1
|
Sun Y, An P, Cai Y, Yang W, Fang Y, Liu H, Zhang G, Shan Y, Wang J, Zhang Y, Zhou X. Environmental enrichment reverses noise induced impairments in learning and memory associated with the hippocampus in female rats. Sci Rep 2025; 15:11509. [PMID: 40181175 PMCID: PMC11968901 DOI: 10.1038/s41598-025-96119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Environmental enrichment (EE) has positive effects on brain function and behavior in both healthy and behaviorally impaired animals. In earlier studies, we showed that rats exposed to noise during early development exhibited deficits in learning and memory associated with the hippocampus. In this study, we investigated whether EE provided during adulthood can reverse such noise-induced impairments. We found that four weeks of EE substantially improved learning and memory in adult female rats exposed to noise during early development. The behavioral changes observed after EE were accompanied by the restoration of parvalbumin-positive (PV+) inhibitory interneurons in the hippocampal subregions. EE also reversed noise-induced reductions in hippocampal long-term potentiation (LTP) of synaptic connections, a mechanism essential for learning and memory processing. However, an enriched environment that lacked social interaction had little effect on restoring LTP in noise-exposed rats. These findings suggest that EE effectively mitigates hippocampal impairments that stem from early noise exposure, with social interaction playing a crucial role in this recovery process.
Collapse
Affiliation(s)
- Yutian Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Yongjian Cai
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Wenjing Yang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Yue Fang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Hui Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Guimin Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Wuhu Hospital, East China Normal University, Wuhu, 241000, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China.
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China.
| |
Collapse
|
2
|
Shinohara Y, Koketsu S, Ohno N, Hirase H, Ueki T. Brain State-Dependent Neocortico-Hippocampal Network Dynamics Are Modulated by Postnatal Stimuli. J Neurosci 2025; 45:e0053212025. [PMID: 39870530 PMCID: PMC11884400 DOI: 10.1523/jneurosci.0053-21.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Neurons in the cerebral cortex and hippocampus discharge synchronously in a brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area; however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice. We found that neocortical activity elevates around hippocampal sharp wave ripples (SWRs). SWR-associated neocortical activities occurred predominantly in vision-related regions including the visual, retrosplenial, and frontal cortex. While pre-SWR neocortical activities were frequently observed in awake and natural sleeping states, post-SWR neocortical activity decreased significantly in the latter. Urethane-anesthetized mice also exhibited SWR-correlated calcium elevation, but in longer timescale than observed in natural sleeping mice. During hippocampal theta oscillation states, phase-locked oscillations of calcium activity were observed throughout the entire neocortical areas. In addition, possible environmental effects on neocortico-hippocampal dynamics were assessed in this study by comparing mice reared in ISO (isolated condition) and ENR (enriched environment). In both SWR and theta oscillations, mice reared in ISO exhibited clearer brain state-dependent dynamics than those reared in ENR. Our data demonstrate that the neocortex and hippocampus exhibit heterogeneous activity patterns that characterize brain states, and postnatal experience plays a significant role in modulating these patterns.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Laboratory of Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke 329-0498, Japan
- Department of Anatomy and Systems Biology, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Shinnosuke Koketsu
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Hajime Hirase
- Laboratory of Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
3
|
Xia Y, Vieira VM. The association between neighborhood environment, prenatal exposure to alcohol and tobacco, and structural brain development. Front Hum Neurosci 2025; 19:1531803. [PMID: 40041111 PMCID: PMC11876420 DOI: 10.3389/fnhum.2025.1531803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Prenatal alcohol and tobacco exposure affects child brain development. Less is known about how neighborhood environment (built, institutional, and social) may be associated with structural brain development and whether prenatal exposure to alcohol or tobacco may modify this relationship. The current study aimed to examine whether neighborhood environment is associated with brain volume at age 9-11, and whether prenatal exposure to alcohol or tobacco modifies this relationship. Baseline data from Adolescent Brain and Cognitive Development (ABCD) study was analyzed (N = 7,887). Neighborhood environment was characterized by 10 variables from the linked external dataset. Prenatal alcohol and tobacco exposures were dichotomized based on the developmental history questionnaire. Bilateral volumes of three regions of interests (hippocampal, parahippocampal, and entorhinal) were examined as outcomes. High residential area deprivation was associated with smaller right hippocampal volume. Prenatal alcohol exposure was associated with larger volume in left parahippocampal and hippocampal regions, while prenatal tobacco exposure was associated with smaller volumes in bilateral parahippocampal, right entorhinal, and right hippocampal regions. In children without prenatal tobacco exposure, high residential area deprivation was associated with smaller right hippocampal volumes. In contrast, neighborhood environment was not significantly associated with brain volumes in children with prenatal tobacco exposure. In summary, neighborhood environment plays a role in child brain development. This relationship may differ by prenatal tobacco exposure. Future studies on prenatal tobacco exposure may need to consider how postnatal neighborhood environment interacts with the teratogenic effect.
Collapse
Affiliation(s)
- Yingjing Xia
- Joe C. Wen School of Population and Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
4
|
Farmer AL, Febo M, Wilkes BJ, Lewis MH. Environmental Enrichment Attenuates Repetitive Behavior and Alters the Functional Connectivity of Pain and Sensory Pathways in C58 Mice. Cells 2024; 13:1933. [PMID: 39682680 PMCID: PMC11640393 DOI: 10.3390/cells13231933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Restricted repetitive behaviors (RRB) encompass a variety of inflexible behaviors, which are diagnostic for autism spectrum disorder (ASD). Despite being requisite diagnostic criteria, the neurocircuitry of these behaviors remains poorly understood, limiting treatment development. Studies in translational animal models show environmental enrichment (EE) reduces the expression of RRB, although the underlying mechanisms are largely unknown. This study used functional magnetic resonance imaging to identify functional connectivity alterations associated with RRB and its attenuation by EE in C58 mice, an animal model of RRB. Extensive differences were observed between C58 mice and C57BL/6 control mice. Higher RRB was associated with altered connectivity between the somatosensory network and reticular thalamic nucleus and between striatal and sensory processing regions. Animals housed in EE displayed increased connectivity between the somatosensory network and the anterior pretectal nucleus and hippocampus, as well as reduced connectivity between the visual network and area prostriata. These results suggest aberrant sensory perception is associated with RRB in C58 mice. EE may reduce RRB by altering functional connectivity in pain and visual networks. This study raises questions about the role of sensory processing and pain in RRB development and identifies new potential intervention targets.
Collapse
Affiliation(s)
- Anna L. Farmer
- Department of Psychology, University of Florida, Gainesville, FL 32603, USA;
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA;
| | - Bradley J. Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32608, USA;
| | - Mark H. Lewis
- Department of Psychology, University of Florida, Gainesville, FL 32603, USA;
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
5
|
Loprinzi PD, Jung M, Undorf M. The association between physical activity and memory interference. PSYCHOLOGICAL RESEARCH 2024; 88:2280-2291. [PMID: 39180561 DOI: 10.1007/s00426-024-02021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Habitual physical activity has been shown to improve memory performance, yet investigations into its effects concerning memory interference remain limited. Additionally, minimal research has evaluated the association between habitual physical activity behaviors occurring in different contexts (e.g., walking, basketball, swimming) and memory. Based on these gaps in the literature, the present set of six experiments evaluated the association between contextually-different physical activity behaviors (e.g., individual physical activities, physical activities performed in social settings) and memory interference among young adult samples from America and Germany. Across six experiments, we reliably demonstrated that Germans exhibited greater memory performance than Americans. We also reliably demonstrated that contextually-different physical activities are not associated with memory performance or attenuated memory interference.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Department of Health, Exercise Science and Recreation Management, Department of Psychology, University of Mississippi, Oxford, MS, USA.
- Director of Exercise & Memory Laboratory, University of Mississippi, Oxford, MS, 38655, USA.
| | - Myungjin Jung
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA
| | - Monika Undorf
- Department of Psychology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
6
|
Zorlular R, Akkaya KU, Elbasan B. The relationship between home environment affordances and motor development and sensory processing skills in premature infants. Infant Behav Dev 2024; 75:101944. [PMID: 38522347 DOI: 10.1016/j.infbeh.2024.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
The availability of stimulating materials in the home environment is of great importance to optimizing an infant's development. This study, which has a cross-sectional study design, was conducted to examine the relationship between home environment conditions and equipment support and the motor development and sensory processing skills of premature infants. Children born premature, aged 10-16 months, were included in the study. Motor development was evaluated with the Peabody Motor Development Scale-2, and sensory processing skills were evaluated with the Test of Sensory Function in Infants. The Affordances in the Home Environment for Motor Development-Infant Scale was used to evaluate the home environment. A total of 51 premature infants were included in the study. It was determined that there was a significant relationship between physical space, stimulus variety and fine motor toys in the home environment and Peabody Motor Development Scale-2 gross motor and fine motor development scores. It was also shown that there was a relationship between the tactile and total scores of the Test of Sensory Function in Infants Scale and the variety of stimuli in the home environment and gross motor toy scores. These findings show that the opportunities provided in the home environment of premature infants may be related to their motor development and sensory processing skills. Consequently, the home environment may be associated with experiencing movements and sensory experiences.
