1
|
Afify R, Lipsius K, Wyatt-Johnson SJ, Brutkiewicz RR. Myeloid antigen-presenting cells in neurodegenerative diseases: a focus on classical and non-classical MHC molecules. Front Neurosci 2024; 18:1488382. [PMID: 39720231 PMCID: PMC11667120 DOI: 10.3389/fnins.2024.1488382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
In recent years, increasing evidence has highlighted the critical role of myeloid cells, specifically those that present antigen (APCs) in health and disease. These shape the progression and development of neurodegenerative disorders, where considerable interplay between the immune system and neurons influences the course of disease pathogenesis. Antigen-presenting myeloid cells display different classes of major histocompatibility complex (MHC) and MHC-like proteins on their surface for presenting various types of antigens to a wide variety of T cells. While most studies focus on the role of myeloid MHC class I and II molecules in health and disease, there is still much that remains unknown about non-polymorphic MHC-like molecules such as CD1d and MR1. Thus, in this review, we will summarize the recent findings regarding the contributions of both classical and non-classical MHC molecules, particularly on myeloid microglial APCs, in neurodegenerative diseases. This will offer a better understanding of altered mechanisms that may pave the way for the development of novel therapeutic strategies targeting immune cell-MHC interactions, to mitigate neurodegeneration and its associated pathology.
Collapse
Affiliation(s)
| | | | | | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Frydrychowicz M, Telec M, Anioła J, Kazmierski R, Chowaniec H, Dworacki G, Wojtasz I, Kozubski W, Łukasik M. The Alteration of Circulating Invariant Natural Killer T, γδT, and Natural Killer Cells after Ischemic Stroke in Relation to Clinical Outcomes: A Prospective Case-Control Study. Cells 2024; 13:1401. [PMID: 39195289 PMCID: PMC11352391 DOI: 10.3390/cells13161401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/20/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
The adaptive response occurs only after 7-10 days of antigen presentation. Nevertheless, the autoreactive T cells infiltrate the stroke lesion within the first 48 h. Thus, we hypothesized that the unconventional lymphocytes as invariant natural killer T cells (iNKT) and γδT cells that share immediate innate and delayed adaptive response features are involved in acute stroke pathophysiology. We assessed prospectively the quantity of circulating iNKT cells, γδT cells, and NK cells with flow cytometry in 52 subjects within three months after stroke, and we compared the results with those obtained in age-, sex-, and vascular risk factor-matched controls. We studied lymphocyte parameters regarding clinical outcomes, infarct volume, stroke-associated infection (SAI), and burden risk factors. The reduced number of circulating γδT cells and decreased percentage of the Vδ2 subset in the acute phase of stroke correlated with worse neurological status in the recovery phase. In subjects treated with thrombolysis and those who developed SAI, a lower percentage of γδT cells in the 90-day follow-up was observed. An increased percentage of iNKT cells in the acute and subacute phases of stroke was observed, and it was related to the worse clinical status. The circulating NK cells do not change temporarily or affect the outcomes after stroke. It seems that γδT cells play a long-lasting role in ischemic stroke, mainly related to the Vδ2 subset. The role of iNKT cells appears to be detrimental, especially in the acute and subacute phases of stroke. The effect of circulating NK cells on the outcome after stroke seems negligible.
Collapse
Affiliation(s)
- Magdalena Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (H.C.); (G.D.)
| | - Magdalena Telec
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.T.); (R.K.); (W.K.); (M.Ł.)
| | | | - Radosław Kazmierski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.T.); (R.K.); (W.K.); (M.Ł.)
- Department of Neurology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | - Hanna Chowaniec
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (H.C.); (G.D.)
| | - Grzegorz Dworacki
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (H.C.); (G.D.)
| | | | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.T.); (R.K.); (W.K.); (M.Ł.)
| | - Maria Łukasik
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.T.); (R.K.); (W.K.); (M.Ł.)
| |
Collapse
|
3
|
Wyatt-Johnson SK, Afify R, Brutkiewicz RR. The immune system in neurological diseases: What innate-like T cells have to say. J Allergy Clin Immunol 2024; 153:913-923. [PMID: 38365015 PMCID: PMC10999338 DOI: 10.1016/j.jaci.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The immune system classically consists of 2 lines of defense, innate and adaptive, both of which interact with one another effectively to protect us against any pathogenic threats. Importantly, there is a diverse subset of cells known as innate-like T cells that act as a bridge between the innate and adaptive immune systems and are pivotal players in eliciting inflammatory immune responses. A growing body of evidence has demonstrated the regulatory impact of these innate-like T cells in central nervous system (CNS) diseases and that such immune cells can traffic into the brain in multiple pathological conditions, which can be typically attributed to the breakdown of the blood-brain barrier. However, until now, it has been poorly understood whether innate-like T cells have direct protective or causative properties, particularly in CNS diseases. Therefore, in this review, our attention is focused on discussing the critical roles of 3 unique subsets of unconventional T cells, namely, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells, in the context of CNS diseases, disorders, and injuries and how the interplay of these immune cells modulates CNS pathology, in an attempt to gain a better understanding of their complex functions.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Reham Afify
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
4
|
Lv M, Zhang Z, Cui Y. Unconventional T cells in brain homeostasis, injury and neurodegeneration. Front Immunol 2023; 14:1273459. [PMID: 37854609 PMCID: PMC10579804 DOI: 10.3389/fimmu.2023.1273459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The interaction between peripheral immune cells and the brain is an important component of the neuroimmune axis. Unconventional T cells, which include natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and other poorly defined subsets, are a special group of T lymphocytes that recognize a wide range of nonpolymorphic ligands and are the connection between adaptive and innate immunity. Recently, an increasing number of complex functions of these unconventional T cells in brain homeostasis and various brain disorders have been revealed. In this review, we describe the classification and effector function of unconventional T cells, review the evidence for the involvement of unconventional T cells in the regulation of brain homeostasis, summarize the roles and mechanisms of unconventional T cells in the regulation of brain injury and neurodegeneration, and discuss immunotherapeutic potential as well as future research goals. Insight of these processes can shed light on the regulation of T cell immunity on brain homeostasis and diseases and provide new clues for therapeutic approaches targeting brain injury and neurodegeneration.
