1
|
Lai QJ, Chen Y, Liu L, Li HM, Pan MR, Wang YF, Niu HJ, Qian QJ. Repetitive Transcranial Photobiomodulation Improves Working Memory and Attention in Adults with ADHD: A 4-Week Follow-Up Study. Photobiomodul Photomed Laser Surg 2025; 43:190-197. [PMID: 40244858 DOI: 10.1089/photob.2025.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Background: Working memory (WM) impairments and inattention symptoms are prevalent among adults with attention-deficit/hyperactivity disorder (ADHD). Transcranial photobiomodulation (tPBM) is a promising brain stimulation technique that may enhance cognitive function among adults with ADHD. Objectives: We aimed to explore the effects of tPBM on improving N-back WM and Continuous Performance Test-Identical Pairs (CPT-IP) attention tasks in adults with ADHD, as well as its baseline predictive factors. Methods: Forty-eight adults with ADHD underwent a 7-day tPBM intervention (720 s daily, 1064-nm wavelength, 250 mW/cm2 irradiance). Participants completed the N-back (1-back, 2-back, 3-back) WM, and CPT-IP (cpt-2, cpt-3, cpt-4) attention tasks at baseline (T1), after the first (T2), and seventh (T3) interventions, and during four weekly follow-ups (T4-T7). Safety was assessed using the Treatment Emergent Symptom Scale (TESS). Results: The participants showed significant improvements in the 2-back, 3-back, cpt-3, and cpt-4 tasks (all p < 0.001), with peak effect sizes observed at 2-3 weeks post-intervention (Cohen's d = 0.84-1.26). Lower baseline performance predicted greater improvement. The intervention was well-tolerated; three (6.3%) participants reported mild adverse events (TESS scores ≤2), all of which resolved spontaneously. Conclusions: tPBM is effective and well-tolerated for improving WM and attention in adults with ADHD, suggesting its potential use as a non-pharmacological approach for ADHD management.
Collapse
Affiliation(s)
- Qing-Juan Lai
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Ying Chen
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Lu Liu
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Hai-Mei Li
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Mei-Rong Pan
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Yu-Feng Wang
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Hai-Jing Niu
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qiu-Jin Qian
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| |
Collapse
|
2
|
Zhang X, Miao X, Jiang H, Ren Y, Huo L, Liu M, Chen H. Advanced Intervention Effects of Pulsed and Steady Transcranial Photobiomodulation on Sleep, Mood, and EEG Signal Regulation. JOURNAL OF BIOPHOTONICS 2025:e70004. [PMID: 40101768 DOI: 10.1002/jbio.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) enhances cognitive and emotional states. We compared continuous-wave (CW) and pulsed-wave (PW) tPBM effects on 24 healthy males. METHOD Participants received 630 nm tPBM at 95 mW/cm2 for 10 min: Sham, CW, or PW (500 Hz). Outcomes were assessed using the Karolinska Sleepiness Scale (KSS) (for measuring sleepiness), State-Trait Anxiety Inventory (STAI) (for assessing anxiety), Visual Analog Scale (VAS) (for measuring stress), and Beck Depression Inventory-II (BDI-II) (for evaluating depressive symptoms), and 32-channel EEG at baseline, treatment, and rest phases. RESULTS Paired t-tests showed PW tPBM significantly improved sleepiness, anxiety, stress, and depression scores post-intervention (p < 0.05). ANOVA analyses indicated PW tPBM increased Alpha and Gamma band EEG power versus baseline (p < 0.05). CONCLUSION PW tPBM may improve cognitive and emotional outcomes and modulate brain activity, offering therapeutic insights.
Collapse
Affiliation(s)
- Xuran Zhang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xiaojing Miao
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Longfei Huo
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
| | - Houbo Chen
- Aerospace Information Innovation Institute, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Woźniak J, Pazdrak M, Domanasiewicz A, Kaźmierski J. Near-Infrared Stimulation in Psychiatry Disorders: A Systematic Review of Efficacy and Biological Mechanisms. NEUROSCI 2025; 6:26. [PMID: 40137870 PMCID: PMC11945382 DOI: 10.3390/neurosci6010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Photobiomodulation (PBM), also referred to as low-level light therapy (LLLT), is an emerging non-pharmacological approach. This treatment is considered low-risk, cost-effective, and non-invasive, utilizing near-infrared light (NIR). The purpose of this paper is to explore the underlying mechanism of action and conduct a systematic review of pre-clinical and clinical research on the use of PBM for psychiatric disorders. METHODS A search on the PubMed, Cochrane Library, and EMBASE databases was performed on 18 and 26 January 2024. Publications focused on PBM treatment in psychiatric disorders such as major depressive disorder, general anxiety disorder, dementia, Parkinson's disease, traumatic brain injury, schizophrenia, and sexual disfunctions were included (n = 23). RESULTS Near-infrared stimulation is presented as an effective method, comparable to psychopharmacological treatment. The primary suggested mechanism for PBM is the stimulation of mitochondrial metabolism following the absorption of NIR energy by cytochrome C oxidase. Because of the method of implementation, which omits the liver metabolism of cytochrome P450, PMB is recognized as safe as it does not interact with other drugs. LIMITATIONS Clinical studies vary in terms of population and treatment parameters, and most do not include a suitable control group. CONCLUSIONS Preliminary results support the potential of NIR stimulation as a novel and innovative treatment for psychiatry. Further studies are needed to estimate the proper protocols of parameters singly for any disease.
Collapse
Affiliation(s)
- Joanna Woźniak
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (M.P.); (A.D.)
| | | | | | - Jakub Kaźmierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (M.P.); (A.D.)
| |
Collapse
|
4
|
Bibb SA, Yu EJ, Molloy MF, LaRocco J, Resnick P, Reeves K, Phan KL, Krishna S, Saygin ZM. Pilot study comparing effects of infrared neuromodulation and transcranial magnetic stimulation using magnetic resonance imaging. Front Hum Neurosci 2025; 19:1514087. [PMID: 40183072 PMCID: PMC11966418 DOI: 10.3389/fnhum.2025.1514087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
No prior work has directly compared the impacts of transcranial photobiomodulation (tPBM) and transcranial magnetic stimulation (TMS) on the human brain. This within-subjects pilot study compares the effects of tPBM and TMS of human somatomotor cortex on brain structural and functional connectivity. Eight healthy participants underwent four lab visits each, each visit consisting of a pre-stimulation MRI, stimulation or sham, and a post-stimulation MRI, respectively. Stimulation and sham sessions were counterbalanced across subjects. Collected measures included structural MRI data, functional MRI data from a finger-tapping task, resting state functional connectivity, and structural connectivity. Analyses indicated increased activation of the left somatomotor region during a right-hand finger-tapping task following both tPBM and TMS. Additionally, trending increases in left-lateralized functional and structural connectivity from M1 to thalamus were observed after tPBM, but not TMS. Thus, tPBM may be superior to TMS at inducing changes in connected nodes in the somatomotor cortex, although further research is warranted to explore the potential therapeutic benefits and clinical utility of tPBM.
Collapse
Affiliation(s)
- Sophia A. Bibb
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Emily J. Yu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - M. Fiona Molloy
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - John LaRocco
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Patricia Resnick
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Kevin Reeves
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sanjay Krishna
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States
| | - Zeynep M. Saygin
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Barrett DW, Beevers CG, Gonzalez-Lima F. Augmenting Internet-Based Cognitive Behavioral Therapy for Major Depressive Disorder With Transcranial Infrared Laser Stimulation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100449. [PMID: 39990627 PMCID: PMC11847300 DOI: 10.1016/j.bpsgos.2025.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 02/25/2025] Open
Abstract
Background Transcranial infrared laser stimulation (TILS) is a noninvasive form of photobiomodulation that facilitates prefrontal energy metabolism and oxygenation, resulting in cognitive-enhancing effects. Cognitive behavioral therapy is a mainstream treatment for major depressive disorder. This is the first study to investigate whether TILS would augment the antidepressant effects of internet-based cognitive behavioral therapy. Methods Sixty participants with major depressive disorder were given access to Deprexis, a form of internet-based cognitive behavioral therapy, for 12 weeks. After the first 2 weeks, the 40 participants who had improved at least 10% in depressive symptoms from baseline as measured by the Quick Inventory of Depressive Symptomatology-Self-Report were randomly assigned to Deprexis in combination with TILS or sham/placebo. There were no significant group differences in demographics or initial depression data. Results There was a 43% reduction in Quick Inventory of Depressive Symptomatology-Self-Report scores in the sham group from the initial score to the week 12 score, while adding TILS as an adjunct therapy resulted in a reduction of 56%. Therefore, TILS resulted in an additional 30% reduction in Quick Inventory of Depressive Symptomatology-Self-Report scores ([56-43]/43 = 30%). Participants who received TILS to the right forehead once a week for 4 weeks showed a significantly greater reduction of depressive symptoms than participants who received sham/placebo. Participants reported no adverse effects. Conclusions While Deprexis alone significantly reduced depression scores in the placebo control group, this beneficial effect was augmented with the addition of TILS as an adjunct therapy. Additional research that pairs neuroenhancement methods such as TILS with cognitive interventions may reveal the potential to improve treatment outcomes in depression and other psychiatric disorders.
Collapse
Affiliation(s)
- Douglas W. Barrett
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Christopher G. Beevers
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - F. Gonzalez-Lima
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
6
|
Xue R, Li J, Yang H. The hemispheric differences in prefrontal function of Internet game disorder and non-Internet game disorder: an activation likelihood estimation meta-analysis. Cereb Cortex 2025; 35:bhae493. [PMID: 39756429 DOI: 10.1093/cercor/bhae493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025] Open
Abstract
This study explored the differences in brain activation between individuals with and without Internet gaming disorder (IGD) through activation likelihood estimation analysis. In total, 39 studies were included based on the inclusion and exclusion criteria by searching the literature in the PubMed and Web of Science databases, as well as reading other reviews. The analysis revealed that the activated brain regions in IGD were the right inferior frontal gyrus, left cingulate gyrus, and left lentiform nucleus. In comparison, the activated brain regions in non-IGD were the left middle frontal, left inferior frontal, left anterior cingulate, left precentral, and right precentral gyri. The results of the present study on differences in activation further confirm existing theoretical hypotheses. Future studies should explore hemispheric differences in prefrontal brain function between IGD and non-IGD.
