1
|
Borghi SM, Carvalho TT, Bertozzi MM, Bernardy CCF, Zarpelon AC, Pinho-Ribeiro FA, Calixto-Campos C, Fattori V, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Role of the interleukin-33 (IL-33)/suppressor of tumorigenicity 2 (ST2) signaling in superoxide anion-triggered inflammation and pain behavior in mice. Chem Biol Interact 2025; 413:111476. [PMID: 40097042 DOI: 10.1016/j.cbi.2025.111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 02/26/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Reactive oxygen species such as superoxide anion have varied roles in inflammation and pain, which can be mimicked by potassium superoxide (KO2), the superoxide anion donor. Interleukin (IL)-33 has pleiotropic functions by activating its receptor suppression of tumorigenicity 2 (ST2). However, the role of IL-33/ST2 signaling in inflammatory pain initiated by reactive oxygen species (ROS) such as superoxide anion has not been investigated, which was the aim of the present study. IL-33 levels were assessed by enzyme-linked immunosorbent assay (ELISA). Mechanical and thermal hyperalgesia and overt pain were evaluated by electronic von Frey, hot plate, and abdominal writhing/paw flinching/licking, respectively. Edema and leukocyte recruitment (myeloperoxidase assay and total/differential cell count), antioxidant capacity, superoxide anion production and lipid peroxidation were assessed. Paw skin and spinal cord messenger ribonucleic acid (mRNA) expression of pro-inflammatory mediators and glial markers in the spinal cord were evaluated. Immunofluorescence was used to detect spinal glial and neuronal c-Fos activation. KO2 injection triggered IL-33 production in the paw skin and spinal cord of mice, induced hyperalgesia, edema, neutrophil recruitment to the paw tissue, overt pain-like behavior, and leukocyte recruitment to the peritoneum that were reduced in ST2 deficient mice. In the paw skin and spinal cord, KO2 triggered IL-33/ST2-dependent oxidative stress, and mRNA expression of inflammatory molecules, which were reduced by ST2 deficiency. KO2 induced spinal cord glial (at mRNA/protein levels) and neuronal activation in IL-33/ST2-dependent manner. IL-33/ST2 signaling mediates, at least in part, superoxide anion-induced inflammatory pain by modulating local and spinal inflammatory events.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Thacyana T Carvalho
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Mariana M Bertozzi
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Cátia C F Bernardy
- Department of Nursing, Health Sciences Center, University Hospital, State University of Londrina, Londrina, Paraná, Brazil
| | - Ana C Zarpelon
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil; Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Cássia Calixto-Campos
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Victor Fattori
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina, 86038-440, PR, Brazil
| | - Waldiceu A Verri
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Li J, Wu Z, Li N, Wang J, Huang M, Zhu L, Wan G, Zhang Z. Exploring macrophage and nerve interaction in endometriosis-associated pain: the inductive role of IL-33. Inflamm Res 2025; 74:42. [PMID: 39969583 DOI: 10.1007/s00011-025-02010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Endometriosis, a persistent inflammatory disease, is associated with pelvic or abdominal pain. The immune system and sensory nervous system show a synergistic effect on regulation of pain. In particular, Interleukin-33 (IL-33) is released as a danger signal and drives key hallmarks of severe endometriosis. To explore the mechanistic involvement of IL-33 in pain associated with endometriosis, both an in vivo murine endometriosis model and in vitro experiments with RAW 264.7 cells and dorsal root ganglion (DRG) neurons were utilized. In vivo, we demonstrated that IL-33 significantly exacerbated endometriosis and induced hyperalgesia in mice. By interacting with the ST2 receptor in macrophages, IL-33 enhanced the release of tumor necrosis factor α (TNF-α) and Interleukin 1β (IL-1β). This process set off an inflammatory cascade, which further facilitated macrophages recruitment and neurogenesis in ectopic lesions. As an ion channel expressed by nociceptors, transient receptor potential vanilloid 1 (TRPV1) expression was significantly increased in DRG in the presence of IL-33. In vitro, we confirmed that IL-33 elevated the release of TNF-α in macrophages. Ultimately, macrophage-derived TNF-α increased TRPV1 protein level in DRG neuronal cells through the TNFR1/p38 MAPK signaling pathway. Overall, these results revealed an inductive role of IL-33 in pain associated with endometriosis, and highlighted the interaction between macrophages and sensory neurons.
Collapse
Affiliation(s)
- Jue Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, 210028, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, 210028, Nanjing, China
- Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, 215300, Kunshan, China
| | - Zhijing Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, 210028, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, 210028, Nanjing, China
| | - Nan Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, 210028, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, 210028, Nanjing, China
| | - Jianhong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, 210028, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, 210028, Nanjing, China
| | - Meihua Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, 210028, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, 210028, Nanjing, China
| | - Li Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, 210028, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, 210028, Nanjing, China
| | - Guiping Wan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, 210028, Nanjing, China.
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, 210028, Nanjing, China.
| | - Zhenzhen Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, 210028, Nanjing, China.
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, 210028, Nanjing, China.
| |
Collapse
|
3
|
Du L, Zhu J, Liu S, Yang W, Hu X, Zhang W, Cui W, Yang Y, Wang C, Yang Y, Gao T, Zhang C, Zhang R, Lou M, Zhou H, Rao J, Maoying Q, Chu Y, Wang Y, Mi W. Transient receptor potential melastatin 8 contributes to the interleukin-33-mediated cold allodynia in a mouse model of neuropathic pain. Pain 2025; 166:347-359. [PMID: 39132923 DOI: 10.1097/j.pain.0000000000003346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Cold allodynia is a common complaint of patients suffering from neuropathic pain initiated by peripheral nerve injury. However, the mechanisms that drive neuropathic cold pain remain elusive. In this study, we show that the interleukin (IL)-33/ST2 signaling in the dorsal root ganglion (DRG) is a critical contributor to neuropathic cold pain by interacting with the cold sensor transient receptor potential melastatin 8 (TRPM8). By using the St2-/- mice, we demonstrate that ST2 is required for the generation of nociceptor hyperexcitability and cold allodynia in a mouse model of spared nerve injury (SNI). Moreover, the selective elimination of ST2 function from the Nav1.8-expressing nociceptor markedly suppresses SNI-induced cold allodynia. Consistent with the loss-of-function studies, intraplantar injection of recombinant IL-33 (rIL-33) is sufficient to induce cold allodynia. Mechanistically, ST2 is co-expressed with TRPM8 in both mouse and human DRG neurons and rIL-33-induced Ca 2+ influx in mouse DRG neurons through TRPM8. Co-immunoprecipitation assays further reveal that ST2 interacts with TRPM8 in DRG neurons. Importantly, rIL-33-induced cold allodynia is abolished by pharmacological inhibition of TRPM8 and genetic ablation of the TRPM8-expressing neurons. Thus, our findings suggest that the IL-33/ST2 signaling mediates neuropathic cold pain through downstream cold-sensitive TRPM8 channels, thereby identifying a potential analgesic target for the treatment of neuropathic cold pain.
Collapse
Affiliation(s)
- Lixia Du
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueming Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenwen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Zhou
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Jia Rao
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
5
|
Chang C, Sun D, Zhang Z, He L, Wang Q, Shen Y, Zhu H, Fan D. Meta-analysis of the effect of sophora flavescens on tumor metastasis-induced bone neuropathic pain. Front Pharmacol 2024; 15:1474982. [PMID: 39629083 PMCID: PMC11611551 DOI: 10.3389/fphar.2024.1474982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Background Tumor metastasis to bone is a critical and painful stage in cancer progression, significantly affecting patients' quality of life. Traditional treatments for bone neuropathic pain often exhibit limited efficacy and undesirable side effects. Sophora flavescens, an herb used in traditional Chinese medicine, has shown potential analgesic and anti-cancer properties, but the existing evidence is fragmented and inconsistent. Methods In accordance with PRISMA guidelines, an extensive literature search was performed across PubMed, Web of Science, and Cochrane Library databases, Embase, Medline, CNKI, VIP, Wanfang Database, CBMdisc to identify relevant studies. The inclusion criteria focused on randomized controlled trials (RCTs) investigating the use of Sophora flavescens for bone neuropathic pain. Data related to pain intensity, mechanisms of action, and safety were extracted and analyzed using meta-analysis techniques. The quality of the studies was assessed using the Cochrane Risk of Bias tool. Results Seven studies met the inclusion criteria, involving a total of 463 patients with bone neuropathic pain induced by tumor metastasis. The meta-analysis revealed a significant overall reduction in pain intensity for patients treated with Sophora flavescens compared to control groups (mean difference = 26.45, 95% CI: 13.89, 39.00, P < 0.0001). Specifically, the Karnofsky Performance Status (KPS) increase rate showed a combined risk ratio of 1.62 (95% CI: 1.32, 1.99, P < 0.0001), indicating improved performance status with treatment. Pain scores also significantly decreased (mean difference = 26.45, 95% CI: 13.89, 39.00, P < 0.0001) despite substantial heterogeneity among studies (I2 = 91%). Funnel plots suggested minimal publication bias, and sensitivity analyses confirmed the stability of these results. The included studies reported minimal adverse effects, indicating good tolerability of Sophora flavescens. Conclusion Sophora flavescens demonstrates significant potential as an adjunctive therapy for managing bone neuropathic pain induced by tumor metastasis, offering substantial pain relief with minimal adverse effects.