Collapse
Affiliation(s)
- Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Peng Y, Liu Z, Fu G, Zhao B, Gong M, Lu Z, Zhou Y, Chen L, Su H, Lou W, Chen G, He X, Gu J, Kong J. Identification microenvironment immune features and key genes in elderly stroke patients. Medicine (Baltimore) 2023; 102:e33108. [PMID: 36862915 PMCID: PMC9981407 DOI: 10.1097/md.0000000000033108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The purpose of this study was to identify the signaling pathways and immune microenvironments related to elderly stroke patients. METHODS We downloaded the public transcriptome data (GSE37587) from the gene expression omnibus and divided the patients into young and old groups and identified differentially expressed genes (DEGs). Gene ontology function analysis, Kyoto encyclopedia of genes and genomes pathway analysis, and gene set enrichment analysis (GSEA) were performed. A protein-protein interaction network was constructed and hub genes were identified. Gene-miRNA, gene-TF, and gene-drug networks were constructed using the network analyst database. The immune infiltration score was evaluated using single-sample gene set enrichment analysis GSEA, its correlation with age was computed and visualized using R software. RESULTS We identified 240 DEGs, including 222 upregulated and 18 downregulated DEGs. Gene ontology enrichment was significantly enriched in response to the virus, type I interferon signaling pathway, cytological component, focal adhesion, cell-substrate adherents junction, and the cytosolic ribosome. GSEA identified the following mechanisms: heme metabolism, interferon gamma response, and interferon alpha response. Ten hub genes included interferon alpha-inducible protein 27, human leucocyte antigen-G, interferon-induced protein with tetratricopeptide repeats 2, 2'-5'-oligoadenylate synthetase 2, interferon alpha-inducible protein 6, interferon alpha-inducible protein 44-like, interferon-induced protein with tetratricopeptide repeats 3, interferon regulatory factor 5, myxovirus resistant 1, and interferon-induced protein with tetratricopeptide repeats 1. Quantitative analysis of immune infiltration showed that increased age was significantly positively correlated with myeloid-derived suppressor cells and natural killer T cells, and negatively correlated with immature dendritic cells. CONCLUSION The present research could help us better understand the molecular mechanisms and immune microenvironment of elderly patients with stroke.
Collapse
Affiliation(s)
- Yisheng Peng
- Department of Radiological Intervention, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, P.R. China
| | - Zhengli Liu
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Guanqi Fu
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Boxiang Zhao
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Maofeng Gong
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zhaoxuan Lu
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yangyi Zhou
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Liang Chen
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Haobo Su
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wensheng Lou
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Guoping Chen
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xu He
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jianping Gu
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jie Kong
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- * Correspondence: Jie Kong, Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China (e-mail: )
| |
Collapse
|
6
|
Zhou C, Rao W, Zhou X, He D, Li Z, Dashtsoodol N, Ren Y. Alteration of circulating unconventional T cells in cerebral ischemia: an observational study. Sci Rep 2022; 12:10078. [PMID: 35710748 PMCID: PMC9203798 DOI: 10.1038/s41598-022-14343-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Immune reactions provoked by cerebral ischemia play crucial roles in the pathogenesis of brain damage and contribute to tissue regeneration processes. While functions of many immune cell types in post-ischemic inflammation have been well studied in experimental stroke, the exact roles played by unconventional T cells in pathogenesis of the clinical stroke remain to be precisely determined. In the present study, we investigated the frequencies and absolute cell numbers of peripheral blood T lymphocyte subpopulations including those of invariant natural killer T (iNKT) cells, CD3+CD56+ NKT-like (NKTL) cells, and γδ T cells from patients with acute cerebral infarction (ACI), chronic cerebrovascular disease (CCD) or chronic cerebral circulation insufficiency (CCI) by flow cytometry, and analyzed their association with the disease severity and the clinical outcome. We observed significantly reduced cell numbers of circulating iNKT cells, NKTL cells and γδ T cells in cerebral ischemia patients as compared with the healthy controls. Of note, we also demonstrated that numbers of peripheral blood iNKT and γδ T cells are significantly reduced in patients with ACI when compared among different cerebral ischemia patient groups. Moreover, the reduced number of iNKT cells is significantly associated with the disease severity and recovery in cerebral ischemia patients. Our results demonstrate for the first time the reduction of peripheral blood NKTL, iNKT and γδ T cells in patients with the cerebral ischemia, and particularly reduced iNKT and γδ T cells in the acute phase. The reduction of iNKT cells seems to be significantly associated with the disease severity and recovery. We hope that our findings might lead to the identification of predictive and prognostic values of human peripheral unconventional T cell subsets in the cerebral ischemia.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wei Rao
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinhua Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Dan He
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zhen Li
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Nyambayar Dashtsoodol
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Department of Immunology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.,Department of Hematology and Medical Oncology, Klinikum Rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, Munich, Germany
| | - Yue Ren
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
He W, Zhang Z, Sha X. Nanoparticles-mediated emerging approaches for effective treatment of ischemic stroke. Biomaterials 2021; 277:121111. [PMID: 34488117 DOI: 10.1016/j.biomaterials.2021.121111] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
Ischemic stroke leads to high disability and mortality. The limited delivery efficiency of most therapeutic substances is a major challenge for effective treatment of ischemic stroke. Inspired by the prominent merit of nanoscale particles in brain targeting and blood-brain barrier (BBB) penetration, various functional nanoparticles have been designed as promising drug delivery platforms that are expected to improve the therapeutic effect of ischemic stroke. Based on the complex pathological mechanisms of ischemic stroke, this review outline and summarize the rationally designed nanoparticles-mediated emerging approaches for effective treatment of ischemic stroke, including recanalization therapy, neuroprotection therapy, and combination therapy. On this bases, the potentials and challenges of nanoparticles in the treatment of ischemic stroke are revealed, and new thoughts and perspectives are proposed for the design of feasible nanoparticles for effective treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wenxiu He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China; The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
8
|
Gao Y, Liu Y, Yang X, Zhang T, Hou Y, Wang P, Liu Y, Yuan L, Zhang H, Wu C, Yang J. Pseudoginsenoside-F11 ameliorates thromboembolic stroke injury in rats by reducing thromboinflammation. Neurochem Int 2021; 149:105108. [PMID: 34175350 DOI: 10.1016/j.neuint.2021.105108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been reported to exert neuroprotective effects on ischemic stroke induced by permanent and transient middle cerebral artery occlusion in experimental animals. The aim of the present study was to investigate the effect of PF11 on thromboembolic stroke in rats and its possible mechanisms on thromboinflammation. PF11 (4, 12, 36 mg/kg) was injected intravenously (i.v.) once a day for 3 consecutive days to male Wistar rats followed by embolic middle cerebral artery occlusion (eMCAO). The results showed that PF11 significantly reduced the cerebral infarction volume, brain edema and neurological deficits induced by eMCAO. Meanwhile, the thromboinflammation in the ischemic hemisphere was observed at 24 h after eMCAO, as indicated by the increased number of microvascular thrombus and inflammatory response. Moreover, eMCAO resulted in the up-regulation of platelet glycoprotein Ibα (GPIbα) and VI (GPVI), as well as the activation of contact-kinin pathway. Notably, PF11 significantly reversed all these changes. Furthermore, PF11 prevented the eMCAO-induced loss of tight junction proteins and up-regulation of matrix metalloproteinase-9 (MMP-9), thus leading to the alleviation of blood-brain barrier (BBB) damage. In conclusion, the present study revealed that thromboinflammation was induced in the ischemic hemisphere of rats after eMCAO and PF11 exerted marked protective effects against thromboembolic stroke by attenuating thromboinflammation and preventing BBB damage. This research further identifies the potential therapeutic role of PF11 for ischemic stroke.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Institute of Pharmacology, Shandong First Medical University, Shandong Academy of Medical Science, Tan'an, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xue Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianyu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ying Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Pengwei Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yinglu Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Linlin Yuan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
9
|
Sun H, Hu H, Liu C, Sun N, Duan C. Methods used for the measurement of blood-brain barrier integrity. Metab Brain Dis 2021; 36:723-735. [PMID: 33635479 DOI: 10.1007/s11011-021-00694-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
The blood-brain barrier (BBB) comprises the interface between blood, brain and cerebrospinal fluid. Its primary function, which is mainly carried out by tight junctions, is to stabilize the tightly controlled microenvironment of the brain. To study the development and maintenance of the BBB, as well as various roles their intrinsic mechanisms that play in neurological disorders, suitable measurements are required to demonstrate integrity and functional changes at the interfaces between the blood and brain tissue. Markers and plasma proteins with different molecular weight (MW) are used to measure the permeability of BBB. In addition, the expression changes of tight-junction proteins form the basic structure of BBB, and imaging modalities are available to study the disruption of BBB. In the present review, above mentioned methods are depicted in details, together with the pros and cons as well as the differences between these methods, which maybe benefit research studies focused on the detection of BBB breakdown.