Collapse
Affiliation(s)
- Rabia Zorlular
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Nigde Omer Halisdemir University, Nigde, Turkey.
| | - Kamile Uzun Akkaya
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Bulent Elbasan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Gaynor AM, Gazes Y, Haynes CR, Babukutty RS, Habeck C, Stern Y, Gu Y. Childhood engagement in cognitively stimulating activities moderates relationships between brain structure and cognitive function in adulthood. Neurobiol Aging 2024; 138:36-44. [PMID: 38522385 PMCID: PMC11363693 DOI: 10.1016/j.neurobiolaging.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Greater engagement in cognitively stimulating activities (CSA) during adulthood has been shown to protect against neurocognitive decline, but no studies have investigated whether CSA during childhood protects against effects of brain changes on cognition later in life. The current study tested the moderating role of childhood CSA in the relationships between brain structure and cognitive performance during adulthood. At baseline (N=250) and 5-year follow-up (N=204) healthy adults aged 20-80 underwent MRI to assess four structural brain measures and completed neuropsychological tests to measure three cognitive domains. Participants were categorized into low and high childhood CSA based on self-report questionnaires. Results of multivariable linear regressions analyzing interactions between CSA, brain structure, and cognition showed that higher childhood CSA was associated with a weaker relationship between cortical thickness and memory at baseline, and attenuated the effects of change in cortical thickness and brain volume on decline in processing speed over time. These findings suggest higher CSA during childhood may mitigate the effects of brain structure changes on cognitive function later in life.
Collapse
Affiliation(s)
- Alexandra M Gaynor
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Montclair State University, Department of Psychology, Montclair, NJ, United States
| | - Yunglin Gazes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Caleb R Haynes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Reshma S Babukutty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Christian Habeck
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Psychiatry, Columbia University, New York, NY, United States
| | - Yian Gu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States.
| |
Collapse
|
8
|
Weiner SP, Vasquez C, Song S, Zhao K, Ali O, Rosenkilde D, Froemke RC, Carr KD. Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings. ADDICTION NEUROSCIENCE 2024; 10:100142. [PMID: 38323217 PMCID: PMC10843874 DOI: 10.1016/j.addicn.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
Collapse
Affiliation(s)
- Sydney P. Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Diabetes Research Program, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Soomin Song
- Department of Pathology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kaiyang Zhao
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Omar Ali
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Danielle Rosenkilde
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Robert C. Froemke
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Otolaryngology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kenneth D. Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
9
|
Gallas-Lopes M, Benvenutti R, Donzelli NIZ, Marcon M. A systematic review of the impact of environmental enrichment in zebrafish. Lab Anim (NY) 2023; 52:332-343. [PMID: 38017181 DOI: 10.1038/s41684-023-01288-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023]
Abstract
Environmental enrichment (EE) consists of a series of interventions carried out in the home environment to promote greater exposure to sensory stimuli and mimic the natural habitat of laboratory-housed animals, providing environments closer to those found in nature. Some studies have shown the positive effects of EE in zebrafish housed in a laboratory environment. However, this evidence is still recent and accompanied by contradictory results. Furthermore, there is great variability in the protocols applied and in the conditions of the tests, tanks and materials used to generate an enriched environment. This substantial variability can bring many uncertainties to the development of future studies and hinder the reproducibility and replicability of research. Here, in this context, we carried out a systematic review of the literature, aiming to provide an overview of the EE protocols used in zebrafish research. The literature search was performed in PubMed, Scopus and Web of Science and the studies were selected on the basis of predefined inclusion/exclusion criteria. A total of 901 articles were identified in the databases, and 27 of those studies were included in this review. We conducted data extraction and risk-of-bias analysis in the included studies. Among these studies, the effect of EE was evaluated in two different ways: (1) for animal welfare and (2) as an intervention to prevent behavioral, biochemical, molecular, developmental and breeding dysfunctions. Although the EE protocols in zebrafish presented a series of experimental differences, the results showed that the benefits of the EE for zebrafish were consistent. According to the results described here, the use of EE in the zebrafish home tank improves welfare and may reduce sources of bias in scientific research. However, it is still necessary to develop standardized protocols to improve the application of EE in scientific studies using zebrafish.
Collapse
Affiliation(s)
- Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nayne I Z Donzelli
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
- Laboratório de Zebrafish (ZebLab), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
- Laboratório de Zebrafish (ZebLab), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
| |
Collapse
|
10
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
11
|
Bramati G, Stauffer P, Nigri M, Wolfer DP, Amrein I. Environmental enrichment improves hippocampus-dependent spatial learning in female C57BL/6 mice in novel IntelliCage sweet reward-based behavioral tests. Front Behav Neurosci 2023; 17:1256744. [PMID: 37791111 PMCID: PMC10543696 DOI: 10.3389/fnbeh.2023.1256744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023] Open
Abstract
The IntelliCage is an automated home-cage system that allows researchers to investigate the spontaneous behavior and learning abilities of group-housed mice. The IntelliCage enables us to increase the standardization and reproducibility of behavioral outcomes by the omission of experimenter-mouse interactions. Although the IntelliCage provides a less stressful environment for animals, standard IntelliCage protocols use controlled water access as the motivational driver for learning. To overcome possible water restrictions in slow learners, we developed a series of novel protocols based on appetitive learning, in which mice had permanent access to plain water but were additionally rewarded with sweetened water upon solving the task. C57BL/6NCrl female mice were used to assess the efficacy of these sweet reward-based protocols in a series of learning tasks. Compared to control mice tested with standard protocols, mice motivated with a sweet reward did equal to or better in operant performance and place learning tasks. Learning of temporal rules was slower than that in controls. When faced with a combined temporal x spatial working memory task, sweet-rewarded mice learned little and chose plain water. In a second set of experiments, the impact of environmental enrichment on appetitive learning was tested. Mice kept under enriched environment (EE) or standard housing (SH) conditions prior to the IntelliCage experiments performed similarly in the sweet-rewarded place learning task. EE mice performed better in the hippocampus-dependent spatial working memory task. The improved performance of EE mice in the hippocampus-dependent spatial working memory task might be explained by the observed larger volume of their mossy fibers. Our results confirm that environmental enrichment increases complex spatial learning abilities and leads to long-lasting morphological changes in the hippocampus. Furthermore, simple standard IntelliCage protocols could easily be adapted to sweet rewards, which improve animal welfare by removing the possibility of water restriction. However, complex behavioral tasks motivated by sweet reward-based learning need further adjustments to reach the same efficacy as standard protocols.
Collapse
Affiliation(s)
- Giulia Bramati
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
| | - Pia Stauffer
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
| | - Martina Nigri
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | - David P. Wolfer
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | - Irmgard Amrein
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| |
Collapse
|
12
|
Farmer AL, Lewis MH. Reduction of restricted repetitive behavior by environmental enrichment: Potential neurobiological mechanisms. Neurosci Biobehav Rev 2023; 152:105291. [PMID: 37353046 DOI: 10.1016/j.neubiorev.2023.105291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Restricted repetitive behaviors (RRB) are one of two diagnostic criteria for autism spectrum disorder and common in other neurodevelopmental and psychiatric disorders. The term restricted repetitive behavior refers to a wide variety of inflexible patterns of behavior including stereotypy, self-injury, restricted interests, insistence on sameness, and ritualistic and compulsive behavior. However, despite their prevalence in clinical populations, their underlying causes remain poorly understood hampering the development of effective treatments. Intriguingly, numerous animal studies have demonstrated that these behaviors are reduced by rearing in enriched environments (EE). Understanding the processes responsible for the attenuation of repetitive behaviors by EE should offer insights into potential therapeutic approaches, as well as shed light on the underlying neurobiology of repetitive behaviors. This review summarizes the current knowledge of the relationship between EE and RRB and discusses potential mechanisms for EE's attenuation of RRB based on the broader EE literature. Existing gaps in the literature and future directions are also discussed.
Collapse
Affiliation(s)
- Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Costa GA, de Gusmão Taveiros Silva NK, Marianno P, Chivers P, Bailey A, Camarini R. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience 2023; 526:277-289. [PMID: 37419403 DOI: 10.1016/j.neuroscience.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Environmental enrichment (EE) is a condition characterized by its complexity regarding social contact, exposure to novelty, tactile stimuli and voluntary exercise, also is considered as a eustress model. The impact of EE on brain physiology and behavioral outcomes may be at least partly underpinned by mechanisms involving the modulation of the brain-derived neurotrophic factor (BDNF), but the connection between specific Bdnf exon expression and their epigenetic regulation remain poorly understood. This study aimed to dissect the transcriptional and epigenetic regulatory effect of 54-day exposure to EE on BDNF by analysing individual BDNF exons mRNA expression and the DNA methylation profile of a key transcriptional regulator of the Bdnf gene, exon IV, in the prefrontal cortex (PFC) of C57BL/6 male mice (sample size = 33). Bdnf exons II, IV, VI and IX mRNA expression were upregulated and methylation levels at two CpG sites of exon IV were reduced in the PFC of EE mice. As deficit in exon IV expression has also been causally implicated in stress-related psychopathologies, we also assessed anxiety-like behavior and plasma corticosterone levels in these mice to determine any potential correlation. However, no changes were observed in EE mice. The findings may suggest an EE-induced epigenetic control of BDNF exon expression via a mechanism involving exon IV methylation. The findings of this study contribute to the current literature by dissecting the Bdnf gene topology in the PFC where transcriptional and epigenetic regulatory effect of EE takes place.