Collapse
Affiliation(s)
- Rui Xue
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Jiaqi Li
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Haibo Yang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
| |
Collapse
|
7
|
Barrett DW, Davis RE, Siegel-Ramsay JE, Bichlmeier A, Almeida JRC, Gonzalez-Lima F. Cognitive improvement and prefrontal network interactions in individuals with remitted bipolar disorder after transcranial infrared laser stimulation. Front Psychiatry 2025; 16:1547230. [PMID: 39950176 PMCID: PMC11822565 DOI: 10.3389/fpsyt.2025.1547230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Background Converging evidence suggests that bipolar disorder (BD) involves mitochondrial dysfunction and prefrontal cortex (PFC) hypometabolism associated with cognitive impairment, which persists in remitted BD individuals. Transcranial infrared laser stimulation (TILS) provides safe, non-invasive brain stimulation that enhances PFC metabolism via photobiomodulation of mitochondrial respiration and tissue oxygenation. We tested the hypothesis that the neurocognitive deficits found in BD may be ameliorated by TILS treatments. Methods This is the first study to explore neurocognitive effects of repeated TILS administration in BD. Using an open-label design, 29 individuals with remitted BD received six weekly TILS treatments. Working memory and attention were assessed with trail-making and 2-back tasks sensitive to TILS cognitive effects in individuals with BD. Changes in PFC network interactions were measured with functional near-infrared spectroscopy (fNIRS) because this method can measure TILS effects on oxygen metabolism in the PFC of individuals with BD. Results Participants reported no adverse effects from treatment, confirming the safety of this intervention in individuals with BD. Cognitive test results showed that in people with remitted BD, TILS was effective at improving cognition, i.e., enhanced speed and accuracy in tasks reflecting cognitive flexibility, working memory, and attentional control. Antipsychotic medication improved TILS cognitive effects. The fNIRS results showed a significant reduction in PFC network correlations of oxygenated hemoglobin changes driven by cognitive task performance. The right-hemisphere frontopolar cortex showed greater TILS effects than its left-hemisphere counterpart. Conclusions Repeated TILS is a safe intervention to improve cognition in people with remitted BD. Continued antipsychotic medication may have contributed to the cognitive improvement. To confirm TILS efficacy, a sham-controlled, double-blinded randomized trial is needed. Clinical trial registration https://clinicaltrials.gov/, identifier NCT05354895.
Collapse
Affiliation(s)
- Douglas W. Barrett
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Roger E. Davis
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Jennifer E. Siegel-Ramsay
- Bipolar Disorder Center, Department of Psychiatry and Behavioral Sciences, Dell Medical School, Austin, TX, United States
| | - Amy Bichlmeier
- Bipolar Disorder Center, Department of Psychiatry and Behavioral Sciences, Dell Medical School, Austin, TX, United States
| | - Jorge R. C. Almeida
- Bipolar Disorder Center, Department of Psychiatry and Behavioral Sciences, Dell Medical School, Austin, TX, United States
| | - F. Gonzalez-Lima
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
Bernabei L, Leone B, Hirsch D, Mentuccia V, Panzera A, Riggio F, Sangiovanni L, Piserchia V, Nicolò G, Pompili E. Neuromodulation Strategies in Lifelong Bipolar Disorder: A Narrative Review. Behav Sci (Basel) 2024; 14:1176. [PMID: 39767317 PMCID: PMC11674029 DOI: 10.3390/bs14121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Bipolar disorder is a debilitating psychiatric condition characterized by recurrent episodes of mania and depression, affecting millions worldwide. While pharmacotherapy remains the cornerstone of treatment, a significant proportion of patients exhibit inadequate response or intolerable side effects to conventional medications. In recent years, neuromodulation techniques have emerged as promising adjunctive or alternative treatments for bipolar disorder. We performed a narrative review, according to the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines, to provide a comprehensive overview of the current literature on neuromodulation interventions in bipolar disorder across the course of lifespan. Specifically, it examines the efficacy, safety, and mechanisms of action of various neuromodulation strategies, including, among others, transcranial magnetic stimulation (TMS), electroconvulsive therapy (ECT), vagus nerve stimulation (VNS), deep brain stimulation (DBS), and it describes the therapeutic experiences across the different ages of illness. Additionally, this review discusses the clinical implications, challenges, and future directions of the integration, in clinical practice, of neuromodulation into the management of bipolar disorder. By synthesizing evidence from different studies, this review aims to inform clinicians, researchers, and stakeholders about the evolving landscape of neuromodulation treatments and their potential role in improving outcomes for individuals with bipolar disorder.
Collapse
Affiliation(s)
- Laura Bernabei
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazza Aldo Moro, 100165 Rome, Italy;
| | - Beniamino Leone
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Daniele Hirsch
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Valentina Mentuccia
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Alessia Panzera
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Francesco Riggio
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Tivoli, 00019 Rome, Italy;
| | - Loredana Sangiovanni
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Valentina Piserchia
- Department of Mental Health and Addiction, Centre of Mental Health—ASL Rome 5, Colleferro, 00034 Rome, Italy;
| | - Giuseppe Nicolò
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Enrico Pompili
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazza Aldo Moro, 100165 Rome, Italy;
- Department of Mental Health and Addiction, Centre of Mental Health—ASL Rome 5, Colleferro, 00034 Rome, Italy;
| |
Collapse
|
9
|
Rodríguez-Fernández L, Zorzo C, Arias JL. Photobiomodulation in the aging brain: a systematic review from animal models to humans. GeroScience 2024; 46:6583-6623. [PMID: 38861125 PMCID: PMC11493890 DOI: 10.1007/s11357-024-01231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Aging is a multifactorial biological process that may be associated with cognitive decline. Photobiomodulation (PBM) is a non-pharmacological therapy that shows promising results in the treatment or prevention of age-related cognitive impairments. The aim of this review is to compile the preclinical and clinical evidence of the effect of PBM during aging in healthy and pathological conditions, including behavioral analysis and neuropsychological assessment, as well as brain-related modifications. 37 studies were identified by searching in PubMed, Scopus, and PsycInfo databases. Most studies use wavelengths of 800, 810, or 1064 nm but intensity and days of application were highly variable. In animal studies, it has been shown improvements in spatial memory, episodic-like memory, social memory, while different results have been found in recognition memory. Locomotor activity improved in Parkinson disease models. In healthy aged humans, it has been outlined improvements in working memory, cognitive inhibition, and lexical/semantic access, while general cognition was mainly enhanced on Alzheimer disease or mild cognitive impairment. Anxiety assessment is scarce and shows mixed results. As for brain activity, results outline promising effects of PBM in reversing metabolic alterations and enhancing mitochondrial function, as evidenced by restored CCO activity and ATP levels. Additionally, PBM demonstrated neuroprotective, anti-inflammatory, immunomodulatory and hemodynamic effects. The findings suggest that PBM holds promise as a non-invasive intervention for enhancing cognitive function, and in the modulation of brain functional reorganization. It is necessary to develop standardized protocols for the correct, beneficial, and homogeneous use of PBM.
Collapse
Affiliation(s)
| | - Candela Zorzo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain.
| | - Jorge L Arias
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
10
|
Cho SH, Won CH, Kim CH, Lee JH. The Optical Parameter Optimization for Brain Implant Alzheimer Sensor Using Phototherapy Angle and Wavelength Simulation (PAWS) Methodology. SENSORS (BASEL, SWITZERLAND) 2024; 24:7282. [PMID: 39599058 PMCID: PMC11597924 DOI: 10.3390/s24227282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Photonic therapy is emerging as a promising method in neuroscience for addressing Alzheimer's disease (AD). This study uses computational simulations to investigate the impact of specific wavelengths emitted by photodiodes on the light absorption rates in brain tissue for brain implant sensors. Additionally, it presents a novel methodology that enhances light absorption via multi-parameter optimization. By adjusting the angle and wavelength of the incident light, the absorption rate was significantly enhanced using four photodiodes, each emitting at 660 nm with a power input of 3 mW. Notably, an incident angle of 20 degrees optimized light absorption and minimized thermal effects on brain tissue. The findings indicate that photodiodes within the near-infrared spectrum are suitable for low-temperature therapeutic applications in brain tissues, affirming the viability of non-invasive and safe photonic therapy. This research contributes foundational data for advancing brain implant photonic sensor design and therapeutic strategies. Furthermore, it establishes conditions for achieving high light absorption rates with minimal heat generation, identifying optimal parameters for efficient energy transfer.
Collapse
Affiliation(s)
- So-Hyun Cho
- Department of Biomedical Engineering, School of Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| | - Chang-Hee Won
- Department of Electrical Engineering, School of Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Chang-Hyun Kim
- Department of Neurosurgery, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Jong-Ha Lee
- Department of Biomedical Engineering, School of Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| |
Collapse
|
11
|
Oliveira de Andrade Filho V, Amarante MOC, Gonzalez-Lima F, Gomes da Silva S, Cardoso FDS. Systematic review of photobiomodulation for multiple sclerosis. Front Neurol 2024; 15:1465621. [PMID: 39329016 PMCID: PMC11424438 DOI: 10.3389/fneur.2024.1465621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory chronic autoimmune and neurodegenerative disorder of the brain and spinal cord, resulting in loss of motor, sensorial, and cognitive function. Among the non-pharmacological interventions for several brain conditions, photobiomodulation (PBM) has gained attention in medical society for its neuroprotective effects. We systematically reviewed the effects of PBM on MS. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: PBM, low-level laser therapy, multiple sclerosis, autoimmune encephalomyelitis, demyelination, and progressive multiple sclerosis. Data search was limited from 2012 to July 2024. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The initial systematic search identified 126 articles. Of these, 68 articles were removed by duplicity and 50 by screening. Thus, 8 studies satisfied the inclusion criteria. Results The reviewed studies showed that PBM modulates brain markers linked to inflammation, oxidative stress, and apoptosis. Improvements in motor, sensorial, and cognitive functions in MS patients were also observed after PBM therapy. No study reported adverse effects of PBM. Conclusion These findings suggest the potential of PBM as a promising non-pharmacological intervention for the management of MS, although further research is needed to standardize PBM protocols and assess its long-term effects.
Collapse
Affiliation(s)
| | | | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário FAMINAS, Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
- Centro Universitário Redentor (UniREDENTOR/Afya), Itaperuna, RJ, Brazil
| | - Fabrízio Dos Santos Cardoso
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
- Centro Universitário Redentor (UniREDENTOR/Afya), Itaperuna, RJ, Brazil
| |
Collapse
|
12
|
Yang M, Liu Y, Yue Z, Yang G, Jiang X, Cai Y, Zhang Y, Yang X, Li D, Chen L. Transcranial photobiomodulation on the left inferior frontal gyrus enhances Mandarin Chinese L1 and L2 complex sentence processing performances. BRAIN AND LANGUAGE 2024; 256:105458. [PMID: 39197357 DOI: 10.1016/j.bandl.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
This study investigated the causal enhancing effect of transcranial photobiomodulation (tPBM) over the left inferior frontal gyrus (LIFG) on syntactically complex Mandarin Chinese first language (L1) and second language (L2) sentence processing performances. Two (L1 and L2) groups of participants (thirty per group) were recruited to receive the double-blind, sham-controlled tPBM intervention via LIFG, followed by the sentence processing, the verbal working memory (WM), and the visual WM tasks. Results revealed a consistent pattern for both groups: (a) tPBM enhanced sentence processing performance but not verbal WM for linear processing of unstructured sequences and visual WM performances; (b) Participants with lower sentence processing performances under sham tPBM benefited more from active tPBM. Taken together, the current study substantiated that tPBM enhanced L1 and L2 sentence processing, and would serve as a promising and cost-effective noninvasive brain stimulation (NIBS) tool for future applications on upregulating the human language faculty.
