1
|
Guo R, Xue J, Shao P, Cai C, Wang Y. NETO2-GluK2 interaction contributes to postoperative pain hypersensitivity through inducing PKCγ activation and synaptic incorporation of AMPA receptor GluR1 subunits in rat dorsal horn. Neurosci Lett 2023; 813:137430. [PMID: 37544581 DOI: 10.1016/j.neulet.2023.137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Important roles in the initiation and maintenance of postoperative pain are played by the functional control of kainate (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors in the rat dorsal horn (DH). However, the mechanisms underpinning the cross-talk between spinal KA and AMPA receptors in postoperative pain are poorly understood. We hypothesized that after the rat's plantar incision, the synaptic incorporation of AMPA receptor GluR1 subunits in the DH ipsilateral to the incision would increase due to the interaction between GluK2 and neuropilin tolloid-like 2 (NETO2). Our findings showed that incision stimuli caused severe pain responses, as measured by cumulative pain scores. GluK2-NETO2 but not GluK2-NETO1interaction was upregulated in ipsilateral dorsal horn neurons (DHNs) at 6 h post-incision. At 6 h post-incision, NETO2 small interfering ribonucleic acid (siRNA) intrathecal pretreatment increased mechanical withdrawal thresholds to von Freys and decreased ipsilateral paw cumulative pain scores. Further, PKCγactivation and synaptic abundance of GluK2 and GluR1 subunits in the ipsilateral DH were decreased by intrathecal pretreatment with NETO2 siRNA at 6 h post-incision. In conclusion, our findings imply that GluK2-NETO2 interaction could trigger PKCγactivation and the synaptic incorporation of AMPA receptor GluR1 subunits in rat DHs, which in turn led to the enhanced pain hypersensitivity after surgery. It sheds light on the interplay between KA and AMPA receptors in DHNs, which is thought to contribute to postoperative pain.
Collapse
Affiliation(s)
- Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianjun Xue
- Department of Anesthesiology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Peiqi Shao
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chenghui Cai
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Fuller AM, Bharde S, Sikandar S. The mechanisms and management of persistent postsurgical pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1154597. [PMID: 37484030 PMCID: PMC10357043 DOI: 10.3389/fpain.2023.1154597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
An estimated 10%-50% of patients undergoing a surgical intervention will develop persistent postsurgical pain (PPP) lasting more than 3 months despite adequate acute pain management and the availability of minimally invasive procedures. The link between early and late pain outcomes for surgical procedures remains unclear-some patients improve while others develop persistent pain. The elective nature of a surgical procedure offers a unique opportunity for prophylactic or early intervention to prevent the development of PPP and improve our understanding of its associated risk factors, such as pre-operative anxiety and the duration of severe acute postoperative pain. Current perioperative pain management strategies often include opioids, but long-term consumption can lead to tolerance, addiction, opioid-induced hyperalgesia, and death. Pre-clinical models provide the opportunity to dissect mechanisms underpinning the transition from acute to chronic, or persistent, postsurgical pain. This review highlights putative mechanisms of PPP, including sensitisation of peripheral sensory neurons, neuroplasticity in the central nervous system and nociceptive signalling along the neuro-immune axis.
Collapse
|
3
|
Lin YL, Liao JW, Wang S, Sridharan B, Lee HJ, Li A, Chang KM, Wu CY, Huang S, Chang KT, Agrawal DC, Chen CJ, Lee MJ. Andrographolide Relieves Post-Operative Wound Pain but Affects Local Angiogenesis. Pharmaceuticals (Basel) 2022; 15:ph15121586. [PMID: 36559037 PMCID: PMC9785486 DOI: 10.3390/ph15121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Andrographolide (Andro), the major constituent of Andrographis paniculata Nees (Acanthaceae), is was known to reduces inflammatory reaction. In the current study, the ability of Andro to reduce pain sensation in a rat post-operative wound model was explored. The hind paws of 18 Sprague-Dawley rats (SD) bearing post-operative wounds received the following three treatments: Saline, Andro via direct injection into the paw (Andro-injected) and Tablet containing Andro + poly (lactic-co-glycolic acid) (PLGA) (Andro-tablet). Von Frey tests assessed mechanical allodynia at 1, 3, 5 h and 1-, 2-, 3-, 4-, and 5-days post-operation. Behavioral analyses were performed to measure reaction threshold and reaction frequencies. Immunoreactivity of p-ERK and GluR1 was examined in the dorsal horn of the spinal cord. Histopathological and immunostaining studies were conducted on paw epidermis to observe the gross morphology and angiogenesis. The threshold for inducing allodynia increased and the reaction frequency reduced in the Andro-injected group compared to the saline-group, at 3 h post-surgery and the effect lasted between 3-4 days. The threshold for inducing pain and reaction frequency for the Andro-tablet group did not differ from the saline-treated group. The levels of p-ERK and GluR1 in the dorsal horn were reduced after Andro treatment. No significant difference in wound healing index was observed between saline and Andro-injected groups, but CD-31 staining showed less angiogenesis in the Andro-injected group. Andro significantly reduced mechanical allodynia compared to saline treatment, both in shorter and longer time frames. Furthermore, Andro influenced the expression of p-ERK and GluR1 in the dorsal horn, and the angiogenesis process in the wound healing area.
