1
|
Gallardo-Caballero M, Rodríguez-Moreno CB, Álvarez-Méndez L, Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rábano A, Llorens-Martín M. Prolonged fixation and post-mortem delay impede the study of adult neurogenesis in mice. Commun Biol 2023; 6:978. [PMID: 37741930 PMCID: PMC10517969 DOI: 10.1038/s42003-023-05367-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN) gives rise to new neurons throughout life. This phenomenon takes place in more than 120 mammalian species, including humans, yet its occurrence in the latter was questioned after one study proposed the putative absence of neurogenesis markers in the adult human hippocampus. In this regard, we showed that prolonged fixation impedes the visualization of Doublecortin+ immature neurons in this structure, whereas other authors have suggested that a dilated post-mortem delay (PMD) underlies these discrepancies. Nevertheless, the individual and/or additive contribution of fixation and the PMD to the detection (or lack thereof) of other AHN markers has not been studied to date. To address this pivotal question, we used a tightly controlled experimental design in mice, which allowed the dissection of the relative contribution of the aforementioned factors to the visualization of markers of individual AHN stages. Fixation time emerged as the most prominent factor globally impeding the study of this process in mice. Moreover, the visualization of other particularly sensitive epitopes was further prevented by prolonged PMD. These results are crucial to disambiguate current controversies related to the occurrence of AHN not only in humans but also in other mammalian species.
Collapse
Affiliation(s)
- M Gallardo-Caballero
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - C B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - L Álvarez-Méndez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - M Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - E P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - M Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rodríguez-Moreno CB, Márquez-Valadez B, Gallardo-Caballero M, Rábano A, Llorens-Martín M. Methods to study adult hippocampal neurogenesis in humans and across the phylogeny. Hippocampus 2023; 33:271-306. [PMID: 36259116 PMCID: PMC7614361 DOI: 10.1002/hipo.23474] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
The hippocampus hosts the continuous addition of new neurons throughout life-a phenomenon named adult hippocampal neurogenesis (AHN). Here we revisit the occurrence of AHN in more than 110 mammalian species, including humans, and discuss the further validation of these data by single-cell RNAseq and other alternative techniques. In this regard, our recent studies have addressed the long-standing controversy in the field, namely whether cells positive for AHN markers are present in the adult human dentate gyrus (DG). Here we review how we developed a tightly controlled methodology, based on the use of high-quality brain samples (characterized by short postmortem delays and ≤24 h of fixation in freshly prepared 4% paraformaldehyde), to address human AHN. We review that the detection of AHN markers in samples fixed for 24 h required mild antigen retrieval and chemical elimination of autofluorescence. However, these steps were not necessary for samples subjected to shorter fixation periods. Moreover, the detection of labile epitopes (such as Nestin) in the human hippocampus required the use of mild detergents. The application of this strictly controlled methodology allowed reconstruction of the entire AHN process, thus revealing the presence of neural stem cells, proliferative progenitors, neuroblasts, and immature neurons at distinct stages of differentiation in the human DG. The data reviewed here demonstrate that methodology is of utmost importance when studying AHN by means of distinct techniques across the phylogenetic scale. In this regard, we summarize the major findings made by our group that emphasize that overlooking fundamental technical principles might have consequences for any given research field.
Collapse
Affiliation(s)
- Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Berenice Márquez-Valadez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Gallardo-Caballero
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department, CIEN Foundation, Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
3
|
Titova NV, Bezdolny YN, Katunina EA. [Asthenia, mental fatigue and cognitive dysfunction]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:38-47. [PMID: 37315240 DOI: 10.17116/jnevro202312305138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conditions associated with asthenia are usually characterized by increased fatigue, impaired activities of daily living and decreased productivity. In clinical practice it is important to distinguish between idiopathic chronic fatigue (primary or functional asthenia) and chronic fatigue syndrome (CFS). Fatigue can also be classified by neuromuscular and/or cognitive and mental fatigue. The article discusses the neuroanatomical basis and focuses on the neurocognitive theory of pathological fatigue. In addition the relationship between mental stress, fatigue and cognitive impairments such as subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) are also discussed. We discuss the rationale that for treatment of asthenic conditions accompanied by cognitive dysfunction it is justified to use combination therapy - fonturacetam and a preparation containing nicotinoyl-GABA and Ginkgo Biloba.
