on respiratory control in aging female rats are unknown. To address this issue, whole body plethysmography was used to evaluate the impact of NMS on the HVR (12% O2, 20 min) of middle-aged (MA; ∼57 wk old) female rats. Pups subjected to NMS were placed in an incubator 3 h/day for 10 consecutive days (P3 to P12). Controls were undisturbed. To determine whether the effects were related to sexual hormone decline or aging per se, experiments were repeated on bilaterally ovariectomized (OVX) young (∼12 wk old) adult female rats. OVX and MA both reduced the HVR significantly in control rats but had little effect on the HVR of NMS females. OVX (but not aging) reduced the anapyrexic response in both control and NMS animals. These results show that hormonal decline decreases the HVR of control animals, while leaving that of NMS female animals unaffected. This suggests that neonatal stress alters the interaction between sex hormone regulation and the development of body temperature, hormonal, and ventilatory responses to hypoxia.
Collapse
Affiliation(s)
- Sébastien Fournier
- Department of Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Quebec, Canada
| | - Roumiana Gulemetova
- Department of Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Quebec, Canada
| | - Cécile Baldy
- Department of Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Quebec, Canada
| | - Vincent Joseph
- Department of Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Quebec, Canada
| | - Richard Kinkead
- Department of Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
22
|
Coletti R, Almeida-Pereira G, Elias LLK, Antunes-Rodrigues J. Effects of hydrogen sulfide (H2S) on water intake and vasopressin and oxytocin secretion induced by fluid deprivation. Horm Behav 2015; 67:12-20. [PMID: 25436932 DOI: 10.1016/j.yhbeh.2014.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
During dehydration, responses of endocrine and autonomic control systems are triggered by central and peripheral osmoreceptors and peripheral baroreceptors to stimulate thirst and sodium appetite. Specifically, it is already clear that endocrine system acts by secreting vasopressin (AVP), oxytocin (OT) and angiotensin II (ANG II), and that gaseous molecules, such as nitric oxide (NO) and carbon monoxide (CO), play an important role in modulating the neurohypophyseal secretion as well as ANG II production and thirst. More recently, another gas-hydrogen sulfide (H2S)-has been studied as a neuronal modulator, which is involved in hypothalamic control of blood pressure, heart frequency and temperature. In this study, we aimed to investigate whether H2S and its interaction with NO system could participate in the modulatory responses of thirst and hormonal secretion induced by fluid deprivation. For this purpose, Wistar male rats were deprived of water for 12 and 24h, and the activity of sulfide-generating enzymes was measured. Surprisingly, 24-h water deprivation increased the activity of sulfide-generating enzymes in the medial basal hypothalamus (MBH). Furthermore, the icv injection of sodium sulfide (Na2S, 260nmol), a H2S donor, reduced water intake, increased AVP, OT and CORT plasma concentrations and decreased MBH nitrate/nitrite (NOX) content of 24-h water-deprived animals compared to controls. We thus suggest that H2S system has an important role in the modulation of hormonal and behavioral responses induced by 24-h fluid deprivation.
Collapse
Affiliation(s)
- R Coletti
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - G Almeida-Pereira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
23
|
da Silva GSF, Soriano RN, Kwiatkoski M, Giusti H, Glass ML, Branco LGS. Central hydrogen sulphide mediates ventilatory responses to hypercapnia in adult conscious rats. Acta Physiol (Oxf) 2014; 212:239-47. [PMID: 25042027 DOI: 10.1111/apha.12346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/30/2014] [Accepted: 07/09/2014] [Indexed: 11/30/2022]
Abstract
AIM Hydrogen sulphide (H2S) is endogenously produced and plays an important role as a modulator of neuronal functions; however, its modulatory role in the central CO2 chemoreception is unknown. The aim of the present study was to assess the role of endogenously produced H2S in the ventilatory response to hypercapnia in adult conscious rats. METHODS Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) inhibitors (aminooxyacetate: AOA and propargylglycine: PAG respectively) and a H2S donor (sodium sulphide: Na2S) were microinjected into the fourth ventricle (4V). Ventilation (V̇(E)), oxygen consumption (V̇O2) and body temperature were recorded before (room air) and during a 30-min CO2 exposure (hypercapnia, 7% CO2). Endogenous H2S levels were measured in the nucleus tractus solitarius (NTS). RESULTS Microinjection of Na2S (H2S donor), AOA (CBS inhibitor) or PAG (CSE inhibitor) did not affect baseline of the measured variables compared to control group (vehicle). In all experimental groups, hypercapnia elicited an increase in V̇(E). However, AOA microinjection, but not PAG, attenuated the ventilatory response to hypercapnia (P < 0.05), whereas Na2S elicited a slight, not significant, enhancement. Moreover, endogenous H2S levels were found higher in the NTS after hypercapnia (P < 0.05) compared to room air (normoxia) condition. CONCLUSION There are a few reports on the role of gaseous transmitters in the control of breathing. Importantly, the present data suggest that endogenous H2S via the CBS-H2S pathway mediates the ventilatory response to hypercapnia playing an excitatory role.
