1
|
Alasmari F, Ahmad A, Alsanea S, Hammad AM, Al-Qerem W. Current insights and prospects for the pathogenesis and treatment of clinical manifestations associated with Down syndrome through neurotransmitter, inflammatory, and oxidative stress pathways. Front Pharmacol 2025; 16:1592277. [PMID: 40356974 PMCID: PMC12066560 DOI: 10.3389/fphar.2025.1592277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Individuals with Down syndrome exhibit various changes in the human body systems, including alterations in the ocular, neurological, and dermatological systems. Especially, preclinical and clinical studies have determined Down syndrome patients to possess reduced intellectual and cognition abilities, which neurobehavioral effects are associated with altered molecular markers in the brain. For instance, neuroinflammation and increased brain oxidative stress are reported in animals models of Down syndrome, and the reversal of those markers lead to positive effects. Dopaminergic and serotonergic neurons are altered in individuals with Down syndrome, with dopamine and serotonin secretion reduced and their transporters upregulated. Hence, blocking reuptake of dopamine and serotonin might improve Down syndrome behavioral impairments. Norepinephrine loss was observed in a mouse model of Down syndrome, and treatment with a β2 adrenergic receptor agonist improved behavioral symptoms. Moreover, targeting certain glutamatergic receptors, particularly in the hippocampus, might correct the glutamatergic dysfunction and altered behaviors. Inverse agonists or antagonists of GABAergic receptors suppress GABA's inhibitory role, an effect associated with improved cognition behaviors in models of Down syndrome. Reports also suggest partial involvement of the histaminergic system in the impairment of memory function observed in Down syndrome. Finally, cholinergic system alteration has been reported, but the therapeutic role of its modulation needs further investigation. This review collects and reports multi-Omics Studies on Down syndrome, the crucial roles of inflammation, oxidative stress independently as well as role of oxidative stress in pregnancies with Down Syndrome and biomarkers of maternal diagnosis of Down syndrome. This review further explained the role of neurotransmitter pathways in Down syndrome pathogenesis, prognosis and therapeutic intervention for Down syndrome and future directions for interventions.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa M. Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Walid Al-Qerem
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Genes Associated with Disturbed Cerebral Neurogenesis in the Embryonic Brain of Mouse Models of Down Syndrome. Genes (Basel) 2021; 12:genes12101598. [PMID: 34680993 PMCID: PMC8535956 DOI: 10.3390/genes12101598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is the most frequent genetic cause of intellectual disability. Although the mechanism remains unknown, delayed brain development is assumed to be involved in DS intellectual disability. Analyses with human with DS and mouse models have shown that defects in embryonic cortical neurogenesis may lead to delayed brain development. Cre-loxP-mediated chromosomal engineering has allowed the generation of a variety of mouse models carrying various partial Mmu16 segments. These mouse models are useful for determining genotype–phenotype correlations and identifying dosage-sensitive genes involved in the impaired neurogenesis. In this review, we summarize several candidate genes and pathways that have been linked to defective cortical neurogenesis in DS.
Collapse
|
3
|
S100A6 and Its Brain Ligands in Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21113979. [PMID: 32492924 PMCID: PMC7313082 DOI: 10.3390/ijms21113979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
The S100A6 protein is present in different mammalian cells and tissues including the brain. It binds Ca2+ and Zn2+ and interacts with many target proteins/ligands. The best characterized ligands of S100A6, expressed at high level in the brain, include CacyBP/SIP and Sgt1. Research concerning the functional role of S100A6 and these two ligands indicates that they are involved in various signaling pathways that regulate cell proliferation, differentiation, cytoskeletal organization, and others. In this review, we focused on the expression/localization of these proteins in the brain and on their possible role in neurodegenerative diseases. Published results demonstrate that S100A6, CacyBP/SIP, and Sgt1 are expressed in various brain structures and in the spinal cord and can be found in different cell types including neurons and astrocytes. When it comes to their possible involvement in nervous system pathology, it is evident that their expression/level and/or subcellular localization is changed when compared to normal conditions. Among diseases in which such changes have been observed are Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), epileptogenesis, Parkinson’s disease (PD), Huntington’s disease (HD), and others.