Collapse
Affiliation(s)
- Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Zhaoqian Yue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guang Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Xu Jiang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yuqi Zhang
- School of Chinese as a Second Language, Peking University, Beijing 100871, China
| | - Xiujie Yang
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Educational System Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
13
|
Sevilla Paz Soldán R, Pantoja Bustamante N, Guzmán-Rivero M, Verduguez-Orellana A, Sevilla Encinas G. Combined intervention strategy for reversing iron-deficiency anaemia and deficiency in psychomotor development in chronic malnutrition. NUTR HOSP 2024; 41:866-872. [PMID: 38967304 DOI: 10.20960/nh.04908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Introduction Background: chronic iron-deficiency anaemia in children has a negative impact on neuronal and cognitive development. Despite current knowledge on this subject, in Bolivia iron intake along the psychomotor development stimulation as part of a comprehensive rehabilitation process for children with severe chronic malnutrition is not yet used. Objective: to evaluate the effect of a neurorestorative diet, consisting of iron supplements and other micronutrients, along with psychomotor stimulation in preschool children with chronic malnutrition, iron-deficiency anaemia and severe psychomotor delay. Patients and methods: twenty-four children between 1 and 56 months of age admitted to the integral nutritional recovery centre (INRC), Paediatric Hospital of Cochabamba, Bolivia were included. A strategy of intervention was applied consisting of nutritional replenishment through the administration of elaborated meals prepared from local foods with high heme and non-heme iron concentration, added with vegetables plus the administration of micronutrient´s supplementation and the psychomotor stimulation. Anthropometric indices, psychomotor and biochemical parameters were measured at four times points, during the hospitalisation period. Results: at the beginning, the anthropometric and psychomotor parameters were decreased (between -2 and -3 z score and below 50 % respectively). Combined strategy intervention with iron and other micronutrients together photons produced significant changes between the evaluated time points, both in anthropometric and psychomotor parameters, although these changes were less than expected. Conclusions: the combined strategy used in this study allowed recovery from the anaemia and minimal growth due to the low birth weight or chronic malnutrition. However, the intervention was insufficient to achieve a complete recovery.
Collapse
Affiliation(s)
- Ricardo Sevilla Paz Soldán
- Centro de Rehabilitación Integral Nutricional. Hospital del niño Manuel Ascencio Villarroel. Unidad Clínica. Instituto de Investigaciones Biomédicas. Facultad de Medicina. Universidad Mayor de San Simón
| | - Nazaret Pantoja Bustamante
- Centro de Rehabilitación Integral Nutricional. Hospital del niño Manuel Ascencio Villarroel. Unidad Clínica. Instituto de Investigaciones Biomédicas. Facultad de Medicina. Universidad Mayor de San Simón
| | - Miguel Guzmán-Rivero
- Centro Universitario de Medicina Tropical. Instituto de Investigaciones Biomédicas. Facultad de Medicina. Universidad Mayor de San Simón
| | - Aleida Verduguez-Orellana
- Unidad Clínica. Instituto de Investigaciones Biomédicas. Facultad de Medicina. Universidad Mayor de San Simón. Centro Universitario de Medicina Tropical. Instituto de Investigaciones Biomédicas. Facultad de Medicina. Universidad Mayor de San Simón
| | | |
Collapse
|
14
|
Henderson TA. Can infrared light really be doing what we claim it is doing? Infrared light penetration principles, practices, and limitations. Front Neurol 2024; 15:1398894. [PMID: 39263274 PMCID: PMC11388112 DOI: 10.3389/fneur.2024.1398894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 09/13/2024] Open
Abstract
Near infrared (NIR) light has been shown to provide beneficial treatment of traumatic brain injury (TBI) and other neurological problems. This concept has spawned a plethora of commercial entities and practitioners utilizing panels of light emitting diodes (LEDs) and promising to treat patients with TBI and other disorders, who are desperate for some treatment for their untreatable conditions. Unfortunately, an LED intended to deliver photonic energy to the human brain does not necessarily do what an LED pointed at a mouse brain does. There is a problem of scale. Extensive prior research has shown that infrared light from a 0.5-watt LED will not penetrate the scalp and skull of a human. Both the properties of NIR light and the manner in which it interacts with tissue are examined. Based on these principles, the shortcomings of current approaches to treating neurological disorders with NIR light are explored. Claims of clinical benefit from low-level LED-based devices are explored and the proof of concept challenged. To date, that proof is thin with marginal benefits which are largely transient. Extensive research has shown fluence at the level of the target tissue which falls within the range of 0.9 J/cm2 to 15 J/cm2 is most effective in activating the biological processes at the cellular level which underlie direct photobiomodulation. If low-level infrared light from LED devices is not penetrating the scalp and skull, then these devices certainly are not delivering that level of fluence to the neurons of the subjacent brain. Alternative mechanisms, such as remote photobiomodulation, which may underlie the small and transient benefits for TBI symptoms reported for low-power LED-based NIR studies are presented. Actionable recommendations for the field are offered.
Collapse
Affiliation(s)
- Theodore A Henderson
- Neuro-Luminance, Inc., Denver, CO, United States
- Neuro-Laser Foundation, Denver, CO, United States
- Dr. Theodore Henderson, Inc., Denver, CO, United States
- The Synaptic Space, Inc., Denver, CO, United States
- The International Society of Applied Neuroimaging (ISAN), Toronto, ON, Canada
| |
Collapse
|
15
|
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024; 13:966. [PMID: 38891098 PMCID: PMC11171912 DOI: 10.3390/cells13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Photobiomodulation (PBM) therapy on the brain employs red to near-infrared (NIR) light to treat various neurological and psychological disorders. The mechanism involves the activation of cytochrome c oxidase in the mitochondrial respiratory chain, thereby enhancing ATP synthesis. Additionally, light absorption by ion channels triggers the release of calcium ions, instigating the activation of transcription factors and subsequent gene expression. This cascade of events not only augments neuronal metabolic capacity but also orchestrates anti-oxidant, anti-inflammatory, and anti-apoptotic responses, fostering neurogenesis and synaptogenesis. It shows promise for treating conditions like dementia, stroke, brain trauma, Parkinson's disease, and depression, even enhancing cognitive functions in healthy individuals and eliciting growing interest within the medical community. However, delivering sufficient light to the brain through transcranial approaches poses a significant challenge due to its limited penetration into tissue, prompting an exploration of alternative delivery methods such as intracranial and intranasal approaches. This comprehensive review aims to explore the mechanisms through which PBM exerts its effects on the brain and provide a summary of notable preclinical investigations and clinical trials conducted on various brain disorders, highlighting PBM's potential as a therapeutic modality capable of effectively impeding disease progression within the organism-a task often elusive with conventional pharmacological interventions.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (S.-C.)
| |
Collapse
|
16
|
Yokomizo S, Kopp T, Roessing M, Morita A, Lee S, Cho S, Ogawa E, Komai E, Inoue K, Fukushi M, Feil S, Kim HH, Bragin DE, Gerashchenko D, Huang PL, Kashiwagi S, Atochin DN. Near-Infrared II Photobiomodulation Preconditioning Ameliorates Stroke Injury via Phosphorylation of eNOS. Stroke 2024; 55:1641-1649. [PMID: 38572660 PMCID: PMC11126363 DOI: 10.1161/strokeaha.123.045358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND The current management of patients with stroke with intravenous thrombolysis and endovascular thrombectomy is effective only when it is timely performed on an appropriately selected but minor fraction of patients. The development of novel adjunctive therapy is highly desired to reduce morbidity and mortality with stroke. Since endothelial dysfunction is implicated in the pathogenesis of stroke and is featured with suppressed endothelial nitric oxide synthase (eNOS) with concomitant nitric oxide deficiency, restoring endothelial nitric oxide represents a promising approach to treating stroke injury. METHODS This is a preclinical proof-of-concept study to determine the therapeutic effect of transcranial treatment with a low-power near-infrared laser in a mouse model of ischemic stroke. The laser treatment was performed before the middle cerebral artery occlusion with a filament. To determine the involvement of eNOS phosphorylation, unphosphorylatable eNOS S1176A knock-in mice were used. Each measurement was analyzed by a 2-way ANOVA to assess the effect of the treatment on cerebral blood flow with laser Doppler flowmetry, eNOS phosphorylation by immunoblot analysis, and stroke outcomes by infarct volumes and neurological deficits. RESULTS Pretreatment with a 1064-nm laser at an irradiance of 50 mW/cm2 improved cerebral blood flow, eNOS phosphorylation, and stroke outcomes. CONCLUSIONS Near-infrared II photobiomodulation could offer a noninvasive and low-risk adjunctive therapy for stroke injury. This new modality using a physical parameter merits further consideration to develop innovative therapies to prevent and treat a wide array of cardiovascular diseases.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital 149 13 Street, Charlestown, MA 02129, USA
| | - Malte Roessing
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital 149 13 Street, Charlestown, MA 02129, USA
| | - Atsuyo Morita
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital 149 13 Street, Charlestown, MA 02129, USA
| | - Seeun Lee
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Suin Cho
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Eri Komai
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital 149 13 Street, Charlestown, MA 02129, USA
| | - Kazumasa Inoue
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Masahiro Fukushi
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Hyung-Hwan Kim
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Denis E. Bragin
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA
- Department of Neurology, The University of New Mexico School of Medicine, MSC08 4720, 1 UNM, Albuquerque, NM 87131, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Boston VA Medical Center West Roxbury, Veterans Affairs Boston Healthcare System and Harvard Medical School, 1400 VFW Pkwy, West Roxbury, MA 02132, USA
| | - Paul L. Huang
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital 149 13 Street, Charlestown, MA 02129, USA
| | - Satoshi Kashiwagi
- Department of Psychiatry, Boston VA Medical Center West Roxbury, Veterans Affairs Boston Healthcare System and Harvard Medical School, 1400 VFW Pkwy, West Roxbury, MA 02132, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, USA
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital 149 13 Street, Charlestown, MA 02129, USA
- Department of Psychiatry, Boston VA Medical Center West Roxbury, Veterans Affairs Boston Healthcare System and Harvard Medical School, 1400 VFW Pkwy, West Roxbury, MA 02132, USA
| |
Collapse
|
17
|
Pruitt T, Davenport EM, Proskovec AL, Maldjian JA, Liu H. Simultaneous MEG and EEG source imaging of electrophysiological activity in response to acute transcranial photobiomodulation. Front Neurosci 2024; 18:1368172. [PMID: 38817913 PMCID: PMC11137218 DOI: 10.3389/fnins.2024.1368172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technique that improves human cognition. The effects of tPBM of the right forehead on neurophysiological activity have been previously investigated using EEG in sensor space. However, the spatial resolution of these studies is limited. Magnetoencephalography (MEG) is known to facilitate a higher spatial resolution of brain source images. This study aimed to image post-tPBM effects in brain space based on both MEG and EEG measurements across the entire human brain. Methods MEG and EEG scans were concurrently acquired for 6 min before and after 8-min of tPBM delivered using a 1,064-nm laser on the right forehead of 25 healthy participants. Group-level changes in both the MEG and EEG power spectral density with respect to the baseline (pre-tPBM) were quantified and averaged within each frequency band in the sensor space. Constrained modeling was used to generate MEG and EEG source images of post-tPBM, followed by cluster-based permutation analysis for family wise error correction (p < 0.05). Results The 8-min tPBM enabled significant increases in alpha (8-12 Hz) and beta (13-30 Hz) powers across multiple cortical regions, as confirmed by MEG and EEG source images. Moreover, tPBM-enhanced oscillations in the beta band were located not only near the stimulation site but also in remote cerebral regions, including the frontal, parietal, and occipital regions, particularly on the ipsilateral side. Discussion MEG and EEG results shown in this study demonstrated that tPBM modulates neurophysiological activity locally and in distant cortical areas. The EEG topographies reported in this study were consistent with previous observations. This study is the first to present MEG and EEG evidence of the electrophysiological effects of tPBM in the brain space, supporting the potential utility of tPBM in treating neurological diseases through the modulation of brain oscillations.