Collapse
Affiliation(s)
- Gabriel Araújo Costa
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Marianno
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priti Chivers
- School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK.
| | - Rosana Camarini
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Morè L, Privitera L, Cooper DD, Tsogka M, Arthur JSC, Frenguelli BG. MSK1 is required for the beneficial synaptic and cognitive effects of enriched experience across the lifespan. Aging (Albany NY) 2023; 15:6031-6072. [PMID: 37432063 PMCID: PMC10373962 DOI: 10.18632/aging.204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
Positive experiences, such as social interaction, cognitive training and physical exercise, have been shown to ameliorate some of the harms to cognition associated with ageing. Animal models of positive interventions, commonly known as environmental enrichment, strongly influence neuronal morphology and synaptic function and enhance cognitive performance. While the profound structural and functional benefits of enrichment have been appreciated for decades, little is known as to how the environment influences neurons to respond and adapt to these positive sensory experiences. We show that adult and aged male wild-type mice that underwent a 10-week environmental enrichment protocol demonstrated improved performance in a variety of behavioural tasks, including those testing spatial working and spatial reference memory, and an enhancement in hippocampal LTP. Aged animals in particular benefitted from enrichment, performing spatial memory tasks at levels similar to healthy adult mice. Many of these benefits, including in gene expression, were absent in mice with a mutation in an enzyme, MSK1, which is activated by BDNF, a growth factor implicated in rodent and human cognition. We conclude that enrichment is beneficial across the lifespan and that MSK1 is required for the full extent of these experience-induced improvements of cognitive abilities, synaptic plasticity and gene expression.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel D. Cooper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Marianthi Tsogka
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
15
|
Loisy M, Farah A, Fafouri A, Fanton A, Ahmadi M, Therreau L, Chevaleyre V, Piskorowski RA. Environmental enrichment and social isolation modulate inhibitory transmission and plasticity in hippocampal area CA2. Hippocampus 2023; 33:197-207. [PMID: 36374115 DOI: 10.1002/hipo.23478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Environmental factors are well-accepted to play a complex and interdependent role with genetic factors in learning and memory. The goal of this study was to examine how environmental conditions altered synaptic plasticity in hippocampal area CA2. To do this, we housed adult mice for 3 weeks in an enriched environment (EE) consisting of a larger cage with running wheel, and regularly changed toys, tunnels and treats. We then performed whole-cell or extracellular field recordings in hippocampal area CA2 and compared the synaptic plasticity from EE-housed mice with slices from littermate controls housed in standard environment (SE). We found that the inhibitory transmission recruited by CA3 input stimulation in CA2 was significantly less plastic in EE conditions as compared to SE following an electrical tetanus. We demonstrate that delta-opioid receptor (DOR) mediated plasticity is reduced in EE conditions by direct application of DOR agonist. We show that in EE conditions the overall levels of GABA transmission is reduced in CA2 cells by analyzing inhibition of ErbB4 receptor, spontaneous inhibitory currents and paired-pulse ratio. Furthermore, we report that the effect of EE of synaptic plasticity can be rapidly reversed by social isolation. These results demonstrate how the neurons in hippocampal area CA2 are sensitive to environment and may lead to promising therapeutic targets.
Collapse
Affiliation(s)
- Maïthé Loisy
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Amel Farah
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Assia Fafouri
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Aurélien Fanton
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Mahboubeh Ahmadi
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Ludivine Therreau
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Vivien Chevaleyre
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Rebecca A Piskorowski
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
16
|
Shu X, Wei C, Tu WY, Zhong K, Qi S, Wang A, Bai L, Zhang SX, Luo B, Xu ZZ, Zhang K, Shen C. Negative regulation of TREM2-mediated C9orf72 poly-GA clearance by the NLRP3 inflammasome. Cell Rep 2023; 42:112133. [PMID: 36800288 DOI: 10.1016/j.celrep.2023.112133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Expansion of the hexanucleotide repeat GGGGCC in the C9orf72 gene is the most common genetic factor in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Poly-Gly-Ala (poly-GA), one form of dipeptide repeat proteins (DPRs) produced from GGGGCC repeats, tends to form neurotoxic protein aggregates. The C9orf72 GGGGCC repeats and microglial receptor TREM2 are both associated with risk for ALS/FTD. The role and regulation of TREM2 in C9orf72-ALS/FTD remain unclear. Here, we found that poly-GA proteins activate the microglial NLRP3 inflammasome to produce interleukin-1β (IL-1β), which promotes ADAM10-mediated TREM2 cleavage and inhibits phagocytosis of poly-GA. The inhibitor of the NLRP3 inflammasome, MCC950, reduces the TREM2 cleavage and poly-GA aggregates, resulting in the alleviation of motor deficits in poly-GA mice. Our study identifies a crosstalk between NLRP3 and TREM2 signaling, suggesting that targeting the NLRP3 inflammasome to sustain TREM2 is an approach to treat C9orf72-ALS/FTD.
Collapse
Affiliation(s)
- Xiaoqiu Shu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Chen Wei
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Wen-Yo Tu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Keke Zhong
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Shuyuan Qi
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Ailian Wang
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Lei Bai
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Shan-Xin Zhang
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Benyan Luo
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Zhen-Zhong Xu
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Kejing Zhang
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China.
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Alemany-González M, Vilademunt M, Gener T, Puig MV. Postnatal environmental enrichment enhances memory through distinct neural mechanisms in healthy and trisomic female mice. Neurobiol Dis 2022; 173:105841. [PMID: 35988873 DOI: 10.1016/j.nbd.2022.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Stimulating lifestyles have powerful effects on cognitive abilities, especially when they are experienced early in life. Cognitive therapies are widely used to improve cognitive impairment due to intellectual disability, aging, and neurodegeneration, however the underlying neural mechanisms are poorly understood. We investigated the neural correlates of memory amelioration produced by postnatal environmental enrichment (EE) in diploid mice and the Ts65Dn mouse model of Down syndrome (trisomy 21). We recorded neural activities in brain structures key for memory processing, the hippocampus and the prefrontal cortex, during rest, sleep and memory performance in mice reared in non-enriched or enriched environments. Enriched wild-type animals exhibited enhanced neural synchrony in the hippocampus across different brain states (increased gamma oscillations, theta-gamma coupling, sleep ripples). Trisomic females showed increased theta and gamma rhythms in the hippocampus and prefrontal cortex across different brain states along with enlarged ripples and disrupted circuit gamma signals that were associated with memory deficits. These pathological activities were attenuated in their trisomic EE-reared peers. Our results suggest distinct neural mechanisms for the generation and rescue of healthy and pathological brain synchrony, respectively, by EE and put forward hippocampal-prefrontal hypersynchrony and miscommunication as major targets underlying the beneficial effects of EE in intellectual disability.
Collapse
Affiliation(s)
- Maria Alemany-González
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Marta Vilademunt
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Thomas Gener
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
18
|
Kovalchuk A, Mychasiuk R, Muhammad A, Hossain S, Ghose A, Kirkby C, Ghasroddashti E, Kovalchuk O, Kolb B. Complex housing partially mitigates low dose radiation-induced changes in brain and behavior in rats. Restor Neurol Neurosci 2022; 40:109-124. [DOI: 10.3233/rnn-211216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose: In recent years, much effort has been focused on developing new strategies for the prevention and mitigation of adverse radiation effects on healthy tissues and organs, including the brain. The brain is very sensitive to radiation effects, albeit as it is highly plastic. Hence, deleterious radiation effects may be potentially reversible. Because radiation exposure affects dendritic space, reduces the brain’s ability to produce new neurons, and alters behavior, mitigation efforts should focus on restoring these parameters. To that effect, environmental enrichment through complex housing (CH) and exercise may provide a plausible avenue for exploration of protection from brain irradiation. CH is a much broader concept than exercise alone, and constitutes exposure of animals to positive physical and social stimulation that is superior to their routine housing and care conditions. We hypothesized that CHs may lessen harmful neuroanatomical and behavioural effects of low dose radiation exposure. Methods: We analyzed and compared cerebral morphology in animals exposed to low dose head, bystander (liver), and scatter irradiation on rats housed in either the environmental enrichment condos or standard housing. Results: Enriched condo conditions ameliorated radiation-induced neuroanatomical changes. Moreover, irradiated animals that were kept in enriched CH condos displayed fewer radiation-induced behavioural deficits than those housed in standard conditions. Conclusions: Animal model-based environmental enrichment strategies, such as CH, are excellent surrogate models for occupational and exercise therapy in humans, and consequently have significant translational possibility. Our study may thus serve as a roadmap for the development of new, easy, safe and cost-effective methods to prevent and mitigate low-dose radiation effects on the brain.
