1
|
Seiler S, Rudolf F, Gomes FR, Pavlovic A, Nebel J, Seidenbecher CI, Foo LC. Astrocyte-derived factors regulate CNS myelination. Glia 2024; 72:2038-2060. [PMID: 39092473 DOI: 10.1002/glia.24596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
The role that astrocytes play in central nervous system (CNS) myelination is poorly understood. We investigated the contribution of astrocyte-derived factors to myelination and revealed a substantial overlap in the secretomes of human and rat astrocytes. Using in vitro myelinating co-cultures of primary retinal ganglion cells and cortical oligodendrocyte precursor cells, we discovered that factors secreted by resting astrocytes, but not reactive astrocytes, facilitated myelination. Soluble brevican emerged as a new enhancer of developmental myelination in vivo, CNS and its absence was linked to remyelination deficits following an immune-mediated damage in an EAE mouse model. The observed reduction of brevican expression in reactive astrocytes and human MS lesions suggested a potential link to the compromised remyelination characteristic of neurodegenerative diseases. Our findings suggested brevican's role in myelination may be mediated through interactions with binding partners such as contactin-1 and tenascin-R. Proteomic analysis of resting versus reactive astrocytes highlighted a shift in protein expression profiles, pinpointing candidates that either facilitate or impede CNS repair, suggesting that depending on their reactivity state, astrocytes play a dual role during myelination.
Collapse
Affiliation(s)
- Sybille Seiler
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Franziska Rudolf
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Filipa Ramilo Gomes
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Anto Pavlovic
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Jana Nebel
- Department Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Lynette C Foo
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| |
Collapse
|
2
|
Jiang H, Feng Y, He G, Liu Y, Li X. Analysis of the expression and distribution of protein O-linked mannose β1,2- N-acetylglucosaminyltransferase 1 in the normal adult mouse brain. Front Neuroanat 2023; 16:1043924. [PMID: 36686576 PMCID: PMC9853526 DOI: 10.3389/fnana.2022.1043924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) is crucial for the elongation of O-mannosyl glycans. Mutations in POMGNT1 cause muscle-eye-brain (MEB) disease, one of the main features of which is anatomical aberrations in the brain. A growing number of studies have shown that defects in POMGNT1 affect neuronal migration and distribution, disrupt basement membranes, and misalign Cajal-Retzius cells. Several studies have examined the distribution and expression of POMGNT1 in the fetal or neonatal brain for neurodevelopmental studies in the mouse or human brain. However, little is known about the neuroanatomical distribution and expression of POMGNT1 in the normal adult mouse brain. Methods We analyzed the expression of POMGNT1 mRNA and protein in the brains of various neuroanatomical regions and spinal cords by western blotting and RT-qPCR. We also detected the distribution profile of POMGnT1 in normal adult mouse brains by immunohistochemistry and double-immunofluorescence. Results In the present study, we found that POMGNT1-positive cells were widely distributed in various regions of the brain, with high levels of expression in the cerebral cortex and hippocampus. In terms of cell type, POMGNT1 was predominantly expressed in neurons and was mainly enriched in glutamatergic neurons; to a lesser extent, it was expressed in glial cells. At the subcellular level, POMGNT1 was mainly co-localized with the Golgi apparatus, but expression in the endoplasmic reticulum and mitochondria could not be excluded. Discussion The present study suggests that POMGNT1, although widely expressed in various brain regions, may has some regional and cellular specificity, and the outcomes of this study provide a new laboratory basis for revealing the possible involvement of POMGNT1 in normal physiological functions of the brain from a morphological perspective.
Collapse
Affiliation(s)
- Hanxiao Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxue Feng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China,Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China,Department of Anatomy, Chongqing Medical University, Chongqing, China,*Correspondence: Yuanjie Liu,
| | - Xiaofeng Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,Xiaofeng Li,
| |
Collapse
|
3
|
Hapln1b, a central organizer of the extracellular matrix, modulates kit signalling to control developmental haematopoiesis. Blood Adv 2021; 5:4935-4948. [PMID: 34543380 PMCID: PMC9152995 DOI: 10.1182/bloodadvances.2020001524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
During early vertebrate development, hematopoietic stem and progenitor cells (HSPCs) are produced from hemogenic endothelium located in the dorsal aorta, before they migrate to a transient niche where they expand, the fetal liver and the caudal hematopoietic tissue (CHT), in mammals and zebrafish, respectively. In zebrafish, previous studies have shown that the extracellular matrix (ECM) around the aorta needs to be degraded to allow HSPCs to leave the aortic floor and reach blood circulation. However, the role of the ECM components in HSPC specification has never been addressed. We show here that hapln1b, a key component of the ECM is specifically expressed in hematopoietic sites in the zebrafish embryo. Gain- and loss-of-function experiments all resulted in the absence of HSPCs in the early embryo, showing that hapln1b is required, at the correct level, to specify HSPCs in the hemogenic endothelium. Furthermore, we show that the expression of hapln1b is necessary to maintain the integrity of the ECM through its link domain. By combining functional analyses and computer modelling, we show that kitlgb interacts with the ECM to specify HSPCs. We demonstrate that the ECM is an integral component of the microenvironment and mediates cytokine signalling that is required for HSPC specification.