Collapse
Affiliation(s)
- Tyrell Pruitt
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
| | | | - Amy L. Proskovec
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Joseph A. Maldjian
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
18
|
Taylor AM, Mannix R, Zafonte RD, Whalen MJ, Meehan WP. A Randomized, Double-Blind, Placebo-Controlled Clinical Trial Evaluating Transcranial Photobiomodulation as Treatment for Concussion. Med Sci Sports Exerc 2024; 56:822-827. [PMID: 38109202 DOI: 10.1249/mss.0000000000003364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Literature indicating that transcranial photobiomodulation (tPBM) may enable the brain to recover normal function after concussion, resulting in symptoms reduction, and improved cognitive function after concussion is limited by small sample sizes and lack of controls. METHODS We conducted a randomized, double-blind, placebo-controlled trial examining the effect of 6 wk of tPBM in patients 11 yr or older who received care for persistent postconcussion symptoms between September 2012 and December 2015. Our primary outcome measure was the mean difference in Postconcussion Symptom Scale total score and the raw Immediate Postconcussion Assessment and Cognitive Testing composite scores between study entry and treatment completion. Participants received two, 10-min sessions either with tPBM units or via two placebo units, three times per week. We screened for potential confounding variables using univariable analyses. We entered covariables that differed between the two groups on univariable screening into a regression analysis. We considered adjusted odds ratio that did not cross one statistically significant. RESULTS Forty-eight participants completed the study. Most were female (63%), and a majority sustained their injury during sports or exercise (71%). Despite randomization, those that received tPBM therapy reported a greater number of previous concussions. After adjusting for the effect of previous concussions and multiple comparisons, there were no significant differences between tPBM and placebo groups at 3 or 6 wk of treatment. CONCLUSIONS Despite showing promise in previous investigations, our study did not show benefit to tPBM over placebo therapy in patients experiencing persistent postconcussion symptoms. Further investigation is needed to determine if varying the dose or timing alters the efficacy of tPBM after concussion.
Collapse
Affiliation(s)
| | | | - Ralph D Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA
| | - Michael J Whalen
- Division of Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
19
|
Fradkin Y, De Taboada L, Naeser M, Saltmarche A, Snyder W, Steingold E. Transcranial photobiomodulation in children aged 2-6 years: a randomized sham-controlled clinical trial assessing safety, efficacy, and impact on autism spectrum disorder symptoms and brain electrophysiology. Front Neurol 2024; 15:1221193. [PMID: 38737349 PMCID: PMC11086174 DOI: 10.3389/fneur.2024.1221193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024] Open
Abstract
Background Small pilot studies have suggested that transcranial photobiomodulation (tPBM) could help reduce symptoms of neurological conditions, such as depression, traumatic brain injury, and autism spectrum disorder (ASD). Objective To examine the impact of tPBM on the symptoms of ASD in children aged two to six years. Method We conducted a randomized, sham-controlled clinical trial involving thirty children aged two to six years with a prior diagnosis of ASD. We delivered pulses of near-infrared light (40 Hz, 850 nm) noninvasively to selected brain areas twice a week for eight weeks, using an investigational medical device designed for this purpose (Cognilum™, JelikaLite Corp., New York, United States). We used the Childhood Autism Rating Scale (CARS, 2nd Edition) to assess and compare the ASD symptoms of participants before and after the treatment course. We collected electroencephalogram (EEG) data during each session from those participants who tolerated wearing the EEG cap. Results The difference in the change in CARS scores between the two groups was 7.23 (95% CI 2.357 to 12.107, p = 0.011). Seventeen of the thirty participants completed at least two EEGs and time-dependent trends were detected. In addition, an interaction between Active versus Sham and Scaled Time was observed in delta power (Coefficient = 7.521, 95% CI -0.517 to 15.559, p = 0.07) and theta power (Coefficient = -8.287, 95% CI -17.199 to 0.626, p = 0.07), indicating a potential trend towards a greater reduction in delta power and an increase in theta power over time with treatment in the Active group, compared to the Sham group. Furthermore, there was a significant difference in the condition (Treatment vs. Sham) in the power of theta waves (net_theta) (Coefficient = 9.547, 95% CI 0.027 to 19.067, p = 0.049). No moderate or severe side effects or adverse effects were reported or observed during the trial. Conclusion These results indicate that tPBM may be a safe and effective treatment for ASD and should be studied in more depth in larger studies.Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04660552, identifier NCT04660552.
Collapse
Affiliation(s)
- Yuliy Fradkin
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | | | - Margaret Naeser
- Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | | | | | | |
Collapse
|
20
|
Martini M, Arias N. Disentangling the effects of near-infrared light stimulation and exercise on cognitive function in fNIRS studies. Neuroimage 2024; 292:120615. [PMID: 38631617 DOI: 10.1016/j.neuroimage.2024.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) studies often aim to measure changes in the brain's hemodynamic response in relation to a specific intervention. We recently showed how a fNIRS device could induce photobiomodulatory effects on cognition by using its near-infrared (NIR) light. However, so far, fNIRS research has overlooked the stimulatory potential intrinsic to this technique. The work by Kuwamizu et al. (2023) on pupil dynamics during exercise is no exception. Here, we suggest a fix to their experimental design, which could be taken into account in other fNIRS studies, to guarantee an adequate level of control for possible unconsidered photobiomodulatory effects.
Collapse
Affiliation(s)
- Matteo Martini
- Department of Humanities, Letters, Cultural Heritage and Educational Studies, via Arpi, Foggia 71121, Italy.
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Psychology and Neuroscience, Institute of Psychiatry, King's College London, Denmark Hill, London SE5 8AF, UK; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo 33005, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, Madrid 28248, Spain
| |
Collapse
|
21
|
Fernandes F, Oliveira S, Monteiro F, Gasik M, Silva FS, Sousa N, Carvalho Ó, Catarino SO. Devices used for photobiomodulation of the brain-a comprehensive and systematic review. J Neuroeng Rehabil 2024; 21:53. [PMID: 38600582 PMCID: PMC11007916 DOI: 10.1186/s12984-024-01351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
A systematic review was conducted to determine the trends in devices and parameters used for brain photobiomodulation (PBM). The revised studies included clinical and cadaveric approaches, in which light stimuli were applied to the head and/or neck. PubMed, Scopus, Web of Science and Google Scholar databases were used for the systematic search. A total of 2133 records were screened, from which 97 were included in this review. The parameters that were extracted and analysed in each article were the device design, actuation area, actuation site, wavelength, mode of operation, power density, energy density, power output, energy per session and treatment time. To organize device information, 11 categories of devices were defined, according to their characteristics. The most used category of devices was laser handpieces, which relate to 21% of all devices, while 28% of the devices were not described. Studies for cognitive function and physiological characterisation are the most well defined ones and with more tangible results. There is a lack of consistency when reporting PBM studies, with several articles under defining the stimulation protocol, and a wide variety of parameters used for the same health conditions (e.g., Alzheimer's or Parkinson's disease) resulting in positive outcomes. Standardization for the report of these studies is warranted, as well as sham-controlled comparative studies to determine which parameters have the greatest effect on PBM treatments for different neurological conditions.
Collapse
Affiliation(s)
- Filipa Fernandes
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal.
| | - Sofia Oliveira
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Francisca Monteiro
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Michael Gasik
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, Espoo, Finland
| | - Filipe S Silva
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057, Braga, Portugal
- ICVS/3BS, PT Government Associate Laboratory, 4710-057, Braga, Portugal
- 2CA-Braga, CVS/3BS, PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Óscar Carvalho
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Susana O Catarino
- Center for Micro-ElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal.