Collapse
|
4
|
Kogiso H, Raveau M, Yamakawa K, Saito D, Ikeuchi Y, Okazaki T, Asano S, Inui T, Marunaka Y, Nakahari T. Airway Ciliary Beating Affected by the Pcp4 Dose-Dependent [Ca 2+] i Increase in Down Syndrome Mice, Ts1Rhr. Int J Mol Sci 2020; 21:1947. [PMID: 32178446 PMCID: PMC7139761 DOI: 10.3390/ijms21061947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 11/26/2022] Open
Abstract
In Ts1Rhr, a Down syndrome model mouse, the airway ciliary beatings are impaired; that is, decreases in ciliary beat frequency (CBF) and ciliary bend angle (CBA, an index of ciliary beat amplitude)). A resumption to two copies of the Pcp4 gene on the Ts1Rhr trisomic segment (Ts1Rhr:Pcp4+/+/-) rescues the decreases in CBF and CBA that occur in Ts1Rhr. In airway cilia, upon stimulation with procaterol (a β2-agonist), the CBF increase is slower over the time course than the CBA increase because of cAMP degradation by Ca2+/calmodulin-dependent phosphodiesterase 1 (PDE1) existing in the metabolon regulating CBF. In Ts1Rhr, procaterol-stimulated CBF increase was much slower over the time course than in the wild-type mouse (Wt) or Ts1Rhr:Pcp4+/+/-. However, in the presence of 8MmIBMX (8-methoxymethyl isobutylmethyl xanthine, an inhibitor of PDE1) or calmidazolium (an inhibitor of calmodulin), in both Wt and Ts1Rhr, procaterol stimulates CBF and CBA increases over a similar time course. Measurements of cAMP revealed that the cAMP contents were lower in Ts1Rhr than in Wt or in Ts1Rhr:Pcp4+/+/-, suggesting the activation of PDE1A that is present in Ts1Rhr airway cilia. Measurements of the intracellular Ca2+ concentration ([Ca2+]i) in airway ciliary cells revealed that temperature (increasing from 25 to 37 °C) or 4αPDD (a selective transient receptor potential vanilloid 4 (TRPV4) agonist) stimulates a larger [Ca2+]i increase in Ts1Rhr than in Wt or Ts1Rhr:Pcp4+/+/-. In airway ciliary cells of Ts1Rhr, Pcp4-dose dependent activation of TRPV4 appears to induce an increase in the basal [Ca2+]i. In early embryonic day mice, a basal [Ca2+]i increased by PCP4 expressed may affect axonemal regulatory complexes regulated by the Ca2+-signal in Ts1Rhr, leading to a decrease in the basal CBF and CBA of airway cilia.
Collapse
Affiliation(s)
- Haruka Kogiso
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN, Brain Science Institute, Saitama 351-0198, Japan; (M.R.); (K.Y.)
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN, Brain Science Institute, Saitama 351-0198, Japan; (M.R.); (K.Y.)