Collapse
Affiliation(s)
- N V Titova
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - E A Katunina
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Azeez IA, Awogbindin IO, Olayinka JN, Folarin RO, Adamu AS, Ior LD, Shehu AM, Mukhtar AI, Ajeigbe OF, Emokpae AO, Usende IL, Babatunde BR, Yusha'u Y, Olateju OI, Kamoga R, Benson AIO, Oparaji KC, Owemidu IO, Iliyasu MO, Imam MI, Olopade JO. Neural stem cell research in Africa: current realities and future prospects. Biol Open 2022; 11:280534. [PMID: 36326097 PMCID: PMC9641530 DOI: 10.1242/bio.059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural stem cells (NSCs) are immature progenitor cells that are found in developing and adult brains that have the potential of dividing actively and renewing themselves, with a complex form of gene expression. The generation of new brain cells in adult individuals was initially considered impossible, however, the landmark discovery of human neural stem cells in the hippocampus has been followed by further discoveries in other discreet regions of the brain. Investigation into the current state in Africa of the research and use of NSCs shows relatively limited activities on the continent. Information on the African application of NSCs for modelling disease mechanisms, drug discovery, and therapeutics is still limited. The International Brain Research Organization (IBRO)-African Regional Committee (ARC), with support from the Company of Biologists, and the Movement Disorder Society, sponsored the first African Basic School on NSC in Ibadan, Nigeria, with the vision of bringing together young neuroscientists and physicians across different fields in neuroscience to learn from leaders who have applied NSCs in stem cell research, the pathophysiology of neurodegenerative diseases, neuroanatomy, and neurotherapeutics. Twenty early-career researchers in academic institutions at junior and senior faculty cadres were selected from South Africa, Uganda and Nigeria. The students and organizer of the school, who wrote this review on the state of NSCs research in Africa, recommended the following: (1) other African countries can take a cue from South Africa and Nigeria in probing the phenomena of adult neurogenesis in unique animal species on the continent; (2) Africa should leverage the expertise and facilities of South African scientists and international collaborators in scaling up NSC research into these unique species and (3) Centers of Excellence should be established on the continent to serve as research hubs for training postgraduate students, and facilities for African scientists who trained overseas on NSCs.
Collapse
Affiliation(s)
- Idris A. Azeez
- Department of Veterinary Anatomy, University of Jos 1 , Jos, 930001 Nigeria
| | | | - Juliet N. Olayinka
- Department of Pharmacology and Therapeutics, Afe Babalola University 3 , Ado-Ekiti, 360001 Nigeria
| | - Royhaan O. Folarin
- Department of Anatomy, Olabisi Onabanjo University 4 , Ago-Iwoye, 120107 Nigeria
| | - Abubakar S. Adamu
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Lydia D. Ior
- Department of Pharmacology, University of Jos 6 , Jos, 930001 , Nigeria
| | - Asmau M. Shehu
- Department of Human Anatomy, Federal University Dutse 7 , Dutse, 720223 , Nigeria
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Abubakar I. Mukhtar
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Olufunke F. Ajeigbe
- Elizade University, Ilara-Mokin, 340112 9 Department of Physical and Chemical Sciences, Biochemistry Programme , , Nigeria
| | | | - Ifukibot L. Usende
- Department of Veterinary Anatomy, University of Abuja 11 , Abuja, 900105 , Nigeria
| | | | - Yusuf Yusha'u
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - Oladiran I. Olateju
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Ronald Kamoga
- Department of Pharmacology and Therapeutics, Mbarara University of Science and Technology 13 , Mbarara P.O. Box 1410 , Uganda
| | - Ayoola I. O. Benson
- Department of Human Anatomy, Elizade University, Ilara-Mokin 14 , Abakaliki, 482131 Nigeria
| | - Kenneth C. Oparaji
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike 15 , Abakaliki, 482131 , Nigeria
| | - Idowu O. Owemidu
- Department of Physiology, Kogi State University 16 , Anyigba, 272102 , Nigeria
| | - Musa O. Iliyasu
- Department of Anatomy, Kogi State University 17 , Anyigba, 272102 , Nigeria
| | - Maryam I. Imam
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan 18 , Ibadan, 200005 , Nigeria
| |
Collapse
|
5
|
Bartkowska K, Tepper B, Turlejski K, Djavadian R. Postnatal and Adult Neurogenesis in Mammals, Including Marsupials. Cells 2022; 11:cells11172735. [PMID: 36078144 PMCID: PMC9455070 DOI: 10.3390/cells11172735] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/11/2022] Open
Abstract