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
22
|
Zhang XJ, Wang Z, Chen JW, Yuan SY, Zhao L, Zhong JY, Chen JJ, Lin WJ, Wu WS. The neuroprotective effect of near infrared light therapy in aged mice with postoperative neurocognitive disorder by upregulating IRF7. J Affect Disord 2024; 349:297-309. [PMID: 38211750 DOI: 10.1016/j.jad.2024.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Postoperative neurocognitive disorder (PND) is a common central nervous system complication after undergoing surgery and anesthesia especially in elderly patients, while the therapeutic options are very limited. This study was carried out to investigate the beneficial effects of transcranial near infrared light (NIRL) which was employed to the treatment of PND and propose the involved mechanisms. METHODS The PND mice were established through left carotid artery exposure under isoflurane anesthesia and received transcranial NIRL treatment. Behavioral testing was performed to evaluate the cognitive function of PND mice after transcranial NIRL therapy. Changes in the transcriptomic profiles of prefrontal cortex (PFC) and hippocampus (HP) were identified by next generation sequencing (NGS), and the molecular mechanisms involved were examined by both in vivo mouse model and in vitro cell culture studies. RESULTS We found that transcranial NIRL therapy effectively ameliorated learning and memory deficit induced by anesthesia and surgery in aged mice. Specifically, we identified down-regulation of interferon regulatory factor 7 (IRF7) in the brains of PND mice that was mechanistically associated with increased pro-inflammatory M1 phenotype of microglia and elevated neuroinflammatory. NIRL treatment produced protective effects through the upregulation of IRF7 expression and reversing microglial phenotypes from pro-inflammatory to neuroprotective, resulting in reduced brain damage and improved cognitive function in PND mice. CONCLUSION Our results indicate that transcranial NIRL is an effective and safe therapy for PND via alleviating neuroinflammation, and IRF7 plays a key transcription factor in regulating the M1-to-M2 switch of microglia.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jia-Wei Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Shang-Yan Yuan
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jun-Ying Zhong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jun-Jun Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Medical Research Center of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Si Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
23
|
Waight JL, Arias N, Jiménez-García AM, Martini M. From functional neuroimaging to neurostimulation: fNIRS devices as cognitive enhancers. Behav Res Methods 2024; 56:2227-2242. [PMID: 37507648 PMCID: PMC10990990 DOI: 10.3758/s13428-023-02144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/30/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) relies on near-infrared (NIR) light for changes in tissue oxygenation. For decades, this technique has been used in neuroscience to measure cortical activity. However, recent research suggests that NIR light directed to neural populations can modulate their activity through "photobiomodulation" (PBM). Yet, fNIRS is being used exclusively as a measurement tool. By adopting cognitive tests sensitive to prefrontal functioning, we show that a 'classical' fNIRS device, placed in correspondence of the prefrontal cortices of healthy participants, induces faster RTs and better accuracy in some of the indexes considered. A well-matched control group, wearing the same but inactive device, did not show any improvement. Hence, our findings indicate that the 'standard' use of fNIRS devices generates PBM impacting cognition. The neuromodulatory power intrinsic in that technique has been so far completely overlooked, and future studies will need to take this into account.
Collapse
Affiliation(s)
- Jason Lee Waight
- School of Psychology, University of East London, E15 4LZ, London, UK
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005, Oviedo, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), 33011, Oviedo, Spain.
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248, Madrid, Spain.
| | - Ana M Jiménez-García
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248, Madrid, Spain
| | - Matteo Martini
- School of Psychology, University of East London, E15 4LZ, London, UK.
- Department of Humanities, Letters, Cultural Heritage and Educational Studies, via Arpi, 71121, Foggia, Italy.
| |
Collapse
|
24
|
Sleem T, Decourt B, Sabbagh MN. Nonmedication Devices in Development for the Treatment of Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:241-255. [PMID: 38405349 PMCID: PMC10894612 DOI: 10.3233/adr-230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
Huge investments continue to be made in treatment for Alzheimer's disease (AD), with more than one hundred drugs currently in development. Pharmacological approaches and drug development, particularly those targeting amyloid-β, have dominated the therapeutic landscape. At the same time, there is also a growing interest in devices for treating AD. This review aimed to identify and describe devices under development for AD treatment. In this review, we queried the devices that are in development for the treatment of AD. PubMed was searched through the end of 2021 using the terms "device," "therapeutics," and "Alzheimer's" for articles that report on devices to treat AD. Ten devices with 31 references were identified as actively being developed for the treatment of AD. Many of these devices are far along in development. Device-based therapies are often overlooked when evaluating treatment approaches to AD. However, many devices for treating AD are in development and some show promising results.
Collapse
Affiliation(s)
- Tamara Sleem
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
25
|
Ji Q, Yan S, Ding J, Zeng X, Liu Z, Zhou T, Wu Z, Wei W, Li H, Liu S, Ai S. Photobiomodulation improves depression symptoms: a systematic review and meta-analysis of randomized controlled trials. Front Psychiatry 2024; 14:1267415. [PMID: 38356614 PMCID: PMC10866010 DOI: 10.3389/fpsyt.2023.1267415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 02/16/2024] Open
Abstract
Background Depression is a common mental illness that is widely recognized by its lack of pleasure, fatigue, low mood, and, in severe cases, even suicidal tendencies. Photobiomodulation (PBM) is a non-invasive neuromodulation technique that could treat patients with mood disorders such as depression. Methods A systematic search of ten databases, including randomized controlled trials (RCTs) for depression, was conducted from the time of library construction to September 25, 2023. The primary outcome was depression. The secondary outcome was sleep. Meta-analysis was performed using RevMan (version 5.4) and Stata (version 14.0). Subgroup analyses were performed to identify sources of heterogeneity. The certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results Three thousand two hundred and sixty-five studies were retrieved from the database and screened for inclusion in eleven trials. The forest plot results demonstrated that PBM alleviated depression (SMD = -0.55, 95% CI [-0.75, -0.35], I2 = 46%). But it is not statistically significant for patients' sleep outcomes (SMD = -0.82, 95% CI [-2.41, 0.77], I2 = 0%, p > 0.05). Subgroup analysis showed that s-PBM was superior to t-PBM in relieving symptoms of depression. The best improvement for t-PBM was achieved using a wavelength of 823 nm, fluence of 10-100 J/cm2, irradiance of 50-100 mW/cm2, irradiance time of 30 min, treatment frequency < 3/week, and number of treatments >15 times. The best improvement for s-PBM was achieved using a wavelength of 808 nm, fluence ≤1 J/cm2, irradiance of 50-100 mW/cm2, irradiance time ≤ 5 min, treatment frequency ≥ 3/week, number of treatments >15 times. All results had evidence quality that was either moderate or very low, and there was no bias in publication. Conclusion We conclude that PBM is effective in reducing depression symptoms in patients. However, the current number of studies is small, and further studies are needed to extend the current analysis results. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, CRD42023444677.
Collapse
Affiliation(s)
- Qipei Ji
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shichang Yan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Ding
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xin Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhixiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Zhou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuorao Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wei
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyue Liu
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Shuangchun Ai
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
26
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
27
|
Song L, Wang H, Peng R. Advances in the Regulation of Neural Function by Infrared Light. Int J Mol Sci 2024; 25:928. [PMID: 38256001 PMCID: PMC10815576 DOI: 10.3390/ijms25020928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, with the rapid development of optical technology, infrared light has been increasingly used in biomedical fields. Research has shown that infrared light could play roles in light stimulation and biological regulation. Infrared light has been used to regulate neural function due to its high spatial resolution, safety and neural sensitivity and has been considered a useful method to replace traditional neural regulation approaches. Infrared neuromodulation methods have been used for neural activation, central nervous system disorder treatment and cognitive enhancement. Research on the regulation of neural function by infrared light stimulation began only recently, and the underlying mechanism remains unclear. This article reviews the characteristics of infrared light, the advantages and disadvantages of infrared neuromodulation, its effects on improving individual health, and its mechanism. This article aims to provide a reference for future research on the use of infrared neural regulation to treat neuropsychological disorders.
Collapse
Affiliation(s)
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
28
|
Chamkouri H, Liu Q, Zhang Y, Chen C, Chen L. Brain photobiomodulation therapy on neurological and psychological diseases. JOURNAL OF BIOPHOTONICS 2024; 17:e202300145. [PMID: 37403428 DOI: 10.1002/jbio.202300145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Photobiomodulation (PBM) therapy is an innovative treatment for neurological and psychological conditions. Complex IV of the mitochondrial respiratory chain can be stimulated by red light, which increases ATP synthesis. In addition, the ion channels' light absorption causes the release of Ca2+, which activates transcription factors and changes gene expression. Neuronal metabolism is improved by brain PBM therapy, which also promotes synaptogenesis and neurogenesis as well as anti-inflammatory. Its depression-treating potential is attracting attention for other conditions, including Parkinson's disease and dementia. Giving enough dosage for optimum stimulation using the transcranial PBM technique is challenging because of the rapidly increasing attenuation of light transmission in tissue. Different strategies like intranasal and intracranial light delivery systems have been proposed to overcome this restriction. The most recent preclinical and clinical data on the effectiveness of brain PBM therapy are studied in this review article.
Collapse
Affiliation(s)
- Hossein Chamkouri
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Qi Liu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yuqin Zhang
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Changchun Chen
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lei Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
- Intelligent manufacturing institute of HFUT, Hefei, China
| |
Collapse
|
29
|
Feng W, Domeracki A, Park C, Shah S, Chhatbar PY, Pawar S, Chang C, Hsu PC, Richardson E, Hasan D, Sokhadze E, Zhang Q, Liu H. Revisiting Transcranial Light Stimulation as a Stroke Therapeutic-Hurdles and Opportunities. Transl Stroke Res 2023; 14:854-862. [PMID: 36369294 DOI: 10.1007/s12975-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Near-infrared laser therapy, a special form of transcranial light therapy, has been tested as an acute stroke therapy in three large clinical trials. While the NEST trials failed to show the efficacy of light therapy in human stroke patients, there are many lingering questions and lessons that can be learned. In this review, we summarize the putative mechanism of light stimulation in the setting of stroke, highlight barriers, and challenges during the translational process, and evaluate light stimulation parameters, dosages and safety issues, choice of outcomes, effect size, and patient selection criteria. In the end, we propose potential future opportunities with transcranial light stimulation as a cerebroprotective or restorative tool for future stroke treatment.
Collapse
Affiliation(s)
- Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Alexis Domeracki
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shreyansh Shah
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Swaroop Pawar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cherylee Chang
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Po-Chun Hsu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Eric Richardson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - David Hasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Estate Sokhadze
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Quanguang Zhang
- Department Department of Neurology, LSU Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
30
|
O’Donnell CM, Barrett DW, O’Connor P, Gonzalez-Lima F. Prefrontal photobiomodulation produces beneficial mitochondrial and oxygenation effects in older adults with bipolar disorder. Front Neurosci 2023; 17:1268955. [PMID: 38027522 PMCID: PMC10644301 DOI: 10.3389/fnins.2023.1268955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
There is growing evidence of mitochondrial dysfunction and prefrontal cortex (PFC) hypometabolism in bipolar disorder (BD). Older adults with BD exhibit greater decline in PFC-related neurocognitive functions than is expected for age-matched controls, and clinical interventions intended for mood stabilization are not targeted to prevent or ameliorate mitochondrial deficits and neurocognitive decline in this population. Transcranial infrared laser stimulation (TILS) is a non-invasive form of photobiomodulation, in which photons delivered to the PFC photo-oxidize the mitochondrial respiratory enzyme, cytochrome-c-oxidase (CCO), a major intracellular photon acceptor in photobiomodulation. TILS at 1064-nm can significantly upregulate oxidized CCO concentrations to promote differential levels of oxygenated vs. deoxygenated hemoglobin (HbD), an index of cerebral oxygenation. The objective of this controlled study was to use non-invasive broadband near-infrared spectroscopy to assess if TILS to bilateral PFC (Brodmann area 10) produces beneficial effects on mitochondrial oxidative energy metabolism (oxidized CCO) and cerebral oxygenation (HbD) in older (≥50 years old) euthymic adults with BD (N = 15). As compared to sham, TILS to the PFC in adults with BD increased oxidized CCO both during and after TILS, and increased HbD concentrations after TILS. By significantly increasing oxidized CCO and HbD concentrations above sham levels, TILS has the potential ability to stabilize mitochondrial oxidative energy production and prevent oxidative damage in the PFC of adults with BD. In conclusion, TILS was both safe and effective in enhancing metabolic function and subsequent hemodynamic responses in the PFC, which might help alleviate the accelerated neurocognitive decline and dysfunctional mitochondria present in BD.