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho-cho, Mizuho-ku Nagoya 467-8601, Japan
| | - Daichi Saito
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Physiology, Faculty of Pharmaceutical Sciences, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Yukiko Ikeuchi
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomonori Okazaki
- Department of Molecular Physiology, Faculty of Pharmaceutical Sciences, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Shinji Asano
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Physiology, Faculty of Pharmaceutical Sciences, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Toshio Inui
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Saisei Mirai Clinics, Moriguchi 570-0012, Japan
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| | - Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
| |
Collapse
|
5
|
De Toma I, Ortega M, Aloy P, Sabidó E, Dierssen M. DYRK1A Overexpression Alters Cognition and Neural-Related Proteomic Pathways in the Hippocampus That Are Rescued by Green Tea Extract and/or Environmental Enrichment. Front Mol Neurosci 2019; 12:272. [PMID: 31803016 PMCID: PMC6873902 DOI: 10.3389/fnmol.2019.00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. We recently discovered that green tea extracts containing epigallocatechin-3-gallate (EGCG) improve cognition in mice transgenic for Dyrk1a (TgDyrk1A) and in a trisomic DS mouse model (Ts65Dn). Interestingly, paired with cognitive stimulation, green tea has beneficial pro-cognitive effects in DS individuals. Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1A (DYRK1A) is a major candidate to explain the cognitive phenotypes of DS, and inhibiting its activity is a promising pro-cognitive therapy. DYRK1A kinase activity can be normalized in the hippocampus of transgenic DYRK1A mice administering green tea extracts, but also submitting the animals to environmental enrichment (EE). However, many other mechanisms could also explain the pro-cognitive effects of green tea extracts and EE. To underpin the overall alterations arising upon DYRK1A overexpression and the molecular processes underneath the pro-cognitive effects, we used quantitative proteomics. We investigated the hippocampal (phospho)proteome in basal conditions and after treatment with a green tea extract containing EGCG and/or EE in TgDyrk1A and control mice. We found that Dyrk1A overexpression alters protein and phosphoprotein levels of key postsynaptic and plasticity-related pathways and that these alterations were rescued upon the cognitive enhancer treatments.
Collapse
Affiliation(s)
- Ilario De Toma
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mireia Ortega
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomic Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
6
|
Ishihara K, Shimizu R, Takata K, Kawashita E, Amano K, Shimohata A, Low D, Nabe T, Sago H, Alexander WS, Ginhoux F, Yamakawa K, Akiba S. Perturbation of the immune cells and prenatal neurogenesis by the triplication of the Erg gene in mouse models of Down syndrome. Brain Pathol 2019; 30:75-91. [PMID: 31206867 DOI: 10.1111/bpa.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Some mouse models of Down syndrome (DS), including Ts1Cje mice, exhibit impaired prenatal neurogenesis with yet unknown molecular mechanism. To gain insights into the impaired neurogenesis, a transcriptomic and flow cytometry analysis of E14.5 Ts1Cje embryo brain was performed. Our analysis revealed that the neutrophil and monocyte ratios in the CD45-positive hematopoietic cells were relatively increased, in agreement with the altered expression of inflammation/immune-related genes, in Ts1Cje embryonic brain, whereas the relative number of brain macrophages was decreased in comparison to wild-type mice. Similar upregulation of inflammation-associated mRNAs was observed in other DS mouse models, with variable trisomic region lengths. We used genetic manipulation to assess the contribution of Erg, a trisomic gene in these DS models, known to regulation hemato-immune cells. The perturbed proportions of immune cells in Ts1Cje mouse brain were restored in Ts1Cje-Erg+/+/Mld2 mice, which are disomic for functional Erg but otherwise trisomic on a Ts1Cje background. Moreover, the embryonic neurogenesis defects observed in Ts1Cje cortex were reduced in Ts1Cje-Erg+/+/Mld2 embryos. Our findings suggest that Erg gene triplication contributes to the dysregulation of the homeostatic proportion of the populations of immune cells in the embryonic brain and decreased prenatal cortical neurogenesis in the prenatal brain with DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryohei Shimizu
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuyuki Takata
- Department of Clinical and Translational Physiology, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eri Kawashita
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Warren S Alexander
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
7
|