Collapse
Affiliation(s)
- G. S. F. da Silva
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| | - R. N. Soriano
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| | - M. Kwiatkoski
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - H. Giusti
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - M. L. Glass
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - L. G. S. Branco
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| |
Collapse
|
24
|
Branco LG, Soriano RN, Steiner AA. Gaseous Mediators in Temperature Regulation. Compr Physiol 2014; 4:1301-38. [DOI: 10.1002/cphy.c130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Donatti AF, Soriano RN, Sabino JP, Branco LGS. Involvement of endogenous hydrogen sulfide (H2S) in the rostral ventrolateral medulla (RVLM) in hypoxia-induced hypothermia. Brain Res Bull 2014; 108:94-9. [PMID: 25262576 DOI: 10.1016/j.brainresbull.2014.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/01/2014] [Accepted: 08/28/2014] [Indexed: 01/06/2023]
Abstract
Hypoxia evokes a regulated decrease in deep body temperature (Tb). Hydrogen sulfide (H2S), a signaling molecule that belongs to the gasotransmitter family, has been demonstrated to participate in several brain-mediated responses. Rostral ventrolateral medulla (RVLM) is a brainstem region involved in thermoregulation. Recently, it has been shown that exogenous H2S modulates RVLM activity. In the present study, we investigated whether endogenously produced H2S in the RVLM plays a role in the control of hypoxia-induced hypothermia. Tb was measured before and after bilateral microinjection of aminooxyacetate (AOA, 0.2, 1 and 2 pmol/100 nl, a cystathionine β-synthase, CBS, inhibitor) or vehicle into the RVLM followed by a 60-min normoxia (21% inspired O2) or hypoxia (7% inspired O2) exposure. Microinjection of AOA or vehicle did not change Tb during normoxia. Exposure to hypoxia evoked a typical decrease in Tb. Microinjection of AOA (2 pmol) into the RVLM followed by hypoxia significantly attenuated the decrease in Tb. Thus, endogenous H2S in the RVLM seems to play no role in the maintenance of basal Tb, whereas during hypoxia this gas plays a cryogenic role. Moreover, RVLM homogenates of rats exposed to hypoxia exhibited a decreased rate of H2S production. Our data are consistent with the notion that during hypoxia H2S synthesis is diminished in the RVLM facilitating hypothermia.
Collapse
Affiliation(s)
- Alberto F Donatti
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - Renato N Soriano
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - João P Sabino
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
26
|
Donatti AF, Araujo RM, Soriano RN, Azevedo LU, Leite-Panissi CA, Branco LG. Role of hydrogen sulfide in the formalin-induced orofacial pain in rats. Eur J Pharmacol 2014; 738:49-56. [DOI: 10.1016/j.ejphar.2014.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 12/24/2022]
|
27
|
Donatti AF, Soriano RN, Sabino JP, Branco LGS. Endogenous hydrogen sulfide in the rostral ventrolateral medulla/Bötzinger complex downregulates ventilatory responses to hypoxia. Respir Physiol Neurobiol 2014; 200:97-104. [PMID: 24953676 DOI: 10.1016/j.resp.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/01/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as a new gaseous transmitter involved in several brain-mediated responses. The rostral ventrolateral medulla (RVLM)/Bötzinger complex is a region in the brainstem that is involved in cardiovascular and respiratory functions. Recently, it has been shown that exogenous H2S in the RVLM modulates autonomic function and thus blood pressure. In the present study, we investigated whether H2S, endogenously produced in the RVLM/Bötzinger complex, plays a role in the control of hypoxia-induced hyperventilation. Ventilation (VE) was measured before and after bilateral microinjection of Na2S (H2S donor, 0.04, 1 and 2 pmol/100 nl) or aminooxyacetate (AOA, 0.2, 1 and 2 pmol/100 nl, a cystathionine β-synthase, CBS, inhibitor) into the RVLM/Bötzinger complex followed by a 60-min period of hypoxia (7% inspired O2) or normoxia exposure. Control rats received microinjection of vehicle. Microinjection of vehicle, AOA or Na2S did not change VE in normoxic conditions. Exposure to hypoxia evoked a typical increase in VE. Microinjection of Na2S (2 pmol) followed by hypoxia exposure attenuated the hyperventilation. Conversely, microinjection of AOA (2 pmol) into the RVLM/Bötzinger complex caused an increase in the hypoxia-induced hyperventilation. Thus, endogenous H2S in the RVLM/Bötzinger complex seems to play no role in the maintenance of basal pulmonary ventilation during normoxia whereas during hypoxia H2S has a downmodulatory function. Homogenates of RVLM/Bötzinger complex of animals previously exposed to hypoxia for 60 min exhibited a decreased rate of H2S production. Our data are consistent with the notion that the gaseous messenger H2S synthesis is downregulated in the RVLM/Bötzinger complex during hypoxia favoring hyperventilation.