Collapse
Affiliation(s)
- Yi-Lo Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Shunching Wang
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Badrinathan Sridharan
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Hsin-Ju Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Ai Li
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Kai-Ming Chang
- Department of Moleculer Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 112019, Taiwan
| | - Ching-Yang Wu
- Department of Thoracic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan
| | - Siendong Huang
- Department of Applied Mathematics, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan
| | - Kai-Ting Chang
- Department of Basic Research, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan
| | - Dinesh Chandra Agrawal
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Ching-Jung Chen
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
- Correspondence:
| |
Collapse
|
4
|
Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci 2022; 15:1006419. [PMID: 36304997 PMCID: PMC9592815 DOI: 10.3389/fnmol.2022.1006419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common symptom of many neurological disorders and can lead to neuronal damage that plays a major role in seizure-related disability. The peptidyl-prolyl isomerase Pin1 has wide-ranging influences on the occurrence and development of neurological diseases. It has also been suggested that Pin1 acts on epileptic inhibition, and the molecular mechanism has recently been reported. In this review, we primarily focus on research concerning the mechanisms and functions of Pin1 in neurons. In addition, we highlight the significance and potential applications of Pin1 in neuronal diseases, especially epilepsy. We also discuss the molecular mechanisms by which Pin1 controls synapses, ion channels and neuronal signaling pathways to modulate epileptic susceptibility. Since neurotransmitters and some neuronal signaling pathways, such as Notch1 and PI3K/Akt, are vital to the nervous system, the role of Pin1 in epilepsy is discussed in the context of the CaMKII-AMPA receptor axis, PSD-95-NMDA receptor axis, NL2/gephyrin-GABA receptor signaling, and Notch1 and PI3K/Akt pathways. The effect of Pin1 on the progression of epilepsy in animal models is discussed as well. This information will lead to a better understanding of Pin1 signaling pathways in epilepsy and may facilitate development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojun Hou
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Jiao Pang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Yang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Angcheng Li
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Suijin Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hekun Liu
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Hekun Liu,
| |
Collapse
|
5
|
Ding X, Liao FF, Su L, Yang X, Yang W, Ren QH, Zhang JZ, Wang HM. Sciatic nerve block downregulates the BDNF pathway to alleviate the neonatal incision-induced exaggeration of incisional pain via decreasing microglial activation. Brain Behav Immun 2022; 105:204-224. [PMID: 35853558 DOI: 10.1016/j.bbi.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022] Open
Abstract
Sciatic nerve block is under investigation as a possible therapeutic strategy for neonatal injury-induced exaggeration of pain responses to reinjury. Spinal microglial priming, brain-derived neurotrophic factor (BDNF) and Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) participate in exaggerated incisional pain induced by neonatal incision. However, effects of sciatic nerve block on exacerbated incisional pain and underlying mechanisms remain unclear. Here, we demonstrated that sciatic nerve block alleviates pain hypersensitivity and microglial activation in rats subjected to neonatal incision and adult incision (nIN-IN). Chemogenetic activation or inhibition of spinal microglia attenuates or mimics effects of sciatic nerve block on pain hypersensitivity, respectively. Moreover, α-amino-3-hydroxy- 5-methy- 4-isoxazole propionate (AMPA) receptor subunit GluA1 contributes to the exaggeration of incisional pain. The inhibition of BDNF or SHP2 blocks upregulations of downstream molecules in nIN-IN rats. Knockdown of SHP2 attenuates the increase of GluA1 induced by injection of BDNF in adult rats with only neonatal incision. The inhibition of microglia or ablation of microglial BDNF attenuates upregulations of SHP2 and GluA1. Additionally, sciatic nerve block downregulates the expression of these three molecules. Upregulation of BDNF, SHP2 or AMPA receptor attenuates sciatic nerve block-induced reductions of downstream molecules and pain hypersensitivity. Microglial activation abrogates reductions of these three molecules induced by sciatic nerve block. These results suggest that decreased activation of spinal microglia contributes to beneficial effects of sciatic nerve block on the neonatal incision-induced exaggeration of incisional pain via downregulating BDNF/SHP2/GluA1-containing AMPA receptor signaling. Thus, sciatic nerve block may be a promising therapy.
Collapse
Affiliation(s)
- Xu Ding
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Fei-Fei Liao
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
| | - Li Su
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
| | - Xi Yang
- Department of Laboratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qing-Hua Ren
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jin-Zhe Zhang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Huan-Min Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| |
Collapse
|
6
|
Kang Y, Xue J, Zheng J, Liang J, Cai C, Wang Y. Upregulation of Hevin contributes to postoperative pain hypersensitivity by inducing neurexin1β/neuroligin1-mediated synaptic targeting of GluA1-containing AMPA receptors in rat dorsal horn. Brain Res 2022; 1792:148004. [PMID: 35820448 DOI: 10.1016/j.brainres.2022.148004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
The astrocytes-secreted active molecule, Hevin considerably contributes in the transsynaptic bridge of neurexin1β/neuligin1 in excitatory synapse. Previous studies have demonstrated that activity-dependent synaptic recruitment of spinal neuroligin1 and GluA1-containing AMPA receptors (AMPARs) is involved in incisional, inflammatory and neuropathic pain. Here, we hypothesized that Hevin induced postoperative pain hypersensitivity by enhancing the neurexin1β/neuroligin1-mediated synaptic targeting of GluA1-containing AMPARs in spinal dorsal horns (DH). Our results showed that plantar incision induced significant postoperative pain behavior, which was described by the cumulative pain scores. At 1 d and 3 d post-incision, Hevin expression was considerably elevated in ipsilateral DHs, although it recovered to baseline value at 5 d following the incision. At 1 d post plantar incision, the neurexin1β/neuroligin1 interactions significantly increased in ipsilateral DHs in rats subjected to incision when compared with those in control rats. Intrathecal pretreatments of small interference RNA targeting Hevin substantially suppressed postoperative pain hypersensitivity and reduced the neurexin1β/neurolgin1 interaction as well as the synaptic targeting of GluA1 in ipsilateral spinal DHs. These data suggest that Hevin induced postoperative pain hypersensitivity by enhancing the neurexin1β/neuroligin1 interaction and subsequent synaptic targeting of GluA1-containing AMPARs in ipsilateral spinal DHs. It provides new insights into the role of Hevin-mediated trans-synaptic regulation in postoperative pain hypersensitivity, which would help develop a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yi Kang
