1
|
Lau JCY, Guilfoyle J, Crawford S, Johnson G, Landau E, Xing J, Kumareswaran M, Ethridge S, Butler M, Goldman L, Martin GE, Zhou L, Krizman J, Nicol T, Kraus N, Berry-Kravis E, Losh M. Prosodic Differences in Women with the FMR1 Premutation: Subtle Expression of Autism-Related Phenotypes Through Speech. Int J Mol Sci 2025; 26:2481. [PMID: 40141125 PMCID: PMC11942500 DOI: 10.3390/ijms26062481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Evidence suggests that carriers of FMR1 mutations (e.g., fragile X syndrome and the FMR1 premutation) may demonstrate specific phenotypic patterns shared with autism (AU), particularly in the domain of pragmatic language, which involves the use of language in social contexts. Such evidence may implicate FMR1, a high-confidence gene associated with AU, in components of the AU phenotype. Prosody (i.e., using intonation and rhythm in speech to express meaning) is a pragmatic feature widely impacted in AU. Prosodic differences have also been observed in unaffected relatives of autistic individuals and in those with fragile X syndrome, although prosody has not been extensively studied among FMR1 premutation carriers. This study investigated how FMR1 variability may specifically influence prosody by examining the prosodic characteristics and related neural processing of prosodic features in women carrying the FMR1 premutation (PM). In Study 1, acoustic measures of prosody (i.e., in intonation and rhythm) were examined in speech samples elicited from a semi-structured narrative task. Study 2 examined the neural frequency following response (FFR) as an index of speech prosodic processing. Findings revealed differences in the production of intonation and rhythm in PM carriers relative to controls, with patterns that parallel differences identified in parents of autistic individuals. No differences in neural processing of prosodic cues were found. Post hoc analyses further revealed associations between speech rhythm and FMR1 variation (number of CGG repeats) among PM carriers. Together, the results suggest that FMR1 may play a role in speech prosodic phenotypes, at least in speech production, contributing to a deeper understanding of AU-related speech and language phenotypes among FMR1 mutation carriers.
Collapse
Affiliation(s)
- Joseph C. Y. Lau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Janna Guilfoyle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Stephanie Crawford
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Grace Johnson
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Emily Landau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Jiayin Xing
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Mitra Kumareswaran
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Sarah Ethridge
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Maureen Butler
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Lindsay Goldman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Gary E. Martin
- Department of Communication Sciences and Disorders, St. John’s University, Queens, NY 11439, USA;
| | - Lili Zhou
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA; (L.Z.); (E.B.-K.)
| | - Jennifer Krizman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Trent Nicol
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Nina Kraus
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA; (L.Z.); (E.B.-K.)
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| |
Collapse
|
2
|
Gauthier DW, James N, Auerbach BD. Altered auditory feature discrimination in a rat model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638956. [PMID: 40027738 PMCID: PMC11870463 DOI: 10.1101/2025.02.18.638956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Atypical sensory processing, particularly in the auditory domain, is one of the most common and quality-of-life affecting symptoms seen in autism spectrum disorders (ASD). Fragile X Syndrome (FXS) is the leading inherited cause of ASD and a majority of FXS individuals present with auditory processing alterations. While auditory hypersensitivity is a common phenotype observed in FXS and Fmr1 KO rodent models, it is important to consider other auditory coding impairments that could contribute to sound processing difficulties and disrupted language comprehension in FXS. We have shown previously that a Fmr1 knockout (KO) rat model of FXS exhibits heightened sound sensitivity that coincided with abnormal perceptual integration of sound bandwidth, indicative of altered spectral processing. Frequency discrimination is a fundamental aspect of sound encoding that is important for a range of auditory processes, such as source segregation and speech comprehension, and disrupted frequency coding could thus contribute to a range of auditory issues in FXS and ASD. Here we explicitly characterized spectral processing deficits in male Fmr1 KO rats using an operant conditioning tone discrimination assay and in vivo electrophysiology recordings from the auditory cortex and inferior colliculus. We found that Fmr1 KO rats exhibited poorer frequency resolution, which corresponded with neuronal hyperactivity and broader frequency tuning in auditory cortical but not collicular neurons. Using an experimentally informed population model, we show that these cortical physiological differences can recapitulate the observed behavior discrimination deficits, with decoder performance being tightly linked to differences in cortical tuning width and signal-to-noise ratios. These findings suggest that cortical hyperexcitability may account for a range of auditory behavioral phenotypes in FXS, providing a potential locus for development of novel biomarkers and treatment strategies that could extend to other forms of ASD.