Collapse
Affiliation(s)
- Cheng Chang
- Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Di Sun
- Department of Oncology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Zhilei Zhang
- Department of Spine Surgery, Mianyang Central Hospital, Sichuan, China
| | - Lei He
- Department of Outpatient, Eastern Theater General Hospital, Nanjing, China
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Hengzhou Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Donghua Fan
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| |
Collapse
|
6
|
Ruivo J, Tavares I, Pozza DH. Molecular targets in bone cancer pain: a systematic review of inflammatory cytokines. J Mol Med (Berl) 2024; 102:1063-1088. [PMID: 38940936 PMCID: PMC11358194 DOI: 10.1007/s00109-024-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Bone cancer pain (BCP) profoundly impacts patient's quality of life, demanding more effective pain management strategies. The aim of this systematic review was to investigate the role of inflammatory cytokines as potential molecular targets in BCP. A systematic search for animal rodent models of bone cancer pain studies was conducted in PubMed, Scopus, and Web of Science. Methodological quality and risk of bias were assessed using the SYRCLE RoB tool. Twenty-five articles met the inclusion criteria, comprising animal studies investigating molecular targets related to inflammatory cytokines in BCP. A low to moderate risk of bias was reported. Key findings in 23 manuscripts revealed upregulated classic pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, IL-18, IL-33) and chemokines in the spinal cord, periaqueductal gray, and dorsal root ganglia. Interventions targeting these cytokines consistently mitigated pain behaviors. Additionally, it was demonstrated that glial cells, due to their involvement in the release of inflammatory cytokines, emerged as significant contributors to BCP. This systematic review underscores the significance of inflammatory cytokines as potential molecular targets for alleviating BCP. It emphasizes the promise of targeted interventions and advocates for further research to translate these findings into effective therapeutic strategies. Ultimately, this approach holds the potential to enhance the patient's quality of life.
Collapse
Affiliation(s)
- Jacinta Ruivo
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal
| | - Isaura Tavares
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal
- Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-135, Porto, Portugal
| | - Daniel H Pozza
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal.
- Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
7
|
Wang C, Yang X, Gao T, Zhao Y, Yang Y, Li X, Yang Y, Yi T, Wang Y, Mi W. Astroglial morphological changes in periaqueductal grey in different pain and itch mice models. Behav Brain Res 2024; 471:115075. [PMID: 38815698 DOI: 10.1016/j.bbr.2024.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The periaqueductal gray (PAG) plays a well-established pivotal role in the descending pain modulatory circuit. The objective of this study was to investigate morphological changes in the astroglia in models that are commonly used in pain and itch studies. METHODS Five different mouse models of pain, as well as two models of chronic itch, were established using complete Freund's adjuvant (CFA), spared nerve injury (SNI), bone cancer pain (BCP), cisplatin (CIS), and paclitaxel (PTX) for pain, and diphenylcyclopropenone (DCP) and acetone and diethyl ether followed by water (AEW) for chronic itch. von Frey tests and video recordings were employed to assess pain and itching behaviors. The immunofluorescence of S100β, pSTAT3, and glial fibrillary acidic protein (GFAP) was examined. Two- and three-dimensional studies were used to evaluate changes in astrocyte morphology. RESULTS Significant scratching was caused by DCP and AEW, whereas the administration of CFA, SNI, BCP, CIS, and PTX produced clear mechanical allodynia. The expression of GFAP in the lPAG/vlPAG was upregulated in CFA, SNI, BCP, CIS, PTX, and DCP mice but decreased in AEW mice. According to Sholl analysis, CFA, SNI, PTX, and BCP mice showed substantially higher astrocyte intersections in the vlPAG, whereas CFA, SNI, BCP, CIS, and DCP mice presented longer peak lengths. In three-dimensional analysis, CFA, SNI, PTX, and DCP mice showed increased astrocyte surface areas, while CIS and AEW mice showed both reduced surface areas and/or volumes of astrocytes. CONCLUSION The findings showed that different pain and itching conditions have different astrocyte morphologies, and these variations in morphological changes help to explain the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Xiaotong Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuyu Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaochen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Yi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Gao TC, Wang CH, Wang YQ, Mi WL. IL-33/ST2 Signaling in the Pathogenesis of Chronic Pain and Itch. Neuroscience 2023; 529:16-22. [PMID: 37574108 DOI: 10.1016/j.neuroscience.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Interleukin-33 (IL-33) is an inflammatory factor with an extensive range of biological effects and pleiotropic roles in diseases. Evidence suggests that IL-33 and its receptor ST2 play a pivotal role in chronic pain and itch at the level of primary sensory neurons, the spinal cord, and the brain. In this review, we outline an evolving understanding of the roles and mechanisms of IL-33 in chronic pathological pain, including inflammatory, neuropathic, and cancer, and chronic pruritus, such as allergic contact dermatitis, atopic dermatitis, and dry skin. Understanding the key roles of IL-33/ST2 signaling may provide exciting insights into the mechanisms of chronic pain and itch and lead to new clues for therapeutic approaches to the resolution of chronic pain and itch.
Collapse
Affiliation(s)
- Tian-Chi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cheng-Hao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Li P, Yu Q, Nie H, Yin C, Liu B. IL-33/ST2 signaling in pain and itch: Cellular and molecular mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115143. [PMID: 37450998 DOI: 10.1016/j.biopha.2023.115143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Pain is a cardinal feature of many diseases. Chronic pain poses heavy burdens to the suffering patients, both physically and mentally. However, current mainstream medications for chronic pain, including opioids, antidepressants and non-steroid anti-inflammatory drugs are sometimes inefficient for chronic pain management and may cause side effects that limit long term usage. IL-33 belongs to IL-1 cytokine family and it exerts biological activities through binding to its specific receptor ST2. IL-33/ST2 signaling is very important in both innate and adaptive immunity. Emerging evidence indicates IL-33/ST2 signaling regulates pain in both immune and somatosensory systems through promoting neuro-immune or neuron-glia crosstalk, neuroinflammation and neuronal hyperexcitability. Some very latest studies indicate a vital part of IL-33/ST2 in mediating chronic itch. This work aims to overview the existing knowledge regarding the mechanisms of IL-33/ST2 involvement in pain and itch conditions, considering their potential similarities. We also summarized some key findings obtained from clinical studies. The targeting of IL-33/ST2 signaling holds promise for the development of novel therapeutic modalities in the management of pain and itch.