Collapse
Affiliation(s)
- Huixin Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiling Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chuanjie Liu
- Weihai City Key Laboratory of Autoimmunity, Weihai Central Hospital, Weihai, 264400, Shandong Province, China
| | - Nannan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chaohui Duan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
He W, Mei Q, Li J, Zhai Y, Chen Y, Wang R, Lu E, Zhang XY, Zhang Z, Sha X. Preferential Targeting Cerebral Ischemic Lesions with Cancer Cell-Inspired Nanovehicle for Ischemic Stroke Treatment. NANO LETTERS 2021; 21:3033-3043. [PMID: 33755480 DOI: 10.1021/acs.nanolett.1c00231] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The poor drug delivery to cerebral ischemic regions is a key challenge of ischemic stroke treatment. Inspired by the intriguing blood-brain barrier (BBB)-penetrating ability of 4T1 cancer cells upon their brain metastasis, we herein designed a promising biomimetic nanoplatform by camouflaging a succinobucol-loaded pH-sensitive polymeric nanovehicle with a 4T1 cell membrane (MPP/SCB), aiming to promote the preferential targeting of cerebral ischemic lesions to attenuate the ischemia/reperfusion injury. In transient middle cerebral artery occlusion (tMCAO) rat models, MPP/SCB could be preferentially delivered to the ischemic hemisphere with a 4.79-fold higher than that in the normal hemisphere. Moreover, MPP/SCB produced notable enhancement of microvascular reperfusion in the ischemic hemisphere, resulting in a 69.9% reduction of infarct volume and showing remarkable neuroprotective effects of tMCAO rats, which was superior to the counterpart uncamouflaged nanovehicles (PP/SCB). Therefore, this design provides a promising nanoplatform to target the cerebral ischemic lesions for ischemic stroke therapy.
Collapse
Affiliation(s)
- Wenxiu He
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Zhai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yiting Chen
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rui Wang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Enhao Lu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai 200040, China
| |
Collapse
|
11
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
12
|
Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition. Front Med 2020; 15:79-90. [PMID: 33369712 DOI: 10.1007/s11684-020-0783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/14/2020] [Indexed: 01/30/2023]
Abstract
Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of Astragalus membranaceus, a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2+ NK cell levels in the ischemic brain. Meanwhile, ASIV attenuated NK cell activating receptor NKG2D levels and reduced interferon-γ production. ASIV restored acetylation of histone H3 and the p65 subunit of nuclear factor-κB in the ischemic brain, suggesting inhibition of histone deacetylase (HDAC). Simultaneously, ASIV prevented p65 nuclear translocation. The effects of ASIV on reducing CCL2 production, restoring acetylated p65 levels and preventing p65 nuclear translocation were mimicked by valproate, an HDAC inhibitor, in astrocytes subjected to oxygen-glucose deprivation. Our findings suggest that ASIV inhibits post-ischemic NK cell brain infiltration and activation and reverses NK cell deficiency in the periphery, which together contribute to the beneficial effects of ASIV against brain ischemia. Furthermore, ASIV's effects on suppressing NK cell brain infiltration and activation may involve HDAC inhibition.
Collapse
|
13
|
Gavegnano C, Haile W, Koneru R, Hurwitz SJ, Kohler JJ, Tyor WR, Schinazi RF. Novel method to quantify phenotypic markers of HIV-associated neurocognitive disorder in a murine SCID model. J Neurovirol 2020; 26:838-845. [PMID: 32901392 DOI: 10.1007/s13365-020-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 10/23/2022]
Abstract
Despite combined antiretroviral therapy (cART), HIV infection in the CNS persists with reported increases in activation of macrophages (MΦ), microglia, and surrounding astrocytes/neurons, conferring HIV-induced inflammation. Chronic inflammation results in HIV-associated neurocognitive disorders (HAND) with reported occurrence of up to half of individuals with HIV infection. The existing HAND mouse model used by laboratories including ours, and the effect of novel agents on its pathology present with labor-intensive and time-consuming limitations since brain sections and immunohistochemistry assays have to be performed and analyzed. A novel flow cytometry-based system to objectively quantify phenotypic effects of HIV using a SCID mouse HAND model was developed which demonstrated that the HIV-infected mice had significant increases in astrogliosis, loss of neuronal dendritic marker, activation of murine microglia, and human macrophage explants compared to uninfected control mice. HIV p24 could also be quantified in the brains of the infected mice. Correlation of these impairments with HIV-induced brain inflammation and previous behavioral abnormalities studies in mice suggests that this model can be used as a fast and relevant throughput methodology to quantify preclinical testing of novel treatments for HAND.
Collapse
Affiliation(s)
- Christina Gavegnano
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA
| | - Woldeab Haile
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30209, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Raj Koneru
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30209, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Selwyn J Hurwitz
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA
| | - James J Kohler
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA
| | - William R Tyor
- Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30209, USA. .,Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA.
| | - Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA. .,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Increased expression of thymic stromal lymphopoietin receptor in a rat model of middle cerebral artery occlusion. Neuroreport 2019; 30:182-187. [PMID: 30676545 PMCID: PMC6380438 DOI: 10.1097/wnr.0000000000001181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine expressed in the skin, gut, lungs, and thymus. TSLP triggers dendritic cell-mediated T helper 2 inflammatory responses by formation of a ternary complex consisting of a heterodimer of interleukin-7 (IL-7) receptor α chain (IL-7Rα), TSLP, and the TSLP receptor chain (TSLPR). The present study aimed to investigate the expression of this ternary complex and its interaction with signal transducer and activator of transcription 5 (STAT5) in a ischemic stroke model using middle cerebral artery occlusion. Using immunofluorescence staining, we found that TSLPR was expressed widely in neurons and gliocytes. Using immunoprecipitation analysis, we detected an increased interaction between STAT5 and the ternary complex in the cortex of stroke rats. Moreover, using western blots, we found that expressions of the ternary complex and STAT5 were markedly increased in the cortex of stroke rats compared with the control and sham rats. These results suggest that the formation of the ternary TSLPR : TSLP : IL-7Rα complex may activate STAT5 or a STAT5-related signaling pathway to mediate neuroinflammation in ischemic stroke.
