1
|
Lee H, Hikosaka O. Periaqueductal gray passes over disappointment and signals continuity of remaining reward expectancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628983. [PMID: 39763985 PMCID: PMC11702611 DOI: 10.1101/2024.12.17.628983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Disappointment is a vital factor in the learning and adjustment of strategies in reward-seeking behaviors. It helps them conserve energy in environments where rewards are scarce, while also increasing their chances of maximizing rewards by prompting them to escape to environments where richer rewards are anticipated (e.g., migration). However, another key factor in obtaining the reward is the ability to monitor the remaining possibilities of obtaining the outcome and to tolerate the disappointment in order to continue with subsequent actions. The periaqueductal gray (PAG) has been reported as one of the key brain regions in regulating negative emotions and escape behaviors in animals. The present study suggests that the PAG could also play a critical role in inhibiting escape behaviors and facilitating ongoing motivated behaviors to overcome disappointing events. We found that PAG activity is tonically suppressed by reward expectancy as animals engage in a task to acquire a reward outcome. This tonic suppression of PAG activity was sustained during a series of sequential task procedures as long as the expectancy of reward outcomes persisted. Notably, the tonic suppression of PAG activity showed a significant correlation with the persistence of animals' reward-seeking behavior while overcoming intermittent disappointing events. This finding highlights that the balance between distinct tonic signaling in the PAG, which signals remaining reward expectancy, and phasic signaling in the LHb, which signals disappointment, could play a crucial role in determining whether animals continue or discontinue reward-seeking behaviors when they encounter an unexpected negative event. This mechanism would be essential for animals to efficiently navigate complex environments with various reward volatilities and ultimately contributes to maximizing their reward acquisition.
Collapse
Affiliation(s)
- Hyunchan Lee
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| |
Collapse
|
2
|
Kim Y, Gut NK, Shiflett MW, Mena-Segovia J. Inhibition of midbrain cholinergic neurons impairs decision-making strategies during reversal learning. Front Mol Neurosci 2024; 17:1481956. [PMID: 39640944 PMCID: PMC11617536 DOI: 10.3389/fnmol.2024.1481956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The pedunculopontine nucleus (PPN) plays a role in coordinating complex behaviors and adapting to changing environmental conditions. The specific role of cholinergic neurons in PPN function is not well understood, but their ascending connectivity with basal ganglia and thalamus suggests involvement in adaptive functions. Methods We used a chemogenetic approach in ChAT::Cre rats to explore the specific contribution of PPN cholinergic neurons to behavioral flexibility, focusing on the adaptation to shifting reward contingencies in a Reversal Learning Task. Rats were first trained in a non-probabilistic reversal learning task, followed by a probabilistic phase to challenge their adaptive strategies under varying reward conditions. Results Motor functions were evaluated to confirm that behavioral observations were not confounded by motor deficits. We found that inhibition of PPN cholinergic neurons did not affect performance in the non-probabilistic condition but significantly altered the rats' ability to adapt to the probabilistic condition. Under chemogenetic inhibition, the rats showed a marked deficiency in utilizing previous trial outcomes for decision-making and an increased sensitivity to negative outcomes. Logistic regression and Q-learning models revealed that suppression of PPN cholinergic activity impaired the adaptation of decision-making strategies. Discussion Our results highlight the role of PPN cholinergic neurons in dynamically updating action-outcome expectations and adapting to new contingencies. The observed impairments in decision-making under PPN cholinergic inhibition align with cognitive deficits associated with cholinergic dysfunction in neurodegenerative disorders. These findings suggest that cholinergic neurons in the PPN are essential for maximizing rewards through the flexible updating of behavioral strategies.
Collapse
Affiliation(s)
- Yuwoong Kim
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Nadine K. Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | | | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| |
Collapse
|
3
|
Hwang SH, Park D, Lee JW, Lee SH, Kim HF. Convergent representation of values from tactile and visual inputs for efficient goal-directed behavior in the primate putamen. Nat Commun 2024; 15:8954. [PMID: 39448643 PMCID: PMC11502908 DOI: 10.1038/s41467-024-53342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Animals can discriminate diverse sensory values with a limited number of neurons, raising questions about how the brain utilizes neural resources to efficiently process multi-dimensional inputs for decision-making. Here, we demonstrate that this efficiency is achieved by reducing sensory dimensions and converging towards the value dimension essential for goal-directed behavior in the putamen. Humans and monkeys performed tactile and visual value discrimination tasks while their neural responses were examined. Value information, whether originating from tactile or visual stimuli, was found to be processed within the human putamen using fMRI. Notably, at the single-neuron level in the macaque putamen, half of the individual neurons encode values independently of sensory inputs, while the other half selectively encode tactile or visual value. The responses of bimodal value neurons correlate with value-guided finger insertion behavior in both tasks, whereas modality-selective value neurons show task-specific correlations. Simulation using these neurons reveals that the presence of bimodal value neurons enables value discrimination with a significantly reduced number of neurons compared to simulations without them. Our data indicate that individual neurons in the primate putamen process different values in a convergent manner, thereby facilitating the efficient use of constrained neural resources for value-guided behavior.
Collapse
Affiliation(s)
- Seong-Hwan Hwang
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Doyoung Park
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Institute of Psychological Sciences, Institute of Social Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Department of Psychology, College of Social Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Ji-Woo Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Sue-Hyun Lee
- Department of Psychology, College of Social Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Noftz WA, Echols EE, Beebe NL, Mellott JG, Schofield BR. Differential cholinergic innervation of lemniscal versus non-lemniscal regions of the inferior colliculus. J Chem Neuroanat 2024; 139:102443. [PMID: 38914378 PMCID: PMC11827475 DOI: 10.1016/j.jchemneu.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
The inferior colliculus (IC), a midbrain hub for integration of auditory information, receives dense cholinergic input that could modulate nearly all aspects of hearing. A key step in understanding cholinergic modulation is to identify the source(s) and termination patterns of cholinergic input. These issues have not been addressed for the IC in mice, an increasingly important model for study of hearing. We examined cholinergic inputs to the IC in adult male and female mice. We used retrograde tracing and immunochemistry to identify three sources of cholinergic innervation of the mouse IC: the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT) and the lateral paragigantocellular nucleus (LPGi). We then used Cre-dependent labeling of cholinergic neurons in normal-hearing ChAT-Cre mice to selectively label the cholinergic projections to the IC from each of the cholinergic sources. Labeling of cholinergic projections from the PPT and LDT revealed cholinergic axons and boutons terminating throughout the IC, with the ipsilateral projection being denser. Electron microscopic examination showed that these cholinergic axons can form traditional synaptic junctions with IC neurons. In separate experiments, selective labeling of cholinergic projections from the LPGi revealed bilateral projections to the IC. The LPGi axons exhibited relatively equal densities on ipsilateral and contralateral sides, but on both sides the terminations were largely restricted to the non-lemniscal regions of the IC (i.e., the dorsal cortex, lateral cortex and intercollicular tegmentum). We conclude first that cholinergic axons can form traditional synapses in the IC. In addition, lemniscal and non-lemniscal regions of the IC receive different patterns of cholinergic innervation. The lemniscal IC (IC central nucleus) is innervated by cholinergic neurons in the PPT and the LDT whereas the non-lemniscal "shell" areas of the IC are innervated by the PPT and LDT and by cholinergic neurons in the LPGi. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- William A Noftz
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Emily E Echols
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
5
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
6
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed Representations of Sound and Action in the Auditory Midbrain. J Neurosci 2024; 44:e1831232024. [PMID: 38918064 PMCID: PMC11270520 DOI: 10.1523/jneurosci.1831-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues, mice's actions, and behavioral trial outcomes, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code that reflects a joint representation of sound, actions, and task-dependent variables.
