1
|
Higuchi Y, Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: Region-dependent and receptor-type specific roles on neurogenic cellular transformation. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100102. [PMID: 37638344 PMCID: PMC10458724 DOI: 10.1016/j.crneur.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 08/29/2023] Open
Abstract
Brain serotonin (5-hydroxytryptamine, 5-HT) is a key molecule for the mediation of depression-related brain states, but the neural mechanisms underlying 5-HT mediation need further investigation. A possible mechanism of the therapeutic antidepressant effects is neurogenic cell production, as stimulated by 5-HT signaling. Neurogenesis, the proliferation of neural stem cells (NSCs), and cell differentiation and maturation occur across brain regions, particularly the hippocampal dentate gyrus and the subventricular zone, throughout one's lifespan. 5-HT plays a major role in the mediation of neurogenic processes, which in turn leads to the therapeutic effect on depression-related states. In this review article, we aim to identify how the neuronal 5-HT system mediates the process of neurogenesis, including cell proliferation, cell-type differentiation and maturation. First, we will provide an overview of the neurogenic cell transformation that occurs in brain regions containing or lacking NSCs. Second, we will review brain region-specific mechanisms of 5-HT-mediated neurogenesis by comparing regions localized to NSCs, i.e., the hippocampus and subventricular zone, with those not containing NSCs. Highlighting these 5-HT mechanisms that mediate neurogenic cell production processes in a brain-region-specific manner would provide unique insights into the role of 5-HT in neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
2
|
Kuerbitz J, Madhavan M, Ehrman LA, Kohli V, Waclaw RR, Campbell K. Temporally Distinct Roles for the Zinc Finger Transcription Factor Sp8 in the Generation and Migration of Dorsal Lateral Ganglionic Eminence (dLGE)-Derived Neuronal Subtypes in the Mouse. Cereb Cortex 2020; 31:1744-1762. [PMID: 33230547 DOI: 10.1093/cercor/bhaa323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Progenitors in the dorsal lateral ganglionic eminence (dLGE) are known to give rise to olfactory bulb (OB) interneurons and intercalated cells (ITCs) of the amygdala. The dLGE enriched transcription factor Sp8 is required for the normal generation of ITCs as well as OB interneurons, particularly the calretinin (CR)-expressing subtype. In this study, we used a genetic gain-of-function approach in mice to examine the roles Sp8 plays in controlling the development of dLGE-derived neuronal subtypes. Misexpression of Sp8 throughout the ventral telencephalic subventricular zone (SVZ) from early embryonic stages, led to an increased generation of ITCs which was dependent on Tshz1 gene dosage. Additionally, Sp8 misexpression impaired rostral migration of OB interneurons with clusters of CR interneurons seen in the SVZ along with decreased differentiation of calbindin OB interneurons. Sp8 misexpression throughout the ventral telencephalon also reduced ventral LGE neuronal subtypes including striatal projection neurons. Delaying Sp8 misexpression until E14-15 rescued the striatal and amygdala phenotypes but only partially rescued OB interneuron reductions, consistent with an early window of striatal and amygdala neurogenesis and ongoing OB interneuron generation at this late stage. Our results demonstrate critical roles for the timing and neuronal cell-type specificity of Sp8 expression in mouse LGE neurogenesis.
Collapse
Affiliation(s)
- J Kuerbitz
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M Madhavan
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - L A Ehrman
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - V Kohli
- Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - R R Waclaw
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - K Campbell
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Ruiz-Reig N, Studer M. Rostro-Caudal and Caudo-Rostral Migrations in the Telencephalon: Going Forward or Backward? Front Neurosci 2017; 11:692. [PMID: 29311773 PMCID: PMC5742585 DOI: 10.3389/fnins.2017.00692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
The generation and differentiation of an appropriate number of neurons, as well as its distribution in different parts of the brain, is crucial for the proper establishment, maintenance and plasticity of neural circuitries. Newborn neurons travel along the brain in a process known as neuronal migration, to finalize their correct position in the nervous system. Defects in neuronal migration produce abnormalities in the brain that can generate neurodevelopmental pathologies, such as autism, schizophrenia and intellectual disability. In this review, we present an overview of the developmental origin of the different telencephalic subdivisions and a description of migratory pathways taken by distinct neural populations traveling long distances before reaching their target position in the brain. In addition, we discuss some of the molecules implicated in the guidance of these migratory paths and transcription factors that contribute to the correct migration and integration of these neurons.