Collapse
Affiliation(s)
- D. Walker Gauthier
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign Urbana, Illinois, United States
- Neuroscience Program, University of Illinois Urbana-Champaign Urbana, Illinois, United States
| | - Noelle James
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign Urbana, Illinois, United States
| | - Benjamin D. Auerbach
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign Urbana, Illinois, United States
- Neuroscience Program, University of Illinois Urbana-Champaign Urbana, Illinois, United States
| |
Collapse
|
3
|
D'Antoni S, Spatuzza M, Bonaccorso CM, Catania MV. Role of fragile X messenger ribonucleoprotein 1 in the pathophysiology of brain disorders: a glia perspective. Neurosci Biobehav Rev 2024; 162:105731. [PMID: 38763180 DOI: 10.1016/j.neubiorev.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Fragile X messenger ribonucleoprotein 1 (FMRP) is a widely expressed RNA binding protein involved in several steps of mRNA metabolism. Mutations in the FMR1 gene encoding FMRP are responsible for fragile X syndrome (FXS), a leading genetic cause of intellectual disability and autism spectrum disorder, and fragile X-associated tremor-ataxia syndrome (FXTAS), a neurodegenerative disorder in aging men. Although FMRP is mainly expressed in neurons, it is also present in glial cells and its deficiency or altered expression can affect functions of glial cells with implications for the pathophysiology of brain disorders. The present review focuses on recent advances on the role of glial subtypes, astrocytes, oligodendrocytes and microglia, in the pathophysiology of FXS and FXTAS, and describes how the absence or reduced expression of FMRP in these cells can impact on glial and neuronal functions. We will also briefly address the role of FMRP in radial glial cells and its effects on neural development, and gliomas and will speculate on the role of glial FMRP in other brain disorders.
Collapse
Affiliation(s)
- S D'Antoni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - M Spatuzza
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - C M Bonaccorso
- Oasi Research Institute - IRCCS, via Conte Ruggero 73, Troina 94018, Italy
| | - M V Catania
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
4
|
Wang X, Fan Q, Yu X, Wang Y. Cellular distribution of the Fragile X mental retardation protein in the inner ear: a developmental and comparative study in the mouse, rat, gerbil, and chicken. J Comp Neurol 2023; 531:149-169. [PMID: 36222577 PMCID: PMC9691623 DOI: 10.1002/cne.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
The Fragile X mental retardation protein (FMRP) is an mRNA binding protein that is essential for neural circuit assembly and synaptic plasticity. Loss of functional FMRP leads to Fragile X syndrome (FXS), a neurodevelopmental disorder characterized by sensory dysfunction including abnormal auditory processing. While the central mechanisms of FMRP regulation have been studied in the brain, whether FMRP is expressed in the auditory periphery and how it develops and functions remains unknown. In this study, we characterized the spatiotemporal distribution pattern of FMRP immunoreactivity in the inner ear of mice, rats, gerbils, and chickens. Across species, FMRP was expressed in hair cells and supporting cells, with a particularly high level in immature hair cells during the prehearing period. Interestingly, the distribution of cytoplasmic FMRP displayed an age-dependent translocation in hair cells, and this feature was conserved across species. In the auditory ganglion (AG), FMRP immunoreactivity was detected in neuronal cell bodies as well as their peripheral and central processes. Distinct from hair cells, FMRP intensity in AG neurons was high both during development and after maturation. Additionally, FMRP was evident in mature glial cells surrounding AG neurons. Together, these observations demonstrate distinct developmental trajectories across cell types in the auditory periphery. Given the importance of peripheral inputs to the maturation of auditory circuits, these findings implicate involvement of FMRP in inner ear development as well as a potential contribution of periphery FMRP to the generation of auditory dysfunction in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Qiwei Fan
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Curnow E, Wang Y. New Animal Models for Understanding FMRP Functions and FXS Pathology. Cells 2022; 11:1628. [PMID: 35626665 PMCID: PMC9140010 DOI: 10.3390/cells11101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fragile X encompasses a range of genetic conditions, all of which result as a function of changes within the FMR1 gene and abnormal production and/or expression of the FMR1 gene products. Individuals with Fragile X syndrome (FXS), the most common heritable form of intellectual disability, have a full-mutation sequence (>200 CGG repeats) which brings about transcriptional silencing of FMR1 and loss of FMR protein (FMRP). Despite considerable progress in our understanding of FXS, safe, effective, and reliable treatments that either prevent or reduce the severity of the FXS phenotype have not been approved. While current FXS animal models contribute their own unique understanding to the molecular, cellular, physiological, and behavioral deficits associated with FXS, no single animal model is able to fully recreate the FXS phenotype. This review will describe the status and rationale in the development, validation, and utility of three emerging animal model systems for FXS, namely the nonhuman primate (NHP), Mongolian gerbil, and chicken. These developing animal models will provide a sophisticated resource in which the deficits in complex functions of perception, action, and cognition in the human disorder are accurately reflected and aid in the successful translation of novel therapeutics and interventions to the clinic setting.