Collapse
Affiliation(s)
- Anna. Kovalchuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | | | - Arif. Muhammad
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Shakhawat. Hossain
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Abhijit. Ghose
- Jack Ady Cancer Center, Alberta Health Services, Lethbridge, AB, Canada
| | - Charles. Kirkby
- Jack Ady Cancer Center, Alberta Health Services, Lethbridge, AB, Canada
- Department of Physics and Astronomy and Department of Oncology, University of Calgary, AB, Canada
| | - Esmaeel. Ghasroddashti
- Jack Ady Cancer Center, Alberta Health Services, Lethbridge, AB, Canada
- Department of Physics and Astronomy and Department of Oncology, University of Calgary, AB, Canada
| | - Olga. Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan. Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
19
|
Babaei P, Azari HB. Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms. Front Hum Neurosci 2022; 15:771553. [PMID: 35153701 PMCID: PMC8829997 DOI: 10.3389/fnhum.2021.771553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As human life expectancy increases, cognitive decline and memory impairment threaten independence and quality of life. Therefore, finding prevention and treatment strategies for memory impairment is an important health concern. Moreover, a better understanding of the mechanisms involved underlying memory preservation will enable the development of appropriate pharmaceuticals drugs for those who are activity limited. Exercise training as a non-pharmacological tool, has been known to increase the mean lifespan by maintaining general body health and improving the cardiovascular and nervous systems function. Among different exercise training protocols, aerobic exercise has been reported to prevent the progression of memory decline, provided adequate exertion level, duration, and frequency. Mechanisms underlying exercise training effects on memory performance have not been understood yet. Convergent evidence suggest several direct and indirect mechanisms at molecular and supramolecular levels. The supramolecular level includes improvement in blood circulation, synaptic plasticity and neurogenesis which are under controls of complex molecular signaling of neurotransmitters, neurotrophic factors, exerkines, and epigenetics factors. Among these various factors, irisin/BDNF signaling seems to be one of the important mediators of crosstalk between contracted skeletal muscles and the brain during exercise training. This review provides an affordable and effective method to improve cognitive function in old ages, particularly those who are most vulnerable to neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Helya Bolouki Azari
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Barch DM, Donohue MR, Elsayed NM, Gilbert K, Harms MP, Hennefield L, Herzberg M, Kandala S, Karcher NR, Jackson JJ, Luking KR, Rappaport BI, Sanders A, Taylor R, Tillman R, Vogel AC, Whalen D, Luby JL. Early Childhood Socioeconomic Status and Cognitive and Adaptive Outcomes at the Transition to Adulthood: The Mediating Role of Gray Matter Development Across Five Scan Waves. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:34-44. [PMID: 34273554 PMCID: PMC8917509 DOI: 10.1016/j.bpsc.2021.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Early low socioeconomic status (SES) is associated with poor outcomes in childhood, many of which endure into adulthood. It is critical to determine how early low SES relates to trajectories of brain development and whether these mediate relationships to poor outcomes. We use data from a unique 17-year longitudinal study with five waves of structural brain imaging to prospectively examine relationships between preschool SES and cognitive, social, academic, and psychiatric outcomes in early adulthood. METHODS Children (n = 216, 50% female, 47.2% non-White) were recruited from a study of early onset depression and followed approximately annually. Family income-to-needs ratios (SES) were assessed when children were ages 3 to 5 years. Volumes of cortical gray and white matter and subcortical gray matter collected across five scan waves were processed using the FreeSurfer Longitudinal pipeline. When youth were ages 16+ years, cognitive function was assessed using the NIH Toolbox, and psychiatric diagnoses, high-risk behaviors, educational function, and social function were assessed using clinician administered and parent/youth report measures. RESULTS Lower preschool SES related to worse cognitive, high-risk, educational, and social outcomes (|standardized B| = 0.20-0.31, p values < .003). Lower SES was associated with overall lower cortical (standardized B = 0.12, p < .0001) and subcortical gray matter (standardized B = 0.17, p < .0001) volumes, as well as a shallower slope of subcortical gray matter growth over time (standardized B = 0.04, p = .012). Subcortical gray matter mediated the relationship of preschool SES to cognition and high-risk behaviors. CONCLUSIONS These novel longitudinal data underscore the key role of brain development in understanding the long-lasting relations of early low SES to outcomes in children.
Collapse
Affiliation(s)
- Deanna M Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis, St. Louis, Missouri.
| | - Meghan Rose Donohue
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Nourhan M Elsayed
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Kirsten Gilbert
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Michael P Harms
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Laura Hennefield
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Max Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Sridhar Kandala
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Joshua J Jackson
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Katherine R Luking
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Brent I Rappaport
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Ashley Sanders
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Rita Taylor
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Rebecca Tillman
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Alecia C Vogel
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Diana Whalen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
21
|
Muthmainah M, Sari WA, Wiyono N, Ghazali DA, Yudhani RD, Wasita B. Environmental Enrichment Ameliorates Anxiety-Like Behavior in Rats without Altering Plasma Corticosterone Level. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Anxiety disorder is one of the most common psychiatric problems. Prolonged stress gives rise to anxiety-like behavior in animals. Environmental interventions influence the outcome of anxiety treatment. Environmental enrichment (EE) can modulate brain’s structure and function.
AIM: The objective of the study was to evaluate EE effects on anxiety-like behavior and corticosterone (CORT) level after unpredictable chronic mild stress (UCMS).
METHODS: A total of 28 rats were assigned into four groups randomly: Control, UCMS, UCMS+EE, and UCMS+fluoxetine. UCMS, EE, and fluoxetine were given for 21 days. Anxiety behavior was measured on day 22nd using Elevated Plus Maze. Behavioral measurement was based on the total time spent and total entries onto open and closed arms. CORT was measured using ELISA.
RESULTS: UCMS increased anxiety-like behavior as seen from reduced number of entries and time spent in open arms as well as increased number of entries and time spent in in closed arms in UCMS group than control. Rats in EE group spent more time and made more entries in the open arms than UCMS group (both p = 0.002). Anxiolytic effect of EE was stronger than fluoxetine. Plasma CORT level among groups did not differ significantly (p = 0.351).
CONCLUSION: EE can ameliorate stress-induced anxiety-like behavior without affecting CORT level.
Collapse
|
22
|
Hirono M, Karube F, Yanagawa Y. Modulatory Effects of Monoamines and Perineuronal Nets on Output of Cerebellar Purkinje Cells. Front Neural Circuits 2021; 15:661899. [PMID: 34194302 PMCID: PMC8236809 DOI: 10.3389/fncir.2021.661899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Classically, the cerebellum has been thought to play a significant role in motor coordination. However, a growing body of evidence for novel neural connections between the cerebellum and various brain regions indicates that the cerebellum also contributes to other brain functions implicated in reward, language, and social behavior. Cerebellar Purkinje cells (PCs) make inhibitory GABAergic synapses with their target neurons: other PCs and Lugaro/globular cells via PC axon collaterals, and neurons in the deep cerebellar nuclei (DCN) via PC primary axons. PC-Lugaro/globular cell connections form a cerebellar cortical microcircuit, which is driven by serotonin and noradrenaline. PCs' primary outputs control not only firing but also synaptic plasticity of DCN neurons following the integration of excitatory and inhibitory inputs in the cerebellar cortex. Thus, strong PC-mediated inhibition is involved in cerebellar functions as a key regulator of cerebellar neural networks. In this review, we focus on physiological characteristics of GABAergic transmission from PCs. First, we introduce monoaminergic modulation of GABAergic transmission at synapses of PC-Lugaro/globular cell as well as PC-large glutamatergic DCN neuron, and a Lugaro/globular cell-incorporated microcircuit. Second, we review the physiological roles of perineuronal nets (PNNs), which are organized components of the extracellular matrix and enwrap the cell bodies and proximal processes, in GABA release from PCs to large glutamatergic DCN neurons and in cerebellar motor learning. Recent evidence suggests that alterations in PNN density in the DCN can regulate cerebellar functions.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Department of Physiology, Wakayama Medical University, Wakayama, Japan
| | - Fuyuki Karube
- Lab of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
23
|
Cooper DD, Frenguelli BG. The influence of sensory experience on the glutamatergic synapse. Neuropharmacology 2021; 193:108620. [PMID: 34048870 DOI: 10.1016/j.neuropharm.2021.108620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
The ability of glutamatergic synaptic strength to change in response to prevailing neuronal activity is believed to underlie the capacity of animals, including humans, to learn from experience. This learning better equips animals to safely navigate challenging and potentially harmful environments, while reinforcing behaviours that are conducive to survival. Early descriptions of the influence of experience on behaviour were provided by Donald Hebb who showed that an enriched environment improved performance of rats in a variety of behavioural tasks, challenging the widely-held view at the time that psychological development and intelligence were largely predetermined through genetic inheritance. Subsequent studies in a variety of species provided detailed cellular and molecular insights into the neurobiological adaptations associated with enrichment and its counterparts, isolation and deprivation. Here we review those experience-dependent changes that occur at the glutamatergic synapse, and which likely underlie the enhanced cognition associated with enrichment. We focus on the importance of signalling initiated by the release of BDNF and a prime downstream effector, MSK1, in orchestrating the many structural and functional neuronal adaptations associated with enrichment. In particular we discuss the MSK1-dependent expansion of the dynamic range of the glutamatergic synapse, which may allow enhanced information storage or processing, and the establishment of a genomic homeostasis that may both stabilise the enriched brain, and may make it better able to respond to novel experiences.
