1
|
Alexander C, Jeon J, Nickerson K, Hassler S, Vasefi M. CBD and the 5-HT1A receptor: A medicinal and pharmacological review. Biochem Pharmacol 2025; 233:116742. [PMID: 39778776 DOI: 10.1016/j.bcp.2025.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated. This review explores recent literature to elucidate these questions, highlighting the neurotherapeutic outcomes of this pharmacodynamic interaction and proposing a signaling pathway underlying the mechanism by which CBD desensitizes 5-HT1AR signaling. A comprehensive survey of the literature underscores CBD's multifaceted neurotherapeutic effects, which include antidepressant, anxiolytic, neuroprotective, antipsychotic, antiemetic, anti-allodynic, anti-epileptic, anti-degenerative, and addiction-treating properties, attributable in part to its interactions with 5-HT1AR. Furthermore, evidence suggests that the pharmacodynamic interaction between CBD and 5-HT1AR is contingent upon dosage. Moreover, we propose that CBD can induce desensitization of 5-HT1AR via both homologous and heterologous mechanisms. Homologous desensitization involves the recruitment of G protein-coupled receptor kinase 2 (GRK2) and β-arrestin, leading to receptor endocytosis. In contrast, heterologous desensitization is mediated by an elevated intracellular calcium level or activation of protein kinases, such as c-Jun N-terminal kinase (JNK), through the activity of other receptors.
Collapse
Affiliation(s)
- Claire Alexander
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Jiyoon Jeon
- Department of Biology, Lamar University, Beaumont, TX, 77710, USA
| | - Kyle Nickerson
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Shayne Hassler
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA
| | - Maryam Vasefi
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Sahin S, Mortas T, Muderrisoglu A, Turksoy V. Investigation of Cannabidiol's Protective Effects on Cadmium-Induced Toxicity in Mice. Basic Clin Pharmacol Toxicol 2025; 136:e14131. [PMID: 39832793 PMCID: PMC11745803 DOI: 10.1111/bcpt.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Current chelation treatments used for cadmium poisoning may cause some serious side effects. Thus, safer novel treatments could be promising for clinical use. This study evaluated the effects of cannabidiol on Cd toxicity. Four groups of 10 mice were formed: Groups I and III were cadmium-free, while groups II and IV received 50 mg/L cadmium in drinking water. Groups III and IV received daily cannabidiol (25 mg/kg) via intragastric gavage. After 30 days, the animals were killed, and blood and tissue samples were collected. Oxidative stress and inflammation markers, including glutathione, catalase, myeloperoxidase, TNF-α, IL-1β and IL-6, were analysed using ELISA. Additionally, histological evaluations of the liver, kidney and testis were performed. Cadmium exposure reduced glutathione and catalase levels in the blood, liver, kidney and testis, while increasing myeloperoxidase. Cannabidiol mitigated these effects on oxidative stress markers. Cannabidiol also reduced the increase in proinflammatory cytokines. Histopathological analysis revealed reduced liver and kidney damage in cannabidiol-treated groups compared to cadmium-only groups. In addition, histopathological evaluation showed CBD had no protective effect on the testicular tissue against Cd toxicity. Our results indicate that cannabidiol protects against some toxic effects of cadmium. If confirmed by future studies, cannabidiol may be proposed as a novel treatment for cadmium toxicity.
Collapse
Affiliation(s)
- Serkan Sahin
- Department of Medical PharmacologyYozgat Bozok University Faculty of MedicineYozgatTurkey
| | - Tulay Mortas
- Department of HistologyKırıkkale University Faculty of MedicineKırıkkaleTurkey
| | - Ahmet Muderrisoglu
- Department of Medical PharmacologyKırıkkale University Faculty of MedicineKırıkkaleTurkey
| | - Vugar Ali Turksoy
- Department of Public HealthYozgat Bozok University Faculty of MedicineYozgatTurkey
| |
Collapse
|
3
|
De Freitas A, Midlej V. Cannabinoids as cytotoxic agents and potential modulators of the human parasite Trichomonas vaginalis. Biomed Pharmacother 2025; 182:117793. [PMID: 39724679 DOI: 10.1016/j.biopha.2024.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Trichomoniasis, a globally prevalent sexually transmitted infection caused by Trichomonas vaginalis, affects approximately 278 million people each year. It presents a challenge due to resistance to the current treatment, Metronidazole (MTZ), which is also associated with side effects. Cannabis sativa, with more than 100 phytocannabinoids and numerous studies for therapeutic applications, including parasitic infections, has undergone a significant shift in acceptance worldwide, highlighted by legalizations and substantial revenue projections. In this context, the present study delves into the effects of cannabinoids, specifically WIN 55,212-2 (WIN), Cannabivarin (CBV) showcasing their anti-parasitic actions that influence the growth and morphology of T. vaginalis. The analysis extends to encompass the pharmacokinetic properties of these cannabinoids. Among the analyzed cannabinoids, CBV stands out for adhering to Lipinski's rules, indicating its potential suitability for oral drug delivery. They also demonstrated inhibitory effects on the growth of T. vaginalis trophozoites and a reduction in the parasite's adhesion to host cells. Several morphological alterations were observed, such as membrane projections, blebbing, autophagosomes and damaged hydrogenosomes. These results highlight the need for further research to explore the therapeutic potential of cannabinoids and understand their mechanisms of action in T. vaginalis.
Collapse
Affiliation(s)
- Anna De Freitas
- Structural Biology Laboratory, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil
| | - Victor Midlej
- Structural Biology Laboratory, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Albani CM, Fuentes G, Ramírez CL, Pensel PE, Gatti F, Albanese A, Nutter D, Aguirre ME, Di Iorio YD, Elissondo MC. Anthelmintic Effect of Cannabidiol against Echinococcus granulosus sensu stricto. Trop Med Infect Dis 2024; 9:35. [PMID: 38393124 PMCID: PMC10892078 DOI: 10.3390/tropicalmed9020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Cystic echinococcosis is a global parasitic zoonosis caused by infection with the larval stage of Echinococcus granulosus sensu lato. Cystic echinococcosis affects more than 1 million people worldwide, causing important economic costs in terms of management and livestock associated losses. Albendazole is the main drug used in treating human cystic echinococcosis. In spite of this, its low aqueous solubility, poor absorption, and consequently erratic bioavailability are the cause of its chemotherapeutic failures. Based on the described problem, new treatment alternatives urgently need to be developed. The aim of the present research was to study the in vitro and in vivo efficacy of cannabidiol (CBD), the second most abundant component of the Cannabis sativa plant, was demonstrated against E. granulosus sensu stricto. CBD (50 µg/mL) caused a decrease in protoscoleces viability of 80 % after 24 h of treatment which was consistent with the observed tegumental alterations. Detachment of the germinal layer was observed in 50 ± 10% of cysts treated with 50 µg/mL of CBD during 24 h. In the clinical efficacy study, all treatments reduced the weight of cysts recovered from mice compared with the control group. However, this reduction was only significant with ABZ suspension and the CBD + ABZ combination. As we could observe by the SEM study, the co-administration of CBD with ABZ suspension caused greater ultrastructural alteration of the germinal layer in comparison with that provoked with the monotherapy. Further in vivo research will be conducted by changing the dose and frequency of CBD and CBD + ABZ treatments and new available CBD delivery systems will also be assayed to improve bioavailability in vivo.
Collapse
Affiliation(s)
- Clara María Albani
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales–UNMdP, Centro Científico Tecnológico Mar del Plata—CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata 7600, Argentina; (G.F.); (P.E.P.); (F.G.); (A.A.)
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - Giselle Fuentes
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales–UNMdP, Centro Científico Tecnológico Mar del Plata—CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata 7600, Argentina; (G.F.); (P.E.P.); (F.G.); (A.A.)
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - Cristina Lujan Ramírez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina; (C.L.R.); (M.E.A.); (Y.D.D.I.)
| | - Patricia Eugenia Pensel
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales–UNMdP, Centro Científico Tecnológico Mar del Plata—CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata 7600, Argentina; (G.F.); (P.E.P.); (F.G.); (A.A.)