Collapse
Affiliation(s)
- Eliza Curnow
- REI Division, Department of ObGyn, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Chawla A, McCullagh EA. Auditory Brain Stem Responses in the C57BL/6J Fragile X Syndrome-Knockout Mouse Model. Front Integr Neurosci 2022; 15:803483. [PMID: 35111002 PMCID: PMC8802689 DOI: 10.3389/fnint.2021.803483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Sensory hypersensitivity, especially in the auditory system, is a common symptom in Fragile X syndrome (FXS), the most common monogenic form of intellectual disability. However, linking phenotypes across genetic background strains of mouse models has been a challenge and could underly some of the issues with translatability of drug studies to the human condition. This study is the first to characterize the auditory brain stem response (ABR), a minimally invasive physiological readout of early auditory processing that is also used in humans, in a commonly used mouse background strain model of FXS, C57BL/6J. We measured morphological features of pinna and head and used ABR to measure the hearing range, and monaural and binaural auditory responses in hemizygous males, homozygous females, and heterozygous females compared with those in wild-type mice. Consistent with previous study, we showed no difference in morphological parameters across genotypes or sexes. There was no significant difference in hearing range between the sexes or genotypes, however there was a trend towards high frequency hearing loss in male FXS mice. In contrast, female mice with homozygous FXS had a decreased amplitude of wave IV of the monaural ABR, while there was no difference in males for amplitudes and no change in latency of ABR waveforms across sexes and genotypes. Finally, males with FXS had an increased latency of the binaural interaction component (BIC) at 0 interaural timing difference compared with that in wild-type males. These findings further clarify auditory brain stem processing in FXS by adding more information across genetic background strains allowing for a better understanding of shared phenotypes.
Collapse
Affiliation(s)
| | - Elizabeth A. McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
7
|
Lovelace JW, Rais M, Palacios AR, Shuai XS, Bishay S, Popa O, Pirbhoy PS, Binder DK, Nelson DL, Ethell IM, Razak KA. Deletion of Fmr1 from Forebrain Excitatory Neurons Triggers Abnormal Cellular, EEG, and Behavioral Phenotypes in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. Cereb Cortex 2021; 30:969-988. [PMID: 31364704 DOI: 10.1093/cercor/bhz141] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Fragile X syndrome (FXS) is a leading genetic cause of autism with symptoms that include sensory processing deficits. In both humans with FXS and a mouse model [Fmr1 knockout (KO) mouse], electroencephalographic (EEG) recordings show enhanced resting state gamma power and reduced sound-evoked gamma synchrony. We previously showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to these phenotypes by affecting perineuronal nets (PNNs) around parvalbumin (PV) interneurons in the auditory cortex of Fmr1 KO mice. However, how different cell types within local cortical circuits contribute to these deficits is not known. Here, we examined whether Fmr1 deletion in forebrain excitatory neurons affects neural oscillations, MMP-9 activity, and PV/PNN expression in the auditory cortex. We found that cortical MMP-9 gelatinase activity, mTOR/Akt phosphorylation, and resting EEG gamma power were enhanced in CreNex1/Fmr1Flox/y conditional KO (cKO) mice, whereas the density of PV/PNN cells was reduced. The CreNex1/Fmr1Flox/y cKO mice also show increased locomotor activity, but not the anxiety-like behaviors. These results indicate that fragile X mental retardation protein changes in excitatory neurons in the cortex are sufficient to elicit cellular, electrophysiological, and behavioral phenotypes in Fmr1 KO mice. More broadly, these results indicate that local cortical circuit abnormalities contribute to sensory processing deficits in autism spectrum disorders.
