1
|
Jie J, Jihao R, Zheng L, Jie L, Xiaoling P, Wei Z, Feng G. Unraveling morphine tolerance: CCL2 induces spinal cord apoptosis via inhibition of Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis. Brain Behav Immun 2025; 124:347-362. [PMID: 39667633 DOI: 10.1016/j.bbi.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Morphine effectively relieves severe pain but leads to analgesic tolerance with long-term use.The molecular mechanisms underlying morphine tolerance remain incompletely understood. Existing literature suggests that chemokine CCL2, present in the spinal cord, plays a role in central nervous system inflammation, including neuropathic pain. Nevertheless, the precise mechanism through which CCL2 mediates morphine tolerance has yet to be elucidated. Consequently, this study aims to investigate the molecular pathways by which CCL2 contributes to the development of morphine analgesic tolerance. METHODS Rats were administered intrathecal morphine (10 μg/5 μl) twice a day for seven consecutive days to induce a model of morphine nociceptive tolerance. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression levels of CCL2 and its related mechanism molecules. Immunofluorescence was used to detect the localization of CCL2 in the spinal cord. Intrathecal injections of inhibitors or agonists to artificially regulate the expression of relevant molecules. The thermal tail-flick experiment was performed to evaluate morphine tolerance in rats. RESULTS Morphine-induced CCL2 expression was significantly increased in spinal cord, while conversely, the expressions of Nrf2 and PGC-1a were downregulated. Immunofluorescence showed that the enhanced immune response of CCL2 mainly co-localized with neurons. In vivo, we confirmed that intrathecally injection of CCL2 inhibitor Bindarit could effectively alleviate the occurrence of apoptosis and alleviate morphine tolerance. Similarly, pretreatment with Nrf2 signaling pathway agonist Oltipraz and PGC-1α agonist ZLN005 also achieved similar results, respectively. ROS Fluorescence Assay Kit indicated that increasing the expression of PGC-1α could alleviate the occurrence of apoptosis by reducing the level of ROS. CONCLUSION Our data emphasize that chemokine CCL2 inhibited the Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis, alleviating the occurrence of apoptosis in spinal cord, thereby participating in morphine tolerance. This may provide new targets for the treatment of morphine tolerance.
Collapse
Affiliation(s)
- Ju Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Jihao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zheng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiaoling
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Feng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Micheli L, Lucarini E, Nobili S, Bartolucci G, Pallecchi M, Toti A, Ferrara V, Ciampi C, Ghelardini C, Di Cesare Mannelli L. Ultramicronized N-palmitoylethanolamine Contributes to Morphine Efficacy Against Neuropathic Pain: Implication of Mast Cells and Glia. Curr Neuropharmacol 2024; 22:88-106. [PMID: 36443965 PMCID: PMC10716887 DOI: 10.2174/1570159x21666221128091453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In the current management of neuropathic pain, in addition to antidepressants and anticonvulsants, the use of opioids is wide, despite their related and well-known issues. OBJECTIVE N-palmitoylethanolamine (PEA), a natural fatty-acid ethanolamide whose anti-inflammatory, neuroprotective, immune-modulating and anti-hyperalgesic activities are known, represents a promising candidate to modulate and/or potentiate the action of opioids. METHODS This study was designed to evaluate if the preemptive and morphine concomitant administration of ultramicronized PEA, according to fixed or increasing doses of both compounds, delays the onset of morphine tolerance and improves its analgesic efficacy in the chronic constriction injury (CCI) model of neuropathic pain in rats. RESULTS Behavioral experiments showed that the preemptive and co-administration of ultramicronized PEA significantly decreased the effective dose of morphine and delayed the onset of morphine tolerance. The activation of spinal microglia and astrocytes, commonly occurring both on opioid treatment and neuropathic pain, was investigated through GFAP and Iba-1 immunofluorescence. Both biomarkers were found to be increased in CCI untreated or morphine treated animals in a PEA-sensitive manner. The increased density of endoneural mast cells within the sciatic nerve of morphine-treated and untreated CCI rats was significantly reduced by ultramicronized PEA. The decrease of mast cell degranulation, evaluated in terms of reduced plasma levels of histamine and N-methyl-histamine metabolite, was mainly observed at intermediate-high doses of ultramicronized PEA, with or without morphine. CONCLUSION Overall, these results show that the administration of ultramicronized PEA in CCI rats according to the study design fully fulfilled the hypotheses of this study.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Florence, 50019, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Florence, 50019, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Glucocorticoid-Responsive Tissue Plasminogen Activator (tPA) and Its Inhibitor Plasminogen Activator Inhibitor-1 (PAI-1): Relevance in Stress-Related Psychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054496. [PMID: 36901924 PMCID: PMC10003592 DOI: 10.3390/ijms24054496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Stressful events trigger a set of complex biological responses which follow a bell-shaped pattern. Low-stress conditions have been shown to elicit beneficial effects, notably on synaptic plasticity together with an increase in cognitive processes. In contrast, overly intense stress can have deleterious behavioral effects leading to several stress-related pathologies such as anxiety, depression, substance use, obsessive-compulsive and stressor- and trauma-related disorders (e.g., post-traumatic stress disorder or PTSD in the case of traumatic events). Over a number of years, we have demonstrated that in response to stress, glucocorticoid hormones (GCs) in the hippocampus mediate a molecular shift in the balance between the expression of the tissue plasminogen activator (tPA) and its own inhibitor plasminogen activator inhibitor-1 (PAI-1) proteins. Interestingly, a shift in favor of PAI-1 was responsible for PTSD-like memory induction. In this review, after describing the biological system involving GCs, we highlight the key role of tPA/PAI-1 imbalance observed in preclinical and clinical studies associated with the emergence of stress-related pathological conditions. Thus, tPA/PAI-1 protein levels could be predictive biomarkers of the subsequent onset of stress-related disorders, and pharmacological modulation of their activity could be a potential new therapeutic approach for these debilitating conditions.
Collapse
|
4
|
Liu X, Bae C, Liu B, Zhang YM, Zhou X, Zhang D, Zhou C, DiBua A, Schutz L, Kaczocha M, Puopolo M, Yamaguchi TP, Chung JM, Tang SJ. Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling. Mol Psychiatry 2023; 28:767-779. [PMID: 36203006 PMCID: PMC10388343 DOI: 10.1038/s41380-022-01815-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Opioids are the frontline analgesics for managing various types of pain. Paradoxically, repeated use of opioid analgesics may cause an exacerbated pain state known as opioid-induced hyperalgesia (OIH), which significantly contributes to dose escalation and consequently opioid overdose. Neuronal malplasticity in pain circuits has been the predominant proposed mechanism of OIH expression. Although glial cells are known to become reactive in OIH animal models, their biological contribution to OIH remains to be defined and their activation mechanism remains to be elucidated. Here, we show that reactive astrocytes (a.k.a. astrogliosis) are critical for OIH development in both male and female mice. Genetic reduction of astrogliosis inhibited the expression of OIH and morphine-induced neural circuit polarization (NCP) in the spinal dorsal horn (SDH). We found that Wnt5a is a neuron-to-astrocyte signal that is required for morphine-induced astrogliosis. Conditional knock-out of Wnt5a in neurons or its co-receptor ROR2 in astrocytes blocked not only morphine-induced astrogliosis but also OIH and NCP. Furthermore, we showed that the Wnt5a-ROR2 signaling-dependent astrogliosis contributes to OIH via inflammasome-regulated IL-1β. Our results reveal an important role of morphine-induced astrogliosis in OIH pathogenesis and elucidate a neuron-to-astrocyte intercellular Wnt signaling pathway that controls the astrogliosis.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Chilman Bae
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, 62901, IL, USA
| | - Bolong Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Yong-Mei Zhang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Adriana DiBua
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Livia Schutz
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Martin Kaczocha
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Michelino Puopolo
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Terry P Yamaguchi
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, 21702, MD, USA
| | - Jin Mo Chung
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA. .,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA. .,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.