Ishihara K, Kawashita E, Akiba S. [Copper accumulation in the brain of Down syndrome model mice and its pathophysiological significance]. Nihon Yakurigaku Zasshi 2019; 154:335-339. [PMID: 31787686 DOI: 10.1254/fpj.154.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Down syndrome caused by triplication of human chromosome 21 (HSA21) is the most frequent aneuploidy, resulting in mental retardation, intellectual disability and accelerated aging. Individuals with DS are at an increased risk of developing Alzheimer's disease (AD)-like dementia, with up to 75% of DS people in their 60s developing dementia. Oxidative stress is widely accepted as a mechanism underlying a number of DS symptoms, such as accelerated aging and cognitive decline. Superoxide disumutase 1 (Sod1) and amiloyd precursor protein (App) genes are suggested as the candidate genes in HSA21 underlying the enhanced oxidative stress in individuals with DS. However, we previously demonstrated that the Ts1Cje mouse model, which has a normal copy number of both candidate genes, also shows enhanced oxidative stress, suggesting that triplicated genes other than Sod1 and App likely enhance oxidative stress in the brain of DS people. To identify the molecules with enhanced oxidative stress in Ts1Cje mice, we performed several -omics analyses. Recently, we showed that copper was accumulated in the brain of adult Ts1Cje mice in an analysis using inductively coupled plasma mass spectrometry (ICP-MS), and a low-copper diet was able to improve the elevated levels of copper. The low-copper diet also resolved some anomalies, such as the enhanced oxidative stress, accumulation of phosphorylated tau and low anxiety. These findings suggest that the accumulation of copper in the DS brain may be a therapeutic target for ameliorating a number of abnormal phenotypes in individuals with DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Eri Kawashita
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
8
|
Aziz NM, Guedj F, Pennings JLA, Olmos-Serrano JL, Siegel A, Haydar TF, Bianchi DW. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis Model Mech 2018; 11:dmm031013. [PMID: 29716957 PMCID: PMC6031353 DOI: 10.1242/dmm.031013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Faycal Guedj
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Jose Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ashley Siegel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Diana W Bianchi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Barone E, Arena A, Head E, Butterfield DA, Perluigi M. Disturbance of redox homeostasis in Down Syndrome: Role of iron dysmetabolism. Free Radic Biol Med 2018; 114:84-93. [PMID: 28705658 PMCID: PMC5748256 DOI: 10.1016/j.freeradbiomed.2017.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/08/2023]
Abstract
Down Syndrome (DS) is the most common genetic form of intellectual disability that leads in the majority of cases to development of early-onset Alzheimer-like dementia (AD). The neuropathology of DS has several common features with AD including alteration of redox homeostasis, mitochondrial deficits, and inflammation among others. Interestingly, some of the genes encoded by chromosome 21 are responsible of increased oxidative stress (OS) conditions that are further exacerbated by decreased antioxidant defense. Previous studies from our groups showed that accumulation of oxidative damage is an early event in DS neurodegeneration and that oxidative modifications of selected proteins affects the integrity of the protein degradative systems, antioxidant response, neuronal integrity and energy metabolism. In particular, the current review elaborates recent findings demonstrating the accumulation of oxidative damage in DS and we focus attention on specific deregulation of iron metabolism, which affects both the central nervous system and the periphery. Iron dysmetabolism is a well-recognized factor that contributes to neurodegeneration; thus we opine that better understanding how and to what extent the concerted loss of iron dyshomeostasis and increased OS occur in DS could provide novel insights for the development of therapeutic strategies for the treatment of Alzheimer-like dementia.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Andrea Arena
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506 USA; Department of Neurology, University of Kentucky, Lexington, KY 40506 USA
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506 USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506 USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
10
|
Horiuchi Y, Nakatsu D, Kano F, Murata M. Pyruvate kinase M1 interacts with A-Raf and inhibits endoplasmic reticulum stress-induced apoptosis by activating MEK1/ERK pathway in mouse insulinoma cells. Cell Signal 2017; 38:212-222. [PMID: 28743549 DOI: 10.1016/j.cellsig.2017.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Apoptotic death of pancreatic β cells is a major cause of type 2 diabetes mellitus (T2D) progression. Two isoforms of pyruvate kinase, PKM1 and PKM2, have been reported to participate in cell death in several cell types; however, little is known about their causal pathways in pancreatic β-cell death. We examined whether the suppression of PKM1 or PKM2 affects endoplasmic reticulum (ER) stress-induced apoptosis in a pancreatic β-cell line, MIN6, and Beta-TC-6 and found that knockdown of PKM1, but not of PKM2, leads to the induction of ER stress-induced apoptosis in these cells. We also investigated the mechanism by which PKM1 inhibits ER stress-induced apoptosis. We confirmed that PKM1 interacts with A-Raf, an upstream regulator of the MEK/ERK pathway, and that this interaction contributes to MEK1 phosphorylation by A-Raf. PKM1 knockdown suppresses the phosphorylation of MEK, ERK, and caspase-9 (Thr125), which is phosphorylated by the MEK/ERK pathway, thereby inhibiting the cleavage and activation of caspase-9. Thus, PKM1 knockdown activates the caspase-9/caspase-3 pathway under ER stress conditions and leads to apoptosis.