Collapse
Affiliation(s)
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine
| | | | | | | | - Otilia Popa
- Division of Biomedical Sciences, School of Medicine
| | | | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| | - David L Nelson
- Molecular and Human Genetics, Baylor College of Medicine , Houston, TX 77030, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| | - Khaleel A Razak
- Department of Psychology.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| |
Collapse
|
8
|
Yu X, Wang X, Sakano H, Zorio DAR, Wang Y. Dynamics of the fragile X mental retardation protein correlates with cellular and synaptic properties in primary auditory neurons following afferent deprivation. J Comp Neurol 2020; 529:481-500. [PMID: 32449186 DOI: 10.1002/cne.24959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Afferent activity dynamically regulates neuronal properties and connectivity in the central nervous system. The Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates cellular and synaptic properties in an activity-dependent manner. Whether and how FMRP level and localization are regulated by afferent input remains sparsely examined and how such regulation is associated with neuronal response to changes in sensory input is unknown. We characterized changes in FMRP level and localization in the chicken nucleus magnocellularis (NM), a primary cochlear nucleus, following afferent deprivation by unilateral cochlea removal. We observed rapid (within 2 hr) aggregation of FMRP immunoreactivity into large granular structures in a subset of deafferented NM neurons. Neurons that exhibited persistent FMRP aggregation at 12-24 hr eventually lost cytoplasmic Nissl substance, indicating cell death. A week later, FMRP expression in surviving neurons regained its homeostasis, with a slightly reduced immunostaining intensity and enhanced heterogeneity. Correlation analyses under the homeostatic status (7-14 days) revealed that neurons expressing relatively more FMRP had a higher capability of maintaining cell body size and ribosomal activity, as well as a better ability to detach inactive presynaptic terminals. Additionally, the intensity of an inhibitory postsynaptic protein, gephyrin, was reduced following deafferentation and was positively correlated with FMRP intensity, implicating an involvement of FMRP in synaptic dynamics in response to reduced afferent inputs. Collectively, this study demonstrates that afferent input regulates FMRP expression and localization in ways associated with multiple types of neuronal responses and synaptic rearrangements.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Xiaoyu Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.,Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China
| | - Hitomi Sakano
- Department of Otolaryngology, Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA.,Department of Otolaryngology, University of Rochester, Rochester, New York, USA
| | - Diego A R Zorio
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
9
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
10
|
Nguyen AO, Binder DK, Ethell IM, Razak KA. Abnormal development of auditory responses in the inferior colliculus of a mouse model of Fragile X Syndrome. J Neurophysiol 2020; 123:2101-2121. [PMID: 32319849 DOI: 10.1152/jn.00706.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sensory processing abnormalities are frequently associated with autism spectrum disorders, but the underlying mechanisms are unclear. Here we studied auditory processing in a mouse model of Fragile X Syndrome (FXS), a leading known genetic cause of autism and intellectual disability. Both humans with FXS and the Fragile X mental retardation gene (Fmr1) knockout (KO) mouse model show auditory hypersensitivity, with the latter showing a strong propensity for audiogenic seizures (AGS) early in development. Because midbrain abnormalities cause AGS, we investigated whether the inferior colliculus (IC) of the Fmr1 KO mice shows abnormal auditory processing compared with wild-type (WT) controls at specific developmental time points. Using antibodies against neural activity marker c-Fos, we found increased density of c-Fos+ neurons in the IC, but not auditory cortex, of Fmr1 KO mice at P21 and P34 following sound presentation. In vivo single-unit recordings showed that IC neurons of Fmr1 KO mice are hyperresponsive to tone bursts and amplitude-modulated tones during development and show broader frequency tuning curves. There were no differences in rate-level responses or phase locking to amplitude-modulated tones in IC neurons between genotypes. Taken together, these data provide evidence for the development of auditory hyperresponsiveness in the IC of Fmr1 KO mice. Although most human and mouse work in autism and sensory processing has centered on the forebrain, our new findings, along with recent work on the lower brainstem, suggest that abnormal subcortical responses may underlie auditory hypersensitivity in autism spectrum disorders.NEW & NOTEWORTHY Autism spectrum disorders (ASD) are commonly associated with sensory sensitivity issues, but the underlying mechanisms are unclear. This study presents novel evidence for neural correlates of auditory hypersensitivity in the developing inferior colliculus (IC) in Fmr1 knockout (KO) mouse, a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of ASD. Responses begin to show genotype differences between postnatal days 14 and 21, suggesting an early developmental treatment window.