| |
Collapse
|
5
|
Yamakita S, Fujita D, Sudo K, Ishikawa D, Kushimoto K, Horii Y, Amaya F. Activation of neurons and satellite glial cells in the DRG produces morphine-induced hyperalgesia. Mol Pain 2023; 19:17448069231181973. [PMID: 37254240 PMCID: PMC10291868 DOI: 10.1177/17448069231181973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023] Open
Abstract
Activation of neurons and glial cells in the dorsal root ganglion is one of the key mechanisms for the development of hyperalgesia. The aim of the present study was to examine the role of neuroglial activity in the development of opioid-induced hyperalgesia. Male rats were treated with morphine daily for 3 days. The resultant phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in the dorsal root ganglion was analyzed by immunohistochemistry and Western blotting. Pain hypersensitivity was analyzed using behavioral studies. The amount of cytokine expression in the dorsal root ganglion was also analyzed. Repeated morphine treatment induced hyperalgesia and marked induction of phosphorylated ERK1/2 in the neurons and satellite glial cells on day 3. An opioid receptor antagonist, toll like receptor-4 inhibitor, MAP/ERK kinase (MEK) inhibitor and gap junction inhibitor inhibited morphine-induced hyperalgesia and ERK1/2 phosphorylation. Morphine treatment induced alteration of cytokine expression, which was inhibited by the opioid receptor antagonist, toll like receptor-4 inhibitor, MEK inhibitor and gap junction inhibitor. Dexamethasone inhibited morphine-induced hyperalgesia and ERK1/2 phosphorylation after morphine treatment. The peripherally restricted opioid receptor antagonist, methylnaltrexone, inhibited hyperalgesia and ERK1/2 phosphorylation. Morphine activates ERK1/2 in neurons and satellite glial cells in the dorsal root ganglion via the opioid receptor and toll like receptor-4. ERK1/2 phosphorylation is gap junction-dependent and is associated with the alteration of cytokine expression. Inhibition of neuroinflammation by activation of neurons and glia might be a promising target to prevent opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Shunsuke Yamakita
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Fujita
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Sudo
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Ishikawa
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohsuke Kushimoto
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiko Horii
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumimasa Amaya
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pain Management and Palliative Care Medicine, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Morphine promotes microglial activation by upregulating the EGFR/ERK signaling pathway. PLoS One 2021; 16:e0256870. [PMID: 34520454 PMCID: PMC8439491 DOI: 10.1371/journal.pone.0256870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Although they represent the cornerstone of analgesic therapy, opioids, such as morphine, are limited in efficacy by drug tolerance, hyperalgesia and other side effects. Activation of microglia and the consequent production of proinflammatory cytokines play a key pathogenic role in morphine tolerance, but the exact mechanisms are not well understood. This study aimed to investigate the regulatory mechanism of epidermal growth factor receptor (EGFR) on microglial activation induced by morphine in mouse microglial BV-2 cells. In this research, BV-2 cells were stimulated with morphine or pretreated with AG1478 (an inhibitor of EGFR). Expression levels of cluster of differentiation molecule 11b (CD11b), EGFR, and phospho-EGFR were detected by immunofluorescence staining. Cell signaling was assayed by Western blot. The migration ability of BV-2 cells was tested by Transwell assay. The production of interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in the cell supernatant was determined by ELISA. We observed that the expression of CD11b induced by morphine was increased in a dose- and time- dependent manner in BV-2 cells. Phosphorylation levels of EGFR and ERK1/2, migration of BV-2 cells, and production of IL-1β and TNFα were markedly enhanced by morphine treatment. The activation, migration, and production of proinflammatory cytokines in BV-2 cells were inhibited by blocking the EGFR signaling pathway with AG1478. The present study demonstrated that the EGFR/ERK signaling pathway may represent a novel pharmacological strategy to suppress morphine tolerance through attenuation of microglial activation.
Collapse
|
7
|
Zhang L, Roy S. Opioid Modulation of the Gut-Brain Axis in Opioid-Associated Comorbidities. Cold Spring Harb Perspect Med 2021; 11:a040485. [PMID: 32816876 PMCID: PMC8415294 DOI: 10.1101/cshperspect.a040485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growing evidence from animal and human studies show that opioids have a major impact on the composition and function of gut microbiota. This leads to disruption in gut permeability and altered microbial metabolites, driving both systemic and neuroinflammation, which in turn impacts central nervous system (CNS) homeostasis. Tolerance and dependence are the major comorbidities associated with prolonged opioid use. Inflammatory mediators and signaling pathways have been implicated in both opioid tolerance and dependence. We provide evidence that targeting the gut microbiome during opioid use through prebiotics, probiotics, antibiotics, and fecal microbial transplantation holds the greatest promise for novel treatments for opioid abuse. Basic research and clinical trials are required to examine what is more efficacious to yield new insights into the role of the gut-brain axis in opioid abuse.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, University of Minnesota, Minnesota McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
| | - Sabita Roy
- Department of Pharmacology, University of Minnesota, Minnesota McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
- Department of Surgery, University of Miami, Miami, Florida 33153, USA
| |
Collapse
|
8
|
Sasaki M, Kamiya Y, Bamba K, Onishi T, Matsuda K, Kohno T, Kurabe M, Furutani K, Yanagimura H. Serotonin Plays a Key Role in the Development of Opioid-Induced Hyperalgesia in Mice. THE JOURNAL OF PAIN 2021; 22:715-729. [PMID: 33465503 DOI: 10.1016/j.jpain.2020.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023]
Abstract
Opioid usage for pain therapy is limited by its undesirable clinical effects, including paradoxical hyperalgesia, also known as opioid-induced hyperalgesia (OIH). However, the mechanisms associated with the development and maintenance of OIH remain unclear. Here, we investigated the effect of serotonin inhibition by the 5-HT3 receptor antagonist, ondansetron (OND), as well as serotonin deprivation via its synthesis inhibitor para-chlorophenylalanine, on mouse OIH models, with particular focus on astrocyte activation. Co-administering of OND and morphine, in combination with serotonin depletion, inhibited mechanical hyperalgesia and astrocyte activation in the spinal dorsal horn of mouse OIH models. Although previous studies have suggested that activation of astrocytes in the spinal dorsal horn is essential for the development and maintenance of OIH, herein, treatment with carbenoxolone (CBX), a gap junction inhibitor that suppresses astrocyte activation, did not ameliorate mechanical hyperalgesia in mouse OIH models. These results indicate that serotonin in the spinal dorsal horn, and activation of the 5-HT3 receptor play essential roles in OIH induced by chronic morphine, while astrocyte activation in the spinal dorsal horn serves as a secondary effect of OIH. Our findings further suggest that serotonergic regulation in the spinal dorsal horn may be a therapeutic target of OIH. PERSPECTIVE: The current study revealed that the descending serotonergic pain-facilitatory system in the spinal dorsal horn is crucial in OIH, and that activation of astrocytes is a secondary phenotype of OIH. Our study offers new therapeutic targets for OIH and may help reduce inappropriate opioid use.