Collapse
|
4
|
García-González D, Khodosevich K, Watanabe Y, Rollenhagen A, Lübke JHR, Monyer H. Serotonergic Projections Govern Postnatal Neuroblast Migration. Neuron 2017; 94:534-549.e9. [PMID: 28472655 DOI: 10.1016/j.neuron.2017.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 01/18/2023]
Abstract
In many vertebrates, postnatally generated neurons often migrate long distances to reach their final destination, where they help shape local circuit activity. Concerted action of extrinsic stimuli is required to regulate long-distance migration. Some migratory principles are evolutionarily conserved, whereas others are species and cell type specific. Here we identified a serotonergic mechanism that governs migration of postnatally generated neurons in the mouse brain. Serotonergic axons originating from the raphe nuclei exhibit a conspicuous alignment with subventricular zone-derived neuroblasts. Optogenetic axonal activation provides functional evidence for serotonergic modulation of neuroblast migration. Furthermore, we show that the underlying mechanism involves serotonin receptor 3A (5HT3A)-mediated calcium influx. Thus, 5HT3A receptor deletion in neuroblasts impaired speed and directionality of migration and abolished calcium spikes. We speculate that serotonergic modulation of postnatally generated neuroblast migration is evolutionarily conserved as indicated by the presence of serotonergic axons in migratory paths in other vertebrates.
Collapse
Affiliation(s)
- Diego García-González
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Konstantin Khodosevich
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yasuhito Watanabe
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Leo-Brandt Str., 52425 Jülich, Germany
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Leo-Brandt Str., 52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH/University Hospital Aachen, Pauwelstr. 30, 52074 Aachen, Germany; JARA Translational Brain Medicine, Jülich and Aachen, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Koyama Y, Kondo M, Shimada S. Building a 5-HT3A Receptor Expression Map in the Mouse Brain. Sci Rep 2017; 7:42884. [PMID: 28276429 PMCID: PMC5343592 DOI: 10.1038/srep42884] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 01/07/2023] Open
Abstract
Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS.
Collapse
Affiliation(s)
- Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Finger TE, Bartel DL, Shultz N, Goodson NB, Greer CA. 5HTR3A-driven GFP labels immature olfactory sensory neurons. J Comp Neurol 2017; 525:1743-1755. [PMID: 28152579 DOI: 10.1002/cne.24180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
The ionotropic serotonin receptor, 5-HT3 , is expressed by many developing neurons within the central nervous system. Since the olfactory epithelium continues to generate new olfactory sensory neurons (OSNs) throughout life, we investigated the possibility that 5-HT3 is expressed in the adult epithelium. Using a transgenic mouse in which the promoter for the 5-HT3a subunit drives expression of green fluorescent protein (GFP), we assessed the expression of this marker in the olfactory epithelium of adult mice. Both the native 5-HT3a mRNA and GFP are expressed within globose basal cells of the olfactory and vomeronasal epithelium in adult mice. Whereas the 5-HT3a mRNA disappears relatively quickly after final cell division, the GFP label persists for about 5 days, thereby labeling immature OSNs in both the main olfactory system and vomeronasal organ. The GFP-labeled cells include both proliferative globose basal cells as well as immature OSNs exhibiting the hallmarks of ongoing differentiation including GAP43, PGP9.5, but the absence of olfactory marker protein. Some of the GFP-labeled OSNs show characteristics of more mature yet still developing OSNs including the presence of cilia extending from the apical knob and expression of NaV1.5, a component of the transduction cascade. These findings suggest that 5-HT3a is indicative of a proliferative or developmental state, regardless of age, and that the 5-HT3A GFP mice may prove useful for future studies of neurogenesis in the olfactory epithelium. J. Comp. Neurol. 525:1743-1755, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas E Finger
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Program in Neuroscience, University of Colorado School of Medicine, Aurora, Colorado
| | - Dianna L Bartel
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Program in Neuroscience, University of Colorado School of Medicine, Aurora, Colorado.,Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Nicole Shultz