Collapse
Affiliation(s)
- Yuta Horiuchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Daiki Nakatsu
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Fumi Kano
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
11
|
Ishihara K. Comprehensive Analyses of Molecules with Altered Expression in the Brain of a Mouse Model of Down Syndrome for Identification of Pharmacotherapeutic Targets. YAKUGAKU ZASSHI 2017; 137:807-810. [PMID: 28674291 DOI: 10.1248/yakushi.16-00236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Down syndrome, caused by the triplication of human chromosome 21, is the most frequent genetic cause of mental retardation. Mice with a segmental trisomy for mouse chromosome 16, which is orthologous to human chromosome 21, exhibit abnormalities similar to those in individuals with Down syndrome and therefore offer the opportunity for a genotype-phenotype correlation. In the current review, I present several mouse lines with trisomic regions of various lengths and discuss their usefulness for elucidating the mechanisms underlying Down syndrome-associated developmental cognitive disabilities. In addition, our recent comprehensive study attempting to identify molecules with disturbed expression in the brain of a mouse model of Down syndrome in order to develop a pharmacologic therapy for Down syndrome is described.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
12
|
A Comprehensive Diverse '-omics' Approach to Better Understanding the Molecular Pathomechanisms of Down Syndrome. Brain Sci 2017; 7:brainsci7040044. [PMID: 28430122 PMCID: PMC5406701 DOI: 10.3390/brainsci7040044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Diverse ‘-omics’ technologies permit the comprehensive quantitative profiling of a variety of biological molecules. Comparative ‘-omics’ analyses, such as transcriptomics and proteomics, are powerful and useful tools for unraveling the molecular pathomechanisms of various diseases. As enhanced oxidative stress has been demonstrated in humans and mice with Down syndrome (DS), a redox proteomic analysis is useful for understanding how enhanced oxidative stress aggravates the state of individuals with oxidative stress-related disorders. In this review, ‘-omics’ analyses in humans with DS and mouse models of DS are summarized, and the molecular dissection of this syndrome is discussed.
Collapse
|
13
|
Shimohata A, Ishihara K, Hattori S, Miyamoto H, Morishita H, Ornthanalai G, Raveau M, Ebrahim AS, Amano K, Yamada K, Sago H, Akiba S, Mataga N, Murphy NP, Miyakawa T, Yamakawa K. Ts1Cje Down syndrome model mice exhibit environmental stimuli-triggered locomotor hyperactivity and sociability concurrent with increased flux through central dopamine and serotonin metabolism. Exp Neurol 2017; 293:1-12. [PMID: 28336394 DOI: 10.1016/j.expneurol.2017.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/26/2022]
Abstract
Ts1Cje mice have a segmental trisomy of chromosome 16 that is orthologous to human chromosome 21 and display Down syndrome-like cognitive impairments. Despite the occurrence of affective and emotional impairments in patients with Down syndrome, these parameters are poorly documented in Down syndrome mouse models, including Ts1Cje mice. Here, we conducted comprehensive behavioral analyses, including anxiety-, sociability-, and depression-related tasks, and biochemical analyses of monoamines and their metabolites in Ts1Cje mice. Ts1Cje mice showed enhanced locomotor activity in novel environments and increased social contact with unfamiliar partners when compared with wild-type littermates, but a significantly lower activity in familiar environments. Ts1Cje mice also exhibited some signs of decreased depression like-behavior. Furthermore, Ts1Cje mice showed monoamine abnormalities, including increased extracellular dopamine and serotonin, and enhanced catabolism in the striatum and ventral forebrain. This study constitutes the first report of deviated monoamine metabolism that may help explain the basis for abnormal behaviors, including the environmental stimuli-triggered hyperactivity, increased sociability and decreased depression-like behavior in Ts1Cje mice.