Collapse
Affiliation(s)
- Mika Sasaki
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | - Keiko Bamba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Takeshi Onishi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Keiichiro Matsuda
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Tatsuro Kohno
- Department of Anesthesiology, International University of Health and Welfare, Narita City, Japan
| | - Miyuki Kurabe
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kenta Furutani
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Harue Yanagimura
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| |
Collapse
|
9
|
Khan F, Mehan A. Addressing opioid tolerance and opioid-induced hypersensitivity: Recent developments and future therapeutic strategies. Pharmacol Res Perspect 2021; 9:e00789. [PMID: 34096178 PMCID: PMC8181203 DOI: 10.1002/prp2.789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Opioids are a commonly prescribed and efficacious medication for the treatment of chronic pain but major side effects such as addiction, respiratory depression, analgesic tolerance, and paradoxical pain hypersensitivity make them inadequate and unsafe for patients requiring long-term pain management. This review summarizes recent advances in our understanding of the outcomes of chronic opioid administration to lay the foundation for the development of novel pharmacological strategies that attenuate opioid tolerance and hypersensitivity; the two main physiological mechanisms underlying the inadequacies of current therapeutic strategies. We also explore mechanistic similarities between the development of neuropathic pain states, opioid tolerance, and hypersensitivity which may explain opioids' lack of efficacy in certain patients. The findings challenge the current direction of analgesic research in developing non-opioid alternatives and we suggest that improving opioids, rather than replacing them, will be a fruitful avenue for future research.
Collapse
Affiliation(s)
- Faris Khan
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Aman Mehan
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Liu YY, Lin YC, Hsiao HT, Wang JCF, Liu YC. Morphine produces better thermal analgesia in young Huntington mice and are associated with less neuroinflammation in spinal cord. J Chin Med Assoc 2021; 84:73-78. [PMID: 33177404 DOI: 10.1097/jcma.0000000000000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is an inherited disease characterized by both mental and motor dysfunctions. Our previous studies showed that HD mice demonstrate a diminished pain response. However, few studies have focused on the relationship between HD and morphine analgesia. The purpose of this study is to investigate and compare the analgesic effects of morphine in HD and wild-type (WT) mice. METHODS We used clinically similar transgenic HD mice (7-10 weeks of age with motor dysfunction at 8-9 mo of age) carrying a mutant Huntington CAG trinucleotide repeats to evaluate morphine analgesia. The morphine (10 mg/kg subcutaneously) analgesia was evaluated with a tail-flick in hot water (52°C). Mice spinal cords were harvested at the end of the analgesia studies. An immunofluorescence assay and western blotting were used to identify changes in the cells and cytokines. RESULTS Our data demonstrate that preonset young HD mice exhibited a better analgesic response to morphine than the WT mice. Western blotting and an immunohistological examination of the lumbar spinal cord tissue indicated less activation of glial cells and astrocytes in the HD mice compared with the WT mice. The production levels of tumor necrosis factor α and interleukine-1β were also lower in the young HD mice. CONCLUSION Our data demonstrate better morphine analgesic and less pain-related cytokine responses at the spinal cord level for HD mice. Further studies are needed to determine the morphine analgesia mechanism in HD.
Collapse
Affiliation(s)
- Yuan-Yuarn Liu
- Division of Trauma, Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Ya-Chi Lin
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Tsung Hsiao
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jeffery Chi-Fei Wang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yen-Chin Liu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
11
|
Małkiewicz MA, Małecki A, Toborek M, Szarmach A, Winklewski PJ. Substances of abuse and the blood brain barrier: Interactions with physical exercise. Neurosci Biobehav Rev 2020; 119:204-216. [PMID: 33038347 DOI: 10.1016/j.neubiorev.2020.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Substance use disorders pose a common medical, social and financial problem. Among the pathomechanisms of substance use disorders, the disruption and increased permeability of the blood-brain barrier has been recently revealed. Physical exercise appears to be a relatively inexpensive and feasible way to implement behavioral therapy counteracting the blood-brain barrier impairment. Concomitantly, there are also studies supporting a potential protective role of selected substances of abuse in maintaining the blood-brain barrier integrity. In this review, we aim to provide a summary on the modulatory influence of physical exercise, a non-pharmacological intervention, on the blood-brain barrier alterations caused by substances of abuse. Further studies are needed to understand the precise mechanisms that underlie various effects of physical exercise in substance use disorders.
Collapse
Affiliation(s)
- Marta A Małkiewicz
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland; Department of Psychiatry, Medical University of Gdansk, Gdansk, Poland.
| | - Andrzej Małecki
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA
| | - Arkadiusz Szarmach
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Paweł J Winklewski
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland; Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Du ER, Fan RP, Rong LL, Xie Z, Xu CS. Regulatory mechanisms and therapeutic potential of microglial inhibitors in neuropathic pain and morphine tolerance. J Zhejiang Univ Sci B 2020; 21:204-217. [PMID: 32133798 PMCID: PMC7086010 DOI: 10.1631/jzus.b1900425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022]
Abstract
Microglia are important cells involved in the regulation of neuropathic pain (NPP) and morphine tolerance. Information on their plasticity and polarity has been elucidated after determining their physiological structure, but there is still much to learn about the role of this type of cell in NPP and morphine tolerance. Microglia mediate multiple functions in health and disease by controlling damage in the central nervous system (CNS) and endogenous immune responses to disease. Microglial activation can result in altered opioid system activity, and NPP is characterized by resistance to morphine. Here we investigate the regulatory mechanisms of microglia and review the potential of microglial inhibitors for modulating NPP and morphine tolerance. Targeted inhibition of glial activation is a clinically promising approach to the treatment of NPP and the prevention of morphine tolerance. Finally, we suggest directions for future research on microglial inhibitors.
Collapse
Affiliation(s)
- Er-rong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| | - Rong-ping Fan
- Department of Fourth Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Li-lou Rong
- Department of Fourth Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Zhen Xie
- Department of First Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Chang-shui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
- Key Laboratory of Autonomic Nervous Function and Disease of Jiangxi Province, Nanchang 330006, China
| |
Collapse
|
13
|
Deftu AF, Suter MR. Glia and Pain in Spinal Cord. THE SENSES: A COMPREHENSIVE REFERENCE 2020:235-248. [DOI: 10.1016/b978-0-12-809324-5.24214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Emery MA, Eitan S. Drug-specific differences in the ability of opioids to manage burn pain. Burns 2019; 46:503-513. [PMID: 31859093 DOI: 10.1016/j.burns.2019.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/17/2022]
Abstract
Burn injury pain is a significant public health problem. Burn injury treatment has improved tremendously in recent decades. However, an unintended consequence is that a larger number of patients now survive more severe injuries, and face intense pain that is very hard to treat. Although many efforts have been made to find alternative treatments, opioids remain the most effective medication available. Burn patients are frequently prescribed opioids in doses and durations that are significantly higher and longer than standard analgesic dosing guidelines. Despite this, many continue to experience unrelieved pain. They are also placed at a higher risk for developing dependence and opioid use disorder. Burn injury profoundly alters the functional state of the immune system. It also alters the expression levels of receptor, effector, and signaling molecules within the spinal cord's dorsal horn. These alterations could explain the reduced potency of opioids. However, recent studies demonstrate that different opioids signal preferentially via differential signaling pathways. This ligand-specific signaling by different opioids implies that burn injury may reduce the antinociceptive potency of opioids to different degrees, in a drug-specific manner. Indeed, recent findings hint at drug-specific differences in the ability of opioids to manage burn pain early after injury, as well as differences in their ability to prevent or treat the development of chronic and neuropathic pain. Here we review the current state of opioid treatment, as well as new findings that could potentially lead to opioid-based pain management strategies that may be significantly more effective than the current solutions.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA.