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Noah B Goodson
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Program in Neuroscience, University of Colorado School of Medicine, Aurora, Colorado
| | - Charles A Greer
- Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, New Haven, Connecticut.,Interdepartmental Neuroscience Graduate Program, Yale University, New Haven, Connecticut
| |
Collapse
|
7
|
Human and monkey striatal interneurons are derived from the medial ganglionic eminence but not from the adult subventricular zone. J Neurosci 2014; 34:10906-23. [PMID: 25122892 DOI: 10.1523/jneurosci.1758-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In adult rodent and monkey brains, newly born neurons in the subventricular zone (SVZ) in the wall of the lateral ventricle migrate into the olfactory bulb (OB) via the rostral migratory stream (RMS). A recent study reported that interneurons are constantly generating in the adult human striatum from the SVZ. In contrast, by taking advantage of the continuous expression of Sp8 from the neuroblast stage through differentiation into mature interneurons, we found that the adult human SVZ does not generate new interneurons for the striatum. In the adult human SVZ and RMS, very few neuroblasts were observed, and most of them expressed the transcription factor Sp8. Neuroblasts in the adult rhesus monkey SVZ-RMS-OB pathway also expressed Sp8. In addition, we observed that Sp8 was expressed by most adult human and monkey OB interneurons. However, very few Sp8+ cells were in the adult human striatum. This suggests that neuroblasts in the adult human SVZ and RMS are likely destined for the OB, but not for the striatum. BrdU-labeling results also revealed few if any newly born neurons in the adult rhesus monkey striatum. Finally, on the basis of transcription factor expression, we provide strong evidence that the vast majority of interneurons in the human and monkey striatum are generated from the medial ganglionic eminence during embryonic developmental stages, as they are in rodents. We conclude that, although a small number of neuroblasts exist in the adult human SVZ, they do not migrate into the striatum and become mature striatal interneurons.
Collapse
|
8
|
Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C. Transcriptional Regulation of Olfactory Bulb Neurogenesis. Anat Rec (Hoboken) 2013; 296:1364-82. [DOI: 10.1002/ar.22733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Jaime Pignatelli
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Vanesa Nieto-Estévez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| |
Collapse
|
9
|
Engel M, Smidt MP, van Hooft JA. The serotonin 5-HT3 receptor: a novel neurodevelopmental target. Front Cell Neurosci 2013; 7:76. [PMID: 23761731 PMCID: PMC3669892 DOI: 10.3389/fncel.2013.00076] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/06/2013] [Indexed: 01/28/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), next to being an important neurotransmitter, recently gained attention as a key-regulator of pre- and postnatal development in the mammalian central nervous system (CNS). Several receptors for 5-HT are expressed in the developing brain including a ligand-gated ion channel, the 5-HT3 receptor. Over the past years, evidence has been accumulating that 5-HT3 receptors are involved in the regulation of neurodevelopment by serotonin. Here, we review the spatial and temporal expression patterns of 5-HT3 receptors in the pre- and early postnatal rodent brain and its functional implications. First, 5-HT3 receptors are expressed on GABAergic interneurons in neocortex and limbic structures derived from the caudal ganglionic eminence. Mature inhibitory GABAergic interneurons fine-tune neuronal excitability and thus are crucial for the physiological function of the brain. Second, 5-HT3 receptors are expressed on specific glutamatergic neurons, Cajal-Retzius cells in the cortex and granule cells in the cerebellum, where they regulate morphology, positioning, and connectivity of the local microcircuitry. Taken together, the 5-HT3 receptor emerges as a potential key-regulator of network formation and function in the CNS, which could have a major impact on our understanding of neurodevelopmental disorders in which 5-HT plays a role.
Collapse
Affiliation(s)
- Mareen Engel
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Max Planck Institute of PsychiatryMunich, Germany
| | - Marten P. Smidt
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Johannes A. van Hooft
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|