Collapse
|
4
|
O'Dell DE, Schreurs BG, Smith-Bell C, Wang D. Disruption of rat deep cerebellar perineuronal net alters eyeblink conditioning and neuronal electrophysiology. Neurobiol Learn Mem 2021; 177:107358. [PMID: 33285318 PMCID: PMC8279724 DOI: 10.1016/j.nlm.2020.107358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023]
Abstract
The perineuronal net (PNN) is a specialized type of extracellular matrix found in the central nervous system. The PNN forms on fast spiking neurons during postnatal development but the ontogeny of PNN development has yet to be elucidated. By studying the development and prevalence of the PNN in the juvenile and adult rat brain, we may be able to understand the PNN's role in development and learning and memory. We show that the PNN is fully developed in the deep cerebellar nuclei (DCN) of rats by P18. By using enzymatic digestion of the PNN with chondroitinase ABC (ChABC), we are able to study how digestion of the PNN affects cerebellar-dependent eyeblink conditioning in vivo and perform electrophysiological recordings from DCN neurons in vitro. In vivo degradation of the PNN resulted in significant differences in eyeblink conditioning amplitude and area. Female animals in the vehicle group demonstrated higher levels of conditioning as well as significantly higher post-probe conditioned responses compared to males in that group, differences not present in the ChABC group. In vitro, we found that DCN neurons with a disrupted PNN following exposure to ChABC had altered membrane properties, fewer rebound spikes, and decreased intrinsic excitability. Together, this study further elucidates the role of the PNN in cerebellar learning in the DCN and is the first to demonstrate PNN degradation may erase sex differences in delay conditioning.
Collapse
Affiliation(s)
- Deidre E O'Dell
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States.
| | - Bernard G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| | - Carrie Smith-Bell
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| | - Desheng Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| |
Collapse
|
5
|
Szarvas D, Gaál B, Matesz C, Rácz É. Distribution of the Extracellular Matrix in the Pararubral Area of the Rat. Neuroscience 2018; 394:177-188. [PMID: 30367949 DOI: 10.1016/j.neuroscience.2018.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/09/2022]
Abstract
Previously we described similarities and differences in the organization and molecular composition of an aggrecan based extracellular matrix (ECM) in three precerebellar nuclei, the inferior olive, the prepositus hypoglossi nucleus and the red nucleus of the rat associated with their specific cytoarchitecture, connection and function in the vestibular system. The aim of present study is to map the ECM pattern in a mesencephalic precerebellar nucleus, the pararubral area, which has a unique function among the precerebellar nuclei with its retinal connection and involvement in the circadian rhythm regulation. Using histochemistry and immunohistochemistry we have described for the first time the presence of major ECM components, the hyaluronan, aggrecan, versican, neurocan, brevican, tenascin-R (TN-R), and the HAPLN1 link protein in the pararubral area. The most common form of the aggrecan based ECM was the diffuse network in the neuropil, but each type of the condensed forms was also recognizable. Characteristic perineuronal nets (PNNs) were only recognizable with Wisteria floribunda agglutinin (WFA) and aggrecan staining around some of the medium-sized neurons, whereas the small cells were rarely surrounded by a weakly stained PNNs. The moderate expression of key molecules of PNN, the hyaluronan (HA) and HAPLN1 suggests that the lesser stability of ECM assembly around the pararubral neurons may allow quicker response to the modified neuronal activity and contributes to the high level of plasticity in the vestibular system.