Collapse
Affiliation(s)
- Peiyi Li
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qing Yu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Huimin Nie
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
10
|
Brusco I, Becker G, Palma TV, Pillat MM, Scussel R, Steiner BT, Sampaio TB, Ardisson-Araújo DMP, de Andrade CM, Oliveira MS, Machado-De-Avila RA, Oliveira SM. Kinin B 1 and B 2 receptors mediate cancer pain associated with both the tumor and oncology therapy using aromatase inhibitors. Sci Rep 2023; 13:4418. [PMID: 36932156 PMCID: PMC10023805 DOI: 10.1038/s41598-023-31535-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Pain caused by the tumor or aromatase inhibitors (AIs) is a disabling symptom in breast cancer survivors. Their mechanisms are unclear, but pro-algesic and inflammatory mediators seem to be involved. Kinins are endogenous algogenic mediators associated with various painful conditions via B1 and B2 receptor activation, including chemotherapy-induced pain and breast cancer proliferation. We investigate the involvement of the kinin B1 and B2 receptors in metastatic breast tumor (4T1 breast cancer cells)-caused pain and in aromatase inhibitors (anastrozole or letrozole) therapy-associated pain. A protocol associating the tumor and antineoplastic therapy was also performed. Kinin receptors' role was investigated via pharmacological antagonism, receptors protein expression, and kinin levels. Mechanical and cold allodynia and muscle strength were evaluated. AIs and breast tumor increased kinin receptors expression, and tumor also increased kinin levels. AIs caused mechanical allodynia and reduced the muscle strength of mice. Kinin B1 (DALBk) and B2 (Icatibant) receptor antagonists attenuated these effects and reduced breast tumor-induced mechanical and cold allodynia. AIs or paclitaxel enhanced breast tumor-induced mechanical hypersensitivity, while DALBk and Icatibant prevented this increase. Antagonists did not interfere with paclitaxel's cytotoxic action in vitro. Thus, kinin B1 or B2 receptors can be a potential target for treating the pain caused by metastatic breast tumor and their antineoplastic therapy.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Tais Vidal Palma
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rahisa Scussel
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciuma, SC, Brazil
| | - Bethina Trevisol Steiner
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciuma, SC, Brazil
| | - Tuane Bazanella Sampaio
- Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Daniel Mendes Pereira Ardisson-Araújo
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Cinthia Melazzo de Andrade
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
11
|
Inhibition of Spinal Interleukin-33 Attenuates Peripheral Inflammation and Hyperalgesia in Experimental Arthritis. Mol Neurobiol 2022; 59:2246-2257. [PMID: 35066763 DOI: 10.1007/s12035-022-02754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Accumulating evidence indicates that the continuous and intense nociceptive from inflamed tissue may increase the excitability of spinal dorsal horn neurons, which can signal back and modulate peripheral inflammation. Previous studies have demonstrated that spinal interleukin (IL)-33 contributes to the hyperexcitability of spinal dorsal horn neurons. This study was undertaken to investigate whether spinal IL-33 can also influence a peripheral inflammatory response in a rat model of arthritis. Lentivirus-delivered short hairpin RNA targeting IL-33 (LV-shIL-33) was constructed for gene silencing. Rats with adjuvant-induced arthritis (AIA) were injected intrathecally with LV-shIL-33 3 days before the complete Freund's adjuvant (CFA) injection. During an observation period of 21 days, pain-related behavior and inflammation were assessed. In addition, the expression of spinal proinflammatory cytokines and the activation of spinal extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) pathways were evaluated on 9 days after CFA treatment. The existence of tissue injury or inflammation in rats with AIA resulted in the upregulation of spinal IL-33, which is predominantly expressed in neurons, astrocytes, and oligodendrocytes. Intrathecal administration of LV-shIL-33 significantly alleviated hyperalgesia, paw swelling, and joint destruction, and attenuated the expression of proinflammatory cytokines [IL-6, IL-1β, and tumor necrosis factor-α (TNF-α)], as well as the activation of ERK and NF-κB/p65 in the spinal cord. Our data suggest that spinal IL-33 contributes to the development of both peripheral inflammation and hyperalgesia. Thus, interference with IL-33 at the spinal level might represent a novel therapeutic target for painful inflammatory disorders.
Collapse
|
12
|
Zheng XQ, Wu YH, Huang JF, Wu AM. Neurophysiological mechanisms of cancer-induced bone pain. J Adv Res 2022; 35:117-127. [PMID: 35003797 PMCID: PMC8721251 DOI: 10.1016/j.jare.2021.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Cancer-induced Bone Pain (CIBP) is an important factor affecting their quality of life of cancer survivors. In addition, current clinical practice and scientific research suggest that neuropathic pain is a representative component of CIBP. However, given the variability of cancer conditions and the complexity of neuropathic pain, related mechanisms have been continuously supplemented but have not been perfected. Aim of Review Therefore, the current review highlights the latest progress in basic research on the field and proposes potential therapeutic targets, representative drugs and upcoming therapies. Key Scientific Concepts of Review Notably, factors such as central sensitization, neuroinflammation, glial cell activation and an acidic environment are considered to be related to neuropathic pain in CIBP. Nonetheless, further research is needed to ascertain the mechanism of CIBP in order to develop highly effective drugs. Moreover, more attention needs to be paid to the care of patients with advanced cancer.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yu-hao Wu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jin-feng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ai-Min Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
13
|
Hu XM, Yang W, Zhang MT, Du LX, Tian JH, Zhu JY, Chen Y, Hai F, Liu SB, Mao-Ying QL, Chu YX, Zhou H, Wang YQ, Mi WL. Glial IL-33 signaling through an ST2-to-CXCL12 pathway in the spinal cord contributes to morphine-induced hyperalgesia and tolerance. Sci Signal 2021; 14:eabe3773. [PMID: 34516755 DOI: 10.1126/scisignal.abe3773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xue-Ming Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng-Ting Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Encephalopathy, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang 321017, China
| | - Li-Xia Du
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-He Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian-Yu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Hai
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shen-Bin Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Hong Zhou
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Li HN, Yang QQ, Wang WT, Tian X, Feng F, Zhang ST, Xia YT, Wang JX, Zou YW, Wang JY, Zeng XY. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-α through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation 2021; 18:150. [PMID: 34225736 PMCID: PMC8258957 DOI: 10.1186/s12974-021-02198-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/17/2021] [Indexed: 01/12/2023] Open
Abstract
Background Our recent studies have identified that the red nucleus (RN) dual-directionally modulates the development and maintenance of mononeuropathic pain through secreting proinflammatory and anti-inflammatory cytokines. Here, we further explored the action of red nucleus IL-33 in the early development of mononeuropathic pain. Methods In this study, male rats with spared nerve injury (SNI) were used as mononeuropathic pain model. Immunohistochemistry, Western blotting, and behavioral testing were used to assess the expressions, cellular distributions, and actions of red nucleus IL-33 and its related downstream signaling molecules. Results IL-33 and its receptor ST2 were constitutively expressed in the RN in naive rats. After SNI, both IL-33 and ST2 were upregulated significantly at 3 days and peaked at 1 week post-injury, especially in RN neurons, oligodendrocytes, and microglia. Blockade of red nucleus IL-33 with anti-IL-33 neutralizing antibody attenuated SNI-induced mononeuropathic pain, while intrarubral administration of exogenous IL-33 evoked mechanical hypersensitivity in naive rats. Red nucleus IL-33 generated an algesic effect in the early development of SNI-induced mononeuropathic pain through activating NF-κB, ERK, p38 MAPK, and JAK2/STAT3, suppression of NF-κB, ERK, p38 MAPK, and JAK2/STAT3 with corresponding inhibitors markedly attenuated SNI-induced mononeuropathic pain or IL-33-evoked mechanical hypersensitivity in naive rats. Red nucleus IL-33 contributed to SNI-induced mononeuropathic pain by stimulating TNF-α expression, which could be abolished by administration of inhibitors against ERK, p38 MAPK, and JAK2/STAT3, but not NF-κB. Conclusions These results suggest that red nucleus IL-33 facilitates the early development of mononeuropathic pain through activating NF-κB, ERK, p38 MAPK, and JAK2/STAT3. IL-33 mediates algesic effect partly by inducing TNF-α through activating ERK, p38 MAPK and JAK2/STAT3. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02198-9.
Collapse
Affiliation(s)
- Hao-Nan Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Qing-Qing Yang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Wen-Tao Wang
- Biological Science BSc, Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.,Biochemistry BSc, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Fan Feng
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Shu-Ting Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Yu-Tong Xia
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Jia-Xue Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Yuan-Wu Zou
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China.
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China.
| |
Collapse
|
15
|
Zhou J, Zhuang T, Ma P, Shan L, Sun XD, Gong S, Tao J, Yu XM, Jiang X. MicroRNA-547-5p-mediated interleukin-33/suppressor of tumorigenicity 2 signaling underlies the genesis and maintenance of neuropathic pain and is targeted by the therapy with bone marrow stromal cells. Mol Pain 2021; 16:1744806920931737. [PMID: 32513089 PMCID: PMC7309409 DOI: 10.1177/1744806920931737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-33 (IL-33)/suppressor of tumorigenicity 2 (ST2) signaling is known to promote inflammation and the genesis and maintenance of neuropathic pain. However, it remained mostly unknown how IL-33/ST2 signaling can be enhanced by neuropathic stimulations. Here, we report that the chronic constriction nerve injury (CCI)-induced increases in the expression of IL-33 and ST2 and a decrease in microRNA (miRNA)-547-5p not only in the dorsal root ganglia (DRG) but also in spinal dorsal horn (SDH) ipsilateral to the CCI. We found that increasing endogenous miRNA-547-5p by the intrathecal (i.t.) infusion of agomir-miR-547-5p did not produce any effect in naive rats but blocked the CCI-induced increases in the IL-33 and ST2, and pain sensitivity. The reducing endogenous miRNA-547-5p by the i.t. delivering antagomir-miR-547-5p into naive rats caused significant changes in IL-33 and ST2 expressions in both the DRG and SDH, and pain sensitivity, which were similar to those induced by the CCI. Since increasing IL-33 by the i.t. infusion of recombinant IL-33 produced no change in the expression of miR-547-5p, and the CCI still reduced miR-547-5p expression in rats with the IL-33 knockdown, we conclude that the reduction of miR-547-5p can be an upstream event leading to the enhancement of IL-33/ST2 signaling induced by the CCI. The intravenous application of bone marrow stromal cells (BMSCs) reduced the depression of miR-547-5p in both the DRG and SDH, and pain hypersensitivity produced by the CCI or antagomir-miR547-5p application. However, the BMSC effect was significantly occluded by the pretreatment with miR-547-5p agomir or the IL-33 knockdown, demonstrating a novel mechanism underlying the BMSC therapy.