In mammals, neurogenesis occurs during both embryonic and postnatal development. In eutherians, most brain structures develop embryonically; conversely, in marsupials, a number of brain structures develop after birth. The exception is the generation of granule cells in the dentate gyrus, olfactory bulb, and cerebellum of eutherian species. The formation of these structures starts during embryogenesis and continues postnatally. In both eutherians and marsupials, neurogenesis continues in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus of the hippocampal formation throughout life. The majority of proliferated cells from the SVZ migrate to the olfactory bulb, whereas, in the dentate gyrus, cells reside within this structure after division and differentiation into neurons. A key aim of this review is to evaluate advances in understanding developmental neurogenesis that occurs postnatally in both marsupials and eutherians, with a particular emphasis on the generation of granule cells during the formation of the olfactory bulb, dentate gyrus, and cerebellum. We debate the significance of immature neurons in the piriform cortex of young mammals. We also synthesize the knowledge of adult neurogenesis in the olfactory bulb and the dentate gyrus of marsupials by considering whether adult-born neurons are essential for the functioning of a given area.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Beata Tepper
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Ruzanna Djavadian
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
6
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Błaszczyk I, Bogus K, Łasut-Szyszka B, Krzystanek M, Worthington JJ. Effect of Escitalopram on the Number of DCX-Positive Cells and NMUR2 Receptor Expression in the Rat Hippocampus under the Condition of NPSR Receptor Blockade. Pharmaceuticals (Basel) 2022; 15:631. [PMID: 35631458 PMCID: PMC9143903 DOI: 10.3390/ph15050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular interactions between the activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of adult neurogenesis and the expression of noncanonical stress-related neuropeptides such as neuromedin U (NMU). The present work therefore focused on immunoexpression of neuromedin U receptor 2 (NMUR2) and doublecortin (DCX) in the rat hippocampus after acute treatment with escitalopram and in combination with selective neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 10 mg/kg daily), escitalopram + SHA-68, a selective NPSR antagonist (at single dose 40 mg/kg), SHA-68 alone, and corresponding vehicle control. All animals were sacrificed under halothane anaesthesia. The whole hippocampi were quickly excised, fixed, and finally sliced for general qualitative immunohistochemical assessment of the NPSR and NMUR2 expression. The number of immature neurons was enumerated using immunofluorescent detection of doublecortin (DCX) expression within the subgranular zone (SGZ). RESULTS Acute escitalopram administration affects the number of DCX and NMUR2-expressing cells in the adult rat hippocampus. A decreased number of DCX-expressing neuroblasts after treatment with escitalopram was augmented by SHA-68 coadministration. CONCLUSIONS Early pharmacological effects of escitalopram may be at least partly connected with local NPSR-related alterations of neuroblast maturation in the rat hippocampus. Escitalopram may affect neuropeptide and DCX-expression starting even from the first dose. Adult neurogenesis may be regulated via paracrine neuropeptide S and NMU-related signaling.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland;
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Marek Krzystanek
- Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Ziolowa 45/47, 40-635 Katowice, Poland;
| | - John J. Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK;
| |
Collapse
|
7
|
Evidences for Adult Hippocampal Neurogenesis in Humans. J Neurosci 2021; 41:2541-2553. [PMID: 33762406 DOI: 10.1523/jneurosci.0675-20.2020] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The rodent hippocampus generates new neurons throughout life. This process, named adult hippocampal neurogenesis (AHN), is a striking form of neural plasticity that occurs in the brains of numerous mammalian species. Direct evidence of adult neurogenesis in humans has remained elusive, although the occurrence of this phenomenon in the human dentate gyrus has been demonstrated in seminal studies and recent research that have applied distinct approaches to birthdate newly generated neurons and to validate markers of adult-born neurons. Our data point to the persistence of AHN until the 10th decade of human life, as well as to marked impairments in this process in patients with Alzheimer's disease. Moreover, our work demonstrates that the methods used to process and analyze postmortem human brain samples can limit the detection of various markers of AHN to the point of making them undetectable. In this Dual Perspectives article, we highlight the critical methodological aspects that should be strictly controlled in human studies and the robust evidence that supports the occurrence of AHN in humans. We also put forward reasons that may account for current discrepancies on this topic. Finally, the unresolved questions and future challenges awaiting the field are highlighted.