Collapse
Affiliation(s)
- Anna O Nguyen
- Bioengineering Program, University of California, Riverside, California
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, California.,Division of Biomedical Sciences, University of California, Riverside, California
| | - Iryna M Ethell
- Graduate Neuroscience Program, University of California, Riverside, California.,Division of Biomedical Sciences, University of California, Riverside, California
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, California.,Psychology Department, University of California, Riverside, California
| |
Collapse
|
11
|
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020; 34:3501-3518. [PMID: 32039504 DOI: 10.1096/fj.201902435r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, Department of Communicative Disorders & Sciences, SUNY at Buffalo, Buffalo, NY, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, Berlin, Germany
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
12
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Mansour Y, Altaher W, Kulesza RJ. Characterization of the human central nucleus of the inferior colliculus. Hear Res 2019; 377:234-246. [DOI: 10.1016/j.heares.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
|
14
|
Zorio DAR, Monsma S, Sanes DH, Golding NL, Rubel EW, Wang Y. De novo sequencing and initial annotation of the Mongolian gerbil (Meriones unguiculatus) genome. Genomics 2019; 111:441-449. [PMID: 29526484 PMCID: PMC6129228 DOI: 10.1016/j.ygeno.2018.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022]
Abstract
The Mongolian gerbil (Meriones unguiculatus) is a member of the rodent family that displays several features not found in mice or rats, including sensory specializations and social patterns more similar to those in humans. These features have made gerbils a valuable animal for research studies of auditory and visual processing, brain development, learning and memory, and neurological disorders. Here, we report the whole gerbil annotated genome sequence, and identify important similarities and differences to the human and mouse genomes. We further analyze the chromosomal structure of eight genes with high relevance for controlling neural signaling and demonstrate a high degree of homology between these genes in mouse and gerbil. This homology increases the likelihood that individual genes can be rapidly identified in gerbil and used for genetic manipulations. The availability of the gerbil genome provides a foundation for advancing our knowledge towards understanding evolution, behavior and neural function in mammals. ACCESSION NUMBER: The Whole Genome Shotgun sequence data from this project has been deposited at DDBJ/ENA/GenBank under the accession NHTI00000000. The version described in this paper is version NHTI01000000. The fragment reads, and mate pair reads have been deposited in the Sequence Read Archive under BioSample accession SAMN06897401.
Collapse
Affiliation(s)
- Diego A R Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | | | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY, USA
| | - Nace L Golding
- University of Texas at Austin, Department of Neuroscience, Center for Learning and Memory, Austin, TX, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
15
|
Mansour Y, Mangold S, Chosky D, Kulesza RJ. Auditory Midbrain Hypoplasia and Dysmorphology after Prenatal Valproic Acid Exposure. Neuroscience 2019; 396:79-93. [DOI: 10.1016/j.neuroscience.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/01/2022]
|
16
|
Wang X, Zorio DAR, Schecterson L, Lu Y, Wang Y. Postsynaptic FMRP Regulates Synaptogenesis In Vivo in the Developing Cochlear Nucleus. J Neurosci 2018; 38:6445-6460. [PMID: 29950504 PMCID: PMC6052239 DOI: 10.1523/jneurosci.0665-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
A global loss of the fragile X mental retardation protein (FMRP; encoded by the Fmr1 gene) leads to sensory dysfunction and intellectual disabilities. One underlying mechanism of these phenotypes is structural and functional deficits in synapses. Here, we determined the autonomous function of postsynaptic FMRP in circuit formation, synaptogenesis, and synaptic maturation. In normal cochlea nucleus, presynaptic auditory axons form large axosomatic endbulb synapses on cell bodies of postsynaptic bushy neurons. In ovo electroporation of drug-inducible Fmr1-shRNA constructs produced a mosaicism of FMRP expression in chicken (either sex) bushy neurons, leading to reduced FMRP levels in transfected, but not neighboring nontransfected, neurons. Structural analyses revealed that postsynaptic FMRP reduction led to smaller size and abnormal morphology of individual presynaptic endbulbs at both early and later developmental stages. We further examined whether FMRP reduction affects dendritic development, as a potential mechanism underlying defective endbulb formation. Normally, chicken bushy neurons grow extensive dendrites at early stages and retract these dendrites when endbulbs begin to form. Neurons transfected with Fmr1 shRNA exhibited a remarkable delay in branch retraction, failing to provide necessary somatic surface for timely formation and growth of large endbulbs. Patch-clamp recording verified functional consequences of dendritic and synaptic deficits on neurotransmission, showing smaller amplitudes and slower kinetics of spontaneous and evoked EPSCs. Together, these data demonstrate that proper levels of postsynaptic FMRP are required for timely maturation of somatodendritic morphology, a delay of which may affect synaptogenesis and thus contribute to long-lasting deficits of excitatory synapses.SIGNIFICANCE STATEMENT Fragile X mental retardation protein (FMRP) regulates a large variety of neuronal activities. A global loss of FMRP affects neural circuit development and synaptic function, leading to fragile X syndrome (FXS). Using temporally and spatially controlled genetic manipulations, this study provides the first in vivo report that autonomous FMRP regulates multiple stages of dendritic development, and that selective reduction of postsynaptic FMRP leads to abnormal development of excitatory presynaptic terminals and compromised neurotransmission. These observations demonstrate secondary influence of developmentally transient deficits in neuronal morphology and connectivity to the development of long-lasting synaptic pathology in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Diego A R Zorio
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Leslayann Schecterson
- Department of Otolaryngology, Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195, and
| | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306,
| |
Collapse
|
17
|
Repeated Prenatal Exposure to Valproic Acid Results in Auditory Brainstem Hypoplasia and Reduced Calcium Binding Protein Immunolabeling. Neuroscience 2018; 377:53-68. [DOI: 10.1016/j.neuroscience.2018.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/13/2018] [Accepted: 02/25/2018] [Indexed: 01/01/2023]
|
18
|
Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice. eNeuro 2017; 4:eN-NWR-0264-17. [PMID: 29291238 PMCID: PMC5744645 DOI: 10.1523/eneuro.0264-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development.