- Department of Pharmacological Science, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jianjun Xue
- Department of Anesthesiology, Chinese Traditional Medicine Hospital of Gansu Province, Lanzhou 730050, Gansu, China
| | - Junwei Zheng
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jinghan Liang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chenghui Cai
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
7
|
Kopach O, Voitenko N. Spinal AMPA receptors: Amenable players in central sensitization for chronic pain therapy? Channels (Austin) 2021; 15:284-297. [PMID: 33565904 PMCID: PMC7889122 DOI: 10.1080/19336950.2021.1885836] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
The activity-dependent trafficking of AMPA receptors (AMPAR) mediates synaptic strength and plasticity, while the perturbed trafficking of the receptors of different subunit compositions has been linked to memory impairment and to causing neuropathology. In the spinal cord, nociceptive-induced changes in AMPAR trafficking determine the central sensitization of the dorsal horn (DH): changes in AMPAR subunit composition compromise the balance between synaptic excitation and inhibition, rendering interneurons hyperexcitable to afferent inputs, and promoting Ca2+ influx into the DH neurons, thereby amplifying neuronal hyperexcitability. The DH circuits become over-excitable and carry out aberrant sensory processing; this causes an increase in pain sensation in central sensory pathways, giving rise to chronic pain syndrome. Current knowledge of the contribution of spinal AMPAR to the cellular mechanisms relating to chronic pain provides opportunities for developing target-based therapies for chronic pain intervention.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Present Address: Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, UK
| | - Nana Voitenko
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
8
|
Guo R, Li H, Shi R, Wang Y. Intrathecal Injection of GRIP-siRNA Reduces Postoperative Synaptic Abundance of Kainate Receptor GluK2 Subunits in Rat Dorsal Horns and Pain Hypersensitivity. Neurochem Res 2021; 46:1771-1780. [PMID: 33847855 DOI: 10.1007/s11064-021-03323-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying postoperative pain differ from the inflammatory or neuropathic pain. Previous studies have demonstrated that intrathecal α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) -kainate (KA) receptor antagonist inhibits the guarding pain behavior and mechanical hyperalgesia, indicating a critical role of spinal KA receptors in postoperative pain hypersensitivity. However, how the functional regulations of spinal KA receptor subunits are involved in the postoperative pain hypersensitivity remains elusive. Therefore, in the current study, we investigated the synaptic delivery of spinal KA receptor subunits and the interaction between KA receptor subunits and glutamate receptor-interacting protein (GRIP) during the postoperative pain. Our data indicated that plantar incision induced the synaptic delivery of GluK2, but not GluK1 or GluK3 in ipsilateral spinal cord dorsal horns. The co-immunoprecipitation showed an increased GluK2 -GRIP interaction in ipsilateral dorsal horn neurons at 6 h post-incision. Interestingly, Intrathecal pretreatment of GRIP siRNA increased the paw withdrawal thresholds to mechanical stimuli and decreased the cumulative pain scores in the paws ipsilateral to the incision at 6 h post-incision. Additionally, Intrathecal pretreatment of GRIP siRNA reduced the synaptic abundance of GluK2 in ipsilateral spinal dorsal horn at 6 h after plantar incision. In general, our data have demonstrated that the GluK2- GRIP interaction-mediated synaptic abundance of GluK2 in dorsal horn neurons plays an important role in the postoperative pain hypersensitivity. Disrupting the GluK2- GRIP interaction may provide a new approach for relieving postoperative pain.
Collapse
Affiliation(s)
- Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Beijing, 100020, China
| | - Rong Shi
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Beijing, 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Beijing, 100020, China.
| |
Collapse
|
9
|
Pogatzki-Zahn EM, Gomez-Varela D, Erdmann G, Kaschube K, Segelcke D, Schmidt M. A proteome signature for acute incisional pain in dorsal root ganglia of mice. Pain 2021; 162:2070-2086. [PMID: 33492035 PMCID: PMC8208099 DOI: 10.1097/j.pain.0000000000002207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
ABSTRACT After surgery, acute pain is still managed insufficiently and may lead to short-term and long-term complications including chronic postsurgical pain and an increased prescription of opioids. Thus, identifying new targets specifically implicated in postoperative pain is of utmost importance to develop effective and nonaddictive analgesics. Here, we used an integrated and multimethod workflow to reveal unprecedented insights into proteome dynamics in dorsal root ganglia (DRG) of mice after plantar incision (INC). Based on a detailed characterization of INC-associated pain-related behavior profiles, including a novel paradigm for nonevoked pain, we performed quantitative mass-spectrometry-based proteomics in DRG 1 day after INC. Our data revealed a hitherto unknown INC-regulated protein signature in DRG with changes in distinct proteins and cellular signaling pathways. In particular, we show the differential regulation of 44 protein candidates, many of which are annotated with pathways related to immune and inflammatory responses such as MAPK/extracellular signal-regulated kinases signaling. Subsequent orthogonal assays comprised multiplex Western blotting, bioinformatic protein network analysis, and immunolabeling in independent mouse cohorts to validate (1) the INC-induced regulation of immune/inflammatory pathways and (2) the high priority candidate Annexin A1. Taken together, our results propose novel potential targets in the context of incision and, therefore, represent a highly valuable resource for further mechanistic and translational studies of postoperative pain.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - David Gomez-Varela
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | | | - Katharina Kaschube
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| |
Collapse
|
10
|
|
11
|