Collapse
Affiliation(s)
- Daniel D Cooper
- School of Life Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
24
|
UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron 2021; 109:1949-1962.e6. [PMID: 33991504 DOI: 10.1016/j.neuron.2021.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/09/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Expansion of a hexanucleotide repeat GGGGCC (G4C2) in the intron of the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Transcripts carrying G4C2 repeat expansions generate neurotoxic dipeptide repeat (DPR) proteins, including poly-Gly-Ala (poly-GA), which tends to form protein aggregates. Here, we demonstrate that UBQLN2, another ALS/FTD risk factor, is recruited to reduce poly-GA aggregates and alleviate poly-GA-induced neurotoxicity. UBQLN2 could recognize HSP70 ubiquitination, which facilitates the UBQLN2-HSP70-GA complex formation and promotes poly-GA degradation. ALS/FTD-related UBQLN2 mutants fail to bind HSP70 and clear poly-GA aggregates. Disruption of the interaction between UBQLN2 and HSP70 inhibits poly-GA aggregation in C9-ALS/FTD iPSC-derived neurons. Finally, enhancing HSP70 by the chemical compound 17AAG at the adult stage mitigates behavioral defects in poly-GA animals. Our findings suggest a critical role of the UBQLN2-HSP70 axis in protein aggregate clearance in C9-ALS/FTD.
Collapse
|
25
|
Wang C, Liu H, Li K, Wu ZZ, Wu C, Yu JY, Gong Q, Fang P, Wang XX, Duan SM, Wang H, Gu Y, Hu J, Pan BX, Schmidt MV, Liu YJ, Wang XD. Tactile modulation of memory and anxiety requires dentate granule cells along the dorsoventral axis. Nat Commun 2020; 11:6045. [PMID: 33247136 PMCID: PMC7695841 DOI: 10.1038/s41467-020-19874-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Touch can positively influence cognition and emotion, but the underlying mechanisms remain unclear. Here, we report that tactile experience enrichment improves memory and alleviates anxiety by remodeling neurons along the dorsoventral axis of the dentate gyrus (DG) in adult mice. Tactile enrichment induces differential activation and structural modification of neurons in the dorsal and ventral DG, and increases the presynaptic input from the lateral entorhinal cortex (LEC), which is reciprocally connected with the primary somatosensory cortex (S1), to tactile experience-activated DG neurons. Chemogenetic activation of tactile experience-tagged dorsal and ventral DG neurons enhances memory and reduces anxiety respectively, whereas inactivation of these neurons or S1-innervated LEC neurons abolishes the beneficial effects of tactile enrichment. Moreover, adulthood tactile enrichment attenuates early-life stress-induced memory deficits and anxiety-related behavior. Our findings demonstrate that enriched tactile experience retunes the pathway from S1 to DG and enhances DG neuronal plasticity to modulate cognition and emotion. Touch can positively modulate cognitive performance and emotional response. Here the authors demonstrate that enriched tactile experience improves memory and reduces anxiety in adult mice by remodelling the pathway from the primary somatosensory cortex to the dentate gyrus.
Collapse
Affiliation(s)
- Chi Wang
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Hui Liu
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Kun Li
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhen-Zhen Wu
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Chen Wu
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Jing-Ying Yu
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Qian Gong
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Ping Fang
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xing-Xing Wang
- Department of Anesthesiology, Technische Universität München/Klinikum Rechts der Isar, 81675, Munich, Germany
| | - Shu-Min Duan
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Hao Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, 330031, Nanchang, China
| | | | - Yi-Jun Liu
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiao-Dong Wang
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
26
|
Yu Z, Wang J, Wang H, Wang J, Cui J, Junzhang P. Effects of Sevoflurane Exposure During Late Pregnancy on Brain Development and Beneficial Effects of Enriched Environment on Offspring Cognition. Cell Mol Neurobiol 2020; 40:1339-1352. [PMID: 32130572 PMCID: PMC11448792 DOI: 10.1007/s10571-020-00821-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Sevoflurane is a widely used obstetric general anesthetic, but the neurotoxic effects of late-pregnancy exposure to one minimum alveolar concentration ([MAC], 2.5%) of sevoflurane on offspring remain unclear. We investigated whether exposure to 2.5% sevoflurane during late pregnancy would affect offspring hippocampal neuronal development and neurocognitive function. On gestational day 18 (G18), rats were randomly treated with 2.5% sevoflurane in 50% oxygen for 1 (Sev × 1), 3 (Sev × 3), or 6 h (Sev × 6). The neuronal apoptosis rate and mature brain-derived neurotrophic factor (mBDNF) and postsynaptic density protein 95 (PSD-95) expression levels were measured in offspring hippocampi on postnatal day 1 (P1) and P35. Dendritic spine formation and cognitive function were examined on P35. The neuronal apoptosis rate was enhanced, and mBDNF and PSD-95 levels were reduced in the Sev × 3 and Sev × 6 groups on P1. mBDNF and PSD-95 levels were also decreased in the Sev × 6 group on P35. The error rate was elevated in the maze test, whereas dendritic spine density and long-term potentiation (LTP) were reduced in the Sev × 6 group on P35. To determine whether exposure to an enriched environment (EE) would ameliorate sevoflurane's neurotoxic effects, offspring from another Sev × 6 group were exposed to either a standard environment (SE) or an EE. Lower error rates and greater dendritic spine densities and LTP were found in the Sev × 6 + EE vs. Sev × 6 + SE group. Collectively, we showed that exposing rats to 1 MAC sevoflurane for 3 h during late pregnancy increased neuronal apoptosis in neonates but did not impair neuronal development or cognitive function in juvenile rats, whereas a 6-h exposure impaired neuronal development and cognitive function in juvenile rats, effects that were attenuated by an EE.
Collapse
Affiliation(s)
- Zhiqiang Yu
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, China
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Jianbo Wang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, China.
| | - Jinxin Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, China
| | - Jian Cui
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Pei Junzhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| |
Collapse
|
27
|
Neurobiology of environmental enrichment in pigs: hanges in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020; 229:103943. [DOI: 10.1016/j.jprot.2020.103943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/18/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023]
|
28
|
Barch DM, Shirtcliff EA, Elsayed NM, Whalen D, Gilbert K, Vogel AC, Tillman R, Luby JL. Testosterone and hippocampal trajectories mediate relationship of poverty to emotion dysregulation and depression. Proc Natl Acad Sci U S A 2020; 117:22015-22023. [PMID: 32839328 PMCID: PMC7486761 DOI: 10.1073/pnas.2004363117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is robust evidence that early poverty is associated with poor developmental outcomes, including impaired emotion regulation and depression. However, the specific mechanisms that mediate this risk are less clear. Here we test the hypothesis that one pathway involves hormone mechanisms (testosterone and DHEA) that contribute to disruption of hippocampal brain development, which in turn contributes to perturbed emotion regulation and subsequent risk for depression. To do so, we used data from 167 children participating in the Preschool Depression Study, a longitudinal study that followed children from preschool (ages 3 to 5 y) to late adolescence, and which includes prospective assessments of poverty in preschool, measures of testosterone, DHEA, and hippocampal volume across school age and adolescence, and measures of emotion regulation and depression in adolescence. Using multilevel modeling and linear regression, we found that early poverty predicted shallower increases of testosterone, but not DHEA, across development, which in turn predicted shallower trajectories of hippocampal development. Further, we found that early poverty predicted both impaired emotion regulation and depression. The relationship between early poverty and self-reported depression in adolescence was explained by serial mediation through testosterone to hippocampus to emotion dysregulation. There were no significant interactions with sex. These results provide evidence about a hormonal pathway by which early poverty may contribute to disrupted brain development and risk for mental health problems later in life. Identification of such pathways provide evidence for potential points of intervention that might help mitigate the impact of early adversity on brain development.
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130;
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63130
| | | | - Nourhan M Elsayed
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130
| | - Diana Whalen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130
| | - Kirsten Gilbert
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130
| | - Alecia C Vogel
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130
| | - Rebecca Tillman
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
29
|
Cavalcante KM, Bispo JM, Souza MF, Medeiros KA, Lins LC, Santos ER, Melo JE, Gois AM, Meurer YS, Leal PC, Marchioro M, Santos JR. Short-term but not long-term exposure to an enriched environment facilitates the extinction of aversive memory. Behav Brain Res 2020; 393:112806. [DOI: 10.1016/j.bbr.2020.112806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
|
30
|
Zheng JJ, Zou R, Huang S, Song TJ, Yu X. Enriched Environment Rearing from Birth Reduced Anxiety, Improved Learning and Memory, and Promoted Social Interactions in Adult Male Mice. Neuroscience 2020; 442:138-150. [PMID: 32652178 DOI: 10.1016/j.neuroscience.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
Rearing rodents in an enriched environment (EE), with increased sensory stimulations and social interactions, is a well-established model for naturally increasing neural activity. It is well-known that EE-rearing of rodents from adolescence or during adulthood leads to extensive biochemical, morphological, electrophysiological and behavioral changes. Here, we examine the effects of EE-rearing from birth on adult behavior. Through a battery of assays, we found that mice EE-reared from birth had better acquisition and consolidation of memory, in both aversive-based fear conditioning and reward-based contextual association tasks. Moreover, EE-reared mice showed reduced anxiety in novel environments and enhanced social interactions. Together, these results demonstrated that EE-rearing from birth significantly improved motor ability, learning and memory and sociability, while reducing anxiety. A better understanding of how early environmental influences affect behavior is not only important for understanding neural circuit wiring, but also provides insight into developing more effective intervention programs for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jing-Jing Zheng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zou
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shajin Huang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Jia Song
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China.