Collapse
|
19
|
Martinez LA, Tejada-Simon MV. Pharmacological Rescue of Hippocampal Fear Learning Deficits in Fragile X Syndrome. Mol Neurobiol 2017; 55:5951-5961. [DOI: 10.1007/s12035-017-0819-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
|
20
|
McCullagh EA, Salcedo E, Huntsman MM, Klug A. Tonotopic alterations in inhibitory input to the medial nucleus of the trapezoid body in a mouse model of Fragile X syndrome. J Comp Neurol 2017; 525:3543-3562. [PMID: 28744893 PMCID: PMC5615817 DOI: 10.1002/cne.24290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
Hyperexcitability and the imbalance of excitation/inhibition are one of the leading causes of abnormal sensory processing in Fragile X syndrome (FXS). The precise timing and distribution of excitation and inhibition is crucial for auditory processing at the level of the auditory brainstem, which is responsible for sound localization ability. Sound localization is one of the sensory abilities disrupted by loss of the Fragile X Mental Retardation 1 (Fmr1) gene. Using triple immunofluorescence staining we tested whether there were alterations in the number and size of presynaptic structures for the three primary neurotransmitters (glutamate, glycine, and GABA) in the auditory brainstem of Fmr1 knockout mice. We found decreases in either glycinergic or GABAergic inhibition to the medial nucleus of the trapezoid body (MNTB) specific to the tonotopic location within the nucleus. MNTB is one of the primary inhibitory nuclei in the auditory brainstem and participates in the sound localization process with fast and well-timed inhibition. Thus, a decrease in inhibitory afferents to MNTB neurons should lead to greater inhibitory output to the projections from this nucleus. In contrast, we did not see any other significant alterations in balance of excitation/inhibition in any of the other auditory brainstem nuclei measured, suggesting that the alterations observed in the MNTB are both nucleus and frequency specific. We furthermore show that glycinergic inhibition may be an important contributor to imbalances in excitation and inhibition in FXS and that the auditory brainstem is a useful circuit for testing these imbalances.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Ernesto Salcedo
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Molly M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, School of Medicinen University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
21
|
Calderón-Garcidueñas L, González-González LO, Kulesza RJ, Fech TM, Pérez-Guillé G, Luna MAJB, Soriano-Rosales RE, Solorio E, Miramontes-Higuera JDJ, Gómez-Maqueo Chew A, Bernal-Morúa AF, Mukherjee PS, Torres-Jardón R, Mills PC, Wilson WJ, Pérez-Guillé B, D'Angiulli A. Exposures to fine particulate matter (PM 2.5) and ozone above USA standards are associated with auditory brainstem dysmorphology and abnormal auditory brainstem evoked potentials in healthy young dogs. ENVIRONMENTAL RESEARCH 2017; 158:324-332. [PMID: 28672130 DOI: 10.1016/j.envres.2017.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM2.5) and ozone (O3) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. METHODOLOGY Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. RESULTS MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. CONCLUSIONS MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease.