Segelcke D, Pogatzki-Zahn EM. Pathophysiology of Postoperative Pain. THE SENSES: A COMPREHENSIVE REFERENCE 2020:604-627. [DOI: 10.1016/b978-0-12-809324-5.24249-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Guo R, Sun Y, Li H, Ma D, Wang Y. Upregulation of spinal glucose-dependent insulinotropic polypeptide receptor induces membrane translocation of PKCγ and synaptic target of AMPA receptor GluR1 subunits in dorsal horns in a rat model of incisional pain. Neurochem Int 2019; 134:104651. [PMID: 31870892 DOI: 10.1016/j.neuint.2019.104651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/28/2023]
Abstract
It is unclear whether glucose-dependent insulinotropic polypeptide receptor (GIPR) signaling plays an important role in spinal nociception. We hypothesized that the spinal GIPR is implicated in central sensitization of postoperative pain. Our data showed that the cumulative pain scores peaked at 3 h, kept at a high level at 1 d after incision, gradually decreased afterwards and returned to the baseline values at 5 d after incision. Correspondingly, the expression of GIPR in spinal cord dorsal horn peaked at 1 d after incision, and returned to the baseline value at 5 d after incision. The double-labeling immunofluorescence demonstrated that spinal GIPR was expressed in dorsal horn neurons, but not in astrocyte or microglial cells. At 1 d after incision, the effects of intrathecal saline, GIPR antagonist (Pro3)GIP on pain behaviors were investigated. Our data showed that at 30 min and 60 min following intrathecal treatments of 300 ng (Pro3)GIP, the cumulative pain scores were decreased and paw withdrawal thresholds to mechanical stimuli were increased when compared to those immediately before intrathecal treatments. Accordingly, at 30 min after intrathecal injections, the membrane translocation levels of PKCγ and the GluR1 expression in postsynaptic membrane in ipsilateral dorsal horns to the incision were significantly upregulated in rats with intrathecal saline injections, as compared to normal control group. At 30 min after intrathecal treatment, (Pro3)GIP inhibited the membrane translocation levels of PKCγ and the GluR1 expression in postsynaptic membrane in ipsilateral dorsal horns. Our study indicates that upregulation of spinal GIPR may contribute to pain hypersensitivity through inducing membrane translocation level of PKCγ and synaptic target of AMPA receptor GluR1 subunits in ipsilateral dorsal horns of rats with plantar incision.
Collapse
Affiliation(s)
- Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuqing Sun
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Danxu Ma
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
13
|
Guo R, Li H, Li X, Xue Z, Sun Y, Ma D, Guan Y, Li J, Tian M, Wang Y. Downregulation of neuroligin1 ameliorates postoperative pain through inhibiting neuroligin1/postsynaptic density 95-mediated synaptic targeting of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor GluA1 subunits in rat dorsal horns. Mol Pain 2018; 14:1744806918766745. [PMID: 29592780 PMCID: PMC5881971 DOI: 10.1177/1744806918766745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuroligin1 is an important synaptic cell adhesion molecule that modulates the function of synapses through protein-protein interactions. Yet, it remains unclear whether the regulation of synaptic transmission in the spinal cord by neruoligin1 contributes to the development of postoperative pain. In a rat model of postoperative pain induced by plantar incision, we conducted Western blot study to examine changes in the expression of postsynaptic membrane of neuroligin1, postsynaptic density 95 (PSD-95), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluA1 and GluA2 subunits in the spinal cord dorsal horn after injury. The interaction between neuroligin1 and PSD-95 was further determined by using coimmunoprecipitation. Protein levels of neuroligin1 and GluA1, but not GluA2 and PSD-95, were significantly increased in the postsynaptic membrane of the ipsilateral dorsal horn at 3 h and 1 day after incision, as compared to that in control group (naïve). A greater amount of PSD-95 was coimmunoprecipitated with neuroligin1 at 3 h after incision than that in the control group. Intrathecal administration of small interfering RNAs (siRNAs) targeting neuroligin1 suppressed the expression of neuroligin1 in the spinal cord. Importantly, pretreatment with intrathecal neuroligin1 siRNA2497, but not scrambled siRNA or vehicle, prevented the upregulation of GluA1 expression at 3 h after incision, inhibited the enhanced neuroligin1/PSD-95 interaction, and attenuated postoperative pain. Together, current findings suggest that downregulation of spinal neuroligin1 expression may ameliorate postoperative pain through inhibiting neuroligin1/PSD-95 interaction and synaptic targeting of GluA1 subunit. Accordingly, spinal neuroligin1 may be a potential new target for postoperative pain treatment.
Collapse
Affiliation(s)
- Ruijuan Guo
- 1 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xueyang Li
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhaojing Xue
- 1 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Danxu Ma
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- 3 Department of Anesthesiology and Critical Care Medicine, The 1466 Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junfa Li
- 4 Department of Neurobiology, Capital Medical University, Beijing, China
| | - Ming Tian
- 1 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Paradoxical Sleep Deprivation Aggravates and Prolongs Incision-Induced Pain Hypersensitivity via BDNF Signaling-Mediated Descending Facilitation in Rats. Neurochem Res 2018; 43:2353-2361. [PMID: 30324331 DOI: 10.1007/s11064-018-2660-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the pronociceptive effect of paradoxical sleep deprivation (PSD) are not fully established. The modulation of BDNF signaling-mediated descending facilitation from the rostral ventromedial medulla (RVM) of brain stem has been demonstrated in persistent pain models of inflammatory pain, but not in incisional pain model. Recent study has shown that PSD increases the expression of brain-derived neurotrophic factor (BDNF) in the brainstem structure. Therefore, in the current study, we asked whether the BDNF signaling-mediated descending facilitation was involved in the PSD-induced pronociceptive effect on incisional pain and delay the recovery period of postoperative pain in rats. Our results found that a preoperative 24 h PSD significantly aggravated the pain hypersensitivity after incision and prolonged the duration of postoperative pain. The lesions of ipsilateral dorsolateral funiculus partly reversed the PSD-induced pronociceptive effect on incisional pain. Interestingly, the 24 h PSD, but not incision significantly enhanced the levels of BDNF protein expression in the RVM areas of rats. Furthermore, at 1 day or 4 days after incision, intra-RVM microinjection of a BDNF antibody partly reversed the PSD-induced pronociceptive effects in incisional rats, while it did not change the cumulative pain scores and paw withdrawal thresholds in rats receiving only plantar incision. These findings suggest that the preoperative PSD may aggravate and prolong the incision-induced pain hypersensitivity via BDNF signaling-mediated descending facilitation.