Collapse
Affiliation(s)
- Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
7
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Turner M. Neurobiological and psychological factors to depression. Int J Psychiatry Clin Pract 2024; 28:114-127. [PMID: 39101692 DOI: 10.1080/13651501.2024.2382091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Major Depressive Disorder (MDD) is a common condition with complex psychological and biological background. While its aetiology is still unclear, chronic stress stands amongst major risk factors to MDD pathogenesis. When researching on MDD, it is necessary to be familiar with the neurobiological effects of several prominent contributors to the chronic stress factor experienced across hypothalamic-pituitary-adrenal (HPA) axis, neurotransmission, immune system reflexivity, and genetic alterations. Bi-directional flow of MDD pathogenesis suggests that psychological factors produce biological effects. Here, a summary of how the MDD expresses its mechanisms of action across an overactive HPA axis, the negative impacts of reduced neurotransmitter functions, the inflammatory responses and their gene x environment interactions. This paper builds on these conceptual factors and their input towards the MDD symptomatology with a purpose of synthesising the current findings and create an integrated view of the MDD pathogenesis. Finally, relevant treatment implications will be summarised, along with recommendations to a multimodal clinical practice.
Collapse
Affiliation(s)
- Malini Turner
- School of Health, University of New England, Armidale, Australia
- Biomedical Sciences, Endeavour College of Natural Health, Brisbane, Australia
| |
Collapse
|
9
|
Schultz W. A dopamine mechanism for reward maximization. Proc Natl Acad Sci U S A 2024; 121:e2316658121. [PMID: 38717856 PMCID: PMC11098095 DOI: 10.1073/pnas.2316658121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Individual survival and evolutionary selection require biological organisms to maximize reward. Economic choice theories define the necessary and sufficient conditions, and neuronal signals of decision variables provide mechanistic explanations. Reinforcement learning (RL) formalisms use predictions, actions, and policies to maximize reward. Midbrain dopamine neurons code reward prediction errors (RPE) of subjective reward value suitable for RL. Electrical and optogenetic self-stimulation experiments demonstrate that monkeys and rodents repeat behaviors that result in dopamine excitation. Dopamine excitations reflect positive RPEs that increase reward predictions via RL; against increasing predictions, obtaining similar dopamine RPE signals again requires better rewards than before. The positive RPEs drive predictions higher again and thus advance a recursive reward-RPE-prediction iteration toward better and better rewards. Agents also avoid dopamine inhibitions that lower reward prediction via RL, which allows smaller rewards than before to elicit positive dopamine RPE signals and resume the iteration toward better rewards. In this way, dopamine RPE signals serve a causal mechanism that attracts agents via RL to the best rewards. The mechanism improves daily life and benefits evolutionary selection but may also induce restlessness and greed.
Collapse
Affiliation(s)
- Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| |
Collapse
|
10
|
Pickford J, Iosif CI, Bashir ZI, Apps R. Inhibiting cholinergic signalling in the cerebellar interpositus nucleus impairs motor behaviour. Eur J Neurosci 2024; 59:2208-2224. [PMID: 37455360 PMCID: PMC7616440 DOI: 10.1111/ejn.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
The role of neuromodulators in the cerebellum is not well understood. In particular, the behavioural significance of the cholinergic system in the cerebellum is unknown. To investigate the importance of cerebellar cholinergic signalling in behaviour, we infused acetylcholine receptor antagonists, scopolamine and mecamylamine, bilaterally into the rat cerebellum (centred on interpositus nucleus) and observed the motor effects through a battery of behavioural tests. These tests included unrewarded behaviour during open field exploration and a horizontal ladder walking task and reward-based beam walking and pellet reaching tasks. Infusion of a mix of the antagonists did not impair motor learning in the horizontal ladder walking or the reaching task but reduced spontaneous movement during open field exploration, impaired coordination during beam walking and ladder walking, led to fewer reaches in the pellet reaching task, slowed goal-directed reaching behaviour and reduced reward pellet consumption in a free access to food task. Infusion of the muscarinic antagonist scopolamine on its own resulted in deficits in motor performance and a reduction in the number of reward pellets consumed in the free access to food task. By contrast, infusion of the nicotinic antagonist mecamylamine on its own had no significant effect on any task, except beam walking traversal time, which was reduced. Together, these data suggest that acetylcholine in the cerebellar interpositus nucleus is important for the execution and coordination of voluntary movements mainly via muscarinic receptor signalling, especially in relation to reward-related behaviour.
Collapse
Affiliation(s)
- Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Morgenstern NA, Esposito MS. The Basal Ganglia and Mesencephalic Locomotor Region Connectivity Matrix. Curr Neuropharmacol 2024; 22:1454-1472. [PMID: 37559244 PMCID: PMC11097982 DOI: 10.2174/1570159x21666230809112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 08/11/2023] Open
Abstract
Although classically considered a relay station for basal ganglia (BG) output, the anatomy, connectivity, and function of the mesencephalic locomotor region (MLR) were redefined during the last two decades. In striking opposition to what was initially thought, MLR and BG are actually reciprocally and intimately interconnected. New viral-based, optogenetic, and mapping technologies revealed that cholinergic, glutamatergic, and GABAergic neurons coexist in this structure, which, in addition to extending descending projections, send long-range ascending fibers to the BG. These MLR projections to the BG convey motor and non-motor information to specific synaptic targets throughout different nuclei. Moreover, MLR efferent fibers originate from precise neuronal subpopulations located in particular MLR subregions, defining independent anatomo-functional subcircuits involved in particular aspects of animal behavior such as fast locomotion, explorative locomotion, posture, forelimb- related movements, speed, reinforcement, among others. In this review, we revised the literature produced during the last decade linking MLR and BG. We conclude that the classic framework considering the MLR as a homogeneous output structure passively receiving input from the BG needs to be revisited. We propose instead that the multiple subcircuits embedded in this region should be taken as independent entities that convey relevant and specific ascending information to the BG and, thus, actively participate in the execution and tuning of behavior.
Collapse
Affiliation(s)
- Nicolás A. Morgenstern
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Instituto De Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Maria S. Esposito
- Department of Medical Physics, Centro Atomico Bariloche, CNEA, CONICET, Av. Bustillo 9500, San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
12
|
Zhang S, Mena-Segovia J, Gut NK. Inhibitory Pedunculopontine Neurons Gate Dopamine-Mediated Motor Actions of Unsigned Valence. Curr Neuropharmacol 2024; 22:1540-1550. [PMID: 37702175 PMCID: PMC11097985 DOI: 10.2174/1570159x21666230911103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The pedunculopontine nucleus (PPN) maintains a bidirectional connectivity with the basal ganglia that supports their shared roles in the selection and execution of motor actions. Previous studies identified a role for PPN neurons in goal-directed behavior, but the cellular substrates underlying this function have not been elucidated. We recently revealed the existence of a monosynaptic GABAergic input from the PPN that inhibits dopamine neurons of the substantia nigra. Activation of this pathway interferes with the execution of learned motor sequences when the actions are rewarded, even though the inhibition of dopamine neurons did not shift the value of the action, hence suggesting executive control over the gating of behavior. OBJECTIVE To test the attributes of the inhibition of dopamine neurons by the PPN in the context of goal-directed behavior regardless of whether the outcome is positively or negatively reinforced. METHODS We delivered optogenetic stimulation to PPN GABAergic axon terminals in the substantia nigra during a battery of behavioral tasks with positive and negative valence. RESULTS Inhibition of dopamine neurons by PPN optogenetic activation during an appetitive task impaired the initiation and overall execution of the behavioral sequence without affecting the consumption of reward. During an active avoidance task, the same activation impaired the ability of mice to avoid a foot shock, but their escape response was unaffected. In addition, responses to potential threats were significantly attenuated. CONCLUSION Our results show that PPN GABAergic neurons modulate learned, goal-directed behavior of unsigned valence without affecting overall motor behavior.