Collapse
Affiliation(s)
| | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Tatiana M Fech
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | | | | | | | | | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Paul C Mills
- The University of Queensland, QLD 4072, Australia
| | | | | | - Amedeo D'Angiulli
- Department of Psychology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
22
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña M, Alliende M. Clinical, molecular, and pharmacological aspects of FMR1 -related disorders. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2014.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
Foran L, Blackburn K, Kulesza RJ. Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate. Neuroscience 2017; 344:406-417. [DOI: 10.1016/j.neuroscience.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/29/2023]
|
24
|
Zorio DAR, Jackson CM, Liu Y, Rubel EW, Wang Y. Cellular distribution of the fragile X mental retardation protein in the mouse brain. J Comp Neurol 2017; 525:818-849. [PMID: 27539535 PMCID: PMC5558202 DOI: 10.1002/cne.24100] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/07/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known. In this study we used FMR1 knockout and isogenic wildtype mice to systematically map the distribution of FMRP expression in the entire mouse brain. Using immunocytochemistry and cellular quantification analyses, we identified a large number of prominent cell groups expressing high levels of FMRP at the subcortical levels, in particular sensory and motor neurons in the brainstem and thalamus. In contrast, many cell groups in the midbrain and hypothalamus exhibit low FMRP levels. More important, we describe differential patterns of FMRP distribution in both cortical and subcortical brain regions. Almost all major brain areas contain high and low levels of FMRP cell groups adjacent to each other or between layers of the same cortical areas. These differential patterns indicate that FMRP expression appears to be specific to individual neuronal cell groups instead of being associated with all neurons in distinct brain regions, as previously considered. Taken together, these findings support the notion of FMRP differential neuronal regulation and strongly implicate the contribution of fundamental sensory and motor processing at subcortical levels to FXS pathology. J. Comp. Neurol. 525:818-849, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A. R. Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Christine M. Jackson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Box 357923, Seattle, WA 98195, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
25
|
Call CL, Hyson RL. Activity-dependent regulation of calcium and ribosomes in the chick cochlear nucleus. Neuroscience 2016; 316:201-8. [PMID: 26739326 DOI: 10.1016/j.neuroscience.2015.12.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023]
Abstract
Cochlea removal results in the death of 20-30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). Two potentially cytotoxic events, a dramatic rise in intracellular calcium concentration ([Ca(2+)]i) and a decline in the integrity of ribosomes are observed within 1h of deafferentation. Glutamatergic input from the auditory nerve has been shown to preserve NM neuron health by activating metabotropic glutamate receptors (mGluRs), maintaining both normal [Ca(2+)]i and ribosomal integrity. One interpretation of these results is that a common mGluR-activated signaling cascade is required for the maintenance of both [Ca(2+)]i and ribosomal integrity. This could happen if both responses are influenced directly by a common messenger, or if the loss of mGluR activation causes changes in one component that secondarily causes changes in the other. The present studies tested this common-mediator hypothesis in slice preparations by examining activity-dependent regulation of [Ca(2+)]i and ribosomes in the same tissue after selectively blocking group I mGluRs (1-Aminoindan-1,5-dicarboxylic acid (AIDA)) or group II mGluRs (LY 341495) during unilateral auditory nerve stimulation. Changes in [Ca(2+)]i of NM neurons were measured using fura-2 ratiometric calcium imaging and the tissue was subsequently processed for Y10B immunoreactivity (Y10B-ir), an antibody that recognizes a ribosomal epitope. The group I mGluR antagonist blocked the activity-dependent regulation of both [Ca(2+)]i and Y10B-ir, but the group II antagonist blocked only the activity-dependent regulation of Y10B-ir. That is, even when group II receptors were blocked, stimulation continued to maintain low [Ca(2+)]i, but it did not maintain Y10B-ir. These results suggest a dissociation in how calcium and ribosomes are regulated in NM neurons and that ribosomes can be regulated through a mechanism that is independent of calcium regulation.