Collapse
|
15
|
Kopach O, Krotov V, Shysh A, Sotnic A, Viatchenko-Karpinski V, Dosenko V, Voitenko N. Spinal PKCα inhibition and gene-silencing for pain relief: AMPAR trafficking at the synapses between primary afferents and sensory interneurons. Sci Rep 2018; 8:10285. [PMID: 29980697 PMCID: PMC6035211 DOI: 10.1038/s41598-018-28512-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/22/2018] [Indexed: 01/21/2023] Open
Abstract
Upregulation of Ca2+-permeable AMPA receptors (CP-AMPARs) in dorsal horn (DH) neurons has been causally linked to persistent inflammatory pain. This upregulation, demonstrated for both synaptic and extrasynaptic AMPARs, depends on the protein kinase C alpha (PKCα) activation; hence, spinal PKC inhibition has alleviated peripheral nociceptive hypersensitivity. However, whether targeting the spinal PKCα would alleviate both pain development and maintenance has not been explored yet (essential to pharmacological translation). Similarly, if it could balance the upregulated postsynaptic CP-AMPARs also remains unknown. Here, we utilized pharmacological and genetic inhibition of spinal PKCα in various schemes of pain treatment in an animal model of long-lasting peripheral inflammation. Pharmacological inhibition (pre- or post-treatment) reduced the peripheral nociceptive hypersensitivity and accompanying locomotive deficit and anxiety in rats with induced inflammation. These effects were dose-dependent and observed for both pain development and maintenance. Gene-therapy (knockdown of PKCα) was also found to relieve inflammatory pain when applied as pre- or post-treatment. Moreover, the revealed therapeutic effects were accompanied with the declined upregulation of CP-AMPARs at the DH synapses between primary afferents and sensory interneurons. Our results provide a new focus on the mechanism-based pain treatment through interference with molecular mechanisms of AMPAR trafficking in central pain pathways.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine. .,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Volodymyr Krotov
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Angela Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Andrij Sotnic
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Viacheslav Viatchenko-Karpinski
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,The University of Alabama at Birmingham, Birmingham, United States
| | - Victor Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine. .,Kyiv Academic University, Kyiv, Ukraine.
| |
Collapse
|
16
|
Guo R, Li H, Li X, Sun Y, Miao H, Ma D, Hong F, Zhang Y, Guan Y, Li J, Tian M, Wang Y. Increased Neuroligin 2 Levels in the Postsynaptic Membrane in Spinal Dorsal Horn may Contribute to Postoperative Pain. Neuroscience 2018; 382:14-22. [PMID: 29715511 DOI: 10.1016/j.neuroscience.2018.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/18/2023]
Abstract
Neuroligin 2 is a synaptic cell adhesion molecule that is mainly located in inhibitory synapses and is crucial in the regulation of synapse function through protein-protein interactions. However, researchers have not clearly determined whether neuroligin 2 is involved in the development of postoperative pain. In the current study, Western blot, immunofluorescence staining and co-immunoprecipitation were used to examine the critical role of neuroligin 2 in postoperative pain hypersensitivity. A small interfering ribonucleic acid (siRNA)-targeting neuroligin 2 was used to inhibit neuroligin 2 expression. Our data found that plantar incision induced postoperative pain hypersensitivity, which was characterized by paw withdrawal threshold and cumulative pain score. The upregulation of neuroligin 2 and GluR1 expression in the postsynaptic membranes of ipsilateral spinal dorsal horn was observed at 3 h and 1 day after plantar incision. Additionally, at 3 h after plantar incision, the amount of PSD-95 that was co-immunoprecipitated with neuroligin 2 antibody was significantly increased in the ipsilateral dorsal horn, as compared to that of the control group. Intrathecal pretreatment of siRNA-targeting neuroligin 2 to reduce the neuroligin 2 expression in the spinal cord significantly inhibited the pain hypersensitivity and reduced the synaptic targeting of GluR1 in ipsilateral dorsal horns. Our study indicates that the incision-induced interaction between neuroligin 2 and PSD-95 and subsequent synaptic targeting of GluR1 in ipsilateral dorsal horns contribute to postoperative pain hypersensitivity.
Collapse
Affiliation(s)
- Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuqing Sun
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Huihui Miao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Danxu Ma
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Fangxiao Hong
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ye Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China
| | - Ming Tian
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
17
|
Li X, Guo R, Sun Y, Li H, Ma D, Zhang C, Guan Y, Li J, Wang Y. Botulinum toxin type A and gabapentin attenuate postoperative pain and NK1 receptor internalization in rats. Neurochem Int 2018; 116:52-62. [PMID: 29572051 DOI: 10.1016/j.neuint.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/23/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
Abstract
Treatment of postoperative pain remains a challenge in clinic. Botulinum toxin type A (BoNT/A) and gabapentin regulate the release of neurotransmitters from primary afferent neurons, but their effects of on postoperative pain are not clear. In the current study, using pain behavioral tests, Western blot analysis, and immunocytochemistry, we examined whether BoNT/A, alone or in combination with intrathecal gabapentin, inhibited pain hypersensitivity and attenuated the increase in neurokinin 1 (NK1) receptor internalization in dorsal horn neurons after plantar incision. Our data showed that pretreatment of rats with an intraplantar (2 U) 24 h before plantar incision or intrathecal (0.5 U) injection of BoNT/A 48 h before plantar incision induced a prolonged (3-5 days) decrease in pain scores and mechanical hypersensitivity, as compared to those observed with saline pretreatment. Both intraplantar and intrathecal BoNT/A pretreatment reduced synaptosomal-associated protein 25 levels in the ipsilateral lumbar dorsal root ganglia and spinal cord dorsal horn, and attenuated the increase in NK1 receptor internalization in dorsal horn neurons. Intrathecal administration of a sub-effective dose of gabapentin (50 μg) with BoNT/A (0.5 U) induced greater inhibition of pain hypersensitivity and NK1 receptor internalization than BoNT/A alone. These findings suggest that pretreatment with BoNT/A, alone or in combination with intrathecal gabapentin, may present a promising multimodal analgesia regimen for postoperative pain treatment.