Collapse
|
8
|
Chawana R, Patzke N, Bhagwandin A, Kaswera-Kyamakya C, Gilissen E, Bertelsen MF, Hemingway J, Manger PR. Adult hippocampal neurogenesis in Egyptian fruit bats from three different environments: Are interpretational variations due to the environment or methodology? J Comp Neurol 2020; 528:2994-3007. [PMID: 32112418 DOI: 10.1002/cne.24895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/10/2023]
Abstract
We quantified both proliferative (Ki-67 immunohistochemistry) and immature (doublecortin immunohistochemistry) cells within the dentate gyrus of adult Egyptian fruit bats from three distinct environments: (a) primary rainforest, (b) subtropical woodland, and (c) fifth-generation captive-bred. We used four different previously reported methods to assess the effect of the environment on proliferative and immature cells: (a) the comparison of raw totals of proliferative and immature cells; (b) these totals standardized to brain mass; (c) these totals expressed as a density using the volume of the granular cell layer (GCLv) for standardization; and (d) these totals expressed as a percentage of the total number of granule cells. For all methods, the numbers of proliferative cells did not differ statistically among the three groups, indicating that the rate of proliferation, while malleable to experimental manipulation or transiently in response to events of importance in the natural habitat, appears to occur, for the most part, at a predetermined rate within a species. For the immature cells, raw numbers and standardizations to brain mass and GCLv revealed no difference between the three groups studied; however, standardization to total granule cell numbers indicated that the two groups of wild-caught bats had significantly higher numbers of immature neurons than the captive-bred bats. These contrasting results indicate that the interpretation of the effect of the environment on the numbers of immature neurons appears method dependent. It is possible that current methods are not sensitive enough to reveal the effect of different environments on proliferative and immature cells.
Collapse
Affiliation(s)
- Richard Chawana
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium.,Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Jason Hemingway
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
9
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
10
|
|
11
|
Lazutkin A, Podgorny O, Enikolopov G. Modes of division and differentiation of neural stem cells. Behav Brain Res 2019; 374:112118. [PMID: 31369774 DOI: 10.1016/j.bbr.2019.112118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 01/09/2023]
Abstract
Hippocampal neurogenesis presents an unorthodox form of neuronal plasticity and may be relevant for the normal or abnormal functioning of the human and animal brain. As production of new neurons decreases after birth, purposefully activating stem cells to create additional new neurons may augment brain function or slow a disease's progression. Here, we describe current models of hippocampal stem cell maintenance and differentiation, and emphasize key features of neural stem cells' turnover that may define hippocampal neurogenesis enhancement attempts' long-term consequences. We argue that even the basic blueprint of how stem cells are maintained, divide, differentiate, and are eliminated is still contentious, with different models potentially leading to vastly different outcomes in regard to neuronal production and stem cell pool preservation. We propose that to manipulate neurogenesis for a long-term benefit, we must first understand the outline of the neural stem cells' lifecycle.
Collapse
Affiliation(s)
- Alexander Lazutkin
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States; Moscow Institute of Physics and Technology, Moscow, Russia; P.K. Anokhin Institute for Normal Physiology, Moscow, Russia
| | - Oleg Podgorny
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States; Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
12
|
Oppenheim RW. Adult Hippocampal Neurogenesis in Mammals (and Humans): The Death of a Central Dogma in Neuroscience and its Replacement by a New Dogma. Dev Neurobiol 2019; 79:268-280. [DOI: 10.1002/dneu.22674] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Ronald W. Oppenheim
- Department of Neurobiology and Anatomy, The Neuroscience Program Wake Forest School of Medicine Medical Center Blvd. Winston‐Salem NC 27157‐1010
| |
Collapse
|
13
|
Validation of hippocampal biomarkers of cumulative affective experience. Neurosci Biobehav Rev 2019; 101:113-121. [PMID: 30951763 PMCID: PMC6525303 DOI: 10.1016/j.neubiorev.2019.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/29/2022]
Abstract
Recent knowledge on hippocampal structural plasticity is reviewed. This knowledge is harnessed to develop biomarkers of cumulative experience. Hippocampal plasticity is shown to have construct, content and criterion validity in mammals. The biomarkers require further validation to be used in birds and fish. We discuss some practical considerations to implement the biomarkers.