Collapse
Affiliation(s)
- Sirin Zhang
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Nadine K. Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| |
Collapse
|
13
|
Wang J, Wang X, Li H, Shi L, Song N, Xie J. Updates on brain regions and neuronal circuits of movement disorders in Parkinson's disease. Ageing Res Rev 2023; 92:102097. [PMID: 38511877 DOI: 10.1016/j.arr.2023.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 03/22/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a global burden that affects more often in the elderly. The basal ganglia (BG) is believed to account for movement disorders in PD. More recently, new findings in the original regions in BG involved in motor control, as well as the new circuits or new nucleuses previously not specifically considered were explored. In the present review, we provide up-to-date information related to movement disorders and modulations in PD, especially from the perspectives of brain regions and neuronal circuits. Meanwhile, there are updates in deep brain stimulation (DBS) and other factors for the motor improvement in PD. Comprehensive understandings of brain regions and neuronal circuits involved in motor control could benefit the development of novel therapeutical strategies in PD.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Xiaoting Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Hui Li
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Limin Shi
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed representations of sound and action in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558449. [PMID: 37786676 PMCID: PMC10541616 DOI: 10.1101/2023.09.19.558449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Linking sensory input and its consequences is a fundamental brain operation. Accordingly, neural activity of neo-cortical and limbic systems often reflects dynamic combinations of sensory and behaviorally relevant variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur in brain regions upstream of the forebrain is less clear. Here, we conduct cellular-resolution 2-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues and mice's actions, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus in behaving animals, auditory midbrain neurons transmit a population code that reflects a joint representation of sound and action.
Collapse
Affiliation(s)
- GL Quass
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - MM Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - AN Ford
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - PF Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Galaj E, Barrera ED, Lynch OL, Diodati R, Thomas A, Schneider P, Lenhard H, Vashisht A, Ranaldi R. Muscarinic and NMDA Receptors in the Substantia Nigra Play a Role in Reward-Related Learning. Int J Neuropsychopharmacol 2023; 26:80-90. [PMID: 36402549 PMCID: PMC9850662 DOI: 10.1093/ijnp/pyac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Reward-related learning, where animals form associations between rewards and stimuli (i.e., conditioned stimuli [CS]) that predict or accompany those rewards, is an essential adaptive function for survival. METHODS In this study, we investigated the mechanisms underlying the acquisition and performance of conditioned approach learning with a focus on the role of muscarinic acetylcholine (mACh) and NMDA glutamate receptors in the substantia nigra (SN), a brain region implicated in reward and motor processes. RESULTS Using RNAscope in situ hybridization assays, we found that dopamine neurons of the SN express muscarinic (mACh5), NMDA2a, NMDA2b, and NMDA2d receptor mRNA but not mACh4. NMDA, but not mACh5, receptor mRNA was also found on SN GABA neurons. In a conditioned approach paradigm, rats were exposed to 3 or 7 conditioning sessions during which light/tone (CS) presentations were paired with delivery of food pellets, followed by a test session with CS-only presentations. Intra-SN microinjections of scopolamine (a mACh receptor antagonist) or AP-5 (a NMDA receptor antagonist) were made either prior to each conditioning session (to test their effects on acquisition) or prior to the CS-only test (to test their effects on expression of the learned response). Scopolamine and AP-5 produced dose-dependent significant reductions in the acquisition, but not performance, of conditioned approach. CONCLUSIONS These results suggest that SN mACh and NMDA receptors are key players in the acquisition, but not the expression, of reward-related learning. Importantly, these findings redefine the role of the SN, which has traditionally been known for its involvement in motor processes, and suggest that the SN possesses attributes consistent with a function as a hub of integration of primary reward and CS signals.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Eddy D Barrera
- The Graduate Center of the City University of New York, New York, New York, USA
| | - Olivia L Lynch
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Rachel Diodati
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Ashley Thomas
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Piper Schneider
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Hayley Lenhard
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Apoorva Vashisht
- The Graduate Center of the City University of New York, New York, New York, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, New York, USA
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| |
Collapse
|
16
|
De Waele S, Cras P, Crosiers D. Apathy in Parkinson's Disease: Defining the Park Apathy Subtype. Brain Sci 2022; 12:923. [PMID: 35884730 PMCID: PMC9313138 DOI: 10.3390/brainsci12070923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023] Open
Abstract
Apathy is a neurobehavioural symptom affecting Parkinson's disease patients of all disease stages. Apathy seems to be associated with a specific underlying non-motor disease subtype and reflects dysfunction of separate neural networks with distinct neurotransmitter systems. Due to the complicated neuropsychiatric aetiology of apathy, clinical assessment of this invalidating non-motor symptom remains challenging. We aim to summarize the current findings on apathy in Parkinson's disease and highlight knowledge gaps. We will discuss the prevalence rates across the different disease stages and suggest screening tools for clinically relevant apathetic symptoms. We will approach the fundamental knowledge on the neural networks implicated in apathy in a practical manner and formulate recommendations on patient-tailored treatment. We will discuss the Park apathy phenotype in detail, shedding light on different clinical manifestations and implications for prognosis. With this review, we strive to distil the vast available theoretical knowledge into a clinical and patient-oriented perspective.
Collapse
Affiliation(s)
- Ségolène De Waele
- Translational Neurosciences, Born-Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, 2650 Edegem, Belgium; (P.C.); (D.C.)
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Patrick Cras
- Translational Neurosciences, Born-Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, 2650 Edegem, Belgium; (P.C.); (D.C.)
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - David Crosiers
- Translational Neurosciences, Born-Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, 2650 Edegem, Belgium; (P.C.); (D.C.)
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
17
|
Kaushik P, Naudé J, Raju SB, Alexandre F. A VTA GABAergic computational model of dissociated reward prediction error computation in classical conditioning. Neurobiol Learn Mem 2022; 193:107653. [PMID: 35772681 DOI: 10.1016/j.nlm.2022.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Classical Conditioning is a fundamental learning mechanism where the Ventral Striatum is generally thought to be the source of inhibition to Ventral Tegmental Area (VTA) Dopamine neurons when a reward is expected. However, recent evidences point to a new candidate in VTA GABA encoding expectation for computing the reward prediction error in the VTA. In this system-level computational model, the VTA GABA signal is hypothesised to be a combination of magnitude and timing computed in the Peduncolopontine and Ventral Striatum respectively. This dissociation enables the model to explain recent results wherein Ventral Striatum lesions affected the temporal expectation of the reward but the magnitude of the reward was intact. This model also exhibits other features in classical conditioning namely, progressively decreasing firing for early rewards closer to the actual reward, twin peaks of VTA dopamine during training and cancellation of US dopamine after training.