Collapse
Affiliation(s)
- C L Call
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - R L Hyson
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
26
|
Ruby K, Falvey K, Kulesza R. Abnormal neuronal morphology and neurochemistry in the auditory brainstem of Fmr1 knockout rats. Neuroscience 2015; 303:285-98. [DOI: 10.1016/j.neuroscience.2015.06.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/10/2015] [Accepted: 06/27/2015] [Indexed: 01/19/2023]
|
27
|
Basuta K, Schneider A, Gane L, Polussa J, Woodruff B, Pretto D, Hagerman R, Tassone F. High functioning male with fragile X syndrome and fragile X-associated tremor/ataxia syndrome. Am J Med Genet A 2015; 167A:2154-61. [DOI: 10.1002/ajmg.a.37125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/06/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Kirin Basuta
- Department of Biochemistry and Molecular Medicine; School of Medicine, University of California; Sacramento California
| | - Andrea Schneider
- MIND Institute; University of California, Davis, Medical Center; Sacramento California
- Department of Pediatrics; University of California at Davis Medical Center; Sacramento California
| | - Louise Gane
- MIND Institute; University of California, Davis, Medical Center; Sacramento California
| | - Jonathan Polussa
- MIND Institute; University of California, Davis, Medical Center; Sacramento California
- Department of Pediatrics; University of California at Davis Medical Center; Sacramento California
| | - Bryan Woodruff
- Department of Neurology; Mayo Clinic; Scottsdale Arizona
| | - Dalyir Pretto
- Department of Biochemistry and Molecular Medicine; School of Medicine, University of California; Sacramento California
| | - Randi Hagerman
- MIND Institute; University of California, Davis, Medical Center; Sacramento California
- Department of Pediatrics; University of California at Davis Medical Center; Sacramento California
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine; School of Medicine, University of California; Sacramento California
- MIND Institute; University of California, Davis, Medical Center; Sacramento California
| |
Collapse
|
28
|
Rotschafer SE, Marshak S, Cramer KS. Deletion of Fmr1 alters function and synaptic inputs in the auditory brainstem. PLoS One 2015; 10:e0117266. [PMID: 25679778 PMCID: PMC4332492 DOI: 10.1371/journal.pone.0117266] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/21/2014] [Indexed: 01/27/2023] Open
Abstract
Fragile X Syndrome (FXS), a neurodevelopmental disorder, is the most prevalent single-gene cause of autism spectrum disorder. Autism has been associated with impaired auditory processing, abnormalities in the auditory brainstem response (ABR), and reduced cell number and size in the auditory brainstem nuclei. FXS is characterized by elevated cortical responses to sound stimuli, with some evidence for aberrant ABRs. Here, we assessed ABRs and auditory brainstem anatomy in Fmr1-/- mice, an animal model of FXS. We found that Fmr1-/- mice showed elevated response thresholds to both click and tone stimuli. Amplitudes of ABR responses were reduced in Fmr1-/- mice for early peaks of the ABR. The growth of the peak I response with sound intensity was less steep in mutants that in wild type mice. In contrast, amplitudes and response growth in peaks IV and V did not differ between these groups. We did not observe differences in peak latencies or in interpeak latencies. Cell size was reduced in Fmr1-/- mice in the ventral cochlear nucleus (VCN) and in the medial nucleus of the trapezoid body (MNTB). We quantified levels of inhibitory and excitatory synaptic inputs in these nuclei using markers for presynaptic proteins. We measured VGAT and VGLUT immunolabeling in VCN, MNTB, and the lateral superior olive (LSO). VGAT expression in MNTB was significantly greater in the Fmr1-/- mouse than in wild type mice. Together, these observations demonstrate that FXS affects peripheral and central aspects of hearing and alters the balance of excitation and inhibition in the auditory brainstem.
Collapse
Affiliation(s)
- Sarah E. Rotschafer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
| | - Sonya Marshak
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 92697, United States of America
- * E-mail:
| |
Collapse
|
29
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña MI, Alliende MA. Clinical, molecular, and pharmacological aspects of FMR1 related disorders. Neurologia 2014; 32:241-252. [PMID: 25529181 DOI: 10.1016/j.nrl.2014.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/08/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fragile X syndrome, the most common inherited cause of intellectual disability, is associated with a broad spectrum of disorders across different generations of a single family. This study reviews the clinical manifestations of fragile X-associated disorders as well as the spectrum of mutations of the fragile X mental retardation 1 gene (FMR1) and the neurobiology of the fragile X mental retardation protein (FMRP), and also provides an overview of the potential therapeutic targets and genetic counselling. DEVELOPMENT This disorder is caused by expansion of the CGG repeat (>200 repeats) in the 5 prime untranslated region of FMR1, resulting in a deficit or absence of FMRP. FMRP is an RNA-binding protein that regulates the translation of several genes that are important in synaptic plasticity and dendritic maturation. It is believed that CGG repeat expansions in the premutation range (55 to 200 repeats) elicit an increase in mRNA levels of FMR1, which may cause neuronal toxicity. These changes manifest clinically as developmental problems such as autism and learning disabilities as well as neurodegenerative diseases including fragile X-associated tremor/ataxia syndrome (FXTAS). CONCLUSIONS Advances in identifying the molecular basis of fragile X syndrome may help us understand the causes of neuropsychiatric disorders, and they will probably contribute to development of new and specific treatments.
Collapse
Affiliation(s)
- A Pugin
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - V Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| | - L Santa María
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - B Curotto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - S Aliaga
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - I Salas
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - P Soto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - P Bravo
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - M I Peña
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - M A Alliende
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|