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China.
| |
Collapse
|
31
|
Harland BC, Dalrymple-Alford JC. Enriched Environment Procedures for Rodents: Creating a Standardized Protocol for Diverse Enrichment to Improve Consistency across Research Studies. Bio Protoc 2020; 10:e3637. [PMID: 33659308 DOI: 10.21769/bioprotoc.3637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 11/02/2022] Open
Abstract
Exposure to environmental enrichment has beneficial effects on learning and memory, diverse neurobiological effects, and promotes recovery of function after brain injury. The effect of enrichment is produced by a combination of increased social interaction, physical activity, spatial complexity, and novelty. Procedures in the literature have, however, been idiosyncratic with poor consistency in the manner or extent to which protocols provide consistent enrichment. We provide an environmental enrichment protocol that can be easily replicated with minor details determined locally so that animals across cohorts and cages all experience a comparable level of enrichment. Procedures are outlined to generate and use a daily pool of suitably varied objects using a standardized format, with objects systematically varied up to a 40-day continuous period. Together with using a large group of rats in a suitably-sized cage, and regular shifting of the position of food and water and cage location, these procedures have produced robust effects in different laboratories and rat strain, thereby improving comparisons within and across laboratories. Non-enriched comparisons can vary, but typically would include grouped animals in standard laboratory housing without objects and with stable food and water locations. Enrichment is a safe non-pharamacological tool to examine behavioral and neurobiological processes in animal models of the lifespan, brain dysfunction and injury.
Collapse
Affiliation(s)
- Bruce C Harland
- Department of Pharmacy, University of Auckland, Auckland, New Zealand
| | - John C Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.,New Zealand Brain Research Institute and Brain Research, Christchurch, New Zealand
| |
Collapse
|
32
|
Islam MN, Sakimoto Y, Jahan MR, Ishida M, Tarif AMM, Nozaki K, Masumoto KH, Yanai A, Mitsushima D, Shinoda K. Androgen Affects the Dynamics of Intrinsic Plasticity of Pyramidal Neurons in the CA1 Hippocampal Subfield in Adolescent Male Rats. Neuroscience 2020; 440:15-29. [PMID: 32450298 DOI: 10.1016/j.neuroscience.2020.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) is abundantly expressed in the preoptico-hypothalamic area, bed nucleus of stria terminalis, and medial amygdala of the brain where androgen plays an important role in regulating male sociosexual, emotional and aggressive behaviors. In addition to these brain regions, AR is also highly expressed in the hippocampus, suggesting that the hippocampus is another major target of androgenic modulation. It is known that androgen can modulate synaptic plasticity in the CA1 hippocampal subfield. However, to date, the effects of androgen on the intrinsic plasticity of hippocampal neurons have not been clearly elucidated. In this study, the effects of androgen on the expression of AR in the hippocampus and on the dynamics of intrinsic plasticity of CA1 pyramidal neurons were examined using immunohistochemistry, Western blotting and whole-cell current-clamp recording in unoperated, sham-operated, orchiectomized (OCX), OCX + testosterone (T) or OCX + dihydrotestosterone (DHT)-primed adolescent male rats. Orchiectomy significantly decreased AR-immunoreactivity, resting membrane potential, action potential numbers, afterhyperpolarization amplitude and membrane resistance, whereas it significantly increased action potential threshold and membrane capacitance. These effects were successfully reversed by treatment with either aromatizable androgen T or non-aromatizable androgen DHT. Furthermore, administration of the AR-antagonist flutamide in intact rats showed similar changes to those in OCX rats, suggesting that androgens affect the excitability of CA1 pyramidal neurons possibly by acting on the AR. Our current study potentially clarifies the role of androgen in enhancing the basal excitability of the CA1 pyramidal neurons, which may influence selective neuronal excitation/activation to modulate certain hippocampal functions.
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mako Ishida
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan.
| |
Collapse
|
33
|
Experience Recruits MSK1 to Expand the Dynamic Range of Synapses and Enhance Cognition. J Neurosci 2020; 40:4644-4660. [PMID: 32376781 PMCID: PMC7294801 DOI: 10.1523/jneurosci.2765-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
Experience powerfully influences neuronal function and cognitive performance, but the cellular and molecular events underlying the experience-dependent enhancement of mental ability have remained elusive. In particular, the mechanisms that couple the external environment to the genomic changes underpinning this improvement are unknown. To address this, we have used male mice harboring an inactivating mutation of mitogen- and stress-activated protein kinase 1 (MSK1), a brain-derived neurotrophic factor (BDNF)-activated enzyme downstream of the mitogen-activated protein kinase (MAPK) pathway. We show that MSK1 is required for the full extent of experience-induced improvement of spatial memory, for the expansion of the dynamic range of synapses, exemplified by the enhancement of hippocampal long-term potentiation (LTP) and long-term depression (LTD), and for the regulation of the majority of genes influenced by enrichment. In addition, and unexpectedly, we show that experience is associated with an MSK1-dependent downregulation of key MAPK and plasticity-related genes, notably of EGR1/Zif268 and Arc/Arg3.1, suggesting the establishment of a novel genomic landscape adapted to experience. By coupling experience to homeostatic changes in gene expression MSK1, represents a prime mechanism through which the external environment has an enduring influence on gene expression, synaptic function, and cognition. SIGNIFICANCE STATEMENT Our everyday experiences strongly influence the structure and function of the brain. Positive experiences encourage the growth and development of the brain and support enhanced learning and memory and resistance to mood disorders such as anxiety. While this has been known for many years, how this occurs is not clear. Here, we show that many of the positive aspects of experience depend on an enzyme called mitogen- and stress-activated protein kinase 1 (MSK1). Using male mice with a mutation in MSK1, we show that MSK1 is necessary for the majority of gene expression changes associated with experience, extending the range over which the communication between neurons occurs, and for both the persistence of memory and the ability to learn new task rules.
Collapse
|
34
|
Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, Lee J, Manto M, Petrosini L, Shaikh AG, Schmahmann JD. Consensus Paper. Cerebellar Reserve: From Cerebellar Physiology to Cerebellar Disorders. CEREBELLUM (LONDON, ENGLAND) 2020; 19:131-153. [PMID: 31879843 PMCID: PMC6978437 DOI: 10.1007/s12311-019-01091-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebellar reserve refers to the capacity of the cerebellum to compensate for tissue damage or loss of function resulting from many different etiologies. When the inciting event produces acute focal damage (e.g., stroke, trauma), impaired cerebellar function may be compensated for by other cerebellar areas or by extracerebellar structures (i.e., structural cerebellar reserve). In contrast, when pathological changes compromise cerebellar neuronal integrity gradually leading to cell death (e.g., metabolic and immune-mediated cerebellar ataxias, neurodegenerative ataxias), it is possible that the affected area itself can compensate for the slowly evolving cerebellar lesion (i.e., functional cerebellar reserve). Here, we examine cerebellar reserve from the perspective of the three cornerstones of clinical ataxiology: control of ocular movements, coordination of voluntary axial and appendicular movements, and cognitive functions. Current evidence indicates that cerebellar reserve is potentiated by environmental enrichment through the mechanisms of autophagy and synaptogenesis, suggesting that cerebellar reserve is not rigid or fixed, but exhibits plasticity potentiated by experience. These conclusions have therapeutic implications. During the period when cerebellar reserve is preserved, treatments should be directed at stopping disease progression and/or limiting the pathological process. Simultaneously, cerebellar reserve may be potentiated using multiple approaches. Potentiation of cerebellar reserve may lead to compensation and restoration of function in the setting of cerebellar diseases, and also in disorders primarily of the cerebral hemispheres by enhancing cerebellar mechanisms of action. It therefore appears that cerebellar reserve, and the underlying plasticity of cerebellar microcircuitry that enables it, may be of critical neurobiological importance to a wide range of neurological/neuropsychiatric conditions.