Collapse
Affiliation(s)
- Ju Zhou
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Ting Zhuang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Peng Ma
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Lidong Shan
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xiao-Dong Sun
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xian-Min Yu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Interleukin-33 modulates lipopolysaccharide-mediated inflammatory response in rat primary astrocytes. Neuroreport 2021; 32:694-701. [PMID: 33913926 DOI: 10.1097/wnr.0000000000001644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Astrocytes have a crucial role in the modulation of the neuroinflammatory response. However, the underlying mechanisms have yet to be fully defined. Interleukin-33 (IL-33) is constitutively expressed in astrocytes, which has been found to orchestrate inflammatory responses in a large variety of immune-mediated and inflammatory diseases of the nervous system. Thus, the purpose of this study was to elucidate the potential effect of IL-33 in the regulation of inflammatory response in primary cultured astrocytes. We investigated the role of IL-33 in the regulation of inflammatory responses in the lipopolysaccharide-stimulated astrocytes. This study utilized lentiviral short hairpin RNA vectors to target IL-33 (LV-shIL-33) for gene silencing. After lipopolysaccharide stimulation, the expression levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as the activation of nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) signaling pathways, were evaluated to elucidate the mechanisms related to the contributions of IL-33 to the inflammatory response in astrocytes. We found that the expression IL-33 has increased in rat primary cultured astrocytes after lipopolysaccharide stimulation. Administration of LV-shIL-33 knocked down the expression of IL-33 and markedly reduced the overexpression of spinal IL-1β, IL-6, and TNF-α, and attenuated the activation of ERK and NF-κB/p65. This study shows that IL-33 participates in regulating inflammatory responses in primary cultured astrocytes, which might provide additional targets for controlling inflammatory responses following neurological diseases. See Video abstract, http://links.lww.com/WNR/A627.
Collapse
|
17
|
Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, Mao L, Wang H, Chen Z, Yang X. Therapeutic Opportunities of Interleukin-33 in the Central Nervous System. Front Immunol 2021; 12:654626. [PMID: 34079543 PMCID: PMC8165230 DOI: 10.3389/fimmu.2021.654626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is involved in various diseases. IL-33 exerts its effects via its heterodimeric receptor complex, which comprises suppression of tumorigenicity 2 (ST2) and the IL-1 receptor accessory protein (IL-1RAP). Increasing evidence has demonstrated that IL-33/ST2 signaling plays diverse but crucial roles in the homeostasis of the central nervous system (CNS) and the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infection, trauma, and ischemic stroke. In the current review, we focus on the functional roles and cellular signaling mechanisms of IL-33 in the CNS and evaluate the potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yun Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shuang Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Fattori V, Staurengo-Ferrari L, Zaninelli TH, Casagrande R, Oliveira RD, Louzada-Junior P, Cunha TM, Alves-Filho JC, Teixeira MM, Cunha FQ, Amaral FA, Verri WA. IL-33 enhances macrophage release of IL-1β and promotes pain and inflammation in gouty arthritis. Inflamm Res 2020; 69:1271-1282. [PMID: 32886146 DOI: 10.1007/s00011-020-01399-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the role of IL-33 in gouty arthritis. MATERIAL 174 Balb/c (wild-type) and 54 ST2-/- mice were used in this study. In vitro experiments were conducted in bone marrow-derived macrophages (BMDMs). Synovial fluid samples from gouty arthritis (n = 7) and osteoarthritis (n = 8) hospital patients were used to measure IL-33 and sST2 levels. METHODS Gout was induced by injection of monosodium urate (MSU) crystals in the knee joint of mice. Pain was determined using the electronic von Frey and static weight bearing. Neutrophil recruitment was determined by H&E staining, Rosenfeld staining slides, and MPO activity. ELISA was used for cytokine and sST2 measurement. The priming effect of IL-33 was determined in BMDM. RESULTS Synovial fluid of gout patients showed higher IL-33 levels and neutrophil counts than osteoarthritis patients. In mice, the absence of ST2 prevented mechanical pain, knee joint edema, neutrophil recruitment to the knee joint, and lowered IL-1β and superoxide anion levels. In macrophages, IL-33 enhanced the release of IL-1β and TNF-α, and BMDMs from ST2-/- showed reduced levels of these cytokines after stimulus with MSU crystals. CONCLUSION IL-33 mediates gout pain and inflammation by boosting macrophages production of cytokines upon MSU crystals stimulus.
Collapse
Affiliation(s)
- Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Science, Londrina State University, Londrina, Brazil
| | - Rene D Oliveira
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flavio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil.
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, KM 380, PO Box 10.011, Londrina, Parana, 86057-970, Brazil.
| |
Collapse
|
19
|
Zeng Y, Shi Y, Zhan H, Liu W, Cai G, Zhong H, Wang Y, Chen S, Huang S, Wu W. Reduction of Silent Information Regulator 1 Activates Interleukin-33/ST2 Signaling and Contributes to Neuropathic Pain Induced by Spared Nerve Injury in Rats. Front Mol Neurosci 2020; 13:17. [PMID: 32116550 PMCID: PMC7028692 DOI: 10.3389/fnmol.2020.00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have demonstrated that interleukin (IL)-33 and its receptor ST2 act as key factors in inflammatory diseases. Moreover, accumulating evidence has suggested that cytokines, including tumor necrosis factor (TNF)-α and IL-1β, trigger an inflammatory cascade. SIRT1 has been shown to suppress the expression of inflammatory cytokines. However, the effects of SIRT1 on IL-33/ST2 signaling and initiation of the inflammatory cascade via modulation of TNF-α and IL-1β by IL-33 remain unclear. In the present study, we found that the dorsal root ganglion (DRG) IL-33 and ST2 were upregulated in a rat model of spared nerve injury (SNI) and intrathecal injection of either IL-33 or ST2 antibodies alleviated mechanical allodynia and downregulated TNF-α and IL-1β induced by SNI. In addition, activation of SIRT1 decreased enhanced DRG IL-33/ST2 signaling in SNI rats. Artificial inactivation of SIRT1 via intrathecal injection of an SIRT1 antagonist could induce mechanical allodynia and upregulate IL-33 and ST2. These results demonstrated that reduction in SIRT1 could induce upregulation of DRG IL-33 and ST2 and contribute to mechanical allodynia induced by SNI in rats.
Collapse
Affiliation(s)
- Yanyan Zeng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhan
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haili Zhong
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaping Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shangjie Chen
- Department of Rehabilitation, Baoan Hospital, Southern Medical University, Shenzhen, China
| | - Shimin Huang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Gonçalves dos Santos G, Delay L, Yaksh TL, Corr M. Neuraxial Cytokines in Pain States. Front Immunol 2020; 10:3061. [PMID: 32047493 PMCID: PMC6997465 DOI: 10.3389/fimmu.2019.03061] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
A high-intensity potentially tissue-injuring stimulus generates a homotopic response to escape the stimulus and is associated with an affective phenotype considered to represent pain. In the face of tissue or nerve injury, the afferent encoding systems display robust changes in the input-output function, leading to an ongoing sensation reported as painful and sensitization of the nociceptors such that an enhanced pain state is reported for a given somatic or visceral stimulus. Our understanding of the mechanisms underlying this non-linear processing of nociceptive stimuli has led to our appreciation of the role played by the functional interactions of neural and immune signaling systems in pain phenotypes. In pathological states, neural systems interact with the immune system through the actions of a variety of soluble mediators, including cytokines. Cytokines are recognized as important mediators of inflammatory and neuropathic pain, supporting system sensitization and the development of a persistent pathologic pain. Cytokines can induce a facilitation of nociceptive processing at all levels of the neuraxis including supraspinal centers where nociceptive input evokes an affective component of the pain state. We review here several key proinflammatory and anti-inflammatory cytokines/chemokines and explore their underlying actions at four levels of neuronal organization: (1) peripheral nociceptor termini; (2) dorsal root ganglia; (3) spinal cord; and (4) supraspinal areas. Thus, current thinking suggests that cytokines by this action throughout the neuraxis play key roles in the induction of pain and the maintenance of the facilitated states of pain behavior generated by tissue injury/inflammation and nerve injury.