| |
Collapse
|
15
|
Zhang L, Meng J, Ban Y, Jalodia R, Chupikova I, Fernandez I, Brito N, Sharma U, Abreu MT, Ramakrishnan S, Roy S. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proc Natl Acad Sci U S A 2019; 116:13523-13532. [PMID: 31209039 PMCID: PMC6613141 DOI: 10.1073/pnas.1901182116] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Prolonged exposure to opioids results in analgesic tolerance, drug overdose, and death. The mechanism underlying morphine analgesic tolerance still remains unresolved. We show that morphine analgesic tolerance was significantly attenuated in germfree (GF) and in pan-antibiotic-treated mice. Reconstitution of GF mice with naïve fecal microbiota reinstated morphine analgesic tolerance. We further demonstrated that tolerance was associated with microbial dysbiosis with selective depletion in Bifidobacteria and Lactobacillaeae. Probiotics, enriched with these bacterial communities, attenuated analgesic tolerance in morphine-treated mice. These results suggest that probiotic therapy during morphine administration may be a promising, safe, and inexpensive treatment to prolong morphine's efficacy and attenuate analgesic tolerance. We hypothesize a vicious cycle of chronic morphine tolerance: morphine-induced gut dysbiosis leads to gut barrier disruption and bacterial translocation, initiating local gut inflammation through TLR2/4 activation, resulting in the activation of proinflammatory cytokines, which drives morphine tolerance.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Richa Jalodia
- Department of Surgery, University of Miami, Miami, FL 33136
| | | | - Irina Fernandez
- Department of Medicine, Division of Gastroenterology, University of Miami, Miami, FL 33136
| | - Nivis Brito
- Department of Medicine, Division of Gastroenterology, University of Miami, Miami, FL 33136
| | - Umakant Sharma
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Maria T Abreu
- Department of Medicine, Division of Gastroenterology, University of Miami, Miami, FL 33136
| | | | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL 33136;
| |
Collapse
|
16
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
17
|
Reinhold AK, Yang S, Chen JTC, Hu L, Sauer RS, Krug SM, Mambretti EM, Fromm M, Brack A, Rittner HL. Tissue plasminogen activator and neuropathy open the blood-nerve barrier with upregulation of microRNA-155-5p in male rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1160-1169. [PMID: 30625382 DOI: 10.1016/j.bbadis.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
The blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels is sealed by tight junction proteins. BNB alterations are a crucial factor in the pathogenesis of peripheral neuropathies. However, barrier opening, e.g. by tissue plasminogen activator (tPA), can also facilitate topical application of analgesics. Here, we examined tPA both in the pathophysiology of neuropathy-induced BNB opening or via exogenous application and its effect on the cytoplasmatic tight junction protein anchoring protein, zona occludens-1 (ZO-1), the adherens molecule JAM-C and microRNA(miR)-155-5p. Specifically, we investigated whether tPA alone and barrier opening lead to pain behavioral changes, i.e. hyperalgesia, or whether these effects require further factors. Male Wistar rats underwent chronic constriction injury (CCI) or were treated by a single perisciatic application of recombinant (r)tPA. CCI elicited mechanical allodynia, tPA mRNA upregulation, macrophage invasion, BNB leakage for large molecule tracers, downregulation of ZO-1 and JAM-C mRNA/protein, and a loss of immunoreactivity of both in perineurium and endoneurial cells. Similarly, after perisciatic rtPA injection, ZO-1 and JAM-C mRNA as well as cytosolic/membrane protein and ZO-1 immunoreactivity were downregulated, and the BNB was opened. Neither mechanical hypersensitivity nor macrophage infiltration was observed after rtPA in contrast to CCI. Mechanistically, miR-155-5p, which is known to destabilize barriers and tight junction proteins like claudin-1 and ZO-1, was increased in CCI and to lesser extent after rtPA application. In summary, tPA transiently opens the BNB possibly via miR-155-5p. However, tPA does not provoke allodynia in the absence of a neuropathic stimulus like a ligation or inflammation.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Shaobing Yang
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany; Dept. of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | | | - Liu Hu
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany; Dept. of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Reine-Solange Sauer
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Egle M Mambretti
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Alexander Brack
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Heike L Rittner
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
18
|
Rashki A, Mumtaz F, Jazayeri F, Shadboorestan A, Esmaeili J, Ejtemaei Mehr S, Ghahremani MH, Dehpour AR. Cyclosporin A attenuating morphine tolerance through inhibiting NO/ERK signaling pathway in human glioblastoma cell line: the involvement of calcineurin. EXCLI JOURNAL 2018; 17:1137-1151. [PMID: 30713473 PMCID: PMC6341459 DOI: 10.17179/excli2018-1693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/06/2018] [Indexed: 12/16/2022]
Abstract
Cyclosporin A (CsA) is known to have an immunosuppressive action. However, it is also attracting attention due to its effects on the nervous system, such as inhibiting the development and expression of morphine-induced tolerance and dependence through unknown mechanisms. It has been shown that CsA modulates the nitric oxide (NO) synthesis and extracellular signal-regulated kinases (ERK) activation, which are potentially involved in signaling pathways in morphine-induced tolerance in cellular models. Therefore, the current study was designed to evaluate the modulatory role of CsA on the MOR tolerance, by targeting the downstream signaling pathway of NO and ERK using an in vitro model. For this purpose, T98G cells were pretreated with CsA, calcineurin autoinhibitory peptide (CAIP), and NG-nitro-l-arginine methyl ester (L-NAME) 30 min before 18 h exposure to MOR. Then, we analyzed the intracellular cyclic adenosine monophosphate (cAMP) levels and also the expression of phosphorylated ERK and nitric oxide synthase (nNOS) proteins. Our results showed that CsA (1 nM, 10 nM, and 100 nM) and CAIP (50 µM) have significantly reduced cAMP and nitrite levels as compared to MOR-treated (2.5 µM) T98G cells. This clearly revealed the attenuation of MOR tolerance by CsA. The expression of nNOS and p-ERK proteins were down-regulated when the T98G cells were pretreated with CsA (1 nM, 10 nM, and 100 nM), CAIP (50 µM), and L-NAME (0.1 mM) as compared to MOR. In conclusion, the CsA pretreatment had a modulatory role in MOR-induced tolerance, which was possibly mediated through NO/ERK signaling pathway.