Collapse
Affiliation(s)
- Dóra Szarvas
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Clara Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Éva Rácz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen 4032, Hungary.
| |
Collapse
|
6
|
Liu JR, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem 2018; 66:643-662. [PMID: 29683384 DOI: 10.1369/0022155418771677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The structure and functions of the extracellular matrix (ECM), its spatial distribution and pericellular association of ECM molecules remain poorly understood. Colocalization of ECM molecules with cell phenotypes through immunohistochemistry can provide crucial insights into their juxtacrine signaling role as well as their structural relevance to tissue architecture. As manual quantification of images introduces intra- and inter-user bias and is cumbersome for high-throughput approaches, we implemented an automated high-throughput method to quantify the spatial distribution and cellular association of one ECM molecule, thrombospondin 1 (TSP1) with two major cell phenotypes, neurons, and astrocytes. The distribution of TSP1 was homogeneous throughout the striatum and cortex along the anterior-posterior axis. TSP1 occupied 8.85% of the striatum and 7.40% in the cortex. TSP1 also associated with 94.58% and 88.45% of neurons in the striatum and cortex. The association with astrocytes was significantly lower at 47.55% and 28.09%. These findings highlight the key role that TSP1 plays in neuron physiology in a healthy brain, but also highlights key regional difference in astrocytes secreting ECM molecules. The semiautomated approach implemented here will improve the throughput and reliability of measuring the distribution and cellular colocalization of ECM molecules.
Collapse
Affiliation(s)
- Jessie R Liu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michel Modo
- Department of Radiology, McGowan Institute for Regenerative Medicine and Centre for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Slaker ML, Harkness JH, Sorg BA. A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity. IBRO Rep 2016; 1:54-60. [PMID: 28713865 PMCID: PMC5507617 DOI: 10.1016/j.ibror.2016.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Perineuronal nets (PNNs) are aggregations of extracellular matrix molecules that are critical for plasticity. Their altered development or changes during adulthood appear to contribute to a wide range of diseases/disorders of the brain. An increasing number of studies examining the contribution of PNN to various behaviors and types of plasticity have analyzed the fluorescence intensity of Wisteria floribunda agglutinin (WFA) as an indirect measure of the maturity of PNNs, with brighter WFA staining corresponding to a more mature PNN and dim WFA staining corresponding to an immature PNN. However, a clearly-defined and unified method for assessing the intensity of PNNs is critical to allow us to make comparisons across studies and to advance our understanding of how PNN plasticity contributes to normal brain function and brain disease states. Here we examined methods of PNN intensity quantification and demonstrate that creating a region of interest around each PNN and subtracting appropriate background is a viable method for PNN intensity quantification that can be automated. This method produces less variability and bias across experiments compared to other published analyses, and this method increases reproducibility and reliability of PNN intensity measures, which is critical for comparisons across studies in this emerging field.
Collapse
Affiliation(s)
- Megan L Slaker
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, 98686
| | - John H Harkness
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, 98686
| | - Barbara A Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, 98686
| |
Collapse
|
8
|
Rácz É, Gaál B, Matesz C. Heterogeneous expression of extracellular matrix molecules in the red nucleus of the rat. Neuroscience 2016; 322:1-17. [PMID: 26868971 DOI: 10.1016/j.neuroscience.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
Abstract
Previous studies in our laboratory showed that the organization and heterogeneous molecular composition of extracellular matrix is associated with the variable cytoarchitecture, connections and specific functions of the vestibular nuclei and two related areas of the vestibular neural circuits, the inferior olive and prepositus hypoglossi nucleus. The aim of the present study is to reveal the organization and distribution of various molecular components of extracellular matrix in the red nucleus, a midbrain premotor center. Morphologically and functionally the red nucleus is comprised of the magno- and parvocellular parts, with overlapping neuronal population. By using histochemical and immunohistochemical methods, the extracellular matrix appeared as perineuronal net, axonal coat, perisynaptic matrix or diffuse network in the neuropil. In both parts of the red nucleus we have observed positive hyaluronan, tenascin-R, link protein, and lectican (aggrecan, brevican, versican, neurocan) reactions. Perineuronal nets were detected with each of the reactions and the aggrecan showed the most intense staining in the pericellular area. The two parts were clearly distinguished on the basis of neurocan and HAPLN1 expression as they have lower intensity in the perineuronal nets of large cells and in the neuropil of the magnocellular part. Additionally, in contrast to this pattern, the aggrecan was heavily labeled in the magnocellular region sharply delineating from the faintly stained parvocellular area. The most characteristic finding was that the appearance of perineuronal nets was related with the neuronal size independently from its position within the two subdivisions of red nucleus. In line with these statements none of the extracellular matrix molecules were restricted exclusively to the magno- or parvocellular division. The chemical heterogeneity of the perineuronal nets may support the recently accepted view that the red nucleus comprises more different populations of neurons than previously reported.