Collapse
Affiliation(s)
| | - Lauriane Delay
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
21
|
Hang LH, Chen HM, Yu JM, Xu Y, Li SN. Evidence of the involvement of spinal αB-crystallin in the maintenance of bone cancer pain in rats. Pharmacol Rep 2020; 72:208-213. [PMID: 32016842 DOI: 10.1007/s43440-019-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND αB-crystallin (CRYAB) is a small heat shock protein that is able to inhibit neuroinflammatory responses under various pathological conditions. Some studies have proven that neuroinflammatory mechanisms play important roles in bone cancer pain (BCP). However, whether CRYAB participates in the maintenance of BCP has not yet been examined. METHODS Walker256 tumour cells were inoculated into the tibia to induce a rat model of BCP. Von Frey hairs were used to measure mechanical allodynia. Immunohistochemistry and western blotting were used to examine the expression level of CRYAB in the spinal dorsal horn. RESULTS The gradual development of mechanical allodynia was induced by the injection of Walker256 cells into the tibia. The downregulation of spinal CRYAB expression was found in BCP rats. The intrathecal administration of CRYAB (from days 9 to 15 post-inoculation) dose-dependently alleviated mechanical allodynia in BCP rats. Additionally, there were concomitant increases in spinal CRYAB expression and decreases in TNF-α expression. CONCLUSIONS Spinal CRYAB may participate in the maintenance of BCP in rats. The findings will help to identify new drugs for the management of BCP.
Collapse
Affiliation(s)
- Li-Hua Hang
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, 215000, Jiangsu, People's Republic of China.
| | - Hao-Ming Chen
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, 215000, Jiangsu, People's Republic of China
| | - Jian-Mang Yu
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, 215000, Jiangsu, People's Republic of China
| | - Ying Xu
- Department of Otorhinolaryngology, Xinhua Hospital Affiliated to Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Shu-Na Li
- Department of Otorhinolaryngology, Xinhua Hospital Affiliated to Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| |
Collapse
|
22
|
de Almeida AS, Rigo FK, De Prá SDT, Milioli AM, Dalenogare DP, Pereira GC, Ritter CDS, Peres DS, Antoniazzi CTDD, Stein C, Moresco RN, Oliveira SM, Trevisan G. Characterization of Cancer-Induced Nociception in a Murine Model of Breast Carcinoma. Cell Mol Neurobiol 2019; 39:605-617. [PMID: 30850915 PMCID: PMC11462836 DOI: 10.1007/s10571-019-00666-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Severe and poorly treated pain often accompanies breast cancer. Thus, novel mechanisms involved in breast cancer-induced pain should be investigated. Then, it is necessary to characterize animal models that are reliable with the symptoms and progression of the disease as observed in humans. Explaining cancer-induced nociception in a murine model of breast carcinoma was the aim of this study. 4T1 (104) lineage cells were inoculated in the right fourth mammary fat pad of female BALB/c mice; after this, mechanical and cold allodynia, or mouse grimace scale (MGS) were observed for 30 days. To determine the presence of bone metastasis, we performed the metastatic clonogenic test and measure calcium serum levels. At 20 days after tumor induction, the antinociceptive effect of analgesics used to relieve pain in cancer patients (acetaminophen, naproxen, codeine or morphine) or a cannabinoid agonist (WIN 55,212-2) was tested. Mice inoculated with 4T1 cells developed mechanical and cold allodynia and increased MGS. Bone metastasis was confirmed using the clonogenic assay, and hypercalcemia was observed 20 days after cells inoculation. All analgesic drugs reduced the mechanical and cold allodynia, while the MGS was decreased only by the administration of naproxen, codeine, or morphine. Also, WIN 55,212-2 improved all nociceptive measures. This pain model could be a reliable form to observe the mechanisms of breast cancer-induced pain or to observe the efficacy of novel analgesic compounds.
Collapse
Affiliation(s)
- Amanda Spring de Almeida
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Flávia Karine Rigo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Samira Dal-Toé De Prá
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Alessandra Marcone Milioli
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Diéssica Padilha Dalenogare
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriele Cheiran Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Camila Dos Santos Ritter
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Diulle Spat Peres
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Carolina Stein
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Rafael Noal Moresco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
23
|
Du L, Hu X, Yang W, Yasheng H, Liu S, Zhang W, Zhou Y, Cui W, Zhu J, Qiao Z, Maoying Q, Chu Y, Zhou H, Wang Y, Mi W. Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade. Glia 2019; 67:1680-1693. [PMID: 31087583 DOI: 10.1002/glia.23639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2-/- substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2-/- . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2-/- . Tnf-α upregulation was suppressed by St2-/- . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.
Collapse
Affiliation(s)
- Lixia Du
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Xueming Hu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hanikezi Yasheng
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenwen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
IL-33 in obesity: where do we go from here? Inflamm Res 2019; 68:185-194. [PMID: 30656387 DOI: 10.1007/s00011-019-01214-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
IL-33 is a cytokine that belongs to the IL-1 family and is classically associated with type 2-like immune responses. In the adipose tissue, IL-33 is related to the beiging of adipocytes and to the maintenance of adipose tissue-resident immune cells, such as innate lymphoid cells 2, alternatively activated macrophages and regulatory T cells, which contribute to the maintenance of adipose tissue homeostasis. In the obese adipose tissue, the number of these cells is diminished, unlike the expression of IL-33, which is up-regulated. However, despite its increased expression, IL-33 is not able to maintain the homeostasis of the obese adipose tissue. IL-33 treatment, on the other hand, highly improves obesity-related inflammatory and metabolic alterations. The evidence that exogenous IL-33, but not adipose tissue-driven IL-33, regulates the inflammatory process in obesity leaves a gap in the understanding of IL-33 biology. Thus, in this review we discuss the potential mechanisms associated with the impaired action of IL-33 in obesity.
Collapse
|
25
|
Li Q, Liu S, Li L, Ji X, Wang M, Zhou J. Spinal IL-36γ/IL-36R participates in the maintenance of chronic inflammatory pain through astroglial JNK pathway. Glia 2018; 67:438-451. [PMID: 30578562 DOI: 10.1002/glia.23552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Emerging evidence indicates that spinal neuroinflammation contributes to the maintenance of chronic inflammatory pain. IL-36, as a novel member of the interleukin (IL)-1 super-family cytokines, plays an important role in inflammatory responses. The present study aimed to investigate the role of spinal IL-36 and IL-36 receptor (IL-36R) signaling in the pathology of chronic inflammatory pain. IL-36γ and IL-36R, but not IL-36α and IL-36β, were persistently upregulated in the spinal cord of mice with intraplantar injections of complete Freund's adjuvant (CFA). Intrathecal administration of both IL-36R antagonist (IL-36Ra) and IL-36γ siRNA significantly attenuated CFA-induced chronic inflammatory pain behaviors. Furthermore, CFA-induced IL-36γ expression was mainly observed in spinal neurons whereas IL-36R was primarily expressed in spinal astrocytes. Additionally, the intrathecal injection of IL-36γ was sufficient to induce pain hypersensitivity and astrocyte activation in naive mice, and these effects could be inhibited by blocking c-Jun N-terminal kinase (JNK) phosphorylation. In vitro experiments also demonstrated that the IL-36γ could induce astrocytic JNK activation and inflammatory cytokines release, which was mediated by IL-36R. Finally, intrathecal injection of IL-36γ-activated astrocytes in a pJNK-dependent manner induced mechanical allodynia and thermal hyperalgesia in naive mice. Collectively, these findings reveal that the neuronal/astrocytic interaction in the spinal cord by which neuronally produced IL-36γ activates astrocytes via IL-36R-mediated JNK pathway is crucial for the maintenance of chronic inflammatory pain. Thus, IL-36γ/IL-36R-mediated astrocyte signaling may be a suitable therapeutic target for chronic inflammatory pain.