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - Florencia Gatti
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales–UNMdP, Centro Científico Tecnológico Mar del Plata—CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata 7600, Argentina; (G.F.); (P.E.P.); (F.G.); (A.A.)
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - Adriana Albanese
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales–UNMdP, Centro Científico Tecnológico Mar del Plata—CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata 7600, Argentina; (G.F.); (P.E.P.); (F.G.); (A.A.)
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - Diego Nutter
- Asociación Civil CBG2000, Mar del Plata 7600, Argentina;
| | - Matías Ezequiel Aguirre
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina; (C.L.R.); (M.E.A.); (Y.D.D.I.)
- Instituto de Investigaciones Físicas, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - Yésica Dolores Di Iorio
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina; (C.L.R.); (M.E.A.); (Y.D.D.I.)
- Instituto de Investigaciones Físicas, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| | - María Celina Elissondo
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales–UNMdP, Centro Científico Tecnológico Mar del Plata—CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata 7600, Argentina; (G.F.); (P.E.P.); (F.G.); (A.A.)
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina
| |
Collapse
|
5
|
Schouten M, Dalle S, Mantini D, Koppo K. Cannabidiol and brain function: current knowledge and future perspectives. Front Pharmacol 2024; 14:1328885. [PMID: 38288087 PMCID: PMC10823027 DOI: 10.3389/fphar.2023.1328885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a naturally occurring non-psychoactive cannabinoid found in Cannabis sativa, commonly known as cannabis or hemp. Although currently available CBD products do not meet the safety standards of most food safety authorities to be approved as a dietary supplement or food additive, CBD has been gaining widespread attention in recent years due to its various potential health benefits. While primarily known for its therapeutic effects in managing epileptic seizures, psychosis, anxiety, (neuropathic) pain, and inflammation, CBD's influence on brain function has also piqued the interest of researchers and individuals seeking to enhance cognitive performance. The primary objective of this review is to gather, synthesize, and consolidate scientifically proven evidence on the impact of CBD on brain function and its therapeutic significance in treating neurological and mental disorders. First, basic background information on CBD, including its biomolecular properties and mechanisms of action is presented. Next, evidence for CBD effects in the human brain is provided followed by a discussion on the potential implications of CBD as a neurotherapeutic agent. The potential effectiveness of CBD in reducing chronic pain is considered but also in reducing the symptoms of various brain disorders such as epilepsy, Alzheimer's, Huntington's and Parkinson's disease. Additionally, the implications of using CBD to manage psychiatric conditions such as psychosis, anxiety and fear, depression, and substance use disorders are explored. An overview of the beneficial effects of CBD on aspects of human behavior, such as sleep, motor control, cognition and memory, is then provided. As CBD products remain largely unregulated, it is crucial to address the ethical concerns associated with their use, including product quality, consistency, and safety. Therefore, this review discusses the need for responsible research and regulation of CBD to ensure its safety and efficacy as a therapeutic agent for brain disorders or to stimulate behavioral and cognitive abilities of healthy individuals.
Collapse
Affiliation(s)
- Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Bomfim AJDL, Zuze SMF, Fabrício DDM, Pessoa RMDP, Crippa JAS, Chagas MHN. Effects of the Acute and Chronic Administration of Cannabidiol on Cognition in Humans and Animals: A Systematic Review. Cannabis Cannabinoid Res 2023; 8:955-973. [PMID: 37792394 DOI: 10.1089/can.2023.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Introduction: The effects of cannabidiol (CBD) on cognition has been investigated in recent years to determine the therapeutic potential of this cannabinoid for a broad gamut of medical conditions, including neuropsychiatric disorders. The aim of the present study was to perform a systematic review of studies that analyzed the effects of the acute and chronic administration of CBD on cognition in humans and animals both to assess the cognitive safety of CBD and to determine a beneficial potential of CBD on cognition. Methods: The PubMed, Web of Science, PsycINFO, and Scopus databases were searched in December of 2022 for relevant articles using the following combinations of keywords: ("cannabidiol" OR "CBD") AND ("cognition" OR "processing cognitive" OR "memory" OR "language" OR "attention" OR "executive function" OR "social cognition" OR "perceptual motor ability" OR "processing speed"). Results: Fifty-nine articles were included in the present review (36 preclinical and 23 clinical trials). CBD seems not to have any negative effect on cognitive processing in rats. The clinical trials confirmed these findings in humans. One study found that repeated dosing with CBD may improve cognitive in people who use cannabis heavily but not individuals with neuropsychiatric disorders. Considering the context of neuropsychiatric disorders in animal models, CBD seems to reverse the harm caused by the experimental paradigms, such that the performance of these animals becomes similar to that of control animals. Conclusions: The results demonstrate that the chronic and acute administration of CBD seems not to impair cognition in humans without neuropsychiatric disorders. In addition, preclinical studies report promising results regarding the effects of CBD on the cognitive processing of animals. Future double-blind, placebo-controlled, randomized clinical trials with larger, less selective samples, with standardized tests, and using different doses of CBD in outpatients are of particular interest to elucidate the cognitive effects of CBD.
Collapse
Affiliation(s)
- Ana Julia de Lima Bomfim
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Stefany Mirrelle Fávero Zuze
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Daiene de Morais Fabrício
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Rebeca Mendes de Paula Pessoa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - José Alexandre S Crippa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Hortes N Chagas
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
Zhang J, Lin C, Jin S, Wang H, Wang Y, Du X, Hutchinson MR, Zhao H, Fang L, Wang X. The pharmacology and therapeutic role of cannabidiol in diabetes. EXPLORATION (BEIJING, CHINA) 2023; 3:20230047. [PMID: 37933286 PMCID: PMC10582612 DOI: 10.1002/exp.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.