Progress in improving the welfare of captive animals has been hindered by a lack of objective indicators to assess the quality of lifetime experience, often called cumulative affective experience. Recent developments in stress biology and psychiatry have shed new light on the role of the mammalian hippocampus in affective processes. Here we review these findings and argue that structural hippocampal biomarkers demonstrate criterion, construct and content validity as indicators of cumulative affective experience in mammals. We also briefly review emerging findings in birds and fish, which have promising implications for applying the hippocampal approach to these taxa, but require further validation. We hope that this review will motivate welfare researchers and neuroscientists to explore the potential of hippocampal biomarkers of cumulative affective experience.
Collapse
|
14
|
Imam A, Bhagwandin A, Ajao MS, Ihunwo AO, Manger PR. The brain of the tree pangolin (Manis tricuspis). IV. The hippocampal formation. J Comp Neurol 2019; 527:2393-2412. [PMID: 30592043 DOI: 10.1002/cne.24620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Employing a range of standard and immunohistochemical stains we provide a description of the hippocampal formation in the brain of the tree pangolin. For the most part, the architecture, chemical neuroanatomy, and topological relationships of the component parts of the hippocampal formation of the tree pangolin were consistent with that observed in other mammalian species. Within the hippocampus proper fields CA1, 3, and 4 could be identified with certainty, while CA2 was tentatively identified as a small transitional zone between the CA1 and CA3 fields. Within the dentate gyrus evidence for adult hippocampal neurogenesis at a rate comparable to other mammals was observed. The subicular complex and entorhinal cortex also exhibited divisions typically observed in other mammalian species. In contrast to many other mammals, an architecturally and neurochemically distinct CA4 field was observed, supporting Lorente de Nó's proposed CA4 field, at least in some mammalian species. In addition, up to seven laminae were evident in the dentate gyrus. Calretinin immunostaining revealed the three sublamina of the molecular layer, while immunostaining for vesicular glutamate transporter 2 and neurofilament H indicate that the granule cell layer was composed of two sublamina. The similarities and differences observed in the tree pangolin indicate that the hippocampal formation is an anatomically and neurochemically conserved neural unit in mammalian evolution, but minor changes may relate to specific life history features and habits of species.
Collapse
Affiliation(s)
- Aminu Imam
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
15
|
Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisén J. Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell 2018; 23:25-30. [PMID: 29681514 DOI: 10.1016/j.stem.2018.04.004] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Renewed discussion about whether or not adult neurogenesis exists in the human hippocampus, and the nature and strength of the supporting evidence, has been reignited by two prominently published reports with opposite conclusions. Here, we summarize the state of the field and argue that there is currently no reason to abandon the idea that adult-generated neurons make important functional contributions to neural plasticity and cognition across the human lifespan.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and CRTD (Center for Regenerative Therapies Dresden), Technische Universität Dresden, Dresden, Germany.