Collapse
Affiliation(s)
- Alberto F Donatti
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - Renato N Soriano
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - João P Sabino
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
28
|
Kwiatkoski M, Soriano RN, da Silva GSF, Francescato HD, Coimbra TM, Glass ML, Carnio EC, Branco LGS. Endogenous preoptic hydrogen sulphide attenuates hypoxia-induced hyperventilation. Acta Physiol (Oxf) 2014; 210:913-27. [PMID: 24119224 DOI: 10.1111/apha.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/06/2013] [Accepted: 09/26/2013] [Indexed: 11/27/2022]
Abstract
AIM We hypothesized that hydrogen sulphide (H2 S), acting specifically in the anteroventral preoptic region (AVPO - an important integrating site of thermal and cardiorespiratory responses to hypoxia in which H2 S synthesis has been shown to be increased under hypoxic conditions), modulates the hypoxic ventilatory response. METHODS To test this hypothesis, we measured pulmonary ventilation (V˙E) and deep body temperature of rats before and after intracerebroventricular (icv) or intra-AVPO microinjection of aminooxyacetate (AOA; CBS inhibitor) or Na2 S (H2 S donor) followed by 60 min of hypoxia exposure (7% O2 ). Furthermore, we assessed the AVPO levels of H2 S of rats exposed to hypoxia. Control rats were kept under normoxia. RESULTS Microinjection of vehicle, AOA or Na2 S did not change V˙E under normoxic conditions. Hypoxia caused an increase in ventilation, which was potentiated by microinjection of AOA because of a further augmented tidal volume. Conversely, treatment with Na2 S significantly attenuated this response. The in vivo H2 S data indicated that during hypoxia the lower the deep body temperature the smaller the degree of hyperventilation. Under hypoxia, H2 S production was found to be increased in the AVPO, indicating that its production is responsive to hypoxia. The CBS inhibitor attenuated the hypoxia-induced increase in the H2 S synthesis, suggesting an endogenous synthesis of the gas. CONCLUSION These data provide solid evidence that AVPO H2 S production is stimulated by hypoxia, and this gaseous messenger exerts an inhibitory modulation of the hypoxic ventilatory response. It is probable that the H2 S modulation of hypoxia-induced hyperventilation is at least in part in proportion to metabolism.
Collapse
Affiliation(s)
- M. Kwiatkoski
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - R. N. Soriano
- Nursing School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - G. S. F. da Silva
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - H. D. Francescato
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - T. M. Coimbra
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - M. L. Glass
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - E. C. Carnio
- Nursing School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - L. G. S. Branco
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
29
|
Vicente JB, Colaço HG, Mendes MIS, Sarti P, Leandro P, Giuffrè A. NO* binds human cystathionine β-synthase quickly and tightly. J Biol Chem 2014; 289:8579-87. [PMID: 24515102 DOI: 10.1074/jbc.m113.507533] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hexa-coordinate heme in the H2S-generating human enzyme cystathionine β-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding of NO(•) or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO(•) was reported to bind at the CBS heme with very low affinity (Kd = 30-281 μm). This discrepancy was herein reconciled by investigating the NO(•) reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO(•) binds tightly to the ferrous CBS heme, with an apparent Kd ≤ 0.23 μm. In line with this result, at 25 °C, NO(•) binds quickly to CBS (k on ∼ 8 × 10(3) m(-1) s(-1)) and dissociates slowly from the enzyme (k off ∼ 0.003 s(-1)). The observed rate constants for NO(•) binding were found to be linearly dependent on [NO(•)] up to ∼ 800 μm NO(•), and >100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation of Cys-52 from the heme iron, as reported for CO. For the first time the heme of human CBS is reported to bind NO(•) quickly and tightly, providing a mechanistic basis for the in vivo regulation of the enzyme by NO(•). The novel findings reported here shed new light on CBS regulation by NO(•) and its possible (patho)physiological relevance, enforcing the growing evidence for an interplay among the gasotransmitters NO(•), CO, and H2S in cell signaling.
Collapse
Affiliation(s)
- João B Vicente
- From the Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
30
|
Salnikov DS, Kucherenko PN, Dereven'kov IA, Makarov SV, van Eldik R. Kinetics and Mechanism of the Reaction of Hydrogen Sulfide with Cobalamin in Aqueous Solution. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201301340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Hydrogen sulfide inhibits preoptic prostaglandin E2 production during endotoxemia. Exp Neurol 2013; 240:88-95. [DOI: 10.1016/j.expneurol.2012.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022]
|
32
|
Chao D, He X, Yang Y, Balboni G, Salvadori S, Kim DH, Xia Y. Hydrogen sulfide induced disruption of Na+ homeostasis in the cortex. Toxicol Sci 2012; 128:198-208. [PMID: 22474073 DOI: 10.1093/toxsci/kfs125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H(2)S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na(+) activity using Na(+) selective electrodes in mouse cortical slices that H(2)S donor sodium hydrosulfide (NaHS) increased Na(+) influx in a concentration-dependent manner. This effect could be partially blocked by either Na(+) channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H(2)S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na(+) influx through Na(+) channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na(+) currents/influx in normoxia, had no effect on H(2)S-induced Na(+) influx, suggesting that H(2)S-induced disruption of Na(+) homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia.
Collapse
Affiliation(s)
- Dongman Chao
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|