Collapse
|
15
|
Gavegnano C, Haile WB, Hurwitz S, Tao S, Jiang Y, Schinazi RF, Tyor WR. Baricitinib reverses HIV-associated neurocognitive disorders in a SCID mouse model and reservoir seeding in vitro. J Neuroinflammation 2019; 16:182. [PMID: 31561750 PMCID: PMC6764124 DOI: 10.1186/s12974-019-1565-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Since HIV-associated neurocognitive disorders (HANDs) occur in up to half of HIV-positive individuals, even with combined antiretroviral therapy (cART), adjunctive therapies are needed. Chronic CNS inflammation contributes to HAND and HIV encephalitis (HIVE). Baricitinib is a JAK 1/2 inhibitor approved in the USA, EU, and Japan for rheumatoid arthritis, demonstrating potent inhibition of IL-6, D-dimer, CRP, TNF-α, IFN-α/β, and other pro-inflammatory cytokines. Methods Our modified murine HAND model was used to evaluate the ability of baricitinib to cross the blood-brain barrier (BBB) and modulate monocyte/macrophage-driven HAND. Severity of HAND was measured by assessing cognitive performance of low- and high-dose baricitinib treated versus untreated HAND mice. The severity of brain neuroinflammation was evaluated in these mouse groups after flow cytometric analyses. We also assessed the ability of baricitinib to block events in myeloid and lymphoid cells in vitro that may undergird the persistence of HIV in the central nervous system (CNS) in primary human macrophages (Mϕ) and lymphocytes including HIV replication, HIV-induced activation, reservoir expansion, and reservoir maintenance. Results In vivo, both doses of 10 and 50 mg/kg qd baricitinib crossed the BBB and reversed behavioral abnormalities conferred by HIV infection. Moreover, baricitinib significantly reduced HIV-induced neuroinflammation marked by glial activation: activated microglia (MHCII+/CD45+) and astrogliosis (GFAP). Baricitinib also significantly reduced the percentage of p24+ human macrophages in mouse brains (p < 0.05 versus HAND mice; t test). In vitro, baricitinib significantly reduced markers of persistence, reservoir size, and reseeding in Mϕ. Conclusion These results show that blocking the JAK/STAT pathway reverses cognitive deficits and curtails inflammatory markers in HAND in mice. Our group recently reported safety and tolerability of ruxolitinib in HIV-infected individuals (Marconi et al., Safety, tolerability and immunologic activity of ruxolitinib added to suppressive ART, 2019), underscoring potential safety and utility of JAK inhibitors for additional human trials. The data reported herein coupled with our recent human trial with JAK inhibitors provide compelling preclinical data and impetus for considering a trial of baricitinib in HAND individuals treated with cART to reverse cognitive deficits and key events driving viral persistence. Electronic supplementary material The online version of this article (10.1186/s12974-019-1565-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina Gavegnano
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA
| | - Woldeab B Haile
- Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, 30209, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Selwyn Hurwitz
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA
| | - Sijia Tao
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA
| | - Yong Jiang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA
| | - Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA. .,Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA.
| | - William R Tyor
- Emory Center for AIDS Research (CFAR), Emory University, Atlanta, GA, 30322, USA. .,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, 30209, USA. .,Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA.
| |
Collapse
|
16
|
Cheng X, Ferino E, Hull H, Jickling GC, Ander BP, Stamova B, Sharp FR. Smoking affects gene expression in blood of patients with ischemic stroke. Ann Clin Transl Neurol 2019; 6:1748-1756. [PMID: 31436916 PMCID: PMC6764500 DOI: 10.1002/acn3.50876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/27/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Though cigarette smoking (CS) is a well-known risk factor for ischemic stroke (IS), there is no data on how CS affects the blood transcriptome in IS patients. METHODS We recruited IS-current smokers (IS-SM), IS-never smokers (IS-NSM), control-smokers (C-SM), and control-never smokers (C-NSM). mRNA expression was assessed on HTA-2.0 microarrays and unique as well as commonly expressed genes identified for IS-SM versus IS-NSM and C-SM versus C-NSM. RESULTS One hundred and fifty-eight genes were differentially expressed in IS-SM versus IS-NSM; 100 genes were differentially expressed in C-SM versus C-NSM; and 10 genes were common to both IS-SM and C-SM (P < 0.01; |fold change| ≥ 1.2). Functional pathway analysis showed the 158 IS-SM-regulated genes were associated with T-cell receptor, cytokine-cytokine receptor, chemokine, adipocytokine, tight junction, Jak-STAT, ubiquitin-mediated proteolysis, and adherens junction signaling. IS-SM showed more altered genes and functional networks than C-SM. INTERPRETATION We propose some of the 10 genes that are elevated in both IS-SM and C-SM (GRP15, LRRN3, CLDND1, ICOS, GCNT4, VPS13A, DAP3, SNORA54, HIST1H1D, and SCARNA6) might contribute to increased risk of stroke in current smokers, and some genes expressed by blood leukocytes and platelets after stroke in smokers might contribute to worse stroke outcomes that occur in smokers.
Collapse
Affiliation(s)
- Xiyuan Cheng
- Department of Neurology, University of California at Davis, Sacramento, California.,Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, California
| | - Eva Ferino
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Heather Hull
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California.,Department of Neurology, University of Alberta, Edmonton, California
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California.,Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, California
| |
Collapse
|
17
|
Signaling pathways involved in anti-inflammatory effects of Pulsed Electromagnetic Field in microglial cells. Cytokine 2019; 125:154777. [PMID: 31400640 DOI: 10.1016/j.cyto.2019.154777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/14/2019] [Accepted: 07/09/2019] [Indexed: 11/27/2022]
Abstract
Literature studies suggest important protective effects of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) on inflammatory pathways affecting joint and cerebral diseases. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. Therefore the aim of this study was to identify the molecular targets of PEMFs anti-neuroinflammatory action. The effects of PEMF exposure in cytokine production by lipopolysaccharide (LPS)-activated N9 microglial cells as well as the pathways involved, including adenylyl cyclase (AC), phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and delta (PKC-δ), p38, ERK1/2, JNK1/2 mitogen activated protein kinases (MAPK), Akt and caspase 1, were investigated. In addition, the ability of PEMFs to modulate ROS generation, cell invasion and phagocytosis, was addressed. PEMFs reduced the LPS-increased production of TNF-α and IL-1β in N9 cells, through a pathway involving JNK1/2. Furthermore, they decreased the LPS-induced release of IL-6, by a mechanism not dependent on AC, PLC, PKC-ε, PKC-δ, p38, ERK1/2, JNK1/2, Akt and caspase 1. Importantly, a significant effect of PEMFs in the reduction of crucial cell functions specific of microglia like ROS generation, cell invasion and phagocytosis was found. PEMFs inhibit neuroinflammation in N9 cells through a mechanism involving, at least in part, the activation of JNK MAPK signalling pathway and may be relevant to treat a variety of diseases characterized by neuroinflammation.