Collapse
Affiliation(s)
- Jin Zhang
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople's Republic of China
| | - Mark R. Hutchinson
- Discipline of PhysiologyAdelaide Medical SchoolUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
- ARC Centre for Nanoscale BioPhotonicsUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
| | - Huiying Zhao
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Beijing National Laboratory for Molecular SciencesBeijingPeople's Republic of China
| |
Collapse
|
8
|
Castelli V, Lavanco G, D’Amico C, Feo S, Tringali G, Kuchar M, Cannizzaro C, Brancato A. CBD enhances the cognitive score of adolescent rats prenatally exposed to THC and fine-tunes relevant effectors of hippocampal plasticity. Front Pharmacol 2023; 14:1237485. [PMID: 37583903 PMCID: PMC10424934 DOI: 10.3389/fphar.2023.1237485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction: An altered neurodevelopmental trajectory associated with prenatal exposure to ∆-9-tetrahydrocannabinol (THC) leads to aberrant cognitive processing through a perturbation in the effectors of hippocampal plasticity in the juvenile offspring. As adolescence presents a unique window of opportunity for "brain reprogramming", we aimed at assessing the role of the non-psychoactive phytocannabinoid cannabidiol (CBD) as a rescue strategy to temper prenatal THC-induced harm. Methods: To this aim, Wistar rats prenatally exposed to THC (2 mg/kg s.c.) or vehicle (gestational days 5-20) were tested for specific indexes of spatial and configural memory in the reinforcement-motivated Can test and in the aversion-driven Barnes maze test during adolescence. Markers of hippocampal excitatory plasticity and endocannabinoid signaling-NMDAR subunits NR1 and 2A-, mGluR5-, and their respective scaffold proteins PSD95- and Homer 1-; CB1R- and the neuromodulatory protein HINT1 mRNA levels were evaluated. CBD (40 mg/kg i.p.) was administered to the adolescent offspring before the cognitive tasks. Results: The present results show that prenatal THC impairs hippocampal memory functions and the underlying synaptic plasticity; CBD is able to mitigate cognitive impairment in both reinforcement- and aversion-related tasks and the neuroadaptation of hippocampal excitatory synapses and CB1R-related signaling. Discussion: While this research shows CBD potential in dampening prenatal THC-induced consequences, we point out the urgency to curb cannabis use during pregnancy in order to avoid detrimental bio-behavioral outcomes in the offspring.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Cesare D’Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Healthcare Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Gupta P, Singh A, Shafi S, Ralli T, Pottoo FH, Sultana Y, Kohli K. Cannabis Sativa in Phytotherapy: Reappraisal of Therapeutic Potential and Regulatory Aspects. Curr Pharm Biotechnol 2023; 25:CPB-EPUB-131604. [PMID: 37157219 DOI: 10.2174/1389201024666230508142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Cannabis sativa is widely used as a folk medicine in many parts of the globe and has been reported to be a treasure trove of phytoconstituents, including cannabinoids, terpenoids, and flavonoids. Accumulating evidence from various pre-clinical and clinical studies revealed the therapeutic potential of these constituents in various pathological conditions, including chronic pain, inflammation, neurological disorders, and cancer. However, the psychoactive effect and addiction potential associated with cannabis use limited its clinical application. In the past two decades, extensive research on cannabis has led to a resurgence of interest in the clinical application of its constituents, particularly cannabinoids. This review summarizes the therapeutic effect and molecular mechanism of various phytoconstituents of cannabis. Furthermore, recently developed nanoformulations of cannabis constituents have also been reviewed. Since cannabis is often associated with illicit use, regulatory aspects are of vital importance and this review therefore also documented the regulatory aspects of cannabis use along with clinical data and commercial products of cannabis.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
- Lloyd Institute of Management and Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida - 201308, Uttar Pradesh, India
| |
Collapse
|
10
|
Cannabis sativa: A look at protozoa, helminths, insect vectors, and pests. Fitoterapia 2023; 166:105467. [PMID: 36893925 DOI: 10.1016/j.fitote.2023.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Active principles extracted from plants, such as essential oils, have been commonly described in the literature as therapeutic targets for numerous pathological conditions. Cannabis sativa, which has an ancient and peculiar history, has been used for various purposes, from recreational to compounds of pharmacotherapeutic and industrial importance, such as pesticides based on this plant. It is a plant that contains approximately 500 described cannabinoid compounds and is the target of in vitro and in vivo studies at different locations. This review clarifies the role of cannabinoid compounds in parasitic infections caused by helminths and protozoa. In addition, this study briefly presented the use of C. sativa constituents in the formulation of pesticides for vector control, as the latter topic is justified by the economic burden faced by several regions where vector-borne diseases are a troubling reality. Studies involving cannabis compounds with pesticidal potential should be encouraged, especially those that evaluate their effectiveness against the different life cycles of insects, seeking to interrupt vector proliferation after egg laying. Actions aimed at the management and cultivation of plant species with ecologically correct pharmacotherapeutic and pesticide potentials are becoming urgent.
Collapse
|
11
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
12
|
Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol 2023; 21:284-308. [PMID: 35410608 PMCID: PMC10190150 DOI: 10.2174/1570159x20666220411101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.
Collapse
Affiliation(s)
- Alice Hartmann
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Sâmia R. Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F. Lisboa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
| |
Collapse
|
13
|
Rosa-Gonçalves P, de Sousa LP, Maia AB, Ribeiro-Gomes FL, Gress CCTDL, Werneck GL, Souza DO, Almeida RF, Daniel-Ribeiro CT. Dynamics and immunomodulation of cognitive deficits and behavioral changes in non-severe experimental malaria. Front Immunol 2022; 13:1021211. [PMID: 36505414 PMCID: PMC9729266 DOI: 10.3389/fimmu.2022.1021211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Data recently reported by our group indicate that stimulation with a pool of immunogens capable of eliciting type 2 immune responses can restore the cognitive and behavioral dysfunctions recorded after a single episode of non-severe rodent malaria caused by Plasmodium berghei ANKA. Here we explored the hypothesis that isolated immunization with one of the type 2 immune response-inducing immunogens, the human diphtheria-tetanus (dT) vaccine, may revert damages associated with malaria. To investigate this possibility, we studied the dynamics of cognitive deficits and anxiety-like phenotype following non-severe experimental malaria and evaluated the effects of immunization with both dT and of a pool of type 2 immune stimuli in reversing these impairments. Locomotor activity and long-term memory deficits were assessed through the open field test (OFT) and novel object recognition task (NORT), while the anxiety-like phenotype was assessed by OFT and light/dark task (LDT). Our results indicate that poor performance in cognitive-behavioral tests can be detected as early as the 12th day after the end of antimalarial treatment with chloroquine and may persist for up to 155 days post infection. The single immunization strategy with the human dT vaccine showed promise in reversal of long-term memory deficits in NORT, and anxiety-like behavior in OFT and LDT.
Collapse
Affiliation(s)
- Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Luciana Pereira de Sousa
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Aline Barbosa Maia
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Caroline Cristhiani Tavares de Lima Gress
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Guilherme Loureiro Werneck
- Departamento de Epidemiologia do Instituto de Medicina Social da Universidade do Estado do Rio de Janeiro and Instituto de Estudos de Saúde Coletiva da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Farina Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil,*Correspondence: Cláudio Tadeu Daniel-Ribeiro,
| |
Collapse
|
14
|
Crippa JAS, Pacheco JC, Zuardi AW, Guimarães FS, Campos AC, Osório FDL, Loureiro SR, dos Santos RG, Souza JDS, Ushirohira JM, Ferreira RR, Mancini Costa KC, Scomparin DS, Scarante FF, Pires-Dos-Santos I, Mechoulam R, Kapczinski F, Fonseca BA, Esposito DL, Passos ADC, Dal Fabbro AL, Bellissimo-Rodrigues F, Arruda E, Scarpelini S, Andraus MH, Nather Junior JC, Wada DT, Koenigkam-Santos M, Santos AC, Busatto Filho G, Hallak JE. Cannabidiol for COVID-19 Patients with Mild to Moderate Symptoms (CANDIDATE Study): A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Cannabis Cannabinoid Res 2022; 7:658-669. [PMID: 34619044 PMCID: PMC9587798 DOI: 10.1089/can.2021.0093] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Importance: Owing to its anti-inflammatory properties and antiviral "in vitro" effect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cannabidiol (CBD) has been proposed as a potential treatment for coronavirus disease 2019 (COVID-19). Objective: To investigate the safety and efficacy of CBD for treating patients with mild to moderate COVID-19. Design: Randomized, parallel-group, double-blind, placebo-controlled clinical trial conducted between July 7 and October 16, 2020, in two sites in Brazil. Setting: Patients were recruited in an emergency room. Participants: Block randomized patients (1:1 allocation ratio-by a researcher not directly involved in data collection) with mild and moderate COVID-19 living in Ribeirão Preto, Brazil, seeking medical consultation, and those who voluntarily agreed to participate in the study. Interventions: Patients received 300 mg of CBD or placebo added to standard symptomatic care during 14 days. Main Outcome and Measure: The primary outcome was reduction or prevention of the deterioration in clinical status from mild/moderate to severe/critical measured with the COVID-19 Scale or the natural course of the resolution of typical clinical symptoms. Primary study outcome was assessed on days 14, 21, and 28 after enrollment. Results: A total of 321 patients were recruited and assessed for eligibility, and 105 were randomly allocated either in CBD (n=49) or in placebo (n=42) group. Ninety-one participants were included in the analysis of efficacy. There were no baseline between-group differences regarding disease severity (χ2=0.025, p=0.988) and median time to symptom resolution (12 days [95% confidence interval, CI, 6.5-17.5] in the CBD group, 9 days [95% CI, 4.8-13.2] in the placebo group [χ2=1.6, p=0.205 by log-rank test]). By day 28, 83.3% in the CBD group and 90.2% in the placebo group had resolved symptoms. There were no between-group differences on secondary measures. CBD was well tolerated, producing mostly mild and transient side effects (e.g., somnolence, fatigue, changes in appetite, lethargy, nausea, diarrhea, and fever), with no significant differences between CBD and placebo treatment groups. Conclusions and Relevance: Daily administration of 300 mg CBD for 14 days failed to alter the clinical evolution of COVID-19. Further trials should explore the therapeutic effect of CBD in patients with severe COVID-19, possibly trying higher doses than the used in our study. Trial Registration: ClinicalTrials.gov identifier NCT04467918 (date of registration: July 13, 2020).