Collapse
Affiliation(s)
- Asma Rashki
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Jazayeri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamileh Esmaeili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Liu H, Wei J, Liu M, Wu S, Ma C, Liu C, Huang K, Zhang X, Guo R, Zhang K, Xin W. Epigenetic upregulation of CXCL12 expression contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Exp Neurol 2018; 306:55-63. [DOI: 10.1016/j.expneurol.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/19/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
|
20
|
The analgesic effect and possible mechanisms by which koumine alters type II collagen-induced arthritis in rats. J Nat Med 2018; 73:217-225. [DOI: 10.1007/s11418-018-1229-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
|
21
|
Magnetic field distribution modulation of intrathecal delivered ketorolac iron-oxide nanoparticle conjugates produce excellent analgesia for chronic inflammatory pain. J Nanobiotechnology 2018; 16:49. [PMID: 29769077 PMCID: PMC5956965 DOI: 10.1186/s12951-018-0375-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Nanoparticles have become one of the most promising among the potential materials used for biomedical applications. However, few researchers have focused on their effects on analgesia. Despite the fact that various nanoparticles have been evaluated for drug delivery and MRI imaging contrast enhancement in clinical settings, no reports have investigated the in vivo synergy of ketorolac iron-oxide nanoparticle conjugates to improve the analgesic effect. Methods Ketorolac conjugated magnetic iron oxide nanoparticles (Keto-SPIO) were synthesized via two-stage additions of protective agents and chemical co-precipitation. ICR mice were used to develop inflammatory pain models induced by Complete Freund’s adjuvant (CFA) injection in the hind paw. Different magnet field strengths and polarities were applied to the spinal cord after injecting Keto-SPIO into the theca space. Analgesia behavior was evaluated with the up-down method via von Frey microfilament measurement. Spinal cord tissues were harvested at the end analgesia time point upon induction of the inflammatory pain. The presence of the two cyclooxygenases (COX) in the spinal cord was examined via Western blotting to quantify the changes after intra-thecal Keto-SPIO administration. Results Intrathecal Keto-SPIO administration demonstrated a magnetic field-dependent analgesia effect in CFA pain model with a significant reduction in COX expression. Conclusions Our results indicated that intrathecal administration of the Keto-SPIO combined magnet field modulated delivery significantly promoted an analgesia effect with suppression of COX in the mice inflammatory pain model. Electronic supplementary material The online version of this article (10.1186/s12951-018-0375-9) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Bachis A, Campbell LA, Jenkins K, Wenzel E, Mocchetti I. Morphine Withdrawal Increases Brain-Derived Neurotrophic Factor Precursor. Neurotox Res 2017; 32:509-517. [PMID: 28776309 DOI: 10.1007/s12640-017-9788-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/28/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
Morphine has been shown to increase the expression of brain-derived neurotrophic factor (BDNF) in the brain. However, little is known about the effect of morphine withdrawal on BDNF and its precursor protein, or proBDNF, which induces neuronal apoptosis. In this work, we examined whether BDNF and proBDNF levels change in rats chronically injected with escalating doses of morphine and those who undergo spontaneous withdrawal for 60 h. We observed, in the frontal cortex and striatum, that the ratio of BDNF to proBDNF changed depending upon the experimental paradigm. Morphine treatment and morphine withdrawal increased both BDNF and proBDNF levels. However, the increase in proBDNF immunoreactivity in withdrawal rats was more robust than that observed in morphine-treated rats. proBDNF is processed either intracellularly by furin or extracellularly by the tissue plasminogen activator (tPA)/plasminogen system or matrix metalloproteases (MMPs). To examine the mechanisms whereby chronic morphine treatment and morphine withdrawal differentially affects BDNF/proBDNF, the levels MMP-3 and MMP-7, furin, and tPA were analyzed. We found that morphine increases tPA levels, whereas withdrawal causes a decrease. To confirm the involvement of tPA in the morphine-mediated effect on BDNF/proBDNF, we exposed cortical neurons to morphine in the presence of the tPA inhibitor plasminogen activator inhibitor-1 (PAI-1). This inhibitor reversed the morphine-mediated decrease in proBDNF, supporting the hypothesis that morphine increases the availability of BDNF by promoting the extracellular processing of proBDNF by tPA. Because proBDNF could negatively influence synaptic repair, preventing withdrawal is crucial for reducing neurotoxic mechanisms associated with opioid abuse.
Collapse
Affiliation(s)
- Alessia Bachis
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Lee A Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.,Medical Development Program, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, DHHS, Baltimore, MD, 21224, USA
| | - Kierra Jenkins
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Erin Wenzel
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.,Department of Pharmacology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.
| |
Collapse
|
23
|
Neurosteroid Allopregnanolone Suppresses Median Nerve Injury–induced Mechanical Hypersensitivity and Glial Extracellular Signal–regulated Kinase Activation through γ-Aminobutyric Acid Type A Receptor Modulation in the Rat Cuneate Nucleus. Anesthesiology 2016; 125:1202-1218. [DOI: 10.1097/aln.0000000000001360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Background
Mechanisms underlying neuropathic pain relief by the neurosteroid allopregnanolone remain uncertain. We investigated if allopregnanolone attenuates glial extracellular signal-regulated kinase (ERK) activation in the cuneate nucleus (CN) concomitant with neuropathic pain relief in median nerve chronic constriction injury (CCI) model rats.
Methods
We examined the time course and cellular localization of phosphorylated ERK (p-ERK) in CN after CCI. We subsequently employed microinjection of a mitogen-activated protein kinase kinase (ERK kinase) inhibitor, PD98059, to clarify the role of ERK phosphorylation in neuropathic pain development. Furthermore, we explored the effects of allopregnanolone (by mouth), intra-CN microinjection of γ-aminobutyric acid type A receptor antagonist (bicuculline) or γ-aminobutyric acid type B receptor antagonist (phaclofen) plus allopregnanolone, and allopregnanolone synthesis inhibitor (medroxyprogesterone; subcutaneous) on ERK activation and CCI-induced behavioral hypersensitivity.
Results
At 7 days post-CCI, p-ERK levels in ipsilateral CN were significantly increased and reached a peak. PD98059 microinjection into the CN 1 day after CCI dose-dependently attenuated injury-induced behavioral hypersensitivity (withdrawal threshold [mean ± SD], 7.4 ± 1.1, 8.7 ± 1.0, and 10.3 ± 0.8 g for 2.0, 2.5, and 3.0 mM PD98059, respectively, at 7 days post-CCI; n = 6 for each dose). Double immunofluorescence showed that p-ERK was localized to both astrocytes and microglia. Allopregnanolone significantly diminished CN p-ERK levels, glial activation, proinflammatory cytokines, and behavioral hypersensitivity after CCI. Bicuculline, but not phaclofen, blocked all effects of allopregnanolone. Medroxyprogesterone treatment reduced endogenous CN allopregnanolone and exacerbated nerve injury-induced neuropathic pain.
Conclusions
Median nerve injury-induced CN glial ERK activation modulated the development of behavioral hypersensitivity. Allopregnanolone attenuated glial ERK activation and neuropathic pain via γ-aminobutyric acid type A receptors. Reduced endogenous CN allopregnanolone after medroxyprogesterone administration rendered rats more susceptible to CCI-induced neuropathy.