Collapse
Affiliation(s)
- H Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan.
| | - A Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
| | - F Gelfo
- Department of Human Sciences, Guglielmo Marconi University, 00193, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - X Guell
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - E Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - S Kakei
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J Lee
- Komatsu University, Komatsu, Japan
| | - M Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000, Mons, Belgium
| | - L Petrosini
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - A G Shaikh
- Louis Stokes Cleveland VA Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - J D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, USA
| |
Collapse
|
35
|
Martínez Cué C, Dierssen M. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. PROGRESS IN BRAIN RESEARCH 2020; 251:269-302. [DOI: 10.1016/bs.pbr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Morera-Herreras T, Gioanni Y, Perez S, Vignoud G, Venance L. Environmental enrichment shapes striatal spike-timing-dependent plasticity in vivo. Sci Rep 2019; 9:19451. [PMID: 31857605 PMCID: PMC6923403 DOI: 10.1038/s41598-019-55842-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Behavioural experience, such as environmental enrichment (EE), induces long-term effects on learning and memory. Learning can be assessed with the Hebbian paradigm, such as spike-timing-dependent plasticity (STDP), which relies on the timing of neuronal activity on either side of the synapse. Although EE is known to control neuronal excitability and consequently spike timing, whether EE shapes STDP remains unknown. Here, using in vivo long-duration intracellular recordings at the corticostriatal synapses we show that EE promotes asymmetric anti-Hebbian STDP, i.e. spike-timing-dependent-potentiation (tLTP) for post-pre pairings and spike-timing-dependent-depression (tLTD) for pre-post pairings, whereas animals grown in standard housing show mainly tLTD and a high failure rate of plasticity. Indeed, in adult rats grown in standard conditions, we observed unidirectional plasticity (mainly symmetric anti-Hebbian tLTD) within a large temporal window (~200 ms). However, rats grown for two months in EE displayed a bidirectional STDP (tLTP and tLTD depending on spike timing) in a more restricted temporal window (~100 ms) with low failure rate of plasticity. We also found that the effects of EE on STDP characteristics are influenced by the anaesthesia status: the deeper the anaesthesia, the higher the absence of plasticity. These findings establish a central role for EE and the anaesthetic regime in shaping in vivo, a synaptic Hebbian learning rule such as STDP.
Collapse
Affiliation(s)
- Teresa Morera-Herreras
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
- Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Yves Gioanni
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Sylvie Perez
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Gaetan Vignoud
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Laurent Venance
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France.
| |
Collapse
|
37
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
38
|
Affiliation(s)
- Vikram Patel
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Gelfo F. Does Experience Enhance Cognitive Flexibility? An Overview of the Evidence Provided by the Environmental Enrichment Studies. Front Behav Neurosci 2019; 13:150. [PMID: 31338030 PMCID: PMC6629767 DOI: 10.3389/fnbeh.2019.00150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Neuroplasticity accounts for the ability of the brain to change in both structure and function in consequence of life experiences. An enhanced stimulation provided by the environment is able to create a form of brain, neural, and cognitive reserve, which allows an individual to cope better with the environmental demands, also in case of neural damage leading to cognitive decline. With its complex manipulation of several stimuli, the animal experimental paradigm of environmental enrichment (EE) appears particularly effective in modulating the ability to successfully respond to the ever-changing characteristics of the environment. According to this point, it could be very relevant to analyze the specific effects of EE on cognitive flexibility (CF). CF could be defined as the ability to effectively change behavior in response to the environmental condition changing. This review article is specifically aimed to summarize and focus on the available evidence in relation to the effects of EE on CF. To this aim, findings obtained in behavioral tasks specifically structured to investigate animal CF, such as reversal learning and attentional set-shifting tests (tasks based on the request of responding to a rewarding rule that changes, within one or multiple perceptual dimensions), are reviewed. Data provided on the structural and biochemical correlates of these findings are also enumerated. Studies realized in healthy animals and also in pathological models are considered. On the whole, the summarized evidence clearly supports the specific beneficial effects of EE on CF. However, further studies on this key topic are strictly required to gain a comprehensive and detailed framework on the mechanisms by which an enhanced stimulation could improve CF.
Collapse
Affiliation(s)
- Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy.,Department of Clinical and Behavioural Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
40
|
Bengoetxea H, Rico-Barrio I, Ortuzar N, Murueta-Goyena A, Lafuente JV. Environmental Enrichment Reverses Tyrosine Kinase Inhibitor-Mediated Impairment Through BDNF-TrkB Pathway. Mol Neurobiol 2019; 55:43-59. [PMID: 28842826 DOI: 10.1007/s12035-017-0716-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to an enriched environment (EE) has neuroprotective benefits and improves recovery from brain injury due to, among other, increased neurotrophic factor expression. Through these neurotrophins, important cortical and hippocampal changes occur. Vandetanib acts as a tyrosine kinase inhibitor of cell receptors, among others, the vascular endothelial growth factor receptor (VEGFR). Our aim was to investigate the effectiveness of EE counteracting cognitive and cellular effects after tyrosine kinase receptor blockade. Animals were reared under standard laboratory condition or EE; both groups received vandetanib or vehicle. Visuospatial learning was tested with Morris water maze. Neuronal, interneuronal, and vascular densities were measured by inmunohistochemistry and histochemistry techniques. Quantifications were performed in the hippocampus and in the visual cortex. Brain-derived neurotrophic factor (BDNF), tyrosine kinase B receptor (TrkB), Akt, and Erk were measured by Western blot technique. Vandetanib produces a significant decrease in vascular and neuronal densities and reduction in the expression of molecules involved in survival and proliferation processes such as phospho-Akt/Akt and phospho-Erk/Erk. These results correlated to a cognitive impairment in visuospatial test. On the other hand, animals reared in an EE are able to reverse the negative effects, activating PI3K-AKT and MAP kinase pathways mediated by BDNF-TrkB binding. Present results provide novel and consistent evidences about the usefulness of living in EE as a strategy to improve deleterious effects of blocking neurotrophic pathways by vandetanib and the notable role of the BDNF-TrkB pathway to balance the neurovascular unit and cognitive effects.
Collapse
Affiliation(s)
- Harkaitz Bengoetxea
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain.
| | - Irantzu Rico-Barrio
- Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), Barrio Sarriena, E-48940, Leioa, Bizkaia, Spain
| | - Naiara Ortuzar
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Ane Murueta-Goyena
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - José V Lafuente
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain.,Nanoneurosurgery Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain.,Faculty of Health Science, Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
41
|
Expression of aggressiveness modulates mesencephalic c-fos activation during a social interaction test in Japanese quail (Coturnix japonica). Behav Brain Res 2019; 367:221-229. [PMID: 30951752 DOI: 10.1016/j.bbr.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/13/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023]
Abstract
It is well known that during a social conflict, interactions are dependent on the animal's propensity to behave aggressively as well as the behavior of the opponent. However, discriminating between these two confounding factors was difficult. Recently, a Social Interaction (SI) test using photocastrated males as non-aggressive stimuli was proposed as a useful tool to evaluate aggressiveness. The avian Intercollicular- Griseum centralis complex (comparable to mammalian periaqueductal gray) has been reported as a crucial node in the descending pathways that organize behavioral and autonomic aspects of defensive responses and aggressiveness. Herein, using the SI test, we evaluated whether mesencephalic areas are activated (expressed c-fos) when photostimulated adult males are confronted with non-responsive (non-aggressive) opponents. Furthermore, we also examined whether mesencephalic activation is related to male performance during the SI test (i.e., aggressive vs. non-aggressive males) in birds reared in enriched or in standard environments. Five mesencephalic areas at two anatomic levels (intermediate and rostral) and locomotion during SI testing were studied. Aggressive males showed increased c-fos expression in all areas studied, and moved at faster speeds in comparison to their non-aggressive and control counterparts. Non-aggressive males and the test controls showed similar c-fos labeling. In general, rearing condition did not appear to influence c-fos expression nor behavior during the SI test. Findings suggest that mesencephalic activation is involved when males are actively expressing aggressive behaviors. This overall phenomenon is shown regardless of both the environmental stimuli provided during the birds´ rearing and the potentially stressful stimuli during the SI trial.
Collapse
|
42
|
Exposure to enriched environment rescues anxiety-like behavior and miRNA deregulated expression induced by perinatal malnutrition while altering oligodendrocyte morphology. Neuroscience 2019; 408:115-134. [PMID: 30904666 DOI: 10.1016/j.neuroscience.2019.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Maternal malnutrition is one of the major early-life adversities affecting the development of newborn's brain and is associated with an increased risk to acquire cognitive and emotional deficiencies later in life. Studies in rodents have demonstrated that exposure to an enriched environment (EE) can reverse the negative consequences of early adversities. However, rescue of emotional disorders caused by perinatal malnutrition and the mechanisms involved has not been determined. We hypothesized that exposure to an EE may attenuate the anxiety-like disorders observed in mice subjected to perinatal protein malnutrition and that this could be mediated by epigenetic mechanisms. Male CF-1 mice were subject to perinatal protein malnutrition until weaning and then exposed to an EE for 5 weeks after which small RNA-seq was performed. In parallel, dark-light box and elevated plus maze tests were conducted to evaluate anxiety traits. We found that exposure to an EE reverses the anxiety-like behavior in malnourished mice. This reversal is paralleled by the expression of three miRNAs that become dysregulated by perinatal malnutrition (miR-187-3p, miR-369-3p and miR-132-3p). The predicted mRNA targets of these miRNAs are mostly related to axon guidance pathway. Accordingly, we also found that perinatal malnutrition leads to reduction in the cingulum size and altered oligodendrocyte morphology. These results suggest that EE-rescue of anxiety disorders derived from perinatal malnutrition is mediated by the modulation of miRNAs associated with the regulation of genes involved in axonal guidance.