Collapse
Affiliation(s)
- José Alexandre S. Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology—Translational Medicine, São Paulo, Brazil
| | - Julia Cozar Pacheco
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio W. Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology—Translational Medicine, São Paulo, Brazil
| | - Francisco S. Guimarães
- National Institute for Science and Technology—Translational Medicine, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alline Cristina Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávia de Lima Osório
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology—Translational Medicine, São Paulo, Brazil
| | - Sonia Regina Loureiro
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael G. dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology—Translational Medicine, São Paulo, Brazil
| | - José Diogo S. Souza
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Mayumi Ushirohira
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael Rinaldi Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Davi Silveira Scomparin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Franciele Franco Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Pires-Dos-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Flávio Kapczinski
- National Institute for Science and Technology—Translational Medicine, São Paulo, Brazil
- Department of Psychiatry and Behavioural Neurosciences, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Canada
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Benedito A.L. Fonseca
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danillo L.A. Esposito
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Afonso Dinis Costa Passos
- Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Amaury Lelis Dal Fabbro
- Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Eurico Arruda
- Department of Cell and Molecular Biology, and Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sandro Scarpelini
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Julio Cesar Nather Junior
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Tadao Wada
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcel Koenigkam-Santos
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Carlos Santos
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jaime E.C. Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology—Translational Medicine, São Paulo, Brazil
| |
Collapse
|
15
|
Borgonetti V, Biagi M, Galeotti N, Manetti F, Governa P. Investigation on the neuroprotective effect of a cannabidiol-enriched non-psychotropic Cannabis sativa L. extract in an in vitro model of excitotoxicity. Fitoterapia 2022; 163:105315. [PMID: 36179898 DOI: 10.1016/j.fitote.2022.105315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
Abstract
The purpose of this study was to evaluate the neuroprotective effect of a cannabidiol-enriched non-psychotropic Cannabis sativa L. extract (CSE) and its main constituents, cannabidiol and β-caryophyllene. An in vitro model of glutamate-induced neuronal excitotoxicity using SH-SY5Y cells was optimized. The impact of CSE on glutamate-impaired cell viability, brain-derived neurotrophic factor release, CB1 protein expression, and ERK levels was evaluated. The involvement of CB1 modulation was verified by the cotreatment with the CB1 antagonist AM4113. CSE was able to significantly protect SH-SY5Y from glutamate-impaired cell viability, and to counteract the changes in brain-derived neurotrophic factor levels, with a mechanism of action involving ERK modulation. Moreover, CSE completely reversed the reduction of CB1 receptor expression induced by glutamate, and the presence of the CB1 antagonist AM4113 reduced CSE effectiveness, suggesting that CBr play a role in the modulation of neuronal excitotoxicity. This work demonstrated the in vitro effectiveness of CSE as a neuroprotective agent, proposing the whole cannabis phytocomplex as a more effective strategy, compared to its main constituents alone, and suggested further investigations by using more complex cell models before moving to in vivo studies.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy.
| |
Collapse
|
16
|
Bandawe G. Medical cannabis and cannabidiol: A new harvest for Malawi. Malawi Med J 2022; 34:138-142. [PMID: 35991815 PMCID: PMC9356517 DOI: 10.4314/mmj.v34i2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In February 2020 parliament passed the Cannabis Regulation Bill (2020) which regulates the cultivation and production of industrial hemp and medical cannabis. The country will only fully benefit from this development if the medical and scientific community can take the lead in enabling the country to exploit the plant's potential to help address some of our economic and public health challenges. This special communication provides some basic information on cannabis and discusses its history and medical uses. Cannabidiol (CBD) has emerged as one of the most important cannabis-derived phytochemicals and has formed the basis for the growth of the medical cannabis industry. The scientific data on the mechanisms of the effects of CBD on the human neuroendocrine-immune network is reviewed and the first effective cannabis-based FDA-approved treatment for epilepsy discussed. Some clinical research that is being done on the antipsychotic and neuroprotective properties of CBD is also reviewed. A case is made for the potential of CBD as a neuroprotective adjunctive therapy for the prevention of neuropsychological sequelae associated with complicated malaria. The safety profile of CBD is reviewed and finally, the potential importance of the re-medicalization of cannabis-based therapies for the broader field of phytomedicine is pointed out.
Collapse
Affiliation(s)
- Gama Bandawe
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology
| |
Collapse
|
17
|
Kaur S, Sharma N, Roy A. Role of cannabinoids in various diseases: A review. Curr Pharm Biotechnol 2021; 23:1346-1358. [PMID: 34951355 DOI: 10.2174/1389201023666211223164656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant, Cannabis sativa is heavily explored and researched with many industrial and pharmaceutical applications. The medicinal and therapeutic role of cannabis Sativa has been summarized in the paper, citing its mechanism of action and influence on the human body. Diseases like metabolic disorders, infectious diseases, and psychological disorders pose negative and long-term drastic effects on the body like neurodegeneration and other chronic system failures. Several existing literature has proved its effectiveness against such diseases. OBJECTIVES This review aims to provide an overview of the role of cannabinoids in various diseases like metabolic disorders, infectious diseases, and psychological disorders. METHOD Various e-resources like Pubmed, Science Direct, and Google Scholar were thoroughly searched and read to form a well-informed and information-heavy manuscript. Here we tried to summaries the therapeutic aspect of Cannabis sativa and its bioactive compound cannabinoids in various diseases. RESULT This review highlights the various constituents which are present in Cannabis sativa, the Endocannabinoid system, and the role of cannabinoids in various diseases Conclusion: Recent research on Cannabis has suggested its role in neurodegenerative diseases, inflammation, sleep disorders, pediatric diseases, and their analgesic nature. Therefore, the authors majorly focus on the therapeutic aspect of Cannabis sativa in various diseases. The focus is also on the endocannabinoid system (ECS) and its role in fighting or preventing bacterial, parasitic, fungal, and viral infections.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biotechnology, Delhi Technological University. India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
18
|
Sonego AB, Prado DDS, Guimarães FS. PPARγ receptors are involved in the effects of cannabidiol on orofacial dyskinesia and cognitive dysfunction induced by typical antipsychotic in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110367. [PMID: 34048863 DOI: 10.1016/j.pnpbp.2021.110367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/20/2022]
Abstract
Tardive dyskinesia (TD) is a movement disorder that appears after chronic use of drugs that block dopaminergic receptors such as antipsychotics. Besides the motor symptoms, patients with TD also present cognitive deficits. Neuroinflammatory mechanisms could be involved in the development of these symptoms. A previous study showed that cannabidiol (CBD), the major non-psychotomimetic compound of Cannabis sativa plant, prevents orofacial dyskinesia induced by typical antipsychotics by activating peroxisome proliferator-activated receptors gamma (PPARγ). Here, we investigated if CBD would also reverse haloperidol-induced orofacial dyskinesia and associated cognitive deficits. We also verified if these effects depend on PPARγ receptor activation. Daily treatment with haloperidol (3 mg/kg, 21 days) increased the frequency of vacuous chewing movements (VCM) and decreased the discrimination index in the novel object recognition test in male Swiss mice. CBD (60 mg/kg/daily) administered in the last 7 days of haloperidol treatment attenuated both behavioral effects. Furthermore, haloperidol increased IL-1β and TNF-α levels in the striatum and hippocampus while CBD reverted these effects. The striatal and hippocampal levels of proinflammatory cytokines correlated with VCM frequency and discrimination index, respectively. Pretreatment with the PPARγ antagonist GW9662 (2 mg/kg/daily) blocked the behavioral effects of CBD. In conclusion, these results indicated that CBD could attenuate haloperidol-induced orofacial dyskinesia and improve non-motor symptoms associated with TD by activating PPARγ receptors.