Collapse
Affiliation(s)
- Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100025, China
| | - Yuqing Sun
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Danxu Ma
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chen Zhang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
18
|
Luo J, Huang X, Li Y, Li Y, Xu X, Gao Y, Shi R, Yao W, Liu J, Ke C. GPR30 disrupts the balance of GABAergic and glutamatergic transmission in the spinal cord driving to the development of bone cancer pain. Oncotarget 2018; 7:73462-73472. [PMID: 27608844 PMCID: PMC5341991 DOI: 10.18632/oncotarget.11867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer induced bone pain is a very complicated clinical pain states that has proven difficult to be treated effectively due to poorly understand of underlying mechanism, but bone cancer pain (BCP) seems to be enhanced by a state of spinal sensitization. In the present study, we showed that carcinoma tibia implantation induced notable pain sensitization and up-regulation of G-protein-coupled estrogen receptor (GPR30) in the spinal cord of rats which was reversed by GPR30 knockdown. Further studies indicated that upregulation of GPR30 induced by cancer implantation resulted in a select loss of γ-aminobutyric acid-ergic (GABAergic) neurons and functionally diminished the inhibitory transmission due to reduce expression of the vesicular GABA transporter (VGAT). GPR30 contributed to spinal cord disinhibition by diminishing the inhibitory transmission via upregulation of α1 subunit and downregulation of γ2 subunits. GPR30 also facilitated excitatory transmission by promoting functional up-regulation of the calcium/calmodulin-dependent protein kinase II α (CaMKII α) in glutamatergic neurons and increasing the clustering of the glutamate receptor subunit 1 (GluR1) subunit to excitatory synapse. Taken together, GPR30 contributed to the development of BCP by both facilitating excitatory transmission and inhibiting inhibitory transmission in the spinal cord. Our findings provide the new spinal disinhibition and sensitivity mechanisms underlying the development of bone cancer pain.
Collapse
Affiliation(s)
- Jie Luo
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Xiaoxia Huang
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Yali Li
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Yang Li
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Yan Gao
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Ruoshi Shi
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Wanjun Yao
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Juying Liu
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), PET-CT, Institute of Anesthesiology and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
| |
Collapse
|
19
|
Protein Kinase C γ Contributes to Central Sensitization in a Rat Model of Chronic Migraine. J Mol Neurosci 2017; 63:131-141. [PMID: 28842814 DOI: 10.1007/s12031-017-0960-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023]
Abstract
Protein kinase C γ (PKCγ) is a critical regulator of central sensitization and is widely recognized to be involved in the pathogenesis of chronic migraine (CM). However, the function of PKCγ in CM remains unknown. This study investigated the role of PKCγ on pathogenesis of CM. We repeated infusions of inflammatory soup (IS) on the intact dura of conscious rats to model recurrent trigeminovascular or dural nociceptor activation assumed to occur in patients with CM. The von Frey test was then used to detect changes in pain threshold. QT-PCR, western blotting, and double immunofluorescence staining were performed to detect the expression and location of PKCγ in the trigeminal nucleus caudalis (TNC) and the expressions of calcitonin gene-related peptide (CGRP), c-Fos, and phosphorylation level of GluR1 subunit at serine 831. Chelerythrine chloride (CHE) and phorbol 12-myristate 13-acetate (PMA) were administrated to investigate the role of PKCγ in central sensitization. We found that repeated infusions of IS induced mechanical allodynia. PKCγ was significantly increased in TNC after CM. Furthermore, inhibition of PKCγ by CHE relieved allodynia and reduced the expression of CGRP and c-Fos. Activation of PKCγ by PMA aggravated allodynia and increased the expression of CGRP and c-Fos. In addition, inhibition of PKCγ reduced the phosphorylation level of GluR1; in contrast, activation of PKCγ increased the phosphorylation level of GluR1. These results suggest PKCγ-induced GluR1 phosphorylation might participate in central sensitization in a rat model of CM. We suggest that PKCγ is a potential therapeutic target for CM.
Collapse
|
20
|
Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2:e588. [PMID: 29392204 PMCID: PMC5770176 DOI: 10.1097/pr9.0000000000000588] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. OBJECTIVES This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. METHODS In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. RESULTS Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. CONCLUSION Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Stephan A. Schug
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
21
|
Research Tools for the Measurement of Pain and Nociception. Animals (Basel) 2016; 6:ani6110071. [PMID: 27845724 PMCID: PMC5126773 DOI: 10.3390/ani6110071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/31/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022] Open
Abstract
There are many ways in which pain in animals can be measured and these are based on a variety of phenomena that are related to either the perception of pain or alterations in physical or behavioural features of the animal that are caused by that pain. The features of pain that are most useful for assessment in clinical environments are not always the best to use in a research environment. This is because the aims and objectives of the two settings are different and so whilst particular techniques will have the same advantages and disadvantages in clinical and research environments, these considerations may become more or less of a drawback when moving from one environment to the other. For example, a simple descriptive pain scale has a number of advantages and disadvantages. In a clinical setting the advantages are very useful and the disadvantages are less relevant, but in a research environment the advantages are less important and the disadvantages can become more problematic. This paper will focus on pain in the research environment and after a brief revision of the pathophysiological systems involved will attempt to outline the major advantages and disadvantages of the more commonly used measurement techniques that have been used for studies in the area of pain perception and analgesia. This paper is expanded from a conference proceedings paper presented at the International Veterinary Emergency and Critical Care Conference in San Diego, USA.