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Hongjun Song
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Sandrine Thuret
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - H Georg Kuhn
- University of Gothenburg, Institute for Neuroscience and Physiology, Section for Clinical Neuroscience, Gothenburg, Sweden; Charité - Universitätsmedizin Berlin, Neurocure Cluster of Excellence, Berlin, Germany
| | | | - Paul W Frankland
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5GOA4, Canada
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Rene Hen
- Departments of Neuroscience and Psychiatry, Columbia University, New York, NY, USA
| | - D Nora Abrous
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Nicolas Toni
- Lausanne University Hospital, Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne, Switzerland
| | | | - Xinyu Zhao
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Paul J Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, the Netherlands
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
16
|
Fasemore TM, Patzke N, Kaswera-Kyamakya C, Gilissen E, Manger PR, Ihunwo AO. The Distribution of Ki-67 and Doublecortin-Immunopositive Cells in the Brains of Three Strepsirrhine Primates: Galago demidoff, Perodicticus potto, and Lemur catta. Neuroscience 2017; 372:46-57. [PMID: 29289719 DOI: 10.1016/j.neuroscience.2017.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022]
Abstract
This study investigated the pattern of adult neurogenesis throughout the brains of three prosimian primate species using immunohistochemical techniques for endogenous markers of this neural process. Two species, Galago demidoff and Perodicticus potto, were obtained from wild populations in the primary rainforest of central Africa, while one species, Lemur catta, was captive-bred. Two brains from each species, perfusion-fixed with 4% paraformaldehyde, were sectioned (50 µm section thickness) in sagittal and coronal planes. Using Ki-67 and doublecortin (DCX) antibodies, proliferating cells and immature neurons were identified in the two canonical neurogenic sites of mammals, the subventricular zone of the lateral ventricle (SVZ) giving rise to the rostral migratory stream (RMS), and the subgranular zone of the dentate gyrus of the hippocampus. In addition a temporal migratory stream (TMS), emerging from the temporal horn of the lateral ventricle to supply the piriform cortex and adjacent brain regions with new neurons, was also evident in the three prosimian species. While no Ki-67-immunoreactive cells were observed in the cerebellum, DCX-immunopositive cells were observed in the cerebellar cortex of all three species. These findings are discussed in a phylogenetic context.
Collapse
Affiliation(s)
- Thandi M Fasemore
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Institute for International Collaborations, Department of Biological Science, Hokkaido University, Sapporo, Japan
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels 1070, Belgium; Department of Anthropology, University of Arkansas, Fayetteville, AR, United States
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
17
|
Cai Y, Peng Z, Guo H, Wang F, Zeng Y. TREK-1 pathway mediates isoflurane-induced memory impairment in middle-aged mice. Neurobiol Learn Mem 2017; 145:199-204. [PMID: 29042297 DOI: 10.1016/j.nlm.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/14/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023]
Abstract
Post-operative cognitive dysfunction (POCD) has been widely reported, especially in elderly patients. An association between POCD and inhalational anesthetics, such as isoflurane, has been suggested. The TWIK-related K+ channel-1 (TREK-1) controls several major cellular responses involved in memory formation and is believed to participate in the development of depression, cerebral ischemia and blood-brain barrier dysfunction. However, the specific role of TREK-1 in mediating anesthesia-induced POCD remains unknown. In the current study, we determined that exposure to isoflurane affected memory in middle-aged mice and altered TREK-1 expression. In addition, TREK-1 over-expression exacerbated isoflurane-induced memory impairment, while TREK-1 silence attenuated the impairment. Taken together, our data demonstrate that inhibition of TREK-1 protects mice from cognitive impairment induced by anesthesia and TREK-1 is a potential therapeutic target against memory impairment induced by volatile anesthetics.
Collapse
Affiliation(s)
- Yanhui Cai
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Haiyun Guo
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Zeng
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
18
|
Ayanlaja AA, Xiong Y, Gao Y, Ji G, Tang C, Abdikani Abdullah Z, Gao D. Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front Mol Neurosci 2017; 10:199. [PMID: 28701917 PMCID: PMC5487455 DOI: 10.3389/fnmol.2017.00199] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Neuronal migration is a critical process in the development of the nervous system. Defects in the migration of the neurons are associated with diseases like lissencephaly, subcortical band heterotopia (SBH), and pachygyria. Doublecortin (DCX) is an essential factor in neurogenesis and mutations in this protein impairs neuronal migration leading to several pathological conditions. Although, DCX is capable of modulating and stabilizing microtubules (MTs) to ensure effective migration, the mechanisms involved in executing these functions remain poorly understood. Meanwhile, there are existing gaps regarding the processes that underlie tumor initiation and progression into cancer as well as the ability to migrate and invade normal cells. Several studies suggest that DCX is involved in cancer metastasis. Unstable interactions between DCX and MTs destabilizes cytoskeletal organization leading to disorganized movements of cells, a process which may be implicated in the uncontrolled migration of cancer cells. However, the underlying mechanism is complex and require further clarification. Therefore, exploring the importance and features known up to date about this molecule will broaden our understanding and shed light on potential therapeutic approaches for the associated neurological diseases. This review summarizes current knowledge about DCX, its features, functions, and relationships with other proteins. We also present an overview of its role in cancer cells and highlight the importance of studying its gene mutations.