Collapse
|
18
|
Mangin G, Poittevin M, Charriaut-Marlangue C, Giannesini C, Merkoulova-Rainon T, Kubis N. Glatiramer acetate reduces infarct volume in diabetic mice with cerebral ischemia and prevents long-term memory loss. Brain Behav Immun 2019; 80:315-327. [PMID: 30953775 DOI: 10.1016/j.bbi.2019.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/18/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Stroke is currently the second leading cause of death in industrialized countries and the second cause of dementia after Alzheimer's disease. Diabetes is an independent risk factor for stroke that exacerbates the severity of lesions, disability and cognitive decline. There is increasing evidence that sustained brain inflammation may account for this long-term prejudicial outcome in diabetic patients in particular. We sought to demonstrate that experimental permanent middle cerebral artery occlusion (pMCAo) in the diabetic mouse aggravates stroke, induces cognitive decline, and is associated with exacerbated brain inflammation, and that these effects can be alleviated and/or prevented by the immunomodulator, glatiramer acetate (GA). Male diabetic C57Bl6 mice (streptozotocin IP) subjected to permanent middle cerebral artery occlusion (pMCAo), were treated by the immunomodulator, GA (Copaxone®) (1 mg/kg daily, sc) until 3 or 7 days post stroke. Infarct volume, brain pro- and anti-inflammatory mediators, microglial/macrophage density, and neurogenesis were monitored during the first week post stroke. Neurological sensorimotor deficit, spatial memory and brain deposits of Aβ40 and Aβ42 were assessed until six weeks post stroke. In diabetic mice with pMCAo, proinflammatory mediators (IL-1β, MCP1, TNFα and CD68) were significantly higher than in non-diabetic mice. In GA-treated mice, the infarct volume was reduced by 30% at D3 and by 40% at D7 post stroke (P < 0.05), sensorimotor recovery was accelerated as early as D3, and long-term memory loss was prevented. Moreover, proinflammatory mediators significantly decreased between D3 (COX2) and D7 (CD32, TNFα, IL-1β), and neurogenesis was significantly increased at D7. Moreover, GA abrogates the accumulation of insoluble Aβ40. This work is the first one to evidence that the immunomodulatory drug GA reduces infarct volume and proinflammatory mediators, enhances early neurogenesis, accelerates sensorimotor recovery, and prevents long-term memory loss in diabetic mice with pMCAo.
Collapse
Affiliation(s)
- Gabrielle Mangin
- Université Paris Diderot, Sorbonne Paris Cité & CART, INSERM U965, F-75475 Paris, France
| | - Marine Poittevin
- Université Paris Diderot, Sorbonne Paris Cité & CART, INSERM U965, F-75475 Paris, France
| | | | - Claire Giannesini
- Service de Neurologie, AP-HP, Hôpital Saint Antoine, 75012 Paris, France
| | | | - Nathalie Kubis
- Université Paris Diderot, Sorbonne Paris Cité & CART, INSERM U965, F-75475 Paris, France; Service de Physiologie Clinique, AP-HP, Hôpital Lariboisière, 75475 Paris, France.
| |
Collapse
|
19
|
Abstract
Natural killer T (NKT) cells are a unique subset of T lymphocytes with the expression of T cell receptor (TCR) and NK cell lineage receptors. These cells can rapidly release large quantities of cytokines and function as a bridge between innate and adaptive immunity. To date, multiple reports have investigated the role of NKT cells under various pathological conditions, such as cancer, autoimmune disease, and infection. Knowledge about NKT cells in neurological diseases is increasing, albeit limited. Here, we review evidence for the involvement of NKT cells in neurological diseases, and discuss immunotherapeutic potential and future study goals. As the development and function of NKT cells become increasingly well understood, the next few years should yield many new insights into NKT cell function, and mechanistic regulation in neurological disorders.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
NK cells in cerebral ischemia. Biomed Pharmacother 2018; 109:547-554. [PMID: 30399590 DOI: 10.1016/j.biopha.2018.10.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
As a vital cell type in immune system and infiltrating cells in ischemic brain, NK cells can bridge the crosstalk between immune system and nervous system in stroke setting. The mechanism of action of NK cells is complicated, involving direct and indirect actions. NK cells are closely associated with poststroke inflammation, immunodepression and infections. The excessive inflammatory response in ischemic brain is one of the important causes for aggravating cerebral ischemic injury. Besides the inflammation induced by ischemia itself, thrombolytic drug tissue plasminogen activator (tPA) administration could also induce deteriorative inflammation, which is unfavorable for stroke control and recovery. Regulating NK cells may has the potential to modulate the immune response, limiting the development of ischemic damage and getting better outcome. In addition, post-stroke immunosuppression may lead to infections which contribute to higher severity and mortality of ischemic stroke (IS). Targeting NK cells may help to find novel pathways for IS therapy, which can both ameliorate the infarction itself, but also reduce the infectious complications. NK cells may also link IS and related diseases, suggesting NK cells can be used as a diagnostic or prognostic biomarker for IS prevention and treatment.
Collapse
|
21
|
Neuroprotection via AT2 receptor agonists in ischemic stroke. Clin Sci (Lond) 2018; 132:1055-1067. [DOI: 10.1042/cs20171549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
Stroke is a devastating disease that afflicts millions of people each year worldwide. Ischemic stroke, which accounts for ~88% of cases, occurs when blood supply to the brain is decreased, often because of thromboembolism or atherosclerotic occlusion. This deprives the brain of oxygen and nutrients, causing immediate, irreversible necrosis within the core of the ischemic area, but more delayed and potentially reversible neuronal damage in the surrounding brain tissue, the penumbra. The only currently approved therapies for ischemic stroke, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) and the endovascular clot retrieval/destruction processes, are aimed at restoring blood flow to the infarcted area, but are only available for a minority of patients and are not able in most cases to completely restore neurological deficits. Consequently, there remains a need for agents that will protect neurones against death following ischemic stroke. Here, we evaluate angiotensin II (Ang II) type 2 (AT2) receptor agonists as a possible therapeutic target for this disease. We first provide an overview of stroke epidemiology, pathophysiology, and currently approved therapies. We next review the large amount of preclinical evidence, accumulated over the past decade and a half, which indicates that AT2 receptor agonists exert significant neuroprotective effects in various animal models, and discuss the potential mechanisms involved. Finally, after discussing the challenges of delivering blood–brain barrier (BBB) impermeable AT2 receptor agonists to the infarcted areas of the brain, we summarize the evidence for and against the development of these agents as a promising therapeutic strategy for ischemic stroke.