Collapse
Affiliation(s)
- Qian Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingling Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Ji
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Min Wang
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and Function of IL-33/ST2 Axis in the Central Nervous System Under Normal and Diseased Conditions. Front Immunol 2018; 9:2596. [PMID: 30515150 PMCID: PMC6255965 DOI: 10.3389/fimmu.2018.02596] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-33 (IL-33) is a well-recognized immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. The abundant expression of IL-33 in brain and spinal cord prompted many scientists to explore its unique role in the central nervous system (CNS) under physiological and pathological conditions. Indeed emerging evidence from over a decade's research suggests that IL-33 acts as one of the key molecular signaling cues coordinating the network between the immune and CNS systems, particularly during the development of neurological diseases. Here, we highlight the recent advances in our knowledge regarding the distribution and cellular localization of IL-33 and its receptor ST2 in specific CNS regions, and more importantly the key roles IL-33/ST2 signaling pathway play in CNS function under normal and diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
27
|
The Role of IL-33/ST2 Pathway in Tumorigenesis. Int J Mol Sci 2018; 19:ijms19092676. [PMID: 30205617 PMCID: PMC6164146 DOI: 10.3390/ijms19092676] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer is initiated by mutations in critical regulatory genes; however, its progression to malignancy is aided by non-neoplastic cells and molecules that create a permissive environment known as the tumor stroma or microenvironment (TME). Interleukin 33 (IL-33) is a dual function cytokine that also acts as a nuclear factor. IL-33 typically resides in the nucleus of the cells where it is expressed. However, upon tissue damage, necrosis, or injury, it is quickly released into extracellular space where it binds to its cognate receptor suppression of tumorigenicity 2 (ST2)L found on the membrane of target cells to potently activate a T Helper 2 (Th2) immune response, thus, it is classified as an alarmin. While its role in immunity and immune-related disorders has been extensively studied, its role in tumorigenesis is only beginning to be elucidated and has revealed opposing roles in tumor development. The IL-33/ST2 axis is emerging as a potent modulator of the TME. By recruiting a cohort of immune cells, it can remodel the TME to promote malignancy or impose tumor regression. Here, we review its multiple functions in various cancers to better understand its potential as a therapeutic target to block tumor progression or as adjuvant therapy to enhance the efficacy of anticancer immunotherapies.
Collapse
|
28
|
|
29
|
Huang SJ, Yan JQ, Luo H, Zhou LY, Luo JG. IL-33/ST2 signaling contributes to radicular pain by modulating MAPK and NF-κB activation and inflammatory mediator expression in the spinal cord in rat models of noncompressive lumber disk herniation. J Neuroinflammation 2018; 15:12. [PMID: 29329586 PMCID: PMC5766999 DOI: 10.1186/s12974-017-1021-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Immune and inflammatory responses occurring in the spinal cord play a pivotal role in the progression of radicular pain caused by intervertebral disk herniation. Interleukin-33 (IL-33) orchestrates inflammatory responses in a wide range of inflammatory and autoimmune disorders of the nervous system. Thus, the purpose of this study is to investigate the expression of IL-33 and its receptor ST2 in the dorsal spinal cord and to elucidate whether the inhibition of spinal IL-33 expression significantly attenuates pain-related behaviors in rat models of noncompressive lumbar disc herniation. METHODS Lentiviral vectors encoding short hairpin RNAs that target IL-33 (LV-shIL-33) were constructed for gene silencing. Rat models of noncompressive lumber disk herniation were established, and the spines of rats were injected with LV-shIL-33 (5 or 10 μl) on the first day after the operation. Mechanical thresholds were evaluated during an observation period of 21 days. Moreover, the expression levels of spinal tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase 2 (COX-2) and the activation of the mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) pathways were evaluated to gain insight into the mechanisms related to the contribution of IL-33/ST2 signaling to radicular pain. RESULTS The application of nucleus pulposus (NP) to the dorsal root ganglion (DRG) induced an increase in IL-33 and ST2 expression in the spinal cord, mainly in the dorsal horn neurons, astrocytes, and oligodendrocytes. Spinally delivered LV-shIL-33 knocked down the expression of IL-33 and markedly attenuated mechanical allodynia. In addition, spinal administration of LV-shIL-33 reduced the overexpression of spinal IL-1β, TNF-α, and COX-2 and attenuated the activation of C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and NF-κB/p65 but not p38. CONCLUSIONS This study indicates that spinal IL-33/ST2 signaling plays an important role in the development and progression of radicular pain in rat models of noncompressive lumber disk herniation. Thus, the inhibition of spinal IL-33 expression may provide a potential treatment to manage radicular pain caused by intervertebral disk herniation.
Collapse
Affiliation(s)
- Si-Jian Huang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Jian-Qin Yan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Hui Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Lu-Yao Zhou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Jian-Gang Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| |
Collapse
|
30
|
Du LX, Wang YQ, Hua GQ, Mi WL. IL-33/ST2 Pathway as a Rational Therapeutic Target for CNS Diseases. Neuroscience 2017; 369:222-230. [PMID: 29175156 DOI: 10.1016/j.neuroscience.2017.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-33 is a member of the interleukin-1 cytokine family that is produced by many different types of tissues including the central nervous system (CNS). IL-33 mediates its effects via its heterodimeric receptor complex, comprised of ST2 and the IL-1 receptor accessory protein (IL-1RAcp). As a pleiotropic nuclear cytokine, IL-33 is a crucial factor in the development of cardiovascular diseases, allergic diseases, infectious diseases, and autoimmune diseases. Recently, accumulated evidence shows that the IL-33/ST2 axis plays a crucial and diverse role in the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infectious diseases, traumatic CNS injury, chronic pain, etc. In this review, we discuss the recent findings in the cellular signaling of IL-33 and advancement of the role of IL-33 in several CNS diseases, as well as its therapeutic potential for the treatment of those diseases.
Collapse
Affiliation(s)
- Li-Xia Du
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China
| | - Guo-Qiang Hua
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China.
| |
Collapse
|
31
|
Fattori V, Hohmann MSN, Rossaneis AC, Manchope MF, Alves-Filho JC, Cunha TM, Cunha FQ, Verri WA. Targeting IL-33/ST2 signaling: regulation of immune function and analgesia. Expert Opin Ther Targets 2017; 21:1141-1152. [PMID: 29076792 DOI: 10.1080/14728222.2017.1398734] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION IL-33 signals through ST2 receptor and promotes inflammation by activating downstream pathways culminating in the production of pro-inflammatory mediators such as IL-1β, TNF-α, and IL-6 in an NF-κB-dependent manner. In fact, compelling evidence has demonstrated the importance of IL-33/ST2 in both innate and adaptive immune responses in diseases presenting pain as an important clinical symptom. Areas covered: IL-33 is a pleiotropic cytokine with varied immune functions. Dysregulation of this pathway has been described as a key step in varied immune responses. Further, IL-33 contributes to peripheral and spinal cord nociceptor neuron sensitization in innate and adaptive inflammatory immune responses as well as in neuropathic and cancer pain. In this sense, targeting IL-33/ST2 signaling is a promising therapeutic approach. Expert opinion: The modulation of IL-33/ST2 signaling represents a possible approach in regulating immune functions. In addition to immune function, strategies targeting IL-33/ST2 signaling pathway display a favorable preclinical analgesic profile in both acute and chronic models of pain. Therefore, IL-33-targeting therapies represent a potential target for the development of novel analgesic drugs given that IL-33 activates, for instance, neutrophils, mast cells, macrophages, astrocytes, and microglia that are important cells in the induction and maintenance of chronic pain states.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Miriam S N Hohmann
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Rossaneis
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Marilia F Manchope
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Jose C Alves-Filho
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
32
|
Abstract
We previously demonstrated that the chemokine receptor CXCR4 plays an important role in cancer-induced bone pain by activating spinal neurons and glial cells. However, the specific neuronal mechanism of CXCR4 signaling is not clear. We further report that CXCR4 contributes to the activation of the neuronal CaMKII/CREB pathway in cancer-induced bone pain. We used a tumor cell implantation (TCI) model and observed that CXCR4, p-CaMKII and p-CREB were persistently up-regulated in spinal neurons. CXCR4 also co-expressed with p-CaMKII and p-CREB, and mediated p-CaMKII and p-CREB expression after TCI. Intrathecal delivery of CXCR4 siRNA or CaMKII inhibitor AIP2 abrogated TCI-induced pain hypersensitivity and TCI-induced increase in p-CaMKII and p-CREB expression. Intrathecal injection of the principal ligand for CXCR4, SDF-1, promoted p-CaMKII and p-CREB expression in naive rats, which was prevented by post-administration of CXCR4 inhibitor Plerixafor or PLC inhibitor U73122. Plerixafor, U73122, or AIP2 also alleviated SDF-1-elicited pain behaviors. Intrathecal injection of CXCR4 siRNA significantly suppressed TCI-induced up-regulation of NMDAR1 mRNA and protein, which is a known gene target of CREB. Collectively, these results suggest that the CaMKII/CREB pathway in spinal neurons mediates CXCR4-facilitated pain hypersensitivity in cancer rats.