Collapse
|
22
|
Protein kinase C gamma-mediated phosphorylation of GluA1 in the postsynaptic density of spinal dorsal horn neurons accompanies neuropathic pain, and dephosphorylation by calcineurin is associated with prolonged analgesia. Pain 2016; 156:2514-2520. [PMID: 26270583 DOI: 10.1097/j.pain.0000000000000323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Loss of calcineurin (protein phosphatase 3) activity and protein content in the postsynaptic density (PSD) of spinal dorsal horn neurons was associated with pain behavior after chronic constriction injury (CCI) of the rat sciatic nerve, and intrathecal administration of the phosphatase provided prolonged analgesia (Miletic et al. 2013). In this study, we examined whether one consequence of the loss of calcineurin was the persistent phosphorylation of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid (AMPAR) receptors in the PSD. This would allow continual activation of AMPAR receptors at the synapse to help maintain a long-lasting enhancement of synaptic function, ie, neuropathic pain. We also investigated if the phosphorylation was mediated by protein kinase A (PKA), protein kinase C gamma (PKCγ), or calcium-calmodulin dependent kinase II (CaMKII), and if the prolonged calcineurin analgesia was associated with GluA1 dephosphorylation. Mechanical thresholds and thermal latencies were obtained before CCI. Seven days later, the behavioral testing was repeated before saline, calcineurin, or the specific peptide inhibitors of PKA (PKI-tide), PKCγ (PKC 19-31), or CaMKII (autocamtide-2-related inhibitory peptide) were injected intrathecally. The behavior was retested before the animals were euthanized and their PSD isolated. All CCI animals developed mechanical and thermal hypersensitivity. This was associated with phosphorylation of GluA1 in the ipsilateral PSD at Ser831 (but not Ser845) by PKCγ and not by PKA or CaMKII. Intrathecal treatment with calcineurin provided prolonged analgesia, and this was accompanied by GluA1 dephosphorylation. Therapy with calcineurin may prove useful in the prolonged clinical management of well-established neuropathic pain.
Collapse
|
23
|
Briand LA, Deutschmann AU, Ellis AS, Fosnocht AQ. Disrupting GluA2 phosphorylation potentiates reinstatement of cocaine seeking. Neuropharmacology 2016; 111:231-241. [PMID: 27622930 DOI: 10.1016/j.neuropharm.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022]
Abstract
Addiction is associated with changes in synaptic plasticity mediated, in part, by alterations in the trafficking and stabilization of AMPA receptors at synapses within the nucleus accumbens. Exposure to cocaine can lead to protein kinase C-mediated phosphorylation of GluA2 AMPA subunits and this phosphorylation event leads to the internalization of GluA2-containing AMPARs, which are calcium-impermeable. However, it is not clear whether this internalization is necessary for the expression of addictive phenotypes. Utilizing a mouse with a point mutation within the GluA2 subunit c-terminus, the current study demonstrates that disrupting PKC-mediated GluA2 phosphorylation potentiates reinstatement of both cue-induced cocaine seeking and cocaine conditioned reward without affecting operant learning, food self-administration or cocaine sensitization. Electrophysiological recordings revealed increased GluA2-mediated AMPA transmission as evidenced by increased sEPSC amplitude without any changes in sEPSC frequency or rectification. In support of this increase in GluA2 activity mediating the augmented cocaine reinstatement, we found that accumbal overexpression of GluA2 recapitulated this behavioral effect in wildtype mice while not altering reinstatement behavior in the GluA2 K882A knock-in mice. In addition, disrupting GluA2 phosphorylation was associated with blunted long-term depression in the nucleus accumbens, mimicking the anaplasticity seen following cocaine self-administration. Taken together these results indicate that disrupting GluA2 phosphorylation and increasing GluA2-mediated transmission in the nucleus accumbens leads to increased vulnerability to cocaine relapse. Further, these results indicate that modulating GluA2-containing AMPAR trafficking can contribute to addictive phenotypes in the absence of alterations in GluA2-lacking receptors. These results highlight the GluA2 phosphorylation site as a novel target for the development of cocaine addiction therapeutics.
Collapse
Affiliation(s)
- Lisa A Briand
- Department of Psychology, Temple University, USA; Neuroscience Program, Temple University, USA.
| | | | | | | |
Collapse
|
24
|
Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats. Neurochem Int 2016; 97:91-8. [PMID: 26970395 DOI: 10.1016/j.neuint.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
Abstract
Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons.