Collapse
|
22
|
Tahsili-Fahadan P, Farrokh S, Geocadin RG. Hypothermia and brain inflammation after cardiac arrest. Brain Circ 2018; 4:1-13. [PMID: 30276330 PMCID: PMC6057700 DOI: 10.4103/bc.bc_4_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 12/14/2022] Open
Abstract
The cessation (ischemia) and restoration (reperfusion) of cerebral blood flow after cardiac arrest (CA) induce inflammatory processes that can result in additional brain injury. Therapeutic hypothermia (TH) has been proven as a brain protective strategy after CA. In this article, the underlying pathophysiology of ischemia-reperfusion brain injury with emphasis on the role of inflammatory mechanisms is reviewed. Potential targets for immunomodulatory treatments and relevant effects of TH are also discussed. Further studies are needed to delineate the complex pathophysiology and interactions among different components of immune response after CA and identify appropriate targets for clinical investigations.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- Department of Medicine, Virginia Commonwealth University, Falls Church, Virginia, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Salia Farrokh
- Department of Pharmacy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O, Lassmann H. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol 2017; 28:791-805. [PMID: 29222823 PMCID: PMC6334527 DOI: 10.1111/bpa.12583] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/27/2017] [Indexed: 01/06/2023] Open
Abstract
Inflammatory mechanisms, involving granulocytes, T‐cells, B‐cells, macrophages and activated microglia, have been suggested to play a pathogenic role in experimental models of stroke and may be targets for therapeutic intervention. However, knowledge on the inflammatory response in human stroke lesions is limited. Here, we performed a quantitative study on the inflammatory reaction in human ischemic infarct lesions. We found increased numbers of T‐lymphocytes, mainly CD8+ cells, but not of B‐lymphocytes. Their number was very low in comparison to that seen in inflammatory diseases of the central nervous system and they did not show signs of activation. Polymorphonuclear leukocytes were present in meninges and less prominently in the perivascular space in early lesions, but their infiltration into the lesioned tissue was sparse with the exception of a single case. Microglia were lost in the necrotic core of fresh lesions, their number was increased in the surrounding penumbra, apparently due to proliferation. Using TMEM119 as a marker for the resident microglia pool, macrophages in lesions were in part derived from the original microglia pool, depending on the lesion stage. Most microglia and macrophages revealed a pro‐inflammatory activation pattern, expressing molecules involved in phagocytosis, oxidative injury, antigen presentation and iron metabolism and had partially lost the expression of P2RY12, an antigen expressed on homeostatic (“resting”) microglia in rodents. At later lesion stages, the majority of macrophages showed intermediate activation patterns, expressing pro‐inflammatory and anti‐inflammatory markers. Microglia in the normal white matter of controls and stroke patients were already partly activated toward a pro‐inflammatory phenotype. Our data suggest that the direct contribution of lymphocytes and granulocytes to active tissue injury in human ischemic infarct lesions is limited and that stroke therapy that targets pro‐inflammatory microglia and macrophage activation may be effective.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Center for Brain Research, Medical University of Vienna, Austria
| | | | - Sheren Christine
- Center for Brain Research, Medical University of Vienna, Austria
| | - Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Sigmund Freud University, Vienna, Austria
| | - Howard L Weiner
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Oleg Butovsky
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
24
|
Bordeleau M, ElAli A, Rivest S. Severe chronic cerebral hypoperfusion induces microglial dysfunction leading to memory loss in APPswe/PS1 mice. Oncotarget 2017; 7:11864-80. [PMID: 26918610 PMCID: PMC4914254 DOI: 10.18632/oncotarget.7689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/05/2016] [Indexed: 12/12/2022] Open
Abstract
Cerebral vasculature plays a key role in controlling brain homeostasis. Cerebral vasculature dysfunction, associated to irregularities in cerebral blood perfusion, has been proposed to directly contribute to Alzheimer's disease (AD) pathogenesis. More precisely, chronic cerebral hypoperfusion, which impairs brain homeostasis, was demonstrated to take place even before cognitive decline. However, the mechanisms underlying the implication of chronic cerebral hypoperfusion in AD pathogenesis remain elusive. Therefore, this study aims at investigating the role of severe chronic cerebral hypoperfusion (SCCH) in AD pathogenesis. For this purpose, SCCH was induced in young APPswe/PS1 in order to evaluate the progression of AD-like pathology in these mice. We observed that SCCH accelerated the cognitive decline of young APPswe/PS1 mice, which was associated with an increased amyloid plaque number in brain parenchyma. In addition, SCCH reduced the activity of extracellular signal-regulated kinases 1/2 (ERK1/2), which has been shown to play an important role in the adaptive responses of neurons. Importantly, SCCH impaired the function of microglial cells, which are implicated in amyloid-β (Aβ) elimination. In vitro approaches underlined the ability of a low-glucose microenvironment to decrease the general activity and phagocytic capacity of microglia. By using a new model of SCCH, our study unravels new insights into the implication of severe chronic cerebral hypoperfusion in AD pathogenesis, mainly by altering microglial cell activity and consequently Aβ clearance.
Collapse
Affiliation(s)
- Maude Bordeleau
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | - Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada
| |
Collapse
|
25
|
Park JH, Park JA, Ahn JH, Kim YH, Kang IJ, Won MH, Lee CH. Transient cerebral ischemia induces albumin expression in microglia only in the CA1 region of the gerbil hippocampus. Mol Med Rep 2017; 16:661-665. [PMID: 28586018 PMCID: PMC5482121 DOI: 10.3892/mmr.2017.6671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 02/09/2017] [Indexed: 11/30/2022] Open
Abstract
Albumin, the most abundant plasma protein, is known to exhibit a neuroprotective effect in animal models of focal and global cerebral ischemia. In the present study, the expression and immunoreactivity of albumin was examined in the hippocampus following 5 min of transient cerebral ischemia in gerbils. Albumin immunoreactivity was observed in microglia of the CA1 hippocampal region 2 days post-ischemic insult, and it was significantly increased at 4 days following ischemia-reperfusion. In addition, at 4 days post-ischemic insult, albumin-immunoreactive microglia were abundant in the stratum pyramidale of the CA1 region. The present results demonstrated that albumin was newly expressed post-injury in microglia in the CA1 region, suggesting ischemia-induced neuronal loss. Albumin expression may therefore be associated with ischemia-induced delayed neuronal death in the CA1 region following transient cerebral ischemia.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jin-A Park
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 31116, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 31116, Republic of Korea
| |
Collapse
|
26
|
Hawkins KE, DeMars KM, Alexander JC, de Leon LG, Pacheco SC, Graves C, Yang C, McCrea AO, Frankowski JC, Garrett TJ, Febo M, Candelario-Jalil E. Targeting resolution of neuroinflammation after ischemic stroke with a lipoxin A 4 analog: Protective mechanisms and long-term effects on neurological recovery. Brain Behav 2017; 7:e00688. [PMID: 28523230 PMCID: PMC5434193 DOI: 10.1002/brb3.688] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Resolution of inflammation is an emerging new strategy to reduce damage following ischemic stroke. Lipoxin A4 (LXA 4) is an anti-inflammatory, pro-resolution lipid mediator that reduces neuroinflammation in stroke. Since LXA 4 is rapidly inactivated, potent analogs have been synthesized, including BML-111. We hypothesized that post-ischemic, intravenous treatment with BML-111 for 1 week would provide neuroprotection and reduce neurobehavioral deficits at 4 weeks after ischemic stroke in rats. Additionally, we investigated the potential protective mechanisms of BML-111 on the post-stroke molecular and cellular profile. METHODS A total of 133 male Sprague-Dawley rats were subjected to 90 min of transient middle cerebral artery occlusion (MCAO) and BML-111 administration was started at the time of reperfusion. Two methods of week-long BML-111 intravenous administration were tested: continuous infusion via ALZET ® osmotic pumps (1.25 and 3.75 μg μl-1 hr-1), or freshly prepared daily single injections (0.3, 1, and 3 mg/kg). We report for the first time on the stability of BML-111 and characterized an optimal dose and a dosing schedule for the administration of BML-111. RESULTS One week of BML-111 intravenous injections did not reduce infarct size or improve behavioral deficits 4 weeks after ischemic stroke. However, post-ischemic treatment with BML-111 did elicit early protective effects as demonstrated by a significant reduction in infarct volume and improved sensorimotor function at 1 week after stroke. This protection was associated with reduced pro-inflammatory cytokine and chemokine levels, decreased M1 CD40+ macrophages, and increased alternatively activated, anti-inflammatory M2 microglia/macrophage cell populations in the post-ischemic brain. CONCLUSION These data suggest that targeting the endogenous LXA 4 pathway could be a promising therapeutic strategy for the treatment of ischemic stroke. More work is necessary to determine whether a different dosing regimen or more stable LXA 4 analogs could confer long-term protection.