Collapse
Affiliation(s)
- Abiola A Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Ye Xiong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Zamzam Abdikani Abdullah
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| |
Collapse
|
19
|
Chawana R, Patzke N, Alagaili AN, Bennett NC, Mohammed OB, Kaswera-Kyamakya C, Gilissen E, Ihunwo AO, Pettigrew JD, Manger PR. The Distribution of Ki-67 and Doublecortin Immunopositive Cells in the Brains of Three Microchiropteran Species, Hipposideros fuliginosus, Triaenops persicus, and Asellia tridens. Anat Rec (Hoboken) 2016; 299:1548-1560. [PMID: 27532288 DOI: 10.1002/ar.23460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 01/26/2023]
Abstract
This study uses Ki-67 and doublecortin (DCX) immunohistochemistry to delineate potential neurogenic zones, migratory pathways, and terminal fields associated with adult neurogenesis in the brains of three microchiropterans. As with most mammals studied to date, the canonical subgranular and subventricular neurogenic zones were observed. Distinct labeling of newly born cells and immature neurons within the dentate gyrus of the hippocampus was observed in all species. A distinct rostral migratory stream (RMS) that appears to split around the medial aspect of the caudate nucleus was observed. These two rostral stream divisions appear to merge at the rostroventral corner of the caudate nucleus to turn and enter the olfactory bulb, where a large terminal field of immature neurons was observed. DCX immunolabeled neurons were observed mostly in the rostral neocortex, but a potential migratory stream to the neocortex was not identified. A broad swathe of newly born cells and immature neurons was found between the caudoventral division of the RMS and the piriform cortex. In addition, occasional immature neurons were observed in the amygdala and DCX-immunopositive axons were observed in the anterior commissure. While the majority of these features have been found in several mammal species, the large number of DCX immunolabeled cells found between the RMS and the piriform cortex and the presence of DCX immunostained axons in the anterior commissure are features only observed in microchiropterans and insectivores to date. In the diphyletic scenario of chiropteran evolution, these observations align the microchiropterans with the insectivores. Anat Rec, 299:1548-1560, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard Chawana
- School of Anatomical Sciences Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, Republic of South Africa
| | - Nina Patzke
- School of Anatomical Sciences Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, Republic of South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department, of Zoology, College of Science, King Saud University, Box, 2455, Riyadh, 11451, Saudi Arabia.,Saudi Wildlife Authority, Riyadh, 11575, Saudi Arabia
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department, of Zoology, College of Science, King Saud University, Box, 2455, Riyadh, 11451, Saudi Arabia.,Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department, of Zoology, College of Science, King Saud University, Box, 2455, Riyadh, 11451, Saudi Arabia
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, 1070, Belgium.,Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| | - Amadi O Ihunwo
- School of Anatomical Sciences Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, Republic of South Africa
| | - John D Pettigrew
- Queensland Brain Institute, University of Queensland, 4072, St. Lucia, Australia
| | - Paul R Manger
- School of Anatomical Sciences Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, Republic of South Africa.
| |
Collapse
|
20
|
New neurons in the adult striatum: from rodents to humans. Trends Neurosci 2015; 38:517-23. [PMID: 26298770 DOI: 10.1016/j.tins.2015.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/03/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023]
Abstract
Most neurons are generated during development and are not replaced during adulthood, even if they are lost to injury or disease. However, it is firmly established that new neurons are generated in the dentate gyrus of the hippocampus of almost all adult mammals, including humans. Nevertheless, many questions remain regarding adult neurogenesis in other brain regions and particularly in humans, where standard birth-dating methods are not generally feasible. Exciting recent evidence indicates that calretinin-expressing interneurons are added to the adult human striatum at a substantial rate. The role of new neurons is unknown, but studies in rodents will be able to further elucidate their identity and origin and then we may begin to understand their regulation and function.
Collapse
|
21
|
Amrein I. Adult hippocampal neurogenesis in natural populations of mammals. Cold Spring Harb Perspect Biol 2015; 7:7/5/a021295. [PMID: 25934014 DOI: 10.1101/cshperspect.a021295] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection.
Collapse
Affiliation(s)
- Irmgard Amrein
- Institute of Anatomy, University of Zürich-Irchel, CH-8057 Zürich, Switzerland
| |
Collapse
|