Collapse
Affiliation(s)
- Courtney M. O’Donnell
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Douglas W. Barrett
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Patrick O’Connor
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
31
|
Truong NCD, Wang X, Liu H. Temporal and spectral analyses of EEG microstate reveals neural effects of transcranial photobiomodulation on the resting brain. Front Neurosci 2023; 17:1247290. [PMID: 37916179 PMCID: PMC10616257 DOI: 10.3389/fnins.2023.1247290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The quantification of electroencephalography (EEG) microstates is an effective method for analyzing synchronous neural firing and assessing the temporal dynamics of the resting state of the human brain. Transcranial photobiomodulation (tPBM) is a safe and effective modality to improve human cognition. However, it is unclear how prefrontal tPBM neuromodulates EEG microstates both temporally and spectrally. Methods 64-channel EEG was recorded from 45 healthy subjects in both 8-min active and sham tPBM sessions, using a 1064-nm laser applied to the right forehead of the subjects. After EEG data preprocessing, time-domain EEG microstate analysis was performed to obtain four microstate classes for both tPBM and sham sessions throughout the pre-, during-, and post-stimulation periods, followed by extraction of the respective microstate parameters. Moreover, frequency-domain analysis was performed by combining multivariate empirical mode decomposition with the Hilbert-Huang transform. Results Statistical analyses revealed that tPBM resulted in (1) a significant increase in the occurrence of microstates A and D and a significant decrease in the contribution of microstate C, (2) a substantial increase in the transition probabilities between microstates A and D, and (3) a substantial increase in the alpha power of microstate D. Discussion These findings confirm the neurophysiological effects of tPBM on EEG microstates of the resting brain, particularly in class D, which represents brain activation across the frontal and parietal regions. This study helps to better understand tPBM-induced dynamic alterations in EEG microstates that may be linked to the tPBM mechanism of action for the enhancement of human cognition.
Collapse
Affiliation(s)
| | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
32
|
Tang L, Jiang H, Sun M, Liu M. Pulsed transcranial photobiomodulation generates distinct beneficial neurocognitive effects compared with continuous wave transcranial light. Lasers Med Sci 2023; 38:203. [PMID: 37668791 DOI: 10.1007/s10103-023-03865-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Previous research has demonstrated the beneficial effect brought by transcranial photobiomodulation (tPBM). The present study is a further investigation of pulsed transcranial light delivery, from the perspective of wavelength, operation mode, and pulse frequency. A total of 56 healthy young adults (28 males and 28 females) were included in this randomized, sham-controlled experimental study. The wavelength of tPBM was 660 nm and 850 nm, and under each wavelength, subjects were randomly assigned to one of the following four treatments: (1) sham control; (2) continuous-wave (CW) tPBM; (3) pulsed-wave (PW) tPBM (40 Hz); and (4) PW tPBM (100 Hz). The tPBM duration was 8 min and the mean power density was fixed at 250 mW/cm2. Karolinska Sleepiness Scale (KSS) questionnaire, psychomotor vigilance task (PVT), and delayed match-to-sample (DMS) task were completed by subjects before and after the intervention to test whether PW tPBM produced distinct beneficial effects with measures of sleepiness, attention, and memory. 32-channel electroencephalography (EEG) signals were obtained from subjects before, during and after receiving tPBM or sham intervention. Paired sample T test showed that the KSS score, the number of correct responses of PVT, and DMS rate correct score (RCS) of PW tPBM groups improved significantly after intervention (p < 0.05). With regard to EEG analysis, paired one-way repeated ANOVA test showed that during the intervention of PW tPBM, the average power within the Gamma band was higher than the baseline (p < 0.05). Our study presented that PW tPBM could generate better beneficial cognitive effects and change brain electrical activity under certain circumstances.
Collapse
Affiliation(s)
- Luyao Tang
- Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, China
| | - Hui Jiang
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Miao Sun
- Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, China
| | - Muqing Liu
- Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, China.
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China.
| |
Collapse
|
33
|
Chaudhari A, Wang X, Wu A, Liu H. Repeated Transcranial Photobiomodulation with Light-Emitting Diodes Improves Psychomotor Vigilance and EEG Networks of the Human Brain. Bioengineering (Basel) 2023; 10:1043. [PMID: 37760145 PMCID: PMC10525861 DOI: 10.3390/bioengineering10091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) has been suggested as a non-invasive neuromodulation tool. The repetitive administration of light-emitting diode (LED)-based tPBM for several weeks significantly improves human cognition. To understand the electrophysiological effects of LED-tPBM on the human brain, we investigated alterations by repeated tPBM in vigilance performance and brain networks using electroencephalography (EEG) in healthy participants. Active and sham LED-based tPBM were administered to the right forehead of young participants twice a week for four weeks. The participants performed a psychomotor vigilance task (PVT) during each tPBM/sham experiment. A 64-electrode EEG system recorded electrophysiological signals from each participant during the first and last visits in a 4-week study. Topographical maps of the EEG power enhanced by tPBM were statistically compared for the repeated tPBM effect. A new data processing framework combining the group's singular value decomposition (gSVD) with eLORETA was implemented to identify EEG brain networks. The reaction time of the PVT in the tPBM-treated group was significantly improved over four weeks compared to that in the sham group. We observed acute increases in EEG delta and alpha powers during a 10 min LED-tPBM while the participants performed the PVT task. We also found that the theta, beta, and gamma EEG powers significantly increased overall after four weeks of LED-tPBM. Combining gSVD with eLORETA enabled us to identify EEG brain networks and the corresponding network power changes by repeated 4-week tPBM. This study clearly demonstrated that a 4-week prefrontal LED-tPBM can neuromodulate several key EEG networks, implying a possible causal effect between modulated brain networks and improved psychomotor vigilance outcomes.
Collapse
Affiliation(s)
| | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (A.C.); (X.W.); (A.W.)
| |
Collapse
|
34
|
Wade ZS, Barrett DW, Davis RE, Nguyen A, Venkat S, Gonzalez-Lima F. Histochemical mapping of the duration of action of photobiomodulation on cytochrome c oxidase in the rat brain. Front Neurosci 2023; 17:1243527. [PMID: 37700747 PMCID: PMC10493319 DOI: 10.3389/fnins.2023.1243527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction This is the first study mapping the duration of action of in vivo photobiomodulation (PBM) on cytochrome-c-oxidase (CCO). In cellular bioenergetics, CCO is the terminal rate-limiting enzyme in the mitochondrial electron transport chain, which catalyzes oxygen utilization for aerobic energy production. PBM using transcranial infrared laser stimulation (TILS) is a promising intervention for non-invasively modulating CCO in the brain. TILS of the human prefrontal cortex directly causes CCO photo-oxidation, which is associated with increased cerebral oxygenation and improved cognition. Methods This experiment aimed to map the duration of action of in vivo PBM on CCO activity in discrete neuroanatomic locations within rat brains up to 4 weeks after a single TILS session (50 s, 1064 nm CW, 250 mW/cm2). Control brains from rats treated with a sham session without TILS (laser off) were compared to brains from TILS-treated rats that were collected 1 day, 2 weeks, or 4 weeks post-TILS. Cryostat sections of the 36 collected brains were processed using quantitative enzyme histochemistry and digitally imaged. Densitometric readings of 28 regions of interest were recorded and converted to CCO activity units of oxygen utilization using calibration standards. Data analysis (ANCOVA) compared each laser-treated group to sham with whole-brain average as a covariate. Results The prefrontal infralimbic cortex showed the earliest significant increase in CCO activity between 1-day post-TILS and sham groups, which continued elevated for 2-4 weeks post-TILS. Significant differences in CCO activity between 2-weeks and sham groups were also found in the lateral septum, accumbens core, CA3 of the hippocampus, and the molecular layer of the hippocampus. The medial amygdala showed a significant decrease in CCO activity between 4-weeks and sham. Further analyses showed significant inter-regional CCO activity correlations among the brain regions as the result of TILS, with the most pronounced changes at 4-weeks post-stimulation. Discussion The time course of changes in CCO activity and network connectivity suggested that TILS caused different neuroplasticity types of bioenergetic changes at different time scales, depending on brain region and its depth from the cortex. In conclusion, this controlled CCO histochemical study demonstrated a long-lasting duration of action of PBM in the rat brain.
Collapse
Affiliation(s)
| | | | | | | | | | - F. Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
35
|
Lee TL, Chan AS. Photobiomodulation may enhance cognitive efficiency in older adults: a functional near-infrared spectroscopy study. Front Aging Neurosci 2023; 15:1096361. [PMID: 37547747 PMCID: PMC10397517 DOI: 10.3389/fnagi.2023.1096361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction The relative oxygenated hemoglobin (HbO) measured using functional near-infrared spectroscopy (fNIRS) has been considered as an index for cognitive loading, with the more difficult the task, the higher the level. A previous study reported that young adults who received transcranial photobiomodulation (tPBM) showed a reduced HbO of a difficult task, suggesting that tPBM may enhance cognitive efficiency. The present study further investigated the effect of tPBM on cognitive efficiency in older adults. Methods Thirty participants received a single tPBM on the forehead for 350 s. Before and after tPBM, their HbO in the visual span task with various difficulties was measured with fNIRS. Results After tPBM, participants exhibited significantly lower HbO in a harder (span 7) but not an easier level (span 2) of the task, but their behavioral performance remained unchanged. In addition, factors affecting the reduction of HbO were examined, and the results showed that individuals with better memory (as measured by a 30-min delayed recall test) showed more reduction of HbO. Discussion The results suggest that tPBM may enhance cognitive efficiency, with individuals with better memory tend to benefit more.