Collapse
|
25
|
Zhou XL, Zhang CJ, Wang Y, Wang M, Sun LH, Yu LN, Cao JL, Yan M. EphrinB–EphB signaling regulates spinal pain processing via PKCγ. Neuroscience 2015; 307:64-72. [DOI: 10.1016/j.neuroscience.2015.08.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/02/2015] [Accepted: 08/20/2015] [Indexed: 01/30/2023]
|
26
|
Down-regulation of Stargazin inhibits the enhanced surface delivery of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor GluR1 subunit in rat dorsal horn and ameliorates postoperative pain. Anesthesiology 2014; 121:609-19. [PMID: 25093662 DOI: 10.1097/aln.0000000000000291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stargazin is the first transmembrane protein known to regulate synaptic targeting of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. However, it is unclear whether regulation of the surface delivery of spinal AMPA receptor subunits by stargazin contributes to postoperative pain development. METHODS Western blot analysis was used to examine changes in the surface delivery of AMPA receptor subunits, GluR1 and GluR2, in rat dorsal horn. The interaction between stargazin and GluR1 and GluR2 was examined by coimmunoprecipitation. Expression of stargazin was suppressed by intrathecal administration of small interfering RNA311. RESULTS Membrane-bound GluR1, but not GluR2, in ipsilateral dorsal horn was increased at 3 h (1.49 ± 0.15-fold of β-tubulin, mean ± SEM) and 1 day (1.03 ± 0.25) after incision, as compared with that in control rats (naive, 0.63 ± 0.23, P < 0.05, n = 6 per group). The amount of GluR1 coimmunoprecipitated with stargazin was greater at 3 h after incision (1.48 ± 0.31-fold of input) than that in control animals (0.45 ± 0.24, P < 0.05, n = 6 per group). Importantly, the increase in membrane GluR1 at 3 h after incision was normalized to near control level (0.72 ± 0.20-fold of β-tubulin) by pretreatment with intrathecal stargazin small interfering RNA311 (0.87 ± 0.09), but not scrambled small interfering RNA (1.48 ± 0.24) or vehicle (1.25 ± 0.13, P < 0.05, n = 6 per group). Stargazin small interfering RNA311 pretreatment prevented the increase in stargazin-GluR1 interaction and decreased postoperative pain after incision. CONCLUSIONS This study suggests a critical role of stargazin-mediated surface delivery of GluR1 subunit in the development of postoperative pain. A better therapeutic strategy for postoperative pain may involve selectively down-regulating spinal stargazin to inhibit synaptic targeting of GluR1 subunit.
Collapse
|
27
|
McKune CM, Pascoe PJ, Lascelles BDX, Kass PH. The challenge of evaluating pain and a pre-incisional local anesthetic block. PeerJ 2014; 2:e341. [PMID: 24765575 PMCID: PMC3994627 DOI: 10.7717/peerj.341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/23/2014] [Indexed: 11/20/2022] Open
Abstract
Background. Our objective was to test the effectiveness of a local anesthetic line block administered before surgery in reducing postoperative pain scores in dogs undergoing ovariohysterectomy (OVHX). Methods. This study is a prospective, randomized, blinded, clinical trial involving 59 healthy female dogs. An algometric pressure-measuring device was used to determine nociceptive threshold, and compared to three subjective pain scales. Group L/B received a line block of lidocaine (4 mg/kg) and bupivacaine (1 mg/kg) subcutaneously in the area of the incision site and saline subcutaneously as premedication; group L/BM (positive control) received a similar block and morphine (0.5 mg/kg) subcutaneously for premedication; and group SS (negative control) received a saline line block and saline premedication. Criteria for rescue analgesia were defined before the study. Dogs were assessed prior to surgery, at extubation (time 0) and at 2, 4, 6, 8 and 24 h post-recovery. The data were analyzed with one-way ANOVA, and a Split Plot Repeated Measures ANOVA with one grouping factor and one repeat factor (time). P < 0.05 was considered statistically significant. Results. Approximately 33% of dogs required rescue analgesia at some point during the study, with no significant difference between groups. There was no significant difference between treatment groups with any assessment method. Conclusions. As there were no statistically significant differences between positive and negative controls, the outcome of this technique cannot be proven.
Collapse
Affiliation(s)
- Carolyn M McKune
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California , Davis, CA , USA
| | - Peter J Pascoe
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California , Davis, CA , USA
| | - B Duncan X Lascelles
- Comparative Pain Research Laboratory, Department of Clinical Sciences & Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University , Raleigh, NC , USA
| | - Philip H Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California , Davis, CA , USA
| |
Collapse
|
28
|
Ma W, Quirion R. Targeting cell surface trafficking of pain-facilitating receptors to treat chronic pain conditions. Expert Opin Ther Targets 2014; 18:459-72. [DOI: 10.1517/14728222.2014.887683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Gross ER, Hsu AK, Urban TJ, Mochly-Rosen D, Gross GJ. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C. Basic Res Cardiol 2013; 108:381. [PMID: 23982492 DOI: 10.1007/s00395-013-0381-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 11/27/2022]
Abstract
Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C (PKC) isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal-specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning. Male Sprague-Dawley rats were used for both in vivo and ex vivo myocardial ischemia-reperfusion protocols. For the in vivo studies, using a surgical abdominal incision for comparison, applying only to the abdomen either bradykinin or the εPKC activator (ψεRACK) reduced myocardial infarct size (45 ± 1, 44 ± 2 %, respectively, vs. incision: 43 ± 2 %, and control: 63 ± 2 %, P < 0.001). Western blot showed only εPKC, and not γPKC, is highly expressed in the myocardium. However, applying a selective γPKC inhibitor (γV5-3) to the abdominal skin blocked remote protection by any of these strategies. Using an ex vivo isolated heart model without an intact nervous system, only selective εPKC activation, unlike a selective classical PKC isozyme activator (activating α, β, βII, and γ), reduced myocardial injury. Importantly, the classical PKC isozyme activator given to the abdomen in vivo (with an intact nervous system including γPKC) during myocardial ischemia reduced infarct size as effectively as an abdominal incision or ψεRACK (45 ± 1 vs. 45 ± 2 and 47 ± 1 %, respectively). The classical PKC activator-induced protection was also blocked by spinal cord surgical transection. These findings identified potential remote conditioning mimetics, with these strategies effective even during myocardial ischemia. A novel mechanism of nociceptive-induced remote conditioning, involving γPKC, was also identified.
Collapse
Affiliation(s)
- Eric R Gross
- Department of Anesthesiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|