Collapse
|
24
|
Pan Y, Sun X, Jiang L, Hu L, Kong H, Han Y, Qian C, Song C, Qian Y, Liu W. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation. J Neuroinflammation 2016; 13:294. [PMID: 27855689 PMCID: PMC5114746 DOI: 10.1186/s12974-016-0754-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022] Open
Abstract
Background Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. Methods The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. Results We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine-induced microglial activation in the spinal cord and then attenuated the development of chronic morphine tolerance in mice. Conclusions Metformin significantly attenuated morphine antinociceptive tolerance by suppressing morphine-induced microglial activation through increasing AMPK phosphorylation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0754-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaodi Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Lai Jiang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hong Kong
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yuan Han
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Cheng Qian
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chao Song
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Wentao Liu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
25
|
Activation of the Extracellular Signal-Regulated Kinase in the Amygdale Modulates Fentanyl-Induced Hypersensitivity in Rats. THE JOURNAL OF PAIN 2016; 18:188-199. [PMID: 27838497 DOI: 10.1016/j.jpain.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 10/08/2016] [Accepted: 10/24/2016] [Indexed: 11/23/2022]
Abstract
Opioid-induced hyperalgesia (OIH) is one of the major problems associated with use of opioids in perioperative and chronic pain management. The mechanism underlying this paradoxical phenomenon needs to be fully elucidated. Laterocapsular division of the central nucleus of amygdale (CeLC) has emerged as an important brain center for pain modulation, so we hypothesize that the activation of extracellular signal-regulated kinase (ERK) in CeLC may modulate OIH through strengthening synaptic transmission between neurons in the CeLC. Phospho-ERK in CeLC was first found to be increased significantly in OIH rats induced by repeated subcutaneous injection of fentanyl. Blockade of this fentanyl-induced ERK activation by microinjection of U0126, an ERK inhibitor, into the CeLC reversed the behavioral hypersensitivity in a dose-dependent manner. In vitro whole-cell recordings evaluating the change in synaptic transmission found that the frequency as well as amplitude of miniature excitatory postsynaptic currents recorded on CeLC neurons from OIH rats were fundamentally increased and were completely reversed by acutely applied U0126 (10 μM in the recording well). In vivo microinjection of U0126 into the CeLC reversed the spinal long-term potentiation in OIH rats. These results showed that fentanyl-induced hypersensitivity may occur partly through the mechanism of ERK activation and followed by the strengthening of synaptic transmission in CeLC neurons. PERSPECTIVE This study provides evidence that ERK in the laterocapsular division of the CeLC is a key contributor to the development of fentanyl-induced hypersensitivity. Targeting the superspinal central CeLC can inhibit spinal long-term potentiation and alleviate behavioral hyperreflexia induced by fentanyl.
Collapse
|
26
|
The dark side of opioids in pain management: basic science explains clinical observation. Pain Rep 2016; 1:e570. [PMID: 29392193 PMCID: PMC5741356 DOI: 10.1097/pr9.0000000000000570] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/03/2022] Open
Abstract
Although there is no doubt about opioids' ability to relieve pain in the short term, it is not always clear why longer-term analgesic efficacy seems to be impaired. Tolerance and hyperalgesia have been suggested as mechanisms for opioid analgesic deterioration. But could there also be an effect of opioids on pain itself? Introduction: In the past 2 decades, opioids have been used increasingly for the treatment of persistent pain, and doses have tended to creep up. As basic science elucidates mechanisms of pain and analgesia, the cross talk between central pain and opioid actions becomes clearer. Objectives: We aimed to examine the published literature on basic science explaining pronociceptive opioid actions, and apply this knowledge to clinical observation. Methods: We reviewed the existing literature on the pronociceptive actions of opioids, both preclinical and clinical studies. Results: Basic science provides a rationale for the clinical observation that opioids sometimes increase rather than decrease pain. Central sensitization (hyperalgesia) underlies pain chronification, but can also be produced by high dose and high potency opioids. Many of the same mechanisms account for both central pain and opioid hyperalgesia. Conclusion: Newly revealed basic mechanisms suggest possible avenues for drug development and new drug therapies that could alter pain sensitization through endogenous and exogenous opioid mechanisms. Recent changes in practice such as the introduction of titration-to-effect for opioids have resulted in higher doses used in the clinic setting than ever seen previously. New basic science knowledge hints that these newer dosing practices may need to be reexamined. When pain worsens in a patient taking opioids, can we be assured that this is not because of the opioids, and can we alter this negative effect of opioids through different dosing strategies or new drug intervention?
Collapse
|
27
|
Liu S, Li Q, Zhang MT, Mao-Ying QL, Hu LY, Wu GC, Mi WL, Wang YQ. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep 2016; 6:28956. [PMID: 27381056 PMCID: PMC4933926 DOI: 10.1038/srep28956] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
Curcumin has been shown to possess strong anti-inflammatory activity in many diseases. It has been demonstrated that the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) cascade and the NAcht leucine-rich-repeat protein 1 (NALP1) inflammasome are important for the synthesis of Pro-Interleukin (IL)-1β and the processing of the inactive protein to its mature form, which plays an active role in the pathogenesis of neuropathic pain. The present study showed that repeated intraperitoneal injection of curcumin ameliorated SNI-induced mechanical and cold allodynia in a dose-dependent manner and inhibited the elevation of spinal mature IL-1β protein levels. Additionally, repeated curcumin treatment significantly inhibited the aggregation of the NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in spinal astrocytes. Furthermore, the genetic down-regulation of NALP1 inflammasome activation by NALP1 siRNA and the pharmacological inhibition of the JAK2-STAT3 cascade by AG490 markedly inhibited IL-1β maturation and Pro-IL-1β synthesis, respectively, and reduced SNI-induced pain hypersensitivity. Our results suggest that curcumin attenuated neuropathic pain and down-regulated the production of spinal mature IL-1β by inhibiting the aggregation of NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in astrocytes.
Collapse
Affiliation(s)
- Shenbin Liu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Qian Li
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Meng-Ting Zhang
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| |
Collapse
|
28
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
29
|
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 2016; 781:10-24. [DOI: 10.1016/j.ejphar.2016.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
30
|
Donaldson R, Sun Y, Liang DY, Zheng M, Sahbaie P, Dill DL, Peltz G, Buck KJ, Clark JD. The multiple PDZ domain protein Mpdz/MUPP1 regulates opioid tolerance and opioid-induced hyperalgesia. BMC Genomics 2016; 17:313. [PMID: 27129385 PMCID: PMC4850636 DOI: 10.1186/s12864-016-2634-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/22/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Opioids are a mainstay for the treatment of chronic pain. Unfortunately, therapy-limiting maladaptations such as loss of treatment effect (tolerance), and paradoxical opioid-induced hyperalgesia (OIH) can occur. The objective of this study was to identify genes responsible for opioid tolerance and OIH. RESULTS These studies used a well-established model of ascending morphine administration to induce tolerance, OIH and other opioid maladaptations in 23 strains of inbred mice. Genome-wide computational genetic mapping was then applied to the data in combination with a false discovery rate filter. Transgenic mice, gene expression experiments and immunoprecipitation assays were used to confirm the functional roles of the most strongly linked gene. The behavioral data processed using computational genetic mapping and false discovery rate filtering provided several strongly linked biologically plausible gene associations. The strongest of these was the highly polymorphic Mpdz gene coding for the post-synaptic scaffolding protein Mpdz/MUPP1. Heterozygous Mpdz +/- mice displayed reduced opioid tolerance and OIH. Mpdz gene expression and Mpdz/MUPP1 protein levels were lower in the spinal cords of low-adapting 129S1/Svlm mice than in high-adapting C57BL/6 mice. Morphine did not alter Mpdz expression levels. In addition, association of Mpdz/MUPP1 with its known binding partner CaMKII did not differ between these high- and low-adapting strains. CONCLUSIONS The degrees of maladaptive changes in response to repeated administration of morphine vary greatly across inbred strains of mice. Variants of the multiple PDZ domain gene Mpdz may contribute to the observed inter-strain variability in tolerance and OIH by virtue of changes in the level of their expression.