Collapse
Affiliation(s)
- Andreza Buzolin Sonego
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| | - Douglas da Silva Prado
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
19
|
de Sousa ACC, Combrinck JM, Maepa K, Egan TJ. THC shows activity against cultured Plasmodium falciparum. Bioorg Med Chem Lett 2021; 54:128442. [PMID: 34763083 DOI: 10.1016/j.bmcl.2021.128442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
The FDA approved drug Dronabinol was identified in a previous study applying virtual screening using the haemozoin crystal as a target against malaria parasites. The active ingredient of dronabinol is synthetic tetrahydrocannabinol (THC), which is one of the major cannabinoids from Cannabis sativa. Traditional use of cannabis for malaria fever was reported in the world's oldest pharmacopoeia, dating to around 5000 years ago. In this research we report that THC inhibits β-haematin (synthetic haemozoin) and malaria parasite growth. Due the psychoactivity of THC, CBD, the other major naturally occurring cannabinoid that lacks the off-target psychoactive effects of THC, was also tested and inhibited β-haematin but showed only a mild antimalarial activity. To evaluate whether THC inhibit haemozoin formation, we performed a cellular haem fractionation assay that indicated that is not the likely mechanism of action. For the first time, the cannabinoid chemical structure is raised as a new chemical class to be further studied for malaria treatment, aiming to overcome the undesirable psychoactive effects of THC and optimize the antimalarial effects.
Collapse
Affiliation(s)
| | - Jill M Combrinck
- University of Cape Town, Division of Pharmacology, Department of Medicine, Observatory 7925, South Africa
| | - Keletso Maepa
- University of Cape Town, Division of Pharmacology, Department of Medicine, Observatory 7925, South Africa
| | - Timothy J Egan
- University of Cape Town, Department of Chemistry, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
20
|
García-Baos A, Puig-Reyne X, García-Algar Ó, Valverde O. Cannabidiol attenuates cognitive deficits and neuroinflammation induced by early alcohol exposure in a mice model. Biomed Pharmacother 2021; 141:111813. [PMID: 34126352 DOI: 10.1016/j.biopha.2021.111813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Foetal alcohol spectrum disorder (FASD) is the umbrella term used to describe the physical and mental disabilities induced by alcohol exposure during development. Early alcohol exposure induces cognitive impairments resulting from damage to the central nervous system (CNS). The neuroinflammatory response accompanied by neurodegenerative mechanisms contribute to those detrimental alterations. Cannabidiol (CBD) has recently emerged as an anti-inflammatory drug that might be useful to treat several neuropsychiatric disorders. In our study, we assessed the effects of CBD on long-lasting cognitive deficits induced by early alcohol exposure. Furthermore, we analysed long-term pro-inflammatory and apoptotic markers within the prefrontal cortex and hippocampus. To model alcohol binge drinking during gestational and lactation periods, we used pregnant C57BL/6 female mice with time-limited access to 20% v/v alcohol solution. Following the prenatal and lactation alcohol exposure (PLAE), we treated the male and female offspring with CBD from post-natal day (PD) 25 until PD34, and we evaluated their cognitive performance at PD60. Our results showed that CBD treatment during peri-adolescence period ameliorates cognitive deficits observed in our FASD-like mouse model, without sex differences. Moreover, CBD restores the PLAE-induced increased levels of TNFα and IL-6 in the hippocampus. Thus, our study provides new insights for CBD as a therapeutic agent to counteract cognitive impairments and neuroinflammation caused by early alcohol exposure.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Puig-Reyne
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Óscar García-Algar
- Neonatology Unit, ICGON, IDIBAPS, Hospital Clínic-Maternitat, BCNatal, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
21
|
Crippa JAS, Zuardi AW, Guimarães FS, Campos AC, de Lima Osório F, Loureiro SR, dos Santos RG, Souza JDS, Ushirohira JM, Pacheco JC, Ferreira RR, Mancini Costa KC, Scomparin DS, Scarante FF, Pires-Dos-Santos I, Mechoulam R, Kapczinski F, Fonseca BAL, Esposito DLA, Pereira-Lima K, Sen S, Andraus MH, Hallak JEC. Efficacy and Safety of Cannabidiol Plus Standard Care vs Standard Care Alone for the Treatment of Emotional Exhaustion and Burnout Among Frontline Health Care Workers During the COVID-19 Pandemic: A Randomized Clinical Trial. JAMA Netw Open 2021; 4:e2120603. [PMID: 34387679 PMCID: PMC8363917 DOI: 10.1001/jamanetworkopen.2021.20603] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Frontline health care professionals who work with patients with COVID-19 have an increased incidence of burnout symptoms. Cannabidiol (CBD) has anxiolytic and antidepressant properties and may be capable of reducing emotional exhaustion and burnout symptoms. OBJECTIVE To investigate the safety and efficacy of CBD therapy for the reduction of emotional exhaustion and burnout symptoms among frontline health care professionals working with patients with COVID-19. DESIGN, SETTING, AND PARTICIPANTS This prospective open-label single-site randomized clinical trial used a 1:1 block randomization design to examine emotional exhaustion and burnout symptoms among frontline health care professionals (physicians, nurses, and physical therapists) working with patients with COVID-19 at the Ribeirão Preto Medical School University Hospital in São Paulo, Brazil. Participants were enrolled between June 12 and November 12, 2020. A total of 214 health care professionals were recruited and assessed for eligibility, and 120 participants were randomized in a 1:1 ratio by a researcher who was not directly involved with data collection. INTERVENTIONS Cannabidiol, 300 mg (150 mg twice per day), plus standard care or standard care alone for 28 days. MAIN OUTCOMES AND MEASURES The primary outcome was emotional exhaustion and burnout symptoms, which were assessed for 28 days using the emotional exhaustion subscale of the Brazilian version of the Maslach Burnout Inventory-Human Services Survey for Medical Personnel. RESULTS A total of 120 participants were randomized to receive either CBD, 300 mg, plus standard care (treatment arm; n = 61) or standard care alone (control arm; n = 59) for 28 days. Of those, 118 participants (59 participants in each arm; 79 women [66.9%]; mean age, 33.6 years [95% CI, 32.3-34.9 years]) received the intervention and were included in the efficacy analysis. In the treatment arm, scores on the emotional exhaustion subscale of the Maslach Burnout Inventory significantly decreased at day 14 (mean difference, 4.14 points; 95% CI, 1.47-6.80 points; partial eta squared [ηp2] = 0.08), day 21 (mean difference, 4.34 points; 95% CI, 0.94-7.73 points; ηp2 = 0.05), and day 28 (mean difference, 4.01 points; 95% CI, 0.43-7.59 points; ηp2 = 0.04). However, 5 participants, all of whom were in the treatment group, experienced serious adverse events: 4 cases of elevated liver enzymes (1 critical and 3 mild, with the mild elevations reported at the final 28-day assessment) and 1 case of severe pharmacodermia. In 2 of those cases (1 with critical elevation of liver enzymes and 1 with severe pharmacodermia), CBD therapy was discontinued, and the participants had a full recovery. CONCLUSIONS AND RELEVANCE In this study, CBD therapy reduced symptoms of burnout and emotional exhaustion among health care professionals working with patients during the COVID-19 pandemic. However, it is necessary to balance the benefits of CBD therapy with potential undesired or adverse effects. Future double-blind placebo-controlled clinical trials are needed to confirm the present findings. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04504877.