Collapse
|
33
|
Neuron-restrictive silencer factor-mediated downregulation of μ-opioid receptor contributes to the reduced morphine analgesia in bone cancer pain. Pain 2017; 158:879-890. [PMID: 28415063 PMCID: PMC5402709 DOI: 10.1097/j.pain.0000000000000848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuron-restrictive silencer factor–induced downregulation of μ-opioid receptor is involved in the reduction of morphine analgesia in sarcoma-induced bone cancer pain. Bone cancer pain has been reported to have unique mechanisms and is resistant to morphine treatment. Recent studies have indicated that neuron-restrictive silencer factor (NRSF) plays a crucial role in modulating the expression of the μ-opioid receptor (MOR) gene. The present study elucidates the regulatory mechanisms of MOR and its ability to affect bone cancer pain. Using a sarcoma-inoculated murine model, pain behaviors that represent continuous or breakthrough pain were evaluated. Expression of NRSF in the dorsal root ganglion (DRG) and spinal dorsal horn was quantified at the transcriptional and translational levels, respectively. Additionally, chromatin immunoprecipitation assays were used to detect NRSF binding to the promoter of MOR. Furthermore, NRSF was genetically knocked out by antisense oligodeoxynucleotide, and the expression of MOR and the effect of morphine were subsequently analyzed. Our results indicated that in a sarcoma murine model, NRSF expression is upregulated in dorsal root ganglion neurons, and the expression of NRSF mRNA is significantly negatively correlated with MOR mRNA expression. Additionally, chromatin immunoprecipitation analysis revealed that NRSF binding to the neuron-restrictive silencer element within the promoter area of the MOR gene is promoted with a hypoacetylation state of histone H3 and H4. Furthermore, genetically knocking down NRSF with antisense oligodeoxynucleotide rescued the expression of MOR and potentiated the systemic morphine analgesia. The present results suggest that in sarcoma-induced bone cancer pain, NRSF-induced downregulation of MOR is involved in the reduction of morphine analgesia. Epigenetically, up-regulation of MOR could substantially improve the effect of system delivery of morphine.
Collapse
|
34
|
Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, Tian YK. Targeting glia for bone cancer pain. Expert Opin Ther Targets 2016; 20:1365-1374. [PMID: 27428617 DOI: 10.1080/14728222.2016.1214716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Bone cancer pain (BCP) remains to be a clinical challenge with limited pharmaceutical interventions. Therefore, novel therapeutic targets for the management of BCP are in desperate need. Recently, a growing body of evidence has suggested that glial cells may play a pivotal role in the pathogenesis of BCP. Areas covered: This review summarizes the recent progress in the understanding of glia in BCP and reveals the potential therapeutic targets in glia for BCP treatment. Expert opinion: Pharmacological interventions inhibiting the activation of glial cells, suppressing glia-derived proinflammatory cytokines, cell surface receptors, and the intracellular signaling pathways may be beneficial for the pain management of advanced cancer patients. However, these pharmacological interventions should not disrupt the normal function of glia cells since they play a vital supportive and protective role in the central nervous system.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- c Department of Urology , Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Hui-Quan Liu
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Dai-Qiang Liu
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Shu-Ping Chen
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Da-Wei Ye
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Yu-Ke Tian
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
35
|
Nencini S, Ivanusic JJ. The Physiology of Bone Pain. How Much Do We Really Know? Front Physiol 2016; 7:157. [PMID: 27199772 PMCID: PMC4844598 DOI: 10.3389/fphys.2016.00157] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/23/2023] Open
Abstract
Pain is associated with most bony pathologies. Clinical and experimental observations suggest that bone pain can be derived from noxious stimulation of the periosteum or bone marrow. Sensory neurons are known to innervate the periosteum and marrow cavity, and most of these have a morphology and molecular phenotype consistent with a role in nociception. However, little is known about the physiology of these neurons, and therefore information about mechanisms that generate and maintain bone pain is lacking. The periosteum has received greater attention relative to the bone marrow, reflecting the easier access of the periosteum for experimental assessment. With the electrophysiological preparations used, investigators have been able to record from single periosteal units in isolation, and there is a lot of information available about how they respond to different stimuli, including those that are noxious. In contrast, preparations used to study sensory neurons that innervate the bone marrow have been limited to recording multi-unit activity in whole nerves, and whilst they clearly report responses to noxious stimulation, it is not possible to define responses for single sensory neurons that innervate the bone marrow. There is only limited evidence that peripheral sensory neurons that innervate bone can be sensitized or that they can be activated by multiple stimulus types, and at present this only exists in part for periosteal units. In the central nervous system, it is clear that spinal dorsal horn neurons can be activated by noxious stimuli applied to bone. Some can be sensitized under pathological conditions and may contribute in part to secondary or referred pain associated with bony pathology. Activity related to stimulation of sensory nerves that innervate bone has also been reported in neurons of the spinoparabrachial pathway and the somatosensory cortices, both known for roles in coding information about pain. Whilst these provide some clues as to the way information about bone pain is centrally coded, they need to be expanded to further our understanding of other central territories involved. There is a lot more to learn about the physiology of peripheral sensory neurons that innervate bone and their central projections.
Collapse
Affiliation(s)
- Sara Nencini
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
36
|
Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII–CREB and Astroglial JAK2–STAT3 Cascades in Mice. Anesthesiology 2015; 123:1154-69. [DOI: 10.1097/aln.0000000000000850] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Background
Emerging evidence indicates that nerve damage–initiated neuroinflammation and immune responses, which are evidenced by the up-regulation of proinflammatory cytokines, contribute to the development of neuropathic pain. This study investigated the role of spinal interleukin (IL)-33 and its receptor ST2 in spared nerve injury (SNI)-induced neuropathic pain.
Methods
The von Frey test and acetone test were performed to evaluate neuropathic pain behaviors (n = 8 to 12), and Western blot (n = 4 to 6), immunohistochemistry, real-time polymerase chain reaction (n = 5), and Bio-Plex (n = 5) assays were performed to understand the molecular mechanisms.
Results
Intrathecal administration of ST2-neutralizing antibody or ST2 gene knockout (ST2−/−) significantly attenuated the SNI-induced mechanical and cold allodynia. On the 7th day after SNI, the expression of spinal IL-33 and ST2 was increased by 255.8 ± 27.3% and 266.4 ± 83.5% (mean ± SD), respectively. Mechanistic studies showed that the increased expression of the spinal N-methyl-d-aspartate (NMDA) receptor subunit 1 after SNI was reduced by ST2 antibody administration or ST2−/−. The induction of nociceptive behaviors in naive mice due to recombinant IL-33 was reversed by the noncompetitive NMDA antagonist MK-801. ST2 antibody administration or ST2−/− markedly inhibited the increased activation of the astroglial janus kinase 2 (JAK2)–signal transducer and activator of transcription 3 (STAT3) cascade and the neuronal calcium–calmodulin-dependent kinase II (CaMKII)–cyclic adenosine monophosphate response element–binding protein (CREB) cascade after SNI. Moreover, intrathecal pretreatment with the CaMKII inhibitor KN-93 or the JAK2–STAT3 cascade inhibitor AG490 attenuated recombinant IL-33-induced nociceptive behaviors and NMDA subunit 1 up-regulation in naive mice.
Conclusion
Spinal IL-33/ST2 signaling contributes to neuropathic pain by activating the astroglial JAK2–STAT3 cascade and the neuronal CaMKII–CREB cascade.