Collapse
Affiliation(s)
- Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiichi Ishihara
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hiromasa Morishita
- Support Unit for Bio-Material Analysis, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Guy Ornthanalai
- Molecular and Neuropathology Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Abdul Shukkur Ebrahim
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Internal Medicine-Lymphoma Research Lab, Wayne State University & School of Medicine, Room#8229, Scott Hall, 540E Canfield, Detroit, MI 48201, USA
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kazuyuki Yamada
- School of Management, Shizuoka Sangyo University, 1572-1, Owara, Iwata-shi, Shizuoka 438-0043, Japan
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal and Reproductive Medecine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Nobuko Mataga
- Support Unit for Bio-Material Analysis, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Niall P Murphy
- Molecular and Neuropathology Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka, Okazaki, Aichi 444-8585, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
14
|
Créau N, Cabet E, Daubigney F, Souchet B, Bennaï S, Delabar J. Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models. Brain Res 2016; 1646:342-353. [PMID: 27297494 DOI: 10.1016/j.brainres.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 12/27/2022]
Abstract
Down syndrome, or trisomy 21, has been modeled with various trisomic and transgenic mice to help understand the consequences of an altered gene dosage in brain development and function. Though Down syndrome has been associated with premature aging, little is known about the molecular and cellular alterations that target brain function. To help identify alterations at specific ages, we analyzed the cerebellum of Ts1Cje mice, trisomic for 77 HSA21 orthologs, at three ages-young (4 months), middle-age (12 months), and old (17 months)-compared to age-matched controls. Quantification of neuronal and glial markers (n=11) revealed increases in GFAP, with an age effect, and S100B, with age and genotype effects. The genotype effect on S100B with age was unexpected as Ts1Cje has only two copies of the S100b gene. Interestingly, the different increase in GFAP observed between Ts1Cje (trisomic segment includes Pcp4 gene) and controls was magnified in TgPCP4 mice (1 extra copy of the human PCP4 gene) at the same age. S100B increase was not found in the TgPCP4 confirming a difference of regulation with aging for GFAP and S100B and excluding the calcium signaling regulator, Pcp4, as a potential candidate for increase of S100B in the Ts1Cje. To understand these differences, comparison of GFAP and S100B immunostainings at young and middle-age were performed. Immunohistochemical detection of differences in GFAP and S100B localization with aging implicate S100B+ oligodendrocytes as a new phenotypic target in this specific aging process.
Collapse
Affiliation(s)
- Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France.
| | - Eva Cabet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Benoit Souchet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Soumia Bennaï
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Jean Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| |
Collapse
|
15
|
Kang H, Choi DH, Kim SK, Lee J, Kim YJ. Alteration of Energy Metabolism and Antioxidative Processing in the Hippocampus of Rats Reared in Long-Term Environmental Enrichment. Dev Neurosci 2016; 38:186-194. [DOI: 10.1159/000446772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Environmental enrichment (EE) is a typical experimental method that promotes levels of novelty and complexity that enhance experience-dependent neuroplasticity and cognitive behavior function in laboratory animals. Early EE is associated with resilience in the face of later-life challenges. Since increased synaptic activity enhances endogenous neuronal antioxidant defenses, we hypothesized that long-term EE beginning at an early stage may alter the levels of oxidative stress. We investigated global protein expression and oxidative stress in hippocampal proteins from rats nurtured for a 6-month EE beginning in the prenatal period. The analysis of protein expression was carried out using 2-dimensional gel electrophoresis with matrix-associated laser desorption ionization time-of-flight mass spectrometry. Proteins with altered expression were involved in energy metabolism (phosphoglycerate mutase 1, α-enolase isoform 1, adenylate kinase 1, and triose phosphate isomerase) and antioxidant enzymes (superoxide dismutase 1, glutathione S-transferase ω type 1, peroxiredoxin 5, DJ-1, and glial maturation factor β). Using Western blot assays, some of the proteins with altered expression and NADPH oxidase 2 were confirmed to be decreased. Further confirmation was demonstrated with attenuated expression of 7,8-dihydro-8-oxo-deoxyguanine, a DNA oxidative stress marker, in the hippocampus of EE group rats. Our data demonstrate that a long-term EE program beginning in the prenatal and early postnatal phase of development modulates energy metabolism and reduced oxidant stress possibly through enhanced synaptic activity. We provide evidence that EE can be developed as a tool to protect the brain from oxidative stress-induced injury.