Collapse
Affiliation(s)
- José Alexandre S. Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology–Translational Medicine, São Paulo, Brazil
| | - Antonio W. Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology–Translational Medicine, São Paulo, Brazil
| | - Francisco S. Guimarães
- National Institute for Science and Technology–Translational Medicine, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alline Cristina Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flávia de Lima Osório
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology–Translational Medicine, São Paulo, Brazil
| | - Sonia Regina Loureiro
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael G. dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology–Translational Medicine, São Paulo, Brazil
| | - José Diogo S. Souza
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Mayumi Ushirohira
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julia Cozar Pacheco
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Rinaldi Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla Cristinne Mancini Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Davi Silveira Scomparin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Franciele Franco Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabela Pires-Dos-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raphael Mechoulam
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Flávio Kapczinski
- National Institute for Science and Technology–Translational Medicine, São Paulo, Brazil
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Benedito A. L. Fonseca
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danillo L. A. Esposito
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina Pereira-Lima
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Srijan Sen
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor
| | | | - Jaime E. C. Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology–Translational Medicine, São Paulo, Brazil
| |
Collapse
|
22
|
Malvestio RB, Medeiros P, Negrini-Ferrari SE, Oliveira-Silva M, Medeiros AC, Padovan CM, Luongo L, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT 1A and CB 1 receptors. Brain Res Bull 2021; 174:323-338. [PMID: 34192579 DOI: 10.1016/j.brainresbull.2021.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a cerebral division that is putatively implicated in the chronic pain and depression. We investigated the activity of PrL cortex neurons in Wistar rats that underwent chronic constriction injury (CCI) of sciatic nerve and were further subjected to the forced swimming (FS) test and mechanical allodynia (by von Frey test). The effect of blockade of synapses with cobalt chloride (CoCl2), and the treatment of the PrL cortex with cannabidiol (CBD), the CB1 receptor antagonist AM251 and the 5-HT1A receptor antagonist WAY-100635 were also investigated. Our results showed that CoCl2 decreased the time spent immobile during the FS test but did not alter mechanical allodynia. CBD (at 15, 30 and 60 nmol) in the PrL cortex also decreased the frequency and duration of immobility; however, only the dose of 30 nmol of CBD attenuated mechanical allodynia in rats with chronic NP. AM251 and WAY-100635 in the PrL cortex attenuated the antidepressive and analgesic effect caused by CBD but did not alter the immobility and the mechanical allodynia when administered alone. These data show that the PrL cortex is part of the neural substrate underlying the comorbidity between NP and depression. Also, the previous blockade of CB1 cannabinoid receptors and 5-HT1A serotonergic receptors in the PrL cortex attenuated the antidepressive and analgesics effect of the CBD. They also suggest that CBD could be a potential medicine for the treatment of depressive and pain symptoms in patients with chronic NP/depression comorbidity.
Collapse
Affiliation(s)
- R B Malvestio
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - P Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - S E Negrini-Ferrari
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - M Oliveira-Silva
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - A C Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - C M Padovan
- Laboratory of Neurobiology of Stress and Depression, Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - L Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - S Maione
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - N C Coimbra
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - R L de Freitas
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil; Biomedical Sciences Institute (ICB), Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Berg BB, Soares JS, Paiva IR, Rezende BM, Rachid MA, Cau SBDA, Romero TRL, Pinho V, Teixeira MM, Castor MGME. Cannabidiol Enhances Intestinal Cannabinoid Receptor Type 2 Receptor Expression and Activation Increasing Regulatory T Cells and Reduces Murine Acute Graft-versus-Host Disease without Interfering with the Graft-versus-Leukemia Response. J Pharmacol Exp Ther 2021; 377:273-283. [PMID: 33658314 DOI: 10.1124/jpet.120.000479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
Cannabidiol (CBD) is a highly lipidic phytocannabinoid with remarkable anti-inflammatory effects. The aim of this study was to evaluate CBD's effects and mechanisms of action in the treatment of mice subjected to acute graft-versus-host disease (aGVHD). aGVHD was induced by the transplantation of bone marrow cells and splenocytes from C57BL-6j to Balb-c mice. The recipient mice were treated daily with CBD, and the treatment reduced mouse mortality by decreasing inflammation and injury and promoting immune regulation in the jejunum, ileum, and liver. Analysis of the jejunum and ileum showed that CBD treatment reduced the levels of C-C motif chemokine ligand (CCL) 2, CCL3, CCL5, tumor necrosis factor α, and interferon γ (IFNγ). CCL3 and IFNγ levels were also decreased in the liver. Mechanistically, CBD also increased the number of cannabinoid receptor type 2 (CB2) receptors on CD4+ and forkhead box P3+ cells in the intestine, which may explain the reduction in proinflammatory cytokines and chemokines. Antagonists of the CB2 receptor reduced the survival rates of CBD-treated mice, suggesting the participation of this receptor in the effects of CBD. Furthermore, treatment with CBD did not interfere with the graft-versus-leukemia response. CBD treatment appears to protect aGVHD mice by anti-inflammatory and immunomodulatory effects partially mediated by CB2 receptor interaction. Altogether, our study suggests that CBD represents an interesting approach in the treatment of aGVHD, with potential therapeutic applications in patients undergoing bone marrow transplantation. SIGNIFICANCE STATEMENT: This study provides for the first time a mechanism by which cannabidiol, a phytocannabinoid with no psychoactive effect, induces immunomodulation in the graft-versus-host disease. Enhancing intestinal cannabinoid receptor type 2 (CB2) receptor expression on CD4+ and forkhead box P3+ cells and increasing the number of these regulatory cells, cannabidiol decreases proinflammatory cytokines and increases graft-versus-host disease mice survival. This effect is dependent of CB2 receptor activation. Besides, cannabidiol did not interfere with graft-versus-leukemia response, a central response to avoid primary disease relapse.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/adverse effects
- Bone Marrow Transplantation/methods
- Cannabidiol/pharmacology
- Cannabidiol/therapeutic use
- Cells, Cultured
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Graft vs Host Disease/drug therapy
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Leukemia/immunology
- Leukemia/therapy
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Bárbara Betônico Berg
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Jaqueline Silva Soares
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Isabela Ribeiro Paiva
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Milene Alvarenga Rachid
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Stêfany Bruno de Assis Cau
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Thiago Roberto Lima Romero
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| | - Marina Gomes Miranda E Castor
- Departamento de Farmacologia-ICB/UFMG (B.B.B., J.S.S., I.R.P., S.B.d.A.C., T.R.L.R., M.G.M.e.C.); Programa de Pós-graduação em Fisiologia e Farmacologia da UFMG (B.B.B., I.R.P., S.B.d.A.C., T.R.L.R., M.M.T., M.G.M.e.C.); Departamento de Enfermagem Básica da Escola de Enfermagem da UFMG (B.M.R.); Departamento de Patologia Geral do Instituto de Ciências Biológicas da UFMG (M.A.R.); Departamento de Morfologia - CPDF-ICB/UFMG (V.P.); and Departamento de Bioquímica e Imunologia, CPDF-ICB/UFMG (M.M.T.), Belo Horizonte, Brazil
| |
Collapse
|
24
|
Vecchiarelli HA, Morena M, Keenan CM, Chiang V, Tan K, Qiao M, Leitl K, Santori A, Pittman QJ, Sharkey KA, Hill MN. Comorbid anxiety-like behavior in a rat model of colitis is mediated by an upregulation of corticolimbic fatty acid amide hydrolase. Neuropsychopharmacology 2021; 46:992-1003. [PMID: 33452437 PMCID: PMC8115350 DOI: 10.1038/s41386-020-00939-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023]
Abstract
Peripheral inflammatory conditions, including those localized to the gastrointestinal tract, are highly comorbid with psychiatric disorders such as anxiety and depression. These behavioral symptoms are poorly managed by conventional treatments for inflammatory diseases and contribute to quality of life impairments. Peripheral inflammation is associated with sustained elevations in circulating glucocorticoid hormones, which can modulate central processes, including those involved in the regulation of emotional behavior. The endocannabinoid (eCB) system is exquisitely sensitive to these hormonal changes and is a significant regulator of emotional behavior. The impact of peripheral inflammation on central eCB function, and whether this is related to the development of these behavioral comorbidities remains to be determined. To examine this, we employed the trinitrobenzene sulfonic acid-induced model of colonic inflammation (colitis) in adult, male, Sprague Dawley rats to produce sustained peripheral inflammation. Colitis produced increases in behavioral measures of anxiety and elevations in circulating corticosterone. These alterations were accompanied by elevated hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which hydrolyzes the eCB anandamide (AEA), throughout multiple corticolimbic brain regions. This elevation of FAAH activity was associated with broad reductions in the content of AEA, whose decline was driven by central corticotropin releasing factor type 1 receptor signaling. Colitis-induced anxiety was reversed following acute central inhibition of FAAH, suggesting that the reductions in AEA produced by colitis contributed to the generation of anxiety. These data provide a novel perspective for the pharmacological management of psychiatric comorbidities of chronic inflammatory conditions through modulation of eCB signaling.