Collapse
Affiliation(s)
- Robin Donaldson
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Yuan Sun
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - De-Yong Liang
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ming Zheng
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Gary Peltz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari J Buck
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA. .,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Yang S, Krug SM, Heitmann J, Hu L, Reinhold AK, Sauer S, Bosten J, Sommer C, Fromm M, Brack A, Rittner HL. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials 2016; 82:20-33. [DOI: 10.1016/j.biomaterials.2015.11.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/15/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
|
32
|
Wang D, Zeng J, Li Q, Huang J, Couture R, Hong Y. Contribution of adrenomedullin to the switch of G protein-coupled μ-opioid receptors from Gi to Gs in the spinal dorsal horn following chronic morphine exposure in rats. Br J Pharmacol 2016; 173:1196-207. [PMID: 26750148 DOI: 10.1111/bph.13419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic exposure to morphine increases spinal adrenomedullin (AM) bioactivity resulting in the development and maintenance of morphine tolerance. This study investigated the possible involvement of AM in morphine-evoked alteration in μ-opioid receptor-coupled G proteins. EXPERIMENTAL APPROACH Agents were administered intrathecally (i.t.) in rats. Nociceptive behaviours and cumulative dose-response of morphine analgesia were assessed. Neurochemicals in the spinal dorsal horn were assayed by immunoprecipitation, Western blot analysis and ELISA. KEY RESULTS Intrathecal injection of AM (8 μg) for 9 days decreased and increased the levels of μ receptor-coupled Gi and Gs proteins respectively. Morphine stimulation (5 μg) after chronic treatment with AM also induced an increase in cAMP production in the spinal dorsal horn. Co-administration of the selective AM receptor antagonist AM22-52 inhibited chronic morphine-evoked switch of G protein-coupled μ receptor from Gi to Gs. Chronic exposure to AM increased the phosphorylation of cAMP-responsive element-binding protein (CREB) and ERK. Co-administration of the PKA inhibitor H-89 (5 μg) or MEK1 inhibitor PD98059 (1 μg) reversed the AM-induced thermal/mechanical hypersensitivity, decline in morphine analgesic potency, switch of G protein-coupled μ receptor and increase in cAMP. CONCLUSIONS AND IMPLICATIONS The present study supports the hypothesis that an increase in AM activity in the spinal dorsal horn contributes to the switch of the μ receptor-coupled G protein from Gi to Gs protein via the activation of cAMP/PKA/CREB and ERK signalling pathways in chronic morphine use.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Juan Zeng
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Qi Li
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianzhong Huang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Réjean Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
33
|
Yamanaka H, Kobayashi K, Okubo M, Noguchi K. Annexin A2 in primary afferents contributes to neuropathic pain associated with tissue type plasminogen activator. Neuroscience 2016; 314:189-99. [DOI: 10.1016/j.neuroscience.2015.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
|
34
|
Jiang BC, Cao DL, Zhang X, Zhang ZJ, He LN, Li CH, Zhang WW, Wu XB, Berta T, Ji RR, Gao YJ. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J Clin Invest 2016; 126:745-61. [PMID: 26752644 DOI: 10.1172/jci81950] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022] Open
Abstract
Recent studies have implicated chemokines in microglial activation and pathogenesis of neuropathic pain. C-X-C motif chemokine 13 (CXCL13) is a B lymphocyte chemoattractant that activates CXCR5. Using the spinal nerve ligation (SNL) model of neuropathic pain, we found that CXCL13 was persistently upregulated in spinal cord neurons after SNL, resulting in spinal astrocyte activation via CXCR5 in mice. shRNA-mediated inhibition of CXCL13 in the spinal cord persistently attenuated SNL-induced neuropathic pain. Interestingly, CXCL13 expression was suppressed by miR-186-5p, a microRNA that colocalized with CXCL13 and was downregulated after SNL. Spinal overexpression of miR-186-5p decreased CXCL13 expression, alleviating neuropathic pain. Furthermore, SNL induced CXCR5 expression in spinal astrocytes, and neuropathic pain was abrogated in Cxcr5-/- mice. CXCR5 expression induced by SNL was required for the SNL-induced activation of spinal astrocytes and microglia. Intrathecal injection of CXCL13 was sufficient to induce pain hypersensitivity and astrocyte activation via CXCR5 and ERK. Finally, intrathecal injection of CXCL13-activated astrocytes induced mechanical allodynia in naive mice. Collectively, our findings reveal a neuronal/astrocytic interaction in the spinal cord by which neuronally produced CXCL13 activates astrocytes via CXCR5 to facilitate neuropathic pain. Thus, miR-186-5p and CXCL13/CXCR5-mediated astrocyte signaling may be suitable therapeutic targets for neuropathic pain.
Collapse
|
35
|
Grace PM, Maier SF, Watkins LR. Opioid-induced central immune signaling: implications for opioid analgesia. Headache 2015; 55:475-89. [PMID: 25833219 DOI: 10.1111/head.12552] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2015] [Indexed: 12/30/2022]
Abstract
Despite being the mainstay of pain management, opioids are limited in their clinical utility by adverse effects, such as tolerance and paradoxical hyperalgesia. Research of the past 15 years has extended beyond neurons, to implicate central nervous system immune signaling in these adverse effects. This article will provide an overview of these central immune mechanisms in opioid tolerance and paradoxical hyperalgesia, including those mediated by Toll-like receptor 4, purinergic, ceramide, and chemokine signaling. Challenges for the future, as well as new lines of investigation will be highlighted.
Collapse
|
36
|
Alfonso Romero-Sandoval E, Sweitzer S. Nonneuronal central mechanisms of pain: glia and immune response. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:325-58. [PMID: 25744678 DOI: 10.1016/bs.pmbts.2014.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of central glial cells in the mechanisms underlying pain has been intensively studied in the last two decades. Most studies on glia and pain focused on the potential detrimental role of glial cells following noxious stimulus/insults manifested as an "activation" or a "reactive" state (increase in glial marker expression and production of proinflammatory/nociceptive molecules). Therefore, "activated" or "reactive" glial cells became a target for the future generation of drugs to treat chronic pain. Several glial modulators that reduce the activation of glial cells have shown great efficacy in multiple animal (rodents mostly) models of pain (acute, subacute, chronic, inflammatory, neuropathic, surgical, etc.). These encouraging findings inspired clinical trials that have been completed in the last 5 years. Unfortunately, all clinical trials with these glial modulators have failed to demonstrate efficacy for the treatment of pain. New lines of investigation and elegant experimental designs are shedding light on alternative glial functions, which demonstrate that "glial reactivity" is not necessarily deleterious in some pathological conditions. New strategies to validate findings through our current animal models are necessary to enhance the translational value of our preclinical studies. Also, more studies using human subjects would enhance our understanding of glial cells in the context of pain. This chapter explores the available literature to objectively ponder the potential role of glial cells in human pain conditions.