Collapse
Affiliation(s)
- Kimberly E Hawkins
- Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA
| | - Kelly M DeMars
- Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA
| | - Jon C Alexander
- Department of Anesthesiology University of Florida Gainesville FL USA
| | - Lauren G de Leon
- Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA
| | - Sean C Pacheco
- Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA
| | - Christina Graves
- Department of Oral Biology University of Florida Gainesville FL USA
| | - Changjun Yang
- Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA
| | - Austin O McCrea
- Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA
| | - Jan C Frankowski
- Interdepartmental Neuroscience Program University of California Irvine CA USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine University of Florida Gainesville FL USA
| | - Marcelo Febo
- Department of Psychiatry University of Florida Gainesville FL USA
| | | |
Collapse
|
27
|
Hosoya T, Fukumoto D, Kakiuchi T, Nishiyama S, Yamamoto S, Ohba H, Tsukada H, Ueki T, Sato K, Ouchi Y. In vivo TSPO and cannabinoid receptor type 2 availability early in post-stroke neuroinflammation in rats: a positron emission tomography study. J Neuroinflammation 2017; 14:69. [PMID: 28356120 PMCID: PMC5372312 DOI: 10.1186/s12974-017-0851-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Background Upregulated levels of 18-kDa translocator proteins (TSPO) and type 2 endocannabinoid receptors (CB2) are considered to reflect different aspects of microglia-related neuroinflammatory responses in the brain. Relative to the increase in the TSPO expression that occurs slightly later during neuroinflammation in a proinflammatory fashion, CB2 activation is considered to relate to the neuroprotective responses that occurs predominantly at an early stage of brain disorders. These findings, however, were deduced from studies with different animal samples under different experimental settings. Here, we aimed to examined the differences in TSPO binding and CB2 availability at an early stage of stroke in the same animal using positron emission tomography (PET). Methods We used a total of eight Sprague-Dawley rats that underwent photothrombotic stroke surgery. The binding levels of a TSPO tracer [11C](R)PK11195 and a CB2 tracer [11C]NE40 were measured at 24 h after the surgery in the same animal using PET in combination with immunohistochemistry for CB2 and several other markers. A morphological inspection was also performed with X-ray computed tomography for small animals. Results The levels of [11C]NE40 binding potential (BPND) were significantly higher in the cerebral cortical region on the lesion side than those on the non-lesion side, whereas no difference was found in the levels of [11C](R)PK11195 BPND between hemispheres. The tracer influx index (R1) data were all reduced on the lesion side irrespective of tracers. This increase in [11C]NE40 BPND was concomitant with an elevation in CB2 expression mainly within the microglia in the peri-infarct area, as shown by immunohistochemical examinations with Iba-1, CD11b/c+, and NG2+ staining. Conclusions The present results provide in vivo evidence of different responses of microglia occurring in the acute state of stroke. The use of the CB2 tracer [11C]NE40 allows us to evaluate the roles played by the neuroprotective aspect of microglia in acute neuroinflammatory processes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0851-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teruyo Hosoya
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Shigeyuki Yamamoto
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Takatoshi Ueki
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Kohji Sato
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
28
|
Yang PF, Song XY, Zeng T, Ai QD, Liu DD, Zuo W, Zhang S, Xia CY, He X, Chen NH. IMM-H004, a coumarin derivative, attenuated brain ischemia/reperfusion injuries and subsequent inflammation in spontaneously hypertensive rats through inhibition of VCAM-1. RSC Adv 2017. [DOI: 10.1039/c7ra02154b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We studied the effect of IMM-H004 in treating brain I/R injury in spontaneously hypertensive rats and showed that IMM-H004 could efficiently ameliorate neurological defects and infarct volume in a time and dose dependent manner.
Collapse
Affiliation(s)
- Peng-Fei Yang
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xiu-Yun Song
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Ting Zeng
- College of Pharmacy
- Hunan University of Chinese Medicine
- Changsha
- China
| | - Qi-Di Ai
- College of Pharmacy
- Hunan University of Chinese Medicine
- Changsha
- China
| | - Dan-Dan Liu
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Wei Zuo
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Shuai Zhang
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Cong-Yuan Xia
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xin He
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Nai-Hong Chen
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
29
|
Han SY, Choi YJ, Kang MK, Park JHY, Kang YH. Resveratrol Suppresses Cytokine Production Linked to FcεRI-MAPK Activation in IgE-Antigen Complex-Exposed Basophilic Mast Cells and Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1605-23. [DOI: 10.1142/s0192415x15500913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A complicated interplay between resident mast cells and other recruited inflammatory cells contributes to the development and progression of allergic inflammation entailing the promotion of T helper 2 (Th2) cytokine responses. The current study examined whether resveratrol suppressed the production of inflammatory Th2 cytokines in cultured rat basophilic leukemia RBL-2H3 cells. Cells pre-treated with resveratrol nontoxic at 1–25[Formula: see text][Formula: see text]M were sensitized with anti-dinitrophenyl (anti-DNP), and subsequently stimulated by dinitrophenyl–human serum albumin (DNP–HSA) antigen. Resveratrol dose-dependently diminished the secretion of interleukin (IL)-3, IL-4, IL-13 as well as tumor necrosis factor (TNF)-[Formula: see text] by the antigen stimulation from sensitized cells. It was found that resveratrol mitigated the phosphorylation of p38 MAPK, ERK, and JNK elevated in mast cells exposed to Fc epsilon receptor I (Fc[Formula: see text]RI)-mediated immunoglobulin E (IgE)-antigen complex. The Fc[Formula: see text]RI aggregation was highly enhanced on the surface of mast cells following the HSA stimulation, which was retarded by treatment with 1–25[Formula: see text][Formula: see text]M resveratrol. The IgE-receptor engagement rapidly induced tyrosine phosphorylation of c-Src-related focal adhesion protein paxillin involved in the cytoskeleton rearrangement. The Fc[Formula: see text]RI-mediated rapid activation of c-Src and paxillin was attenuated in a dose-dependent manner. In addition, the paxillin activation entailed p38 MAPK and ERK-responsive signaling, but the JNK activation was less involved. Consistently, oral administration of resveratrol reduced the tissue level of phosphorylated paxillin in the dorsal skin of DNP–HSA-challenged mice. The other tyrosine kinase Tyk2-STAT1 signaling was activated in the dorsal epidermis of antigen-exposed mice, which was associated with allergic inflammation. These results showed that resveratrol inhibited Th2 cytokines- and paxillin-linked allergic responses dependent upon MAPK signaling. Therefore, resveratrol may possess the therapeutic potential of targeting mast cells in preventing the development of allergic inflammation.