Collapse
Affiliation(s)
- Haley A. Vecchiarelli
- grid.22072.350000 0004 1936 7697Neuroscience Graduate Program, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Maria Morena
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Catherine M. Keenan
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Vincent Chiang
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Kaitlyn Tan
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Min Qiao
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Kira Leitl
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Alessia Santori
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Quentin J. Pittman
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Keith A. Sharkey
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Matthew N. Hill
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| |
Collapse
|
25
|
Dash R, Ali MC, Jahan I, Munni YA, Mitra S, Hannan MA, Timalsina B, Oktaviani DF, Choi HJ, Moon IS. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev 2021; 65:101209. [PMID: 33181336 DOI: 10.1016/j.arr.2020.101209] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders. Cannabidiol (CBD), a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of CBD in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of CBD in these disorders. Because of its putative role in the proteostasis network in particular, CBD could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of CBD as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders. We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for aging proteinopathies.
Collapse
|
26
|
Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease. Molecules 2020; 25:molecules25215186. [PMID: 33171772 PMCID: PMC7664437 DOI: 10.3390/molecules25215186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown. Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases. CBD exerts its neuroprotective effects through three G protein coupled-receptors (adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55), one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor (peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also due to GABAergic modulation. In conclusion, CBD, through multi-target mechanisms, represents a valid therapeutic tool for the management of epilepsy, Alzheimer’s disease, multiple sclerosis and Parkinson’s disease.
Collapse
|
27
|
Bloomfield MAP, Green SF, Hindocha C, Yamamori Y, Yim JLL, Jones APM, Walker HR, Tokarczuk P, Statton B, Howes OD, Curran HV, Freeman TP. The effects of acute cannabidiol on cerebral blood flow and its relationship to memory: An arterial spin labelling magnetic resonance imaging study. J Psychopharmacol 2020; 34:981-989. [PMID: 32762272 PMCID: PMC7436497 DOI: 10.1177/0269881120936419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cannabidiol (CBD) is being investigated as a potential treatment for several medical indications, many of which are characterised by altered memory processing. However, the mechanisms underlying these effects are unclear. AIMS Our primary aim was to investigate how CBD influences cerebral blood flow (CBF) in regions involved in memory processing. Our secondary aim was to determine if the effects of CBD on CBF were associated with differences in working and episodic memory task performance. METHODS We used a randomised, crossover, double-blind design in which 15 healthy participants were administered 600 mg oral CBD or placebo on separate days. We measured regional CBF at rest using arterial spin labelling 3 h after drug ingestion. We assessed working memory with the digit span (forward, backward) and n-back (0-back, 1-back, 2-back) tasks, and we used a prose recall task (immediate and delayed) to assess episodic memory. RESULTS CBD increased CBF in the hippocampus (mean (95% confidence intervals) = 15.00 (5.78-24.21) mL/100 g/min, t14 = 3.489, Cohen's d = 0.75, p = 0.004). There were no differences in memory task performance, but there was a significant correlation whereby greater CBD-induced increases in orbitofrontal CBF were associated with reduced reaction time on the 2-back working memory task ( r= -0.73, p = 0.005). CONCLUSIONS These findings suggest that CBD increases CBF to key regions involved in memory processing, particularly the hippocampus. These results identify potential mechanisms of CBD for a range of conditions associated with altered memory processing, including Alzheimer's disease, schizophrenia, post-traumatic stress disorder and cannabis-use disorders.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK,The Traumatic Stress Clinic, St Pancras Hospital, Camden and Islington NHS Foundation Trust, London, UK,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK,Michael Bloomfield, Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, University College London, Maple House, Tottenham Court Road, London W1T 7NF, UK.
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK
| | - Yumeya Yamamori
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Jocelyn Lok Ling Yim
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Augustus P M Jones
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Hannah R Walker
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Pawel Tokarczuk
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Ben Statton
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK,Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK,NIHR University College Hospitals London Biomedical Research Centre, University College London, London, UK
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Institute of Mental Health, University College London, London, UK,Department of Psychology, University of Bath, Bath, UK,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
28
|
Lima MN, Oliveira HA, Fagundes PM, Estato V, Silva AYO, Freitas RJRX, Passos BABR, Oliveira KS, Batista CN, Vallochi AL, Rocco PRM, Castro-Faria-Neto HC, Maron-Gutierrez T. Mesenchymal stromal cells protect against vascular damage and depression-like behavior in mice surviving cerebral malaria. Stem Cell Res Ther 2020; 11:367. [PMID: 32843073 PMCID: PMC7448996 DOI: 10.1186/s13287-020-01874-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Malaria is one of the most critical global infectious diseases. Severe systemic inflammatory diseases, such as cerebral malaria, lead to the development of cognitive and behavioral alterations, such as learning disabilities and loss of memory capacity, as well as increased anxiety and depression. The consequences are profound and usually contribute to reduce the patient's quality of life. There are no therapies to treat the neurological sequelae of cerebral malaria. Mesenchymal stromal cells (MSCs) may be an alternative, since they have been used as therapy for neurodegenerative diseases and traumatic lesions of the central nervous system. So far, no study has investigated the effects of MSC therapy on the blood-brain barrier, leukocyte rolling and adherence in the brain, and depression like-behavior in experimental cerebral malaria. METHODS Male C57BL/6 mice were infected with Plasmodium berghei ANKA (PbA, 1 × 106 PbA-parasitized red blood cells, intraperitoneally). At day 6, PbA-infected animals received chloroquine (25 mg/kg orally for seven consecutive days) as the antimalarial treatment and were then randomized to receive MSCs (1 × 105 cells in 0.05 ml of saline/mouse) or saline (0.05 ml) intravenously. Parasitemia, clinical score, and survival rate were analyzed throughout the experiments. Evans blue assay was performed at 6, 7, and 15 days post-infection (dpi). Behavioral tests were performed at 5 and 15 dpi. Intravital microscopy experiments and brain-derived neurotrophic factor (BDNF) protein expression analyses were performed at 7 dpi, whereas inflammatory mediators were measured at 15 dpi. In vitro, endothelial cells were used to evaluate the effects of conditioned media derived from MSCs (CMMSC) on cell viability by lactate dehydrogenase (LDH) release. RESULTS PbA-infected mice presented increased parasitemia, adherent leukocytes, blood-brain barrier permeability, and reduced BDNF protein levels, as well as depression-like behavior. MSCs mitigated behavioral alterations, restored BDNF and transforming growth factor (TGF)-β protein levels, and reduced blood-brain barrier dysfunction and leukocyte adhesion in the brain microvasculature. In a cultured endothelial cell line stimulated with heme, CMMSC reduced LDH release, suggesting a paracrine mechanism of action. CONCLUSION A single dose of MSCs as adjuvant therapy protected against vascular damage and improved depression-like behavior in mice that survived experimental cerebral malaria.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Helena A Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Paula M Fagundes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Vanessa Estato
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Adriano Y O Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Rodrigo J R X Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Beatriz A B R Passos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Karina S Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Camila N Batista
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Adriana L Vallochi
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
29
|
Schiess N, Villabona-Rueda A, Cottier KE, Huether K, Chipeta J, Stins MF. Pathophysiology and neurologic sequelae of cerebral malaria. Malar J 2020; 19:266. [PMID: 32703204 PMCID: PMC7376930 DOI: 10.1186/s12936-020-03336-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebral malaria (CM), results from Plasmodium falciparum infection, and has a high mortality rate. CM survivors can retain life-long post CM sequelae, including seizures and neurocognitive deficits profoundly affecting their quality of life. As the Plasmodium parasite does not enter the brain, but resides inside erythrocytes and are confined to the lumen of the brain's vasculature, the neuropathogenesis leading to these neurologic sequelae is unclear and under-investigated. Interestingly, postmortem CM pathology differs in brain regions, such as the appearance of haemorragic punctae in white versus gray matter. Various host and parasite factors contribute to the risk of CM, including exposure at a young age, parasite- and host-related genetics, parasite sequestration and the extent of host inflammatory responses. Thus far, several proposed adjunctive treatments have not been successful in the treatment of CM but are highly needed. The region-specific CM neuro-pathogenesis leading to neurologic sequelae is intriguing, but not sufficiently addressed in research. More attention to this may lead to the development of effective adjunctive treatments to address CM neurologic sequelae.