Collapse
Affiliation(s)
- E Alfonso Romero-Sandoval
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina, USA.
| | - Sarah Sweitzer
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina, USA
| |
Collapse
|
37
|
Guan XH, Fu QC, Shi D, Bu HL, Song ZP, Xiong BR, Shu B, Xiang HB, Xu B, Manyande A, Cao F, Tian YK. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats. Exp Neurol 2015; 263:39-49. [DOI: 10.1016/j.expneurol.2014.09.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022]
|
38
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
39
|
Egleton RD, Abbruscato T. Drug abuse and the neurovascular unit. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:451-80. [PMID: 25307226 DOI: 10.1016/bs.apha.2014.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug abuse continues to create a major international epidemic affecting society. A great majority of past drug abuse research has focused mostly on the mechanisms of addiction and the specific effects of substance use disorders on brain circuits and pathways that modulate reward, motivation, craving, and decision making. Few studies have focused on the neurobiology of acute and chronic substance abuse as it relates to the neurovascular unit (brain endothelial cell, neuron, astrocyte, microglia, and pericyte). Increasing research indicates that all cellular components of the neurovascular unit play a pivotal role in both the process of addiction and how drug abuse affects the brain response to diseases. This review will focus on the specific effects of opioids, amphetamines, alcohol, and nicotine on the neurovascular unit and its role in addiction and adaption to brain diseases. Elucidation of the role of the neurovascular unit on the neurobiology associated with drug addiction will help to facilitate the development of better therapeutic approaches for drug-dependent individuals.
Collapse
Affiliation(s)
- Richard D Egleton
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA.
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
| |
Collapse
|
40
|
Wang D, Chen Y, Jiang J, Zhou A, Pan L, Chen Q, Qian Y, Chu M, Chen C. Carvedilol has stronger anti-inflammation and anti-virus effects than metoprolol in murine model with coxsackievirus B3-induced viral myocarditis. Gene 2014; 547:195-201. [PMID: 24905653 DOI: 10.1016/j.gene.2014.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 06/02/2014] [Indexed: 12/26/2022]
Abstract
AIMS This study aims to compare the effects of carvedilol and metoprolol in alleviating viral myocarditis (VMC) induced by coxsackievirus B3 (CVB3) in mice. METHODS A total of 116 Balb/c mice were included in this study. Ninety-six mice were inoculated intraperitoneally with CVB3 to induce VMC. The CVB3 inoculated mice were evenly divided into myocarditis group (n=32), carvedilol group (n=32) and metoprolol group (n=32). Twenty mice (control group) were inoculated intraperitoneally with normal saline. Hematoxylin and eosin staining and histopathologic scoring were used to investigate the effects of carvedilol and metoprolol on myocardial histopathologic changes on days 3 and 5. In addition, serum cTn-I levels, cytokine levels and virus titers were determined using chemiluminescence immunoassay, enzyme-linked immunosorbent assay and plaque assay, respectively, on days 3 and 5. Finally, the levels of phosphorylated p38MAPK were studied using immunohistochemical staining and Western blotting on day 5. RESULTS Carvedilol had a stronger effect than metoprolol in reducing the pathological scores of VMC induced by CVB3. Both carvedilol and metoprolol reduced the levels of cTn-I, but the effect of carvedilol was stronger. Carvedilol and metoprolol decreased the levels of myocardial pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokine, with the effects of carvedilol being stronger than those of metoprolol. Carvedilol had a stronger effect in reducing myocardial virus concentration compared with metoprolol. Carvedilol was stronger than metoprolol in decreasing the levels of myocardial phosphorylated p38MAPK. CONCLUSIONS In conclusion, carvedilol was more potent than metoprolol in ameliorating myocardial lesions in VMC, probably due to its stronger modulation of the balance between pro- and anti-inflammatory cytokines by inhibiting the activation of p38MAPK pathway through β1- and β2-adrenoreceptors.
Collapse
Affiliation(s)
- Dan Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, PR China; Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Yiming Chen
- Department of Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Jianbin Jiang
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Aihua Zhou
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Lulu Pan
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Qi Chen
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Yan Qian
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Maoping Chu
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China.
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, PR China.
| |
Collapse
|
41
|
Utreras E, Hamada R, Prochazkova M, Terse A, Takahashi S, Ohshima T, Kulkarni AB. Suppression of neuroinflammation in forebrain-specific Cdk5 conditional knockout mice by PPARγ agonist improves neuronal loss and early lethality. J Neuroinflammation 2014; 11:28. [PMID: 24495352 PMCID: PMC3931315 DOI: 10.1186/1742-2094-11-28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/21/2014] [Indexed: 01/04/2023] Open
Abstract
Background Cyclin-dependent kinase 5 (Cdk5) is essential for brain development and function, and its deregulated expression is implicated in some of neurodegenerative diseases. We reported earlier that the forebrain-specific Cdk5 conditional knockout (cKO) mice displayed an early lethality associated with neuroinflammation, increased expression of the neuronal tissue-type plasminogen activator (tPA), and neuronal migration defects. Methods In order to suppress neuroinflammation in the cKO mice, we first treated these mice with pioglitazone, a PPARγ agonist, and analyzed its effects on neuronal loss and longevity. In a second approach, to delineate the precise role of tPA in neuroinflammation in these mice, we generated Cdk5 cKO; tPA double knockout (dKO) mice. Results We found that pioglitazone treatment significantly reduced astrogliosis, microgliosis, neuronal loss and behavioral deficit in Cdk5 cKO mice. Interestingly, the dKO mice displayed a partial reversal in astrogliosis, but they still died at early age, suggesting that the increased expression of tPA in the cKO mice does not contribute significantly to the pathological process leading to neuroinflammation, neuronal loss and early lethality. Conclusion The suppression of neuroinflammation in Cdk5 cKO mice ameliorates gliosis and neuronal loss, thus suggesting the potential beneficial effects of the PPARγ agonist pioglitazone for the treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Toshio Ohshima
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
42
|
Linne ML, Jalonen TO. Astrocyte-neuron interactions: from experimental research-based models to translational medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:191-217. [PMID: 24560146 DOI: 10.1016/b978-0-12-397897-4.00005-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this chapter, we review the principal astrocyte functions and the interactions between neurons and astrocytes. We then address how the experimentally observed functions have been verified in computational models and review recent experimental literature on astrocyte-neuron interactions. Benefits of computational neuroscience work are highlighted through selected studies with neurons and astrocytes by analyzing the existing models qualitatively and assessing the relevance of these models to experimental data. Common strategies to mathematical modeling and computer simulation in neuroscience are summarized for the nontechnical reader. The astrocyte-neuron interactions are then further illustrated by examples of some neurological and neurodegenerative diseases, where the miscommunication between glia and neurons is found to be increasingly important.
Collapse
Affiliation(s)
- Marja-Leena Linne
- Computational Neuroscience Group, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Tuula O Jalonen
- Department of Physiology and Neuroscience, St. George's University, School of Medicine, Grenada, West Indies
| |
Collapse
|