Collapse
Affiliation(s)
- Seon-Young Han
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| |
Collapse
|
30
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
31
|
Möller K, Pösel C, Kranz A, Schulz I, Scheibe J, Didwischus N, Boltze J, Weise G, Wagner DC. Arterial Hypertension Aggravates Innate Immune Responses after Experimental Stroke. Front Cell Neurosci 2015; 9:461. [PMID: 26640428 PMCID: PMC4661280 DOI: 10.3389/fncel.2015.00461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023] Open
Abstract
Arterial hypertension is not only the leading risk factor for stroke, but also attributes to impaired recovery and poor outcome. The latter could be explained by hypertensive vascular remodeling that aggravates perfusion deficits and blood–brain barrier disruption. However, besides vascular changes, one could hypothesize that activation of the immune system due to pre-existing hypertension may negatively influence post-stroke inflammation and thus stroke outcome. To test this hypothesis, male adult spontaneously hypertensive rats (SHRs) and normotensive Wistar Kyoto rats (WKYs) were subjected to photothrombotic stroke. One and 3 days after stroke, infarct volume and functional deficits were evaluated by magnetic resonance imaging and behavioral tests. Expression levels of adhesion molecules and chemokines along with the post-stroke inflammatory response were analyzed by flow cytometry, quantitative real-time PCR and immunohistochemistry in rat brains 4 days after stroke. Although comparable at day 1, lesion volumes were significantly larger in SHR at day 3. The infarct volume showed a strong correlation with the amount of CD45 highly positive leukocytes present in the ischemic hemispheres. Functional deficits were comparable between SHR and WKY. Brain endothelial expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and P-selectin (CD62P) was neither increased by hypertension nor by stroke. However, in SHR, brain infiltrating myeloid leukocytes showed significantly higher surface expression of ICAM-1 which may augment leukocyte transmigration by leukocyte–leukocyte interactions. The expression of chemokines that primarily attract monocytes and granulocytes was significantly increased by stroke and, furthermore, by hypertension. Accordingly, ischemic hemispheres of SHR contain considerably higher numbers of monocytes, macrophages and granulocytes. Exacerbated brain inflammation in SHR may finally be responsible for larger infarct volumes. These findings provide an immunological explanation for the epidemiological observation that existing hypertension negatively affects stroke outcome and mortality.
Collapse
Affiliation(s)
- Karoline Möller
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Claudia Pösel
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Alexander Kranz
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Isabell Schulz
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Johanna Scheibe
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Nadine Didwischus
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Research Group Human Biology, Institute of Biology, University of Leipzig Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck Lübeck, Germany
| | - Gesa Weise
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Department of Neurology, University of Leipzig Leipzig, Germany
| | | |
Collapse
|
32
|
Chapman KZ, Ge R, Monni E, Tatarishvili J, Ahlenius H, Arvidsson A, Ekdahl CT, Lindvall O, Kokaia Z. Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke. Neurobiol Dis 2015; 83:1-15. [DOI: 10.1016/j.nbd.2015.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022] Open
|
33
|
Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 2015; 9:385. [PMID: 26578854 PMCID: PMC4624851 DOI: 10.3389/fnins.2015.00385] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022] Open
Abstract
In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain, and cerebrospinal fluid. Studies of brain barrier mechanisms and measurements of plasma volume using dyes have a long-standing history, dating back to the late nineteenth-century. Their use in blood-brain barrier studies continues in spite of their known serious limitations in in vivo applications. These were well known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction of HRP in the mid twentieth-century was an important advance because its reaction product can be visualized at the electron microscopical level, but it also has limitations. Advantages and disadvantages of these markers will be discussed together with a critical evaluation of alternative approaches. There is no single marker suitable for all purposes. A combination of different sized, visualizable dextrans and radiolabeled molecules currently seems to be the most appropriate approach for qualitative and quantitative assessment of barrier integrity.
Collapse
Affiliation(s)
- Norman R Saunders
- Laboratory of Developmental Neurobiology and Neurotrauma, Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | - Katarzyna M Dziegielewska
- Laboratory of Developmental Neurobiology and Neurotrauma, Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen Copenhagen, Denmark
| | - Mark D Habgood
- Laboratory of Developmental Neurobiology and Neurotrauma, Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
34
|
Opening the window: Ischemic postconditioning reduces the hyperemic response of delayed tissue plasminogen activator and extends its therapeutic time window in an embolic stroke model. Eur J Pharmacol 2015; 764:55-62. [PMID: 26123846 DOI: 10.1016/j.ejphar.2015.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 11/22/2022]
Abstract
It has been reported that ischemic postconditioning (PC) changes the reperfusion pattern in permanent or transient models of stroke and confers neuroprotection. However, the effects of PC and subsequent use of tissue plasminogen activator (tPA) for the treatment of embolic stroke have not yet been investigated. Rats were subjected to stroke by injection of a preformed clot into the middle cerebral artery and randomly assigned to vehicle (saline 0.1 ml/100 g), tPA (3 mg/kg), PC only or PC+tPA (3 mg/kg). tPA was injected at 6 h after embolic stroke and PC was conducted at 6.5 h after ischemia by using five cycles of a 10 s occlusion and 30 s of reopening of the bilateral common carotid arteries. Cerebral blood flow (CBF) was monitored for 60 min from the time of tPA injection. Infarct size, blood brain barrier disruption, edema, neurological deficits, reactive oxygen species and apoptosis were measured 2 days later. PC decreased infarct volume, but PC+tPA was more neuroprotective than PC alone. While tPA alone dramatically increased CBF, conducting PC caused a gradual increase in CBF. A combination of PC+tPA reduced BBB leakage, brain edema, apoptosis and reactive oxygen species levels. Furthermore, a combination of PC+tPA improved neurological functions at 48 h after the induced stroke. In conclusion, PC hampered malignant hyperemia after reperfusion with tPA and extended its therapeutic window up to 6 h. Compared to PC alone, combination of thrombolysis and PC showed a better neuroprotection.
Collapse
|