Collapse
Affiliation(s)
- É Rácz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - B Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - C Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen 4032, Hungary.
| |
Collapse
|
9
|
Dauth S, Grevesse T, Pantazopoulos H, Campbell PH, Maoz BM, Berretta S, Parker KK. Extracellular matrix protein expression is brain region dependent. J Comp Neurol 2016; 524:1309-36. [PMID: 26780384 DOI: 10.1002/cne.23965] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
In the brain, extracellular matrix (ECM) components form networks that contribute to structural and functional diversity. Maladaptive remodeling of ECM networks has been reported in neurodegenerative and psychiatric disorders, suggesting that the brain microenvironment is a dynamic structure. A lack of quantitative information about ECM distribution in the brain hinders an understanding of region-specific ECM functions and the role of ECM in health and disease. We hypothesized that each ECM protein as well as specific ECM structures, such as perineuronal nets (PNNs) and interstitial matrix, are differentially distributed throughout the brain, contributing to the unique structure and function in the various regions of the brain. To test our hypothesis, we quantitatively analyzed the distribution, colocalization, and protein expression of aggrecan, brevican, and tenascin-R throughout the rat brain utilizing immunohistochemistry and mass spectrometry analysis and assessed the effect of aggrecan, brevican, and/or tenascin-R on neurite outgrowth in vitro. We focused on aggrecan, brevican, and tenascin-R as they are especially expressed in the mature brain, and have established roles in brain development, plasticity, and neurite outgrowth. The results revealed a differentiated distribution of all three proteins throughout the brain and indicated that their presence significantly reduces neurite outgrowth in a 3D in vitro environment. These results underline the importance of a unique and complex ECM distribution for brain physiology and suggest that encoding the distribution of distinct ECM proteins throughout the brain will aid in understanding their function in physiology and in turn assist in identifying their role in disease. J. Comp. Neurol. 524:1309-1336, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie Dauth
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138
| | - Thomas Grevesse
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, Massachusetts, 02478.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, 02115
| | - Patrick H Campbell
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138
| | - Ben M Maoz
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138
| | - Sabina Berretta
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, Massachusetts, 02478.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, 02115.,Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, 02115
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138
| |
Collapse
|
10
|
Gaál B, Kecskes S, Matesz C, Birinyi A, Hunyadi A, Rácz É. Molecular composition and expression pattern of the extracellular matrix in a mossy fiber-generating precerebellar nucleus of rat, the prepositus hypoglossi. Neurosci Lett 2015; 594:122-6. [PMID: 25817362 DOI: 10.1016/j.neulet.2015.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 12/22/2022]
Abstract
The prepositus hypoglossi nucleus (PHN) is a mossy fiber-generating precerebellar nucleus of the brainstem, regarded as one of the neural integrators of the vestibulo-ocular reflex. The aim of the present work is to reveal the distribution of various molecular components of the extracellular matrix (ECM) in the prepositus hypoglossi nucleus by using histochemical and immunohistochemical methods. Our most characteristic finding was the accumulation of the ECM as perineuronal net (PNN) and axonal coat and we detected conspicuous differences between the magnocellular (PHNm) and parvocellular (PHNp) divisions of the PHN. PNNs were well developed in the PHNm, whereas the pericellular positivity was almost absent in the PHNp, here a diffuse ECM was observed. In the PHNm the perineuronal net explored the most intense staining with the aggrecan, and tenascin-R antibodies followed by the hyaluronan, then least with reactions for chondroitin sulfate-based proteoglycan components and HAPLN1 link protein reactions, but PNNs were not observed with the versican, neurocan, and brevican staining. We hypothesized that the difference in the ECM organization of the two subnuclei is associated with their different connections, cytoarchitecture, physiological properties and with their different functions in the vestibular system.
Collapse
Affiliation(s)
- Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary
| | - Szilvia Kecskes
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary
| | - Clara Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98, Debrecen 4032, Hungary
| | - Andras Birinyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary
| | - Andrea Hunyadi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98, Debrecen 4032, Hungary
| | - Éva Rácz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary.
| |
Collapse
|