Collapse
Affiliation(s)
- Pramod Kaushik
- International Institute of Information Technology, Hyderabad, India; Inria Bordeaux Sud-Ouest, Talence, France
| | - Jérémie Naudé
- Institut de Génomique Fonctionnelle, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | | | - Frédéric Alexandre
- Inria Bordeaux Sud-Ouest, Talence, France; LaBRI, University of Bordeaux, Bordeaux INP, CNRS, UMR 5800, Talence, France; Institute of Neurodegenerative Diseases, University of Bordeaux, CNRS, UMR 5293, Bordeaux, France.
| |
Collapse
|
18
|
Cholinergic neurons in the pedunculopontine nucleus guide reversal learning by signaling the changing reward contingency. Cell Rep 2022; 38:110437. [PMID: 35235804 DOI: 10.1016/j.celrep.2022.110437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
Cognitive flexibility enables effective switching between mental processes to generate appropriate responses. Cholinergic neurons (CNs) within the pedunculopontine nucleus (PPN) are associated with many functions, but their contribution to cognitive flexibility remains poorly understood. Here we measure PPN cholinergic activities using calcium indicators during the attentional set-shifting task. We find that PPN CNs exhibit increasing activities correlated with rewards during each stage and error trials in reversal stages, indicating sensitivity to rule switching. Inhibition of PPN cholinergic activity selectively impairs reversal learning, which improves with PPN CN activation. Activation of PPN CNs projecting to the substantia nigra pars compacta, mediodorsal thalamus, and parafascicular nucleus in a time-locked manner with reward improves reversal learning. Therefore, PPN CNs may encode not only reward signals but also the information of changing reward contingency that contributes to guiding reversal learning through output projections to multiple nuclei that participate in flexibility.
Collapse
|
19
|
Skvortsova V, Palminteri S, Buot A, Karachi C, Welter ML, Grabli D, Pessiglione M. A Causal Role for the Pedunculopontine Nucleus in Human Instrumental Learning. Curr Biol 2021; 31:943-954.e5. [PMID: 33352119 DOI: 10.1016/j.cub.2020.11.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023]
Abstract
A critical mechanism for maximizing reward is instrumental learning. In standard instrumental learning models, action values are updated on the basis of reward prediction errors (RPEs), defined as the discrepancy between expectations and outcomes. A wealth of evidence across species and experimental techniques has established that RPEs are signaled by midbrain dopamine neurons. However, the way dopamine neurons receive information about reward outcomes remains poorly understood. Recent animal studies suggest that the pedunculopontine nucleus (PPN), a small brainstem structure considered as a locomotor center, is sensitive to reward and sends excitatory projection to dopaminergic nuclei. Here, we examined the hypothesis that the PPN could contribute to reward learning in humans. To this aim, we leveraged a clinical protocol that assessed the therapeutic impact of PPN deep-brain stimulation (DBS) in three patients with Parkinson disease. PPN local field potentials (LFPs), recorded while patients performed an instrumental learning task, showed a specific response to reward outcomes in a low-frequency (alpha-beta) band. Moreover, PPN DBS selectively improved learning from rewards but not from punishments, a pattern that is typically observed following dopaminergic treatment. Computational analyses indicated that the effect of PPN DBS on instrumental learning was best captured by an increase in subjective reward sensitivity. Taken together, these results support a causal role for PPN-mediated reward signals in human instrumental learning.
Collapse
Affiliation(s)
- Vasilisa Skvortsova
- Motivation, Brain and Behavior (MBB) laboratory, Paris Brain Institute (ICM), Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France; INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris 75005, France; INSERM Unit 960, Université de Paris Sciences et Lettres (UP), 75005 Paris, France; Max Planck UCL Center for Computational Psychiatry and Aging, London WC1B 5EH, UK.
| | - Stefano Palminteri
- Motivation, Brain and Behavior (MBB) laboratory, Paris Brain Institute (ICM), Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France; INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris 75005, France; INSERM Unit 960, Université de Paris Sciences et Lettres (UP), 75005 Paris, France
| | - Anne Buot
- INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris 75005, France; INSERM Unit 960, Université de Paris Sciences et Lettres (UP), 75005 Paris, France
| | - Carine Karachi
- INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Neurology and Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Marie-Laure Welter
- INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Neurophysiology Department, Hôpital Universitaire de Rouen, 76000 Rouen, France
| | - David Grabli
- INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Neurology and Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Mathias Pessiglione
- Motivation, Brain and Behavior (MBB) laboratory, Paris Brain Institute (ICM), Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France; INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France.
| |
Collapse
|
20
|
Inglis JB, Valentin VV, Ashby FG. Modulation of Dopamine for Adaptive Learning: A Neurocomputational Model. COMPUTATIONAL BRAIN & BEHAVIOR 2021; 4:34-52. [PMID: 34151186 PMCID: PMC8210637 DOI: 10.1007/s42113-020-00083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There have been many proposals that learning rates in the brain are adaptive, in the sense that they increase or decrease depending on environmental conditions. The majority of these models are abstract and make no attempt to describe the neural circuitry that implements the proposed computations. This article describes a biologically detailed computational model that overcomes this shortcoming. Specifically, we propose a neural circuit that implements adaptive learning rates by modulating the gain on the dopamine response to reward prediction errors, and we model activity within this circuit at the level of spiking neurons. The model generates a dopamine signal that depends on the size of the tonically active dopamine neuron population and the phasic spike rate. The model was tested successfully against results from two single-neuron recording studies and a fast-scan cyclic voltammetry study. We conclude by discussing the general applicability of the model to dopamine mediated tasks that transcend the experimental phenomena it was initially designed to address.
Collapse
Affiliation(s)
- Jeffrey B Inglis
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara
| | - Vivian V Valentin
- Department of Psychological & Brain Sciences, University of California, Santa Barbara
| | - F Gregory Ashby
- Department of Psychological & Brain Sciences, University of California, Santa Barbara
| |
Collapse
|
21
|
Kim HF, Griggs WS, Hikosaka O. Long-Term Value Memory in the Primate Posterior Thalamus for Fast Automatic Action. Curr Biol 2020; 30:2901-2911.e3. [PMID: 32531286 DOI: 10.1016/j.cub.2020.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
The thalamus is known to process information from various brain regions and relay it to other brain regions, serving an essential role in sensory perception and motor execution. The thalamus also receives inputs from basal ganglia nuclei (BG) involved in value-based decision making, suggesting a role in the value process. We found that neurons in a particular area of the rhesus macaque posterior thalamus encoded the historical value memory of visual objects. Many of these value-coding neurons were located in the suprageniculate nucleus (SGN). This thalamic area directly received anatomical input from the superior colliculus (SC), and the neurons showed visual responses with contralateral preferences. Notably, the value discrimination activity of these thalamic neurons increased during learning, with the learned values stably retained even more than 200 days after learning. Our data indicate that single neurons in the posterior thalamus not only processed simple visual information but also represented historical values. Furthermore, our data suggest an SC-posterior thalamus-BG-SC subcortical loop circuit that encodes the historical value, enabling a quick automatic gaze by bypassing the visual cortex.