Collapse
Affiliation(s)
- Tsz-lok Lee
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Agnes S. Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
36
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
37
|
Vieira WF, Iosifescu DV, McEachern KM, Gersten M, Cassano P. Photobiomodulation: An Emerging Treatment Modality for Depression. Psychiatr Clin North Am 2023; 46:331-348. [PMID: 37149348 DOI: 10.1016/j.psc.2023.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Major depressive disorder (MDD) is considered a global crisis. Conventional treatments for MDD consist of pharmacotherapy and psychotherapy, although a significant number of patients with depression respond poorly to conventional treatments and are diagnosed with treatment-resistant depression (TRD). Transcranial photobiomodulation (t-PBM) therapy uses near-infrared light, delivered transcranially, to modulate the brain cortex. The aim of this review was to revisit the antidepressant effects of t-PBM, with a special emphasis on individuals with TRD. A search on PubMed and ClinicalTrials.gov tracked clinical studies using t-PBM for the treatment of patients diagnosed with MDD and TRD.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA; Department of Psychiatry, Harvard Medical School (HMS), 25 Shattuck Street, Boston, MA 02115, USA; Department of Anatomy, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), 2415 Prof. Lineu Prestes Avenue, Sao Paulo, SP 05508-000, Brazil
| | - Dan V Iosifescu
- Clinical Research Division, Nathan Kline Institute (NKI) for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University (NYU) School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Kayla Marie McEachern
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA
| | - Maia Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital (MGH), 149 13th Street (2612), Boston, MA 02129, USA; Department of Psychiatry, Harvard Medical School (HMS), 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Lech JC, Halma MT, Obajuluwa AO, Baker M, Hamblin MR. Fiat Lux: Light and Pedagogy for the 21st Century. Ann Neurosci 2023; 30:133-142. [PMID: 37706102 PMCID: PMC10496794 DOI: 10.1177/09727531221136646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/11/2022] [Indexed: 09/15/2023] Open
Abstract
Background The relationship between the quality of the learning environment and student outcomes is receiving more serious attention from educational psychologists, neurologists, ophthalmologists, orthopedists, surgeons, oncologists, architects, ergonomists, nutritionists, and Michelin star chefs. There is a role for ergonomic office and school design to positively impact worker and student productivity, and one design attribute drawing attention is the indoor lit environment. In this review, we expand upon the role that light plays in education, as it has enabled millions of pupils to read at late hours, which were previously too dark. However, still unappreciated is the biological effects of artificial light on circadian rhythm and its subsequent impacts on health and learning outcomes. Summary This review describes the current state of light in the educational environment, its impact, and the effect of certain inexpensive and easy-to-implement adaptations to better support student growth, learning and development. We find that the current lighting environment for pupils is sub-optima based on biological mechanism and may be improved through cost effective interventions. These interventions can achieve greater biological harmonization and improve learner outcomes. Key Message The impact of the lighting environment in educational institutions on pupil biology has received minimal attention thus far. The current lighting environment in schools is not conducive to student health and educational performance. Cost-effective approaches can have an outsized impact on student health and educational attainment. We strongly recommend educational institutions take the lit environment into account when designing educational programs.
Collapse
Affiliation(s)
- James C. Lech
- * These authors share joint first authorship
- Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam (UMC), Amsterdam, The Netherlands
- National Research Foundation, South Africa
- International EMF Project & Optical Radiation, World Health Organization, Pretoria, South Africa
| | - Matthew T.J. Halma
- * These authors share joint first authorship
- Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Adejoke O. Obajuluwa
- Biotechnology Unit, Department of Biological Sciences, Afe Babalola University, Olusegun Obasanjo Way, Ado Ekiti, Nigeria
| | - Malcolm Baker
- † Passed away June 16, 2021
- Department of Neurology, 1 Military Hospital, Pretoria, Department of Defence, South Africa Military Health Service Pretoria
- Department of Neurology, University of Pretoria, South Africa
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
39
|
Dole M, Auboiroux V, Langar L, Mitrofanis J. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. Rev Neurosci 2023:revneuro-2023-0003. [PMID: 36927734 DOI: 10.1515/revneuro-2023-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
In recent years, transcranial photobiomodulation (tPBM) has been developing as a promising method to protect and repair brain tissues against damages. The aim of our systematic review is to examine the results available in the literature concerning the efficacy of tPBM in changing brain activity in humans, either in healthy individuals, or in patients with neurological diseases. Four databases were screened for references containing terms encompassing photobiomodulation, brain activity, brain imaging, and human. We also analysed the quality of the included studies using validated tools. Results in healthy subjects showed that even after a single session, tPBM can be effective in influencing brain activity. In particular, the different transcranial approaches - using a focal stimulation or helmet for global brain stimulation - seemed to act at both the vascular level by increasing regional cerebral blood flow (rCBF) and at the neural level by changing the activity of the neurons. In addition, studies also showed that even a focal stimulation was sufficient to induce a global change in functional connectivity across brain networks. Results in patients with neurological disease were sparser; nevertheless, they indicated that tPBM could improve rCBF and functional connectivity in several regions. Our systematic review also highlighted the heterogeneity in the methods and results generated, together with the need for more randomised controlled trials in patients with neurological diseases. In summary, tPBM could be a promising method to act on brain function, but more consistency is needed in order appreciate fully the underlying mechanisms and the precise outcomes.
Collapse
Affiliation(s)
- Marjorie Dole
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France
| | | | - Lilia Langar
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Clinatec, 38000 Grenoble, France
| | - John Mitrofanis
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France.,Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
40
|
Pan WT, Liu PM, Ma D, Yang JJ. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J Transl Med 2023; 21:135. [PMID: 36814278 PMCID: PMC9945713 DOI: 10.1186/s12967-023-03988-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nanoparticles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive improvement.
Collapse
Affiliation(s)
- Wei-tong Pan
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Pan-miao Liu
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK. .,National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Jian-jun Yang
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| |
Collapse
|
41
|
Zaizar ED, Papini S, Gonzalez-Lima F, Telch MJ. Singular and combined effects of transcranial infrared laser stimulation and exposure therapy on pathological fear: a randomized clinical trial. Psychol Med 2023; 53:908-917. [PMID: 34284836 PMCID: PMC9976021 DOI: 10.1017/s0033291721002270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Preclinical findings suggest that transcranial infrared laser stimulation (TILS) improves fear extinction learning and cognitive function by enhancing prefrontal cortex (PFC) oxygen metabolism. These findings prompted our investigation of treating pathological fear using this non-invasive stimulation approach either alone to the dorsolateral PFC (dlPFC), or to the ventromedial PFC (vmPFC) in combination with exposure therapy. METHODS Volunteers with pathological fear of either enclosed spaces, contamination, public speaking, or anxiety-related bodily sensations were recruited for this randomized, single-blind, sham-controlled trial with four arms: (a) Exposure + TILS_vmPFC (n = 29), (b) Exposure + sham TILS_vmPFC (n = 29), (c) TILS_dlPFC alone (n = 26), or (d) Sham TILS _dlPFC alone (n = 28). Post-treatment assessments occurred immediately following treatment. Follow-up assessments occurred 2 weeks after treatment. RESULTS A total of 112 participants were randomized [age range: 18-63 years; 96 females (85.71%)]. Significant interactions of Group × Time and Group × Context indicated differential treatment effects on retention (i.e. between time-points, averaged across contexts) and on generalization (i.e. between contexts, averaged across time-points), respectively. Among the monotherapies, TILS_dlPFC outperformed SHAM_dlPFC in the initial context, b = -13.44, 95% CI (-25.73 to -1.15), p = 0.03. Among the combined treatments, differences between EX + TILS_vmPFC and EX + SHAM_vmPFC were non-significant across all contrasts. CONCLUSIONS TILS to the dlPFC, one of the PFC regions implicated in emotion regulation, resulted in a context-specific benefit as a monotherapy for reducing fear. Contrary to prediction, TILS to the vmPFC, a region implicated in fear extinction memory consolidation, did not enhance exposure therapy outcome.
Collapse
Affiliation(s)
- Eric D. Zaizar
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
| | - Santiago Papini
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Michael J. Telch
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
42
|
Cheung MC, Lee TL, Sze SL, Chan AS. Photobiomodulation improves frontal lobe cognitive functions and mental health of older adults with non-amnestic mild cognitive impairment: Case studies. Front Psychol 2023; 13:1095111. [PMID: 36704674 PMCID: PMC9871821 DOI: 10.3389/fpsyg.2022.1095111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction This study investigated the effects of transcranial photobiomodulation (tPBM) on improving the frontal lobe cognitive functions and mental health of older adults. Methods Three older adults with mild cognitive impairment (MCI) of the non-amnestic type received 18-session tPBM stimulation for 9 weeks and were assessed with neuropsychological tests of memory and executive functions and standardized questionnaires on depressive and anxiety symptoms, global cognitive functions, and daily functioning abilities before and after tPBM stimulation. Results At baseline, their intrusion and/or perseveration errors in a verbal memory test and a fluency test, as measures of the frontal lobe cognitive functions, were in the borderline to severely impaired range at baseline. After tPBM stimulation, the three older adults showed various levels of improvement in their frontal lobe cognitive functions. One older adult's intrusion and perseveration errors improved from the <1st-2nd percentile (moderately to severely impaired range) to the 41st-69th percentile (average range), another older adult's intrusion errors improved from the 11th percentile to the 83rd percentile, and the third older adult's intrusion errors improved from the 5th percentile to the 56th percentile. Moreover, improvements in their anxiety and/or depressive symptoms were also observed. One older adult's depressive and anxiety symptoms improved from the severe range at baseline to the mild range after the intervention. The other two older adults' depressive symptoms improved from the mild range at baseline to the normal range after the intervention. Discussion These findings provide preliminary support for the potential of tPBM to improve the frontal lobe cognitive functions and mental health of older adults with MCI. Given the small sample size of only three older adults and the absence of a placebo control group, larger randomized controlled studies are needed to confirm its potential.