Collapse
|
16
|
Topolska-Woś AM, Chazin WJ, Filipek A. CacyBP/SIP--Structure and variety of functions. Biochim Biophys Acta Gen Subj 2015; 1860:79-85. [PMID: 26493724 DOI: 10.1016/j.bbagen.2015.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) is a small modular protein implicated in a wide range of cellular processes. It is expressed in different tissues of mammals but homologs are also found in some lower organisms. In mammals, a high level of CacyBP/SIP is present in tumor cells and in neurons. CacyBP/SIP binds several target proteins such as members of the S100 family, components of a ubiquitin ligase complex, and cytoskeletal proteins. SCOPE OF REVIEW CacyBP/SIP has been shown to be involved in protein de-phosphorylation, ubiquitination, cytoskeletal dynamics, regulation of gene expression, cell proliferation, differentiation, and tumorigenesis. This review focuses on very recent reports on CacyBP/SIP structure and function in these important cellular processes. MAJOR CONCLUSIONS CacyBP/SIP is a multi-domain and multi-functional protein. Altered levels of CacyBP/SIP in several cancers implicate its involvement in the maintenance of cell homeostasis. Changes in CacyBP/SIP subcellular localization in neurons of AD brains suggest that this protein is strongly linked to neurodegenerative diseases. Elucidation of CacyBP/SIP structure and cellular function is leading to greater understanding of its role in normal physiology and disease pathologies. GENERAL SIGNIFICANCE The available results suggest that CacyBP/SIP is a key player in multiple biological processes. Detailed characterization of the physical, biochemical and biological properties of CacyBP/SIP will provide better insight into the regulation of its diverse functions in vivo, and given the association with specific diseases, will help clarify the potential of therapeutic targeting of this protein.
Collapse
Affiliation(s)
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, USA; Department of Chemistry, Vanderbilt University, Nashville, USA; Center for Structural Biology, Vanderbilt University, Nashville, USA
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
17
|
Protein expression profiles characterize distinct features of mouse cerebral cortices at different developmental stages. PLoS One 2015; 10:e0125608. [PMID: 25915664 PMCID: PMC4411115 DOI: 10.1371/journal.pone.0125608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/25/2015] [Indexed: 01/18/2023] Open
Abstract
The proper development of the mammalian cerebral cortex requires precise protein synthesis and accurate regulation of protein expression levels. To reveal signatures of protein expression in developing mouse cortices, we here generate proteomic profiles of cortices at embryonic and postnatal stages using tandem mass spectrometry (MS/MS). We found that protein expression profiles are mostly consistent with biological features of the developing cortex. Gene Ontology (GO) and KEGG pathway analyses demonstrate conserved molecules that maintain cortical development such as proteins involved in metabolism. GO and KEGG pathway analyses further identify differentially expressed proteins that function at specific stages, for example proteins regulating the cell cycle in the embryonic cortex, and proteins controlling axon guidance in the postnatal cortex, suggesting that distinct protein expression profiles determine biological events in the developing cortex. Furthermore, the STRING network analysis has revealed that many proteins control a single biological event, such as the cell cycle regulation, through cohesive interactions, indicating a complex network regulation in the cortex. Our study has identified protein networks that control the cortical development and has provided a protein reference for further investigation of protein interactions in the cortex.
Collapse
|