Collapse
Affiliation(s)
- Hyoung F Kim
- School of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Whitney S Griggs
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Human decisions about when to act originate within a basal forebrain-nigral circuit. Proc Natl Acad Sci U S A 2020; 117:11799-11810. [PMID: 32385157 PMCID: PMC7260969 DOI: 10.1073/pnas.1921211117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Decision-making studies often focus on brain mechanisms for selecting between goals and actions; however, another important, and often neglected, aspect of decision-making in humans concerns whether, at any given point in time, it is worth making any action at all. We showed that a considerable portion of the variance in when voluntary actions are emitted can be explained by a simple model that that takes into account key features of the current environment. By using ultrahigh-field MRI we identified a multilayered circuit in the human brain originating far beyond the medial frontal areas typically linked to human voluntary action starting in the basal forebrain and brain stem, converging in the dopaminergic midbrain, and only then projecting to striatum and cortex. Decisions about when to act are critical for survival in humans as in animals, but how a desire is translated into the decision that an action is worth taking at any particular point in time is incompletely understood. Here we show that a simple model developed to explain when animals decide it is worth taking an action also explains a significant portion of the variance in timing observed when humans take voluntary actions. The model focuses on the current environment’s potential for reward, the timing of the individual’s own recent actions, and the outcomes of those actions. We show, by using ultrahigh-field MRI scanning, that in addition to anterior cingulate cortex within medial frontal cortex, a group of subcortical structures including striatum, substantia nigra, basal forebrain (BF), pedunculopontine nucleus (PPN), and habenula (HB) encode trial-by-trial variation in action time. Further analysis of the activity patterns found in each area together with psychophysiological interaction analysis and structural equation modeling suggested a model in which BF integrates contextual information that will influence the decision about when to act and communicates this information, in parallel with PPN and HB influences, to nigrostriatal circuits. It is then in the nigrostriatal circuit that action initiation per se begins.
Collapse
|
23
|
Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nat Commun 2020; 11:1739. [PMID: 32269213 PMCID: PMC7142106 DOI: 10.1038/s41467-020-15514-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain.
Collapse
|
24
|
Ettaro R, Markovic T, Daniels D, MacLaren DA, Clark SD. Microinjection of urotensin II into the pedunculopontine tegmentum leads to an increase in the consumption of sweet tastants. Physiol Behav 2020; 215:112775. [PMID: 31843472 DOI: 10.1016/j.physbeh.2019.112775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022]
Abstract
The pedunculopontine tegmentum (PPTg) plays a role in processing multiple sensory inputs and innervates brain regions associated with reward-related behaviors. The urotensin II receptor, activated by the urotensin II peptide (UII), is selectively expressed by the cholinergic neurons of the PPTg. Although the exact function of cholinergic neurons of the PPTg is unknown, they are thought to contribute to the perception of reward magnitude or salience detection. We hypothesized that the activation of PPTg cholinergic neurons would alter sensory processing across multiple modalities (ex. taste and hearing). Here we had three aims: first, determine if cholinergic activation is involved in consumption behavior of palatable solutions (sucrose). Second, if so, distinguish the impact of the caloric value by using saccharin, a zero calorie sweetener. Lastly, we tested the UII-mediated effects on perception of acoustic stimuli by measuring acoustic startle reflex (ASR). Male Sprague-Dawley rats were bilaterally cannulated into the PPTg, then placed under food restriction lasting the entire consumption experiment (water ad lib.). Treatment consisted of a microinjection of either 1 μL of aCSF or 1 μL of 10 μM UII into the PPTg, and the rats were immediately given access to either sucrose or saccharin. For the remaining five days, rats were allowed one hour access per day to the same sweet solution without any further treatments. During the saccharin experiment rats were tested in a contact lickometer which recorded each individual lick to give insight into the microstructure of the consumption behavior. ASR testing consisted of a baseline (no treatment), treatment day, and two additional days (no treatment). Immediately following the microinjection of UII, consumption of both saccharin and sucrose increased compared to controls. This significant increase persisted for days after the single administration of UII, but there was no generalized arousal or increase in water consumption between testing sessions. The effects on ASR were not significant. Activating cholinergic PPTg neurons may lead to a miscalculation of the salience of external stimuli, implicating the importance of cholinergic input in modulating a variety of behaviors. The long-lasting effects seen after UII treatment support further research into the role of sensory processing on reward related-behaviors at the level of the PPTg cholinergic neurons.
Collapse
Affiliation(s)
- Robert Ettaro
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Tamara Markovic
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Derek Daniels
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY 14214, United States
| | - Duncan Aa MacLaren
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
25
|
Vitale F, Capozzo A, Mazzone P, Scarnati E. Neurophysiology of the pedunculopontine tegmental nucleus. Neurobiol Dis 2019. [DOI: 10.1016/j.nbd.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Jerzemowska G, Plucińska K, Piwka A, Ptaszek K, Podlacha M, Orzeł-Gryglewska J. NMDA receptor modulation of the pedunculopontine tegmental nucleus underlies the motivational drive for feeding induced by midbrain dopaminergic neurons. Brain Res 2019; 1715:134-147. [PMID: 30914249 DOI: 10.1016/j.brainres.2019.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
The mesolimbic system, particularly the somatodendritic ventral tegmental area (VTA), is responsible for the positive reinforcing aspects of various homeostatic stimuli. In turn, the pedunculopontine tegmental nucleus (PPN) is anatomically and functionally connected with the VTA and substantia nigra (SN). In the present study, we investigated the role of glutamate receptors in the PPN in motivated behaviors by using a model of feeding induced by electrical stimulation of the VTA in male Wistar rats (n = 80). We found that injection of 2.5/5 µg dizocilpine (MK-801; NMDA receptor antagonist) to the PPN significantly reduced the feeding response induced by unilateral VTA-stimulation. This reaction was significantly impaired after local injection of MK-801 into the PPN in the ipsilateral rather than the contralateral hemisphere. After NMDA injection (2/3 µg) to the PPN we did not observe behavioral changes, only a trend of a lengthening/shortening of the latency to a feeding reaction at the highest dose of NMDA (3 µg). Immunohistochemical TH+/c-Fos+ analysis revealed a decrease in the number of TH+ cells in the midbrain (VTA-SN) in all experimental groups and altered activity of c-Fos+ neurons in selected brain structures depending on drug type (MK-801/NMDA) and injection site (ipsi-/contralateral hemisphere). Additionally, the pattern of TH+/c-Fos+ expression showed lateralization of feeding circuit functional connectivity. We conclude that the level of NMDA receptor arousal in the PPN regulates the activity of the midbrain dopaminergic cells, and the PPN-VTA circuit may be important in the regulation of motivational aspects of food intake.
Collapse
Affiliation(s)
- Grażyna Jerzemowska
- Department of Animal and Human Physiology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland.
| | - Karolina Plucińska
- Department of Animal and Human Physiology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland
| | - Aleksandra Piwka
- Department of Animal and Human Physiology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland
| | - Kacper Ptaszek
- Department of Animal and Human Physiology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland
| | - Jolanta Orzeł-Gryglewska
- Department of Animal and Human Physiology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland
| |
Collapse
|
27
|
Chen R, Puzerey PA, Roeser AC, Riccelli TE, Podury A, Maher K, Farhang AR, Goldberg JH. Songbird Ventral Pallidum Sends Diverse Performance Error Signals to Dopaminergic Midbrain. Neuron 2019; 103:266-276.e4. [PMID: 31153647 DOI: 10.1016/j.neuron.2019.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
Motor skills improve with practice, requiring outcomes to be evaluated against ever-changing performance benchmarks, yet it remains unclear how performance error signals are computed. Here, we show that the songbird ventral pallidum (VP) is required for song learning and sends diverse song timing and performance error signals to the ventral tegmental area (VTA). Viral tracing revealed inputs to VP from auditory and vocal motor thalamus, auditory and vocal motor cortex, and VTA. Our findings show that VP circuits, commonly associated with hedonic functions, signal performance error during motor sequence learning.