Collapse
Affiliation(s)
- Mei-Chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tsz-Lok Lee
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sophia L. Sze
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Agnes S. Chan
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,*Correspondence: Agnes S. Chan, ✉
| |
Collapse
|
43
|
Lee TL, Ding Z, Chan AS. Can transcranial photobiomodulation improve cognitive function? A systematic review of human studies. Ageing Res Rev 2023; 83:101786. [PMID: 36371017 DOI: 10.1016/j.arr.2022.101786] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) has been studied for over a decade as a possible cognitive intervention. OBJECTIVE To evaluate the effect of tPBM for enhancing human cognitive function in healthy adults and remediating impaired cognitive function in adults with cognitive disorders. METHODS A systematic literature search from three electronic databases (PubMed, Scopus, Web of Science) was conducted from 1987 to May 2022. The cognitive function being evaluated included learning and memory, attention, executive function, language, and global cognitive function. RESULTS Of the 35 studies identified, 29 (82.9 %) studies reported positive improvement in cognitive functions after tPBM. All nine studies on participants with subjective memory complaints, mild cognitive impairment, and dementia, showed positive outcomes. Seven (87.5 %) studies on traumatic brain injury (TBI) patients also showed positive results. A series of clinical trials on stroke patients showed positive trends on improved neurological deficit at first, but was prematurely terminated later at phase III due to the lack of statistical significance. One of the most common protocols for clinical populations employed devices delivering near-infrared light (810 nm), the irradiance of 20-25 mW/cm2, and fluence of 1-10 J/cm2. While this was common, the reviewed protocols also included other wavelengths of light ranging from visible, red (630-635 nm) to invisible near-infrared maximum wavelengths of 1060-1068 nm. CONCLUSIONS tPBM seems to improve cognitive function. However, only half of the reviewed clinical trials were randomized control trials, further investigation is warranted.
Collapse
Affiliation(s)
- Tsz-Lok Lee
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihan Ding
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Kashiwagi S, Morita A, Yokomizo S, Ogawa E, Komai E, Huang PL, Bragin DE, Atochin DN. Photobiomodulation and nitric oxide signaling. Nitric Oxide 2023; 130:58-68. [PMID: 36462596 PMCID: PMC9808891 DOI: 10.1016/j.niox.2022.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Nitric oxide (NO) is a well-known gaseous mediator that maintains vascular homeostasis. Extensive evidence supports that a hallmark of endothelial dysfunction, which leads to cardiovascular diseases, is endothelial NO deficiency. Thus, restoring endothelial NO represents a promising approach to treating cardiovascular complications. Despite many therapeutic agents having been shown to augment NO bioavailability under various pathological conditions, success in resulting clinical trials has remained elusive. There is solid evidence of diverse beneficial effects of the treatment with low-power near-infrared (NIR) light, defined as photobiomodulation (PBM). Although the precise mechanisms of action of PBM are still elusive, recent studies consistently report that PBM improves endothelial dysfunction via increasing bioavailable NO in a dose-dependent manner and open a feasible path to the use of PBM for treating cardiovascular diseases via augmenting NO bioavailability. In particular, the use of NIR light in the NIR-II window (1000-1700 nm) for PBM, which has reduced scattering and minimal tissue absorption with the largest penetration depth, is emerging as a promising therapy. In this review, we update recent findings on PBM and NO.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.
| | - Atsuyo Morita
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA; Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Eri Komai
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Paul L Huang
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM, 87108, USA; Department of Neurology, The University of New Mexico School of Medicine, MSC08 4720, 1 UNM, Albuquerque, NM, 87131, USA.
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
45
|
Zhao C, Li D, Kong Y, Liu H, Hu Y, Niu H, Jensen O, Li X, Liu H, Song Y. Transcranial photobiomodulation enhances visual working memory capacity in humans. SCIENCE ADVANCES 2022; 8:eabq3211. [PMID: 36459562 PMCID: PMC10936045 DOI: 10.1126/sciadv.abq3211] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Transcranial photobiomodulation (tPBM) is a safe and noninvasive intervention that has shown promise for improving cognitive performance. Whether tPBM can modulate brain activity and thereby enhance working memory (WM) capacity in humans remains unclear. In this study, we found that 1064-nm tPBM applied to the right prefrontal cortex (PFC) improves visual working memory capacity and increases occipitoparietal contralateral delay activity (CDA). The CDA set-size effect during retention mediated the effect between the 1064-nm tPBM and subsequent WM capacity. The behavioral benefits and the corresponding changes in the CDA set-size effect were absent with tPBM at a wavelength of 852 nm or with stimulation of the left PFC. Our findings provide converging evidence that 1064-nm tPBM applied to the right PFC can improve WM capacity.
Collapse
Affiliation(s)
- Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Guangdong, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hongyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Guangdong, China
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
46
|
Photodynamic Opening of the Blood-Brain Barrier and the Meningeal Lymphatic System: The New Niche in Immunotherapy for Brain Tumors. Pharmaceutics 2022; 14:pharmaceutics14122612. [PMID: 36559105 PMCID: PMC9784636 DOI: 10.3390/pharmaceutics14122612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising add-on therapy to the current standard of care for patients with glioblastoma (GBM). The traditional explanation of the anti-cancer PDT effects involves the PDT-induced generation of a singlet oxygen in the GBM cells, which causes tumor cell death and microvasculature collapse. Recently, new vascular mechanisms of PDT associated with opening of the blood-brain barrier (OBBB) and the activation of functions of the meningeal lymphatic vessels have been discovered. In this review, we highlight the emerging trends and future promises of immunotherapy for brain tumors and discuss PDT-OBBB as a new niche and an important informative platform for the development of innovative pharmacological strategies for the modulation of brain tumor immunity and the improvement of immunotherapy for GBM.
Collapse
|
47
|
Shahdadian S, Wang X, Wanniarachchi H, Chaudhari A, Truong NCD, Liu H. Neuromodulation of brain power topography and network topology by prefrontal transcranial photobiomodulation. J Neural Eng 2022; 19:10.1088/1741-2552/ac9ede. [PMID: 36317341 PMCID: PMC9795815 DOI: 10.1088/1741-2552/ac9ede] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Objective.Transcranial photobiomodulation (tPBM) has shown promising benefits, including cognitive improvement, in healthy humans and in patients with Alzheimer's disease. In this study, we aimed to identify key cortical regions that present significant changes caused by tPBM in the electroencephalogram (EEG) oscillation powers and functional connectivity in the healthy human brain.Approach. A 64-channel EEG was recorded from 45 healthy participants during a 13 min period consisting of a 2 min baseline, 8 min tPBM/sham intervention, and 3 min recovery. After pre-processing and normalizing the EEG data at the five EEG rhythms, cluster-based permutation tests were performed for multiple comparisons of spectral power topographies, followed by graph-theory analysis as a topological approach for quantification of brain connectivity metrics at global and nodal/cluster levels.Main results. EEG power enhancement was observed in clusters of channels over the frontoparietal regions in the alpha band and the centroparietal regions in the beta band. The global measures of the network revealed a reduction in synchronization, global efficiency, and small-worldness of beta band connectivity, implying an enhancement of brain network complexity. In addition, in the beta band, nodal graphical analysis demonstrated significant increases in local information integration and centrality over the frontal clusters, accompanied by a decrease in segregation over the bilateral frontal, left parietal, and left occipital regions.Significance.Frontal tPBM increased EEG alpha and beta powers in the frontal-central-parietal regions, enhanced the complexity of the global beta-wave brain network, and augmented local information flow and integration of beta oscillations across prefrontal cortical regions. This study sheds light on the potential link between electrophysiological effects and human cognitive improvement induced by tPBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Authors to whom any correspondence should be addressed,
| |
Collapse
|
48
|
Shinhmar H, Hoh Kam J, Mitrofanis J, Hogg C, Jeffery G. Shifting patterns of cellular energy production (adenosine triphosphate) over the day and key timings for the effect of optical manipulation. JOURNAL OF BIOPHOTONICS 2022; 15:e202200093. [PMID: 35860879 DOI: 10.1002/jbio.202200093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are optically responsive organelles producing energy for cell function via adenosine triphosphate (ATP). But ATP production appears to vary over the day. Here we use Drosophila melanogaster to reveal daily shifts in whole animal ATP production in a tight 24 hours' time series. We show a marked production peak in the morning that declines around midday and remains low through afternoon and night. ATP production can be improved with long wavelengths (>660 nm), but apparently not at all times. Hence, we treated flies with 670 nm light to reveal optimum times. Exposures at 670 nm resulted in a significant ATP increases and a shift in the ATP/adenosine diphosphate (ADP) ratio at 8.00 and 11.00, whilst application at other time points had no effect. Hence, light-induced ATP increases appear limited to periods when natural production is high. In summary, long wavelength influences on mitochondria are conserved across species from fly to human. Determining times for their administration to improve function in ageing and disease are of key importance. This study progresses this problem.
Collapse
Affiliation(s)
| | - Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, UK
| | - John Mitrofanis
- Institute of Ophthalmology, University College London, London, UK
- FDD-CEA, Clinatec, University of Grenoble Alpes, Saint-Martin-d'Hères, France
| | - Chris Hogg
- Institute of Ophthalmology, University College London, London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
49
|
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, Bicknell B, Benabid AL, Magistretti P, Mitrofanis J. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci 2022; 16:942536. [PMID: 35968381 PMCID: PMC9366035 DOI: 10.3389/fnins.2022.942536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain.
Collapse
Affiliation(s)
- Cecile Moro
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Audrey Valverde
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Marjorie Dole
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Jaimie Hoh Kam
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | | | - Ann Liebert
- Governance and Research Department, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | | | - Pierre Magistretti
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John Mitrofanis
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: John Mitrofanis,
| |
Collapse
|
50
|
Tolerability and Safety of Transcranial Photobiomodulation for Mood and Anxiety Disorders. PHOTONICS 2022. [DOI: 10.3390/photonics9080507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Mood and anxiety disorders are a prevalent and significant leading cause of years lived with a disability worldwide. Existing antidepressants drugs are only partially effective, having burdensome side effects. One-third of patients do not achieve remission after several adequate antidepressant trials, and relapses of depression are frequent. Psychotherapies for depression are limited by the lack of trained professionals, and further by out-of-pocket prohibitive costs. Existing FDA-approved, device-based interventions are either invasive or only administered in the office. Transcranial photobiomodulation (t-PBM) with near-infrared (NIR) light may be a promising treatment option for mood and anxiety disorders. Due to its low cost, and ease of self-administration, t-PBM has the potential to become widely accessible. The safety profile of t-PBM is a relevant factor for widespread use and administration. Aim: To further investigate the t-PBM safety profile, this study aims to evaluate the tolerability and safety of t-PBM for the treatment of major depressive disorder (MDD) and generalized anxiety disorder (GAD). Method: We completed a systematic analysis of the side effects from repeated sessions of t-PBM in three studies: an open-label study for GAD (LIGHTEN GAD) and two randomized control studies for MDD (ELATED-2; ELATED-3). Overall, 80 subjects were studied. Result: Our results show that a low dose of NIR per t-PBM session can be administered with increasing frequency (up to daily sessions) and for several weeks (up to 12 weeks) without a corresponding increase in the occurrence or severity of adverse events. Additionally, there were no significant predictors for the variance in the number of reported adverse events (such as age, sex or diagnosis). Conclusion: The literature indicates that higher dosages of transcranial NIR could lead to greater antidepressant and anxiolytic effects; this study did not find any correlation between the increasing number of t-PBM sessions and the occurrence of adverse events.
Collapse
|