Collapse
|
43
|
Martínez-Canabal A, López-Oropeza G, Gaona-Gamboa A, Ballesteros-Zebadua P, de la Cruz OG, Moreno-Jimenez S, Sotres-Bayon F. Hippocampal neurogenesis regulates recovery of defensive responses by recruiting threat- and extinction-signalling brain networks. Sci Rep 2019; 9:2939. [PMID: 30814555 PMCID: PMC6393575 DOI: 10.1038/s41598-019-39136-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Safe exposure to a context that was previously associated with threat leads to extinction of defensive responses. Such contextual fear extinction involves the formation of a new memory that inhibits a previously acquired contextual fear memory. However, fear-related responses often return with the simple passage of time (spontaneous fear recovery). Given that contextual fear and extinction memories are hippocampus-dependent and hippocampal neurogenesis has been reported to modify preexisting memories, we hypothesized that neurogenesis-mediated modification of preexisting extinction memory would modify spontaneous fear recovery. To test this, rats underwent contextual fear conditioning followed by extinction. Subsequently, we exposed rats to an enriched environment or focal X-irradiation to enhance or ablate hippocampal neurogenesis, respectively. Over a month later, rats were tested to evaluate spontaneous fear recovery. We found that enhancing neurogenesis after, but not before, extinction prevented fear recovery. In contrast, neurogenesis ablation after, but not before, extinction promoted fear recovery. Using the neuronal activity marker c-Fos, we identified brain regions recruited in these opposing neurogenesis-mediated changes during fear recovery. Together, our findings indicate that neurogenesis manipulation after extinction learning modifies fear recovery by recruiting brain network activity that mediates the expression of preexisting contextual fear and extinction memories.
Collapse
Affiliation(s)
- Alonso Martínez-Canabal
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Grecia López-Oropeza
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Abril Gaona-Gamboa
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | | | | | - Sergio Moreno-Jimenez
- Instituto Nacional de Neurología y Neurocirugía - Radioneurocirugía, Ciudad de México, Mexico
| | - Francisco Sotres-Bayon
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
44
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
45
|
Rapley SA, Prickett TCR, Dalrymple-Alford JC, Espiner EA. Environmental Enrichment Elicits a Transient Rise of Bioactive C-Type Natriuretic Peptide in Young but Not Aged Rats. Front Behav Neurosci 2018; 12:142. [PMID: 30072880 PMCID: PMC6060231 DOI: 10.3389/fnbeh.2018.00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Beneficial molecular and neuroplastic changes have been demonstrated in response to environmental enrichment (EE) in laboratory animals across the lifespan. Here, we investigated whether these effects extend to C-type Natriuretic Peptide (CNP), a widely expressed neuropeptide with putative involvement in neuroprotection, neuroplasticity, anxiety, and learning and memory. We determined the CNP response in 36 young (8-9 months) and 36 aged (22-23 months) male PVGc hooded rats that were rehoused with new cage mates in either standard laboratory cages or EE for periods of 14 or 28 days. Tissues were rapidly excised from four brain regions associated with memory formation (dorsal hippocampus, retrosplenial cortex, medial prefrontal cortex, and mammillary bodies) plus the occipital cortex and hypothalamus, and immediately frozen. Radioimmunoassay was used to measure bioactive CNP and the amino-terminal fragment of proCNP, NTproCNP. Because CNP but not NTproCNP is rapidly degraded at source, NTproCNP reflects CNP production whereas the ratio NTproCNP:CNP is a biomarker of CNP's local degradation rate. EE increased CNP at 14 days in all brain regions in young, but not old rats; this effect in young rats was lost at 28 days in all regions of interest. NTproCNP:CNP ratio, but not NTproCNP, was reduced in all regions by EE at 14 days in young rats, but not in old rats, which suggests a period of reduced degradation or receptor mediated clearance, rather than increased production of CNP in these young EE rats. Aged rats tended to show reduced NTproCNP:CNP ratios but this did not occur in dorsal hippocampus or mammillary bodies. This is the first study demonstrating modulation of CNP protein concentrations, and the effect of age, in response to environmental stimulation. Furthermore, it is the first to show that changes in degradation rate in vivo may be an important component in determining CNP bioactivity in neural tissues.
Collapse
Affiliation(s)
- Susan A. Rapley
- Brain Research New Zealand and Psychology, University of Canterbury, Christchurch, New Zealand
| | | | | | - Eric A. Espiner
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
46
|
Sobolewski M, Singh G, Schneider JS, Cory-Slechta DA. Different Behavioral Experiences Produce Distinctive Parallel Changes in, and Correlate With, Frontal Cortex and Hippocampal Global Post-translational Histone Levels. Front Integr Neurosci 2018; 12:29. [PMID: 30072878 PMCID: PMC6060276 DOI: 10.3389/fnint.2018.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
While it is clear that behavioral experience modulates epigenetic profiles, it is less evident how the nature of that experience influences outcomes and whether epigenetic/genetic "biomarkers" could be extracted to classify different types of behavioral experience. To begin to address this question, male and female mice were subjected to either a Fixed Interval (FI) schedule of food reward, or a single episode of forced swim followed by restraint stress, or no explicit behavioral experience after which global expression levels of two activating (H3K9ac and H3K4me3) and two repressive (H3K9me2 and H3k27me3) post-translational histone modifications (PTHMs), were measured in hippocampus (HIPP) and frontal cortex (FC). The specific nature of the behavioral experience differentiated profiles of PTHMs in a sex- and brain region-dependent manner, with all 4 PTHMs changing in parallel in response to different behavioral experiences. These different behavioral experiences also modified the pattern of correlations of PTHMs both within and across FC and HIPP. Unexpectedly, highly robust correlations were found between global PTHM levels and behavioral performances, suggesting that global PTHMs may provide a higher-order pattern recognition function. Further efforts are needed to determine the generality of such findings and what characteristics of behavioral experience are critical for modulating PTHM responses.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
47
|
Crouzier L, Maurice T. Assessment of Topographic Memory in Mice in a Complex Environment Using the Hamlet Test. ACTA ACUST UNITED AC 2018; 8:e43. [DOI: 10.1002/cpmo.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier; INSERM, EPHE, UMR-S1198 Montpellier France
| | - Tangui Maurice
- MMDN, University of Montpellier; INSERM, EPHE, UMR-S1198 Montpellier France
| |
Collapse
|
48
|
Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front Psychol 2018; 9:509. [PMID: 29755380 PMCID: PMC5934999 DOI: 10.3389/fpsyg.2018.00509] [Citation(s) in RCA: 462] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Much evidence shows that physical exercise (PE) is a strong gene modulator that induces structural and functional changes in the brain, determining enormous benefit on both cognitive functioning and wellbeing. PE is also a protective factor for neurodegeneration. However, it is unclear if such protection is granted through modifications to the biological mechanisms underlying neurodegeneration or through better compensation against attacks. This concise review addresses the biological and psychological positive effects of PE describing the results obtained on brain plasticity and epigenetic mechanisms in animal and human studies, in order to clarify how to maximize the positive effects of PE while avoiding negative consequences, as in the case of exercise addiction.
Collapse
Affiliation(s)
- Laura Mandolesi
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Arianna Polverino
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy.,Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Simone Montuori
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| | - Francesca Foti
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giampaolo Ferraioli
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | | | - Giuseppe Sorrentino
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy.,Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy.,Institute of Applied Sciences and Intelligent Systems, CNR, Pozzuoli, Italy
| |
Collapse
|
49
|
Barch DM, Belden AC, Tillman R, Whalen D, Luby JL. Early Childhood Adverse Experiences, Inferior Frontal Gyrus Connectivity, and the Trajectory of Externalizing Psychopathology. J Am Acad Child Adolesc Psychiatry 2018; 57:183-190. [PMID: 29496127 PMCID: PMC5836492 DOI: 10.1016/j.jaac.2017.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Early adverse childhood experiences (ACEs) have been linked to the development of both internalizing and externalizing psychopathology. In our prior work, we found that ACEs predicted reductions in the volume of the inferior frontal gyrus (IFG), a brain region important for impulse control and emotion regulation. Here we tested the hypothesis that ACEs might influence child behavioral outcomes through an impact on IFG functional connectivity, which may influence impulsive or risk-taking behavior. METHOD We examined the effects of prospectively assessed ACEs on IFG connectivity in childhood, and their relationship to the trajectory of subsequent psychopathology from late school age and early adolescence, using data from an 11-year longitudinal study of children starting in preschool that included 3 waves of resting state functional connectivity across childhood and early adolescence. RESULTS ACEs predicted functional connectivity of both left and right IFG. Multi-level modeling of symptoms across 3 waves of assessments indicated that more ACEs predicted both internalizing and externalizing symptoms. However, altered IFG connectivity specifically predicted greater externalizing symptoms over time in middle childhood and early adolescence, as compared to internalizing symptoms. Longitudinal modeling indicating that the relationships between externalizing and functional connectivity were maintained across 3 waves of functional connectivity assessment. CONCLUSION These findings underscore the relationship of ACEs to later psychopathology, and suggest that connectivity of the IFG, a region known to play an important role in impulse control and emotion regulation, may play a key role in the risk trajectory of ACEs to externalizing problems. However, further work is needed to understand whether these relationships reflect a direct effect of ACEs or whether ACEs are a marker for other environmental or genetic factors that may also influence brain development and behavior.
Collapse
|
50
|
Wittner L. Astrocyte-driven plasticity contributes to environment-related changes of hippocampal oscillations. J Physiol 2017; 595:6373-6374. [PMID: 28842923 DOI: 10.1113/jp275055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|