Collapse
Affiliation(s)
- Ruidong Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Andrea C Roeser
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Tori E Riccelli
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Archana Podury
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kamal Maher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Alexander R Farhang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Structure and function of the mesencephalic locomotor region in normal and parkinsonian primates. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Hong S, Amemori S, Chung E, Gibson DJ, Amemori KI, Graybiel AM. Predominant Striatal Input to the Lateral Habenula in Macaques Comes from Striosomes. Curr Biol 2018; 29:51-61.e5. [PMID: 30554903 DOI: 10.1016/j.cub.2018.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Striosomes, neurochemically specialized modules in the striatum, are thought to be nodes in circuits extending, via basal ganglia pathways, from mood-related neocortical regions to dopamine-containing neurons of the substantia nigra. Yet striosomes have remained beyond the reach of electrophysiological methods to identify them, especially in non-human primates. Such work is needed for translational as well as for basic science. Here we introduce a method to identify striosomes on-line in awake, behaving macaques. We combined electrical microstimulation of the striatum with simultaneous electrophysiological recording in the lateral habenula (LHb) followed by immunohistochemistry. We demonstrate that striosomes provide the predominant striatal input to the macaque pallido-habenular circuit, which is known to function in relation to reinforcement signaling. Further, our experiments suggest that striosomes from different striatal regions may convergently influence the lateral habenula. This work now opens the way to defining the functions of striosomes in behaving primates in relation to mood, motivation, and action.
Collapse
Affiliation(s)
- Simon Hong
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoko Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Chung
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel J Gibson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ken-Ichi Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Hakubi Center for Advanced Research and Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacol Biochem Behav 2018; 174:9-22. [DOI: 10.1016/j.pbb.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/17/2017] [Accepted: 05/01/2017] [Indexed: 11/21/2022]
|
31
|
di Volo M, Morozova EO, Lapish CC, Kuznetsov A, Gutkin B. Dynamical ventral tegmental area circuit mechanisms of alcohol-dependent dopamine release. Eur J Neurosci 2018; 50:2282-2296. [PMID: 30215874 DOI: 10.1111/ejn.14147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
Abstract
A large body of data has identified numerous molecular targets through which ethanol (EtOH) acts on brain circuits. Yet how these multiple mechanisms interact to result in dysregulated dopamine (DA) release under the influence of alcohol in vivo remains unclear. In this manuscript, we delineate potential circuit-level mechanisms responsible for EtOH-dependent dysregulation of DA release from the ventral tegmental area (VTA) into its projection areas. For this purpose, we constructed a circuit model of the VTA that integrates realistic Glutamatergic (Glu) inputs and reproduces DA release observed experimentally. We modelled the concentration-dependent effects of EtOH on its principal VTA targets. We calibrated the model to reproduce the inverted U-shape dose dependence of DA neuron activity on EtOH concentration. The model suggests a primary role of EtOH-induced boost in the Ih and AMPA currents in the DA firing-rate/bursting increase. This is counteracted by potentiated GABA transmission that decreases DA neuron activity at higher EtOH concentrations. Thus, the model connects well-established in vitro pharmacological EtOH targets with its in vivo influence on neuronal activity. Furthermore, we predict that increases in VTA activity produced by moderate EtOH doses require partial synchrony and relatively low rates of the Glu afferents. We propose that the increased frequency of transient (phasic) DA peaks evoked by EtOH results from synchronous population bursts in VTA DA neurons. Our model predicts that the impact of acute ETOH on dopamine release is critically shaped by the structure of the cortical inputs to the VTA.
Collapse
Affiliation(s)
- Matteo di Volo
- Unité de Neurosciences, Information et Complexité, CNRS, Gif-sur-Yvette, France.,Group for Neural Theory, LNC INSERM U960, DEC Ecole Normale Superieure PSL University, Paris, France
| | | | - Christopher C Lapish
- Addiction Neuroscience Program, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alexey Kuznetsov
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Boris Gutkin
- Group for Neural Theory, LNC INSERM U960, DEC Ecole Normale Superieure PSL University, Paris, France.,Center for Cognition and Decision Making, NRU HSE, Moscow, Russia
| |
Collapse
|
32
|
Thevathasan W, Moro E. What is the therapeutic mechanism of pedunculopontine nucleus stimulation in Parkinson's disease? Neurobiol Dis 2018; 128:67-74. [PMID: 29933055 DOI: 10.1016/j.nbd.2018.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
Abstract
Pedunculopontine nucleus (PPN) deep brain stimulation (DBS) is an experimental treatment for Parkinson's disease (PD) which offers a fairly circumscribed benefit for gait freezing and perhaps balance impairment. The benefit on gait freezing is variable and typically incomplete, which may reflect that the clinical application is yet to be optimised or reflect a fundamental limitation of the therapeutic mechanism. Thus, a better understanding of the therapeutic mechanism of PPN DBS may guide the further development of this therapy. The available evidence supports that the PPN is underactive in PD due to a combination of both degeneration and excessive inhibition. Low frequency PPN DBS could enhance PPN network activity, perhaps via disinhibition. A clinical implication is that in some PD patients, the PPN may be too degenerate for PPN DBS to work. Reaction time studies report that PPN DBS mediates a very specific benefit on pre-programmed movement. This seems relevant to the pathophysiology of gait freezing, which can be argued to reflect impaired release of pre-programmed adjustments to locomotion. Thus, the benefit of PPN DBS on gait freezing could be akin to that mediated by external cues. Alpha band activity is a prominent finding in local field potential recordings from PPN electrodes in PD patients. Alpha band activity is implicated in the suppression of task irrelevant processes and thus the effective allocation of attention (processing resources). Attentional deficits are prominent in patients with PD and gait freezing and PPN alpha activity has been observed to drop out prior to gait freezing episodes and to increase with levodopa. This raises the hypothesis that PPN DBS could support or emulate PPN alpha activity and consequently enhance the allocation of attention. Although PPN DBS has not been convincingly shown to increase general alertness or attention, it remains possible that PPN DBS may enhance the allocation of processing resources within the motor system, or "motor attention". For example, this could facilitate the 'switching' of motor state between continuation of pattern generated locomotion towards the intervention of pre-programmed adjustments. However, if the downstream consequence of PPN DBS on movement is limited to a circumscribed unblocking of pre-programmed movement, then this may have a similarly circumscribed degree of benefit for gait. If this is the case, then it may be possible to identify patients who may benefit most from PPN DBS. For example, those in whom pre-programmed deficits are the major contributors to gait freezing.
Collapse
Affiliation(s)
- Wesley Thevathasan
- Departments of Neurology, Royal Melbourne Hospital and Austin Hospitals, University of Melbourne, Australia and the Bionics Institute of Australia, Melbourne, Australia
| | - Elena Moro
- Movement Disorders Center, Division of Neurology, CHU Grenoble, Grenoble Alpes University, INSERM U1214, Grenoble, France.
| |
Collapse
|
33
|
Kamiński J, Mamelak AN, Birch K, Mosher CP, Tagliati M, Rutishauser U. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation. Curr Biol 2018; 28:1333-1343.e4. [PMID: 29657115 PMCID: PMC5973539 DOI: 10.1016/j.cub.2018.03.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/13/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding.