Collapse
|
37
|
Chen H, Sun Y, Lai L, Wu H, Xiao Y, Ming B, Gao M, Zou H, Xiong P, Xu Y, Tan Z, Gong F, Zheng F. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice. Neuroscience 2015; 308:157-68. [DOI: 10.1016/j.neuroscience.2015.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023]
|
38
|
Zarpelon AC, Rodrigues FC, Lopes AH, Souza GR, Carvalho TT, Pinto LG, Xu D, Ferreira SH, Alves-Filho JC, McInnes IB, Ryffel B, Quesniaux VFJ, Reverchon F, Mortaud S, Menuet A, Liew FY, Cunha FQ, Cunha TM, Verri WA. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J 2015; 30:54-65. [PMID: 26310268 DOI: 10.1096/fj.14-267146] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/13/2015] [Indexed: 12/30/2022]
Abstract
Neuropathic pain from injury to the peripheral and CNS represents a major health care issue. We have investigated the role of IL-33/IL-33 receptor (ST2) signaling in experimental models of neuropathic pain in mice. Chronic constriction injury (CCI) of the sciatic nerve induced IL-33 production in the spinal cord. IL-33/citrine reporter mice revealed that oligodendrocytes are the main cells expressing IL-33 within the spinal cord together with a minor expression by neurons, microglia. and astrocytes. CCI-induced mechanical hyperalgesia was reduced in IL-33R (ST2)(-/ -) mice compared with wild-type (WT) mice. Intrathecal treatment of WT mice with soluble IL-33 receptor (IL-33 decoy receptor) markedly reduced CCI-induced hyperalgesia. Consistent with these observations, intrathecal injection of IL-33 enhanced CCI hyperalgesia and induced hyperalgesia in naive mice. IL-33-mediated hyperalgesia during CCI was dependent on a reciprocal relationship with TNF-α and IL-1β. IL-33-induced hyperalgesia was markedly attenuated by inhibitors of PI3K, mammalian target of rapamycin, MAPKs (p38, ERK, and JNK), NF-κB, and also by the inhibitors of glial cells (microglia and astrocytes). Furthermore, targeting these signaling pathways and cells inhibited IL-33-induced TNF-α and IL-1β production in the spinal cord. Our study, therefore, reveals an important role of oligodendrocyte-derived IL-33 in neuropathic pain.
Collapse
Affiliation(s)
- Ana C Zarpelon
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Francielle C Rodrigues
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Alexandre H Lopes
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Guilherme R Souza
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Thacyana T Carvalho
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Larissa G Pinto
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Damo Xu
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Sergio H Ferreira
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jose C Alves-Filho
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Iain B McInnes
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Bernhard Ryffel
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Valérie F J Quesniaux
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Flora Reverchon
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Stéphane Mortaud
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Arnaud Menuet
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Foo Y Liew
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fernando Q Cunha
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Thiago M Cunha
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Waldiceu A Verri
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Han P, Liu S, Zhang M, Zhao J, Wang Y, Wu G, Mi W. Inhibition of Spinal Interlukin-33/ST2 Signaling and Downstream ERK and JNK Pathways in Electroacupuncture Analgesia in Formalin Mice. PLoS One 2015; 10:e0129576. [PMID: 26067287 PMCID: PMC4466274 DOI: 10.1371/journal.pone.0129576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL)-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA) on formalin-induced inflammatory pain. The results showed that 1) EA stimulation of ipsilateral Zusanli (ST 36) and Yanglingquan (GB 34) acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2) subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33) significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3) EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4) the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways.
Collapse
Affiliation(s)
- Ping Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Neuroscience and Neuroengineering Center, Med-X Research Institute Shanghai Jiao Tong University, Shanghai, China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Mengting Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Gencheng Wu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Yu XX, Hu Z, Shen X, Dong LY, Zhou WZ, Hu WH. IL-33 Promotes Gastric Cancer Cell Invasion and Migration Via ST2-ERK1/2 Pathway. Dig Dis Sci 2015; 60:1265-72. [PMID: 25655003 DOI: 10.1007/s10620-014-3463-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND As a pro-inflammatory cytokine, IL-33 has been demonstrated to play an important role in tumor progression. It is reported that IL-33 is highly expressed in the serum and tumor tissues of patients with gastric cancer. However, the function of IL-33 in gastric cancer remains elusive. We here tried to elucidate the effects of IL-33 on gastric cancer cell invasion and migration. METHODS Invasion assay and migration assay were performed to assess the effects of IL-33 on gastric cancer cell invasion and migration. ST2 receptor was silenced by siRNA, and ERK1/2 pathway was inhibited by U0126. Protein levels of MMP-3 and IL-6 in cell supernatant were measured by ELISA. RESULTS IL-33 promoted the invasion and migration of gastric cancer cells, in a dose-dependent manner. Knockdown of the IL-33 receptor ST2 attenuated the IL-33-mediated invasion and migration. Furthermore, via ST2 receptor, IL-33 induced the activation of ERK1/2 and increased the secretion of MMP-3 and IL-6. In addition, blockage of ERK1/2 pathway resulted in inhibition of invasion and migration induced by IL-33, and downregulation of MMP-3 and IL-6 production. CONCLUSIONS IL-33 promotes gastric cancer cell invasion and migration by stimulating the secretion of MMP-3 and IL-6 via ST2-ERK1/2 pathway. Thus, IL-33 may be a useful marker for the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Xi-Xiang Yu
- Department of Interventional Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China,
| | | | | | | | | | | |
Collapse
|
41
|
Hang LH, Luo H, Li SN, Shu WW, Chen Z, Chen YF, Yuan JF, Shi LL, Shao DH. Involvement of Spinal Bv8/Prokineticin 2 in a Rat Model of Cancer-Induced Bone Pain. Basic Clin Pharmacol Toxicol 2015; 117:180-5. [PMID: 25641661 DOI: 10.1111/bcpt.12386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/12/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Li-Hua Hang
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Hong Luo
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Shu-Na Li
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Wei-Wei Shu
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Zheng Chen
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Yuan-Feng Chen
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Ju-Fang Yuan
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Lei-Lei Shi
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| | - Dong-Hua Shao
- Department of Anesthesiology; the Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu China
| |
Collapse
|
42
|
Pomeshchik Y, Kidin I, Korhonen P, Savchenko E, Jaronen M, Lehtonen S, Wojciechowski S, Kanninen K, Koistinaho J, Malm T. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav Immun 2015; 44:68-81. [PMID: 25153903 DOI: 10.1016/j.bbi.2014.08.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/29/2022] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic strategy for patients with acute contusion SCI.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Iurii Kidin
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Paula Korhonen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ekaterina Savchenko
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Merja Jaronen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sarka Lehtonen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sara Wojciechowski
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Katja Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
43
|
Roughan JV, Coulter CA, Flecknell PA, Thomas HD, Sufka KJ. The conditioned place preference test for assessing welfare consequences and potential refinements in a mouse bladder cancer model. PLoS One 2014; 9:e103362. [PMID: 25100208 PMCID: PMC4123882 DOI: 10.1371/journal.pone.0103362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/30/2014] [Indexed: 11/17/2022] Open
Abstract
Most pre-clinical analgesic efficacy assays still involve nociceptive testing in rodents. This is despite concerns as to the relevance of these tests for evaluating the pain-preventative properties of drugs. More appropriate methods would target pain rather than nociception, but these are currently not available, so it remains unknown whether animal pain equates to the negatively affective and subjective/emotional state it causes in humans. Mouse cancer models are common despite the likelihood of substantial pain. We used Conditioned Place Preference (CPP) testing, assessments of thermal hyperalgesia and behaviour to determine the likelihood that MBT-2 bladder cancer impacts negatively on mouse welfare, such as by causing pain. There was no CPP to saline, but morphine preference in tumour bearing mice exceeded that seen in tumour-free controls. This occurred up to 10 days before the study end-point alongside reduced body weight, development of hyperalgesia and behaviour changes. These effects indicated mice experienced a negative welfare state caused by malaise (if not pain) before euthanasia. Due to the complexity of the assessments needed to demonstrate this, it is unlikely that this approach could be used for routine welfare assessment on a study-by-study basis. However, our results show mice in sufficiently similar studies are likely to benefit from more intensive severity assessment and re-evaluation of end-points with a view to implementing appropriate refinements. In this particular case, a refinement would have been to have euthanased mice at least 7 days earlier or possibly by provision of end-stage pain relief. CPP testing was found to be a helpful method to investigate the responses of mice to analgesics, possibly on a subjective level. These findings and those of other recent studies show it could be a valuable method of screening candidate analgesics for efficacy against cancer pain and possibly other pain or disease models.
Collapse
Affiliation(s)
- John V. Roughan
- Comparative Biology Centre, The Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Claire A. Coulter
- Comparative Biology Centre, The Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Paul A. Flecknell
- Comparative Biology Centre, The Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Huw D. Thomas
- Northern Institute for Cancer Research, The Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Kenneth J. Sufka
- Research Institute of Pharmaceutical Sciences and Departments of Psychology and Pharmacology, Peabody Building, University of Mississippi, Oxford, Mississippi, United States of America
| |
Collapse
|