Collapse
Affiliation(s)
- Jan Kamiński
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Kurtis Birch
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Michele Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
34
|
Direct localisation of the human pedunculopontine nucleus using MRI: a coordinate and fibre-tracking study. Eur Radiol 2018. [PMID: 29532240 DOI: 10.1007/s00330-017-5299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To image the pedunculopontine tegmental nucleus (PPN), a deep brain stimulation (DBS) target for Parkinson disease, using MRI with validated results. METHODS This study used the MP2RAGE sequence with high resolution and enhanced grey-white matter contrast on a 7-T ultra-high-field MRI system to image the PPN as well as a diffusion spectrum imaging method on a 3-T MRI system to reconstruct the main fibre systems surrounding the PPN. The coordinates of the rostral and caudal PPN poles of both sides were measured in relation to the third and fourth ventricular landmarks on the 7-T image. RESULTS The boundary of the PPN was delineated, and showed morphology consistent with previous histological works. The main fibres around the PPN were reconstructed. The pole coordinate results combined with the fibre spatial relationships validate the imaging results. CONCLUSIONS A practical protocol is provided to directly localise the PPN using MRI; the position and morphology of the PPN can be obtained and validated by locating its poles relative to two ventricular landmarks and by inspecting its spatial relationship with the surrounding fibre systems. This technique can be potentially used in clinics to define the boundary of the PPN before DBS surgery for treatment of Parkinson disease in a more precise and reliable manner. KEY POINTS • Combined information helps localise the PPN as a DBS target for PD patients • Scan the PPN at 7 T and measure its coordinates against different ventricular landmarks • Reconstruct the main fibres around the PPN using diffusion spectrum imaging.
Collapse
|
35
|
Mazzone P, Vitale F, Capozzo A, Viselli F, Scarnati E. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Improves Static Balance in Parkinson’s Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Avery MC, Krichmar JL. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments. Front Neural Circuits 2017; 11:108. [PMID: 29311844 PMCID: PMC5744617 DOI: 10.3389/fncir.2017.00108] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders.
Collapse
Affiliation(s)
- Michael C Avery
- SNL-R, Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jeffrey L Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
37
|
Abstract
Dopamine neurons encode errors in reward prediction, yet understanding how they integrate information from different subcortical inputs to generate these signals has remained elusive. In this issue of Neuron, Tian et al. (2016) shed new light onto these underlying mechanisms.
Collapse
Affiliation(s)
- Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
38
|
Galtieri DJ, Estep CM, Wokosin DL, Traynelis S, Surmeier DJ. Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. eLife 2017; 6:30352. [PMID: 28980939 PMCID: PMC5643088 DOI: 10.7554/elife.30352] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022] Open
Abstract
Burst spiking in substantia nigra pars compacta (SNc) dopaminergic neurons is a key signaling event in the circuitry controlling goal-directed behavior. It is widely believed that this spiking mode depends upon an interaction between synaptic activation of N-methyl-D-aspartate receptors (NMDARs) and intrinsic oscillatory mechanisms. However, the role of specific neural networks in burst generation has not been defined. To begin filling this gap, SNc glutamatergic synapses arising from pedunculopotine nucleus (PPN) neurons were characterized using optical and electrophysiological approaches. These synapses were localized exclusively on the soma and proximal dendrites, placing them in a good location to influence spike generation. Indeed, optogenetic stimulation of PPN axons reliably evoked spiking in SNc dopaminergic neurons. Moreover, burst stimulation of PPN axons was faithfully followed, even in the presence of NMDAR antagonists. Thus, PPN-evoked burst spiking of SNc dopaminergic neurons in vivo may not only be extrinsically triggered, but extrinsically patterned as well.
Collapse
Affiliation(s)
- Daniel J Galtieri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Chad M Estep
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Stephen Traynelis
- Department of Pharmacology, Emory University, Atlanta, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
39
|
Mena-Segovia J, Bolam JP. Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function. Neuron 2017; 94:7-18. [PMID: 28384477 DOI: 10.1016/j.neuron.2017.02.027] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
The pedunculopontine nucleus (PPN) has long been considered an interface between the basal ganglia and motor systems, and its ability to regulate arousal states puts the PPN in a key position to modulate behavior. Despite the large amount of data obtained over recent decades, a unified theory of its function is still incomplete. By putting together classical concepts and new evidence that dissects the influence of its different neuronal subtypes on their various targets, we propose that the PPN and, in particular, cholinergic neurons have a central role in updating the behavioral state as a result of changes in environmental contingencies. Such a function is accomplished by a combined mechanism that simultaneously restrains ongoing obsolete actions while it facilitates new contextual associations.
Collapse
Affiliation(s)
- Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
| | - J Paul Bolam
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
40
|
Cholinergic circuits in cognitive flexibility. Neuroscience 2017; 345:130-141. [DOI: 10.1016/j.neuroscience.2016.09.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 01/10/2023]
|
41
|
Gallea C, Ewenczyk C, Degos B, Welter ML, Grabli D, Leu-Semenescu S, Valabregue R, Berroir P, Yahia-Cherif L, Bertasi E, Fernandez-Vidal S, Bardinet E, Roze E, Benali H, Poupon C, François C, Arnulf I, Lehéricy S, Vidailhet M. Pedunculopontine network dysfunction in Parkinson's disease with postural control and sleep disorders. Mov Disord 2017; 32:693-704. [DOI: 10.1002/mds.26923] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Cecile Gallea
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle, ICM; Paris France
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Claire Ewenczyk
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
- Assistance Publique Hôpitaux de Paris (APHP), INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière; Paris France
| | - Bertrand Degos
- AP-HP, Centre Inter-Régional de Coordination de la Maladie de Parkinson, Hôpital de la Pitié Salpêtrière, Département des Maladies du Système Nerveux; Paris France
| | - Marie-Laure Welter
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
- AP-HP, Centre Inter-Régional de Coordination de la Maladie de Parkinson, Hôpital de la Pitié Salpêtrière, Département des Maladies du Système Nerveux; Paris France
| | - David Grabli
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
- AP-HP, Centre Inter-Régional de Coordination de la Maladie de Parkinson, Hôpital de la Pitié Salpêtrière, Département des Maladies du Système Nerveux; Paris France
| | - Smaranda Leu-Semenescu
- Inserm, U 1127; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
- Sleep Disorders Unit, Pitié-Salpêtrière Hospital, AP-HP; Paris France
| | - Romain Valabregue
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle, ICM; Paris France
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Pierre Berroir
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle, ICM; Paris France
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Lydia Yahia-Cherif
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle, ICM; Paris France
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Eric Bertasi
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle, ICM; Paris France
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Sara Fernandez-Vidal
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle, ICM; Paris France
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Eric Bardinet
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle, ICM; Paris France
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Emmanuel Roze
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
- Assistance Publique Hôpitaux de Paris (APHP), INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière; Paris France. AP-HP, Centre Inter-Régional de Coordination de la Maladie de Parkinson, Hôpital de la Pitié Salpêtrière, Département des Maladies du Système Nerveux; Paris France
| | - Habib Benali
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
| | - Cyril Poupon
- CEA Saclay, Neurospin/LNAO; Gif sur Yvette France
| | - Chantal François
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Isabelle Arnulf
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
- Sleep Disorders Unit, Pitié-Salpêtrière Hospital, AP-HP; Paris France
| | - Stéphane Lehéricy
- Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle, ICM; Paris France
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
| | - Marie Vidailhet
- Inserm, U 1127; Paris France
- CNRS, UMR 7225; Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; Paris France
- Assistance Publique Hôpitaux de Paris (APHP), INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière; Paris France. AP-HP, Centre Inter-Régional de Coordination de la Maladie de Parkinson, Hôpital de la Pitié Salpêtrière, Département des Maladies du Système Nerveux; Paris France
| |
Collapse
|
42
|
Sébille SB, Belaid H, Philippe AC, André A, Lau B, François C, Karachi C, Bardinet E. Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates. Neuroimage 2016; 147:66-78. [PMID: 27956208 DOI: 10.1016/j.neuroimage.2016.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/26/2023] Open
Abstract
The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information.
Collapse
Affiliation(s)
- Sophie B Sébille
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
| | - Hayat Belaid
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Anne-Charlotte Philippe
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
| | - Arthur André
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Brian Lau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
| | - Chantal François
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
| | - Carine Karachi
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Eric Bardinet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France.
| |
Collapse
|
43
|
Okada KI, Kobayashi Y. Reward and Behavioral Factors Contributing to the Tonic Activity of Monkey Pedunculopontine Tegmental Nucleus Neurons during Saccade Tasks. Front Syst Neurosci 2016; 10:94. [PMID: 27891082 PMCID: PMC5104745 DOI: 10.3389/fnsys.2016.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/03/2016] [Indexed: 01/24/2023] Open
Abstract
The pedunculopontine tegmental nucleus (PPTg) in the brainstem plays a role in controlling reinforcement learning and executing conditioned behavior. We previously examined the activity of PPTg neurons in monkeys during a reward-conditioned, visually guided saccade task, and reported that a population of these neurons exhibited tonic responses throughout the task period. These tonic responses might depend on prediction of the upcoming reward, successful execution of the task, or both. Here, we sought to further distinguish these factors and to investigate how each contributes to the tonic neuronal activity of the PPTg. In our normal visually guided saccade task, the monkey initially fixated on the central fixation target (FT), then made saccades to the peripheral saccade target and received a juice reward after the saccade target disappeared. Most of the tonic activity terminated shortly after the reward delivery, when the monkey broke fixation. To distinguish between reward and behavioral epochs, we then changed the task sequence for a block of trials, such that the saccade target remained visible after the reward delivery. Under these visible conditions, the monkeys tended to continue fixating on the saccade target even after the reward delivery. Therefore, the prediction of the upcoming reward and the end of an individual trial were separated in time. Regardless of the task conditions, half of the tonically active PPTg neurons terminated their activity around the time of the reward delivery, consistent with the view that PPTg neurons might send reward prediction signals until the time of reward delivery, which is essential for computing reward prediction error in reinforcement learning. On the other hand, the other half of the tonically active PPTg neurons changed their activity dependent on the task condition. In the normal condition, the tonic responses terminated around the time of the reward delivery, while in the visible condition, the activity continued until the disappearance of the saccade target (ST) after reward delivery. Thus, for these neurons, the tonic activity might be related to maintaining attention to complete fixation behavior. These results suggest that, in addition to the reward value information, some PPTg neurons might contribute to the execution of conditioned task behavior.
Collapse
Affiliation(s)
- Ken-Ichi Okada
- Laboratories for Neuroscience, Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan
| | - Yasushi Kobayashi
- Laboratories for Neuroscience, Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan; Research Center for Behavioral Economics, Osaka UniversityOsaka, Japan
| |
Collapse
|
44
|
Mori F, Okada KI, Nomura T, Kobayashi Y. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia. Front Neuroanat 2016; 10:109. [PMID: 27872585 PMCID: PMC5097925 DOI: 10.3389/fnana.2016.00109] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson’s disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.
Collapse
Affiliation(s)
- Fumika Mori
- Laboratories for Neuroscience Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology and Osaka UniversityOsaka, Japan
| | - Ken-Ichi Okada
- Laboratories for Neuroscience Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology and Osaka UniversityOsaka, Japan
| | - Taishin Nomura
- Bio-Dynamics Group, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University Osaka, Japan
| | - Yasushi Kobayashi
- Laboratories for Neuroscience Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology and Osaka UniversityOsaka, Japan; Research Center for Behavioral Economics, Osaka UniversityOsaka, Japan
| |
Collapse
|
45
|
|
46
|
Tian J, Huang R, Cohen JY, Osakada F, Kobak D, Machens CK, Callaway EM, Uchida N, Watabe-Uchida M. Distributed and Mixed Information in Monosynaptic Inputs to Dopamine Neurons. Neuron 2016; 91:1374-1389. [PMID: 27618675 DOI: 10.1016/j.neuron.2016.08.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 07/25/2016] [Indexed: 01/29/2023]
Abstract
Dopamine neurons encode the difference between actual and predicted reward, or reward prediction error (RPE). Although many models have been proposed to account for this computation, it has been difficult to test these models experimentally. Here we established an awake electrophysiological recording system, combined with rabies virus and optogenetic cell-type identification, to characterize the firing patterns of monosynaptic inputs to dopamine neurons while mice performed classical conditioning tasks. We found that each variable required to compute RPE, including actual and predicted reward, was distributed in input neurons in multiple brain areas. Further, many input neurons across brain areas signaled combinations of these variables. These results demonstrate that even simple arithmetic computations such as RPE are not localized in specific brain areas but, rather, distributed across multiple nodes in a brain-wide network. Our systematic method to examine both activity and connectivity revealed unexpected redundancy for a simple computation in the brain.
Collapse
Affiliation(s)
- Ju Tian
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Ryan Huang
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeremiah Y Cohen
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Fumitaka Osakada
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Dmitry Kobak
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Christian K Machens
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Edward M Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
47
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
48
|
Yau HJ, Wang DV, Tsou JH, Chuang YF, Chen BT, Deisseroth K, Ikemoto S, Bonci A. Pontomesencephalic Tegmental Afferents to VTA Non-dopamine Neurons Are Necessary for Appetitive Pavlovian Learning. Cell Rep 2016; 16:2699-2710. [PMID: 27568569 DOI: 10.1016/j.celrep.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 07/31/2016] [Indexed: 12/23/2022] Open
Abstract
The ventral tegmental area (VTA) receives phenotypically distinct innervations from the pedunculopontine tegmental nucleus (PPTg). While PPTg-to-VTA inputs are thought to play a critical role in stimulus-reward learning, direct evidence linking PPTg-to-VTA phenotypically distinct inputs in the learning process remains lacking. Here, we used optogenetic approaches to investigate the functional contribution of PPTg excitatory and inhibitory inputs to the VTA in appetitive Pavlovian conditioning. We show that photoinhibition of PPTg-to-VTA cholinergic or glutamatergic inputs during cue presentation dampens the development of anticipatory approach responding to the food receptacle during the cue. Furthermore, we employed in vivo optetrode recordings to show that photoinhibition of PPTg cholinergic or glutamatergic inputs significantly decreases VTA non-dopamine (non-DA) neural activity. Consistently, photoinhibition of VTA non-DA neurons disrupts the development of cue-elicited anticipatory approach responding. Taken together, our study reveals a crucial regulatory mechanism by PPTg excitatory inputs onto VTA non-DA neurons during appetitive Pavlovian conditioning.
Collapse
Affiliation(s)
- Hau-Jie Yau
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
| | - Dong V Wang
- Neurocircuitry of Motivation Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Jen-Hui Tsou
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang-Ming University, Taipei 112, Taiwan
| | - Billy T Chen
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
49
|
Affiliation(s)
- Hailan Hu
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310012, People's Republic of China;
- Center for Neuroscience, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
50
|
Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci 2016; 19:1025-33. [PMID: 27348215 DOI: 10.1038/nn.4335] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/27/2016] [Indexed: 02/08/2023]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.
Collapse
|