Collapse
Affiliation(s)
- Nicoline Schiess
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Andres Villabona-Rueda
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Karissa E Cottier
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.,BioIVT, 1450 South Rolling Road, Baltimore, MD, USA
| | | | - James Chipeta
- Department of Paediatrics, University Teaching Hospital, Nationalist Road, Lusaka, Zambia
| | - Monique F Stins
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Abstract
Introduction: Cannabidiol (CBD) as Epidiolex® (GW Pharmaceuticals) was recently approved by the U.S. Food and Drug Administration (FDA) to treat rare forms of epilepsy in patients 2 years of age and older. Together with the increased societal acceptance of recreational cannabis and CBD oil for putative medical use in many states, the exposure to CBD is increasing, even though all of its biological effects are not understood. Once such example is the ability of CBD to be anti-inflammatory and immune suppressive, so the purpose of this review is to summarize effects and mechanisms of CBD in the immune system. It includes a consideration of reports identifying receptors through which CBD acts, since the “CBD receptor,” if a single one exists, has not been definitively identified for the myriad immune system effects. The review then provides a summary of in vivo and in vitro effects in the immune system, in autoimmune models, with a focus on experimental autoimmune encephalomyelitis, and ends with identification of knowledge gaps. Conclusion: Overall, the data overwhelmingly support the notion that CBD is immune suppressive and that the mechanisms involve direct suppression of activation of various immune cell types, induction of apoptosis, and promotion of regulatory cells, which, in turn, control other immune cell targets.
Collapse
Affiliation(s)
- James M Nichols
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Barbara L F Kaplan
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
31
|
Abstract
ABSTRACT:Cannabidiol (CBD) has been generating increasing interest in medicine due to its therapeutic properties and an apparent lack of negative side effects. Research has suggested that high dosages of CBD can be taken acutely and chronically with little to no risk. This review focuses on the neuroprotective effects of a CBD, with an emphasis on its implications for recovering from a mild traumatic brain injury (TBI) or concussion. CBD has been shown to influence the endocannabinoid system, both by affecting cannabinoid receptors and other receptors involved in the endocannabinoid system such as vanilloid receptor 1, adenosine receptors, and 5-hydroxytryptamine via cannabinoid receptor-independent mechanisms. Concussions can result in many physiological consequences, potentially resulting in post-concussion syndrome. While impairments in cerebrovascular and cardiovascular physiology following concussion have been shown, there is unfortunately still no single treatment available to enhance recovery. CBD has been shown to influence the blood brain barrier, brain-derived neurotrophic factors, cognitive capacity, the cerebrovasculature, cardiovascular physiology, and neurogenesis, all of which have been shown to be altered by concussion. CBD can therefore potentially provide treatment to enhance neuroprotection by reducing inflammation, regulating cerebral blood flow, enhancing neurogenesis, and protecting the brain against reactive oxygen species. Double-blind randomized controlled trials are still required to validate the use of CBD as medication following mild TBIs, such as concussion.
Collapse
|
32
|
Kozela E, Krawczyk M, Kos T, Juknat A, Vogel Z, Popik P. Cannabidiol Improves Cognitive Impairment and Reverses Cortical Transcriptional Changes Induced by Ketamine, in Schizophrenia-Like Model in Rats. Mol Neurobiol 2019; 57:1733-1747. [PMID: 31823199 DOI: 10.1007/s12035-019-01831-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Cannabidiol (CBD), a non-psychotropic cannabinoid, demonstrates antipsychotic-like and procognitive activities in humans and in animal models of schizophrenia. The mechanisms of these beneficial effects of CBD are unknown. Here, we examined behavioral effects of CBD in a pharmacological model of schizophrenia-like cognitive deficits induced by repeated ketamine (KET) administration. In parallel, we assessed transcriptional changes behind CBD activities in the prefrontal cortex (PFC), the main brain area linked to schizophrenia-like pathologies. Male Sprague-Dawley rats were injected for 10 days with KET followed by 6 days of CBD. The cognitive performance was evaluated in the novel object recognition test followed by PFC dissections for next-generation sequencing (RNA-Seq) analysis and bioinformatics. We observed that KET-induced learning deficits were rescued by CBD (7.5 mg/kg). Similarly, CBD reversed transcriptional changes induced by KET. The majority of the genes affected by KET and KET-CBD were allocated to astroglial and microglial cells and associated with immune-like processes mediating synaptogenesis and neuronal plasticity. These genes include C1qc, C1qa, C1qb, C2, and C3 complement cascade elements, Irf8 factor and Gpr84, Gpr34, Cx3cr1, P2ry12, and P2ry6 receptors. The main pathway regulators predicted to be involved included TGFβ1 and IFNγ. In addition, CBD itself upregulated oxytocin mRNA in the PFC. The present data suggest that KET induces cognitive deficits and transcriptional changes in the PFC and that both effects are sensitive to a reversal by CBD treatment.
Collapse
Affiliation(s)
- Ewa Kozela
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - Martyna Krawczyk
- Department of Behavioral Neuroscience & Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tomasz Kos
- Department of Behavioral Neuroscience & Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ana Juknat
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Vogel
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Piotr Popik
- Department of Behavioral Neuroscience & Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
33
|
Branca JJV, Morucci G, Becatti M, Carrino D, Ghelardini C, Gulisano M, Di Cesare Mannelli L, Pacini A. Cannabidiol Protects Dopaminergic Neuronal Cells from Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224420. [PMID: 31718076 PMCID: PMC6888634 DOI: 10.3390/ijerph16224420] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
The protective effect of cannabidiol (CBD), the non-psychoactive component of Cannabis sativa, against neuronal toxicity induced by cadmium chloride (CdCl2 10 μM) was investigated in a retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cell line. CBD (1 μM) was applied 24 h before and removed during cadmium (Cd) treatment. In differentiated neuronal cells, CBD significantly reduced the Cd-dependent decrease of cell viability, and the rapid reactive oxygen species (ROS) increase. CBD significantly prevented the endoplasmic reticulum (ER) stress (GRP78 increase) and the subcellular distribution of the cytochrome C, as well as the overexpression of the pro-apoptotic protein BAX. Immunocytochemical analysis as well as quantitative protein evaluation by western blotting revealed that CBD partially counteracted the depletion of the growth associated protein 43 (GAP43) and of the neuronal specific class III β-tubulin (β3 tubulin) induced by Cd treatment. These data showed that Cd-induced neuronal injury was ameliorated by CBD treatment and it was concluded that CBD may represent a potential option to protect neuronal cells from the detrimental effects of Cd toxicity.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
- Correspondence: (J.J.V.B.); (G.M.); Tel.: +39-055-2758067 (J.J.V.B.)
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
- Correspondence: (J.J.V.B.); (G.M.); Tel.: +39-055-2758067 (J.J.V.B.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy;
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, 50139 Firenze, Italy; (C.G.); (L.D.C.M.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, 50139 Firenze, Italy; (C.G.); (L.D.C.M.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (D.C.); (M.G.); (A.P.)
| |
Collapse
|
34
|
Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, Weston-Green K. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun 2019; 81:574-587. [PMID: 31326506 DOI: 10.1016/j.bbi.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Cognitive impairment is a major source of disability in schizophrenia and current antipsychotic drugs (APDs) have minimal efficacy for this symptom domain. Cannabidiol (CBD), the major non-intoxicating component of Cannabis sativa L., exhibits antipsychotic and neuroprotective properties. We recently reported the effects of CBD on cognition in male offspring of a maternal immune activation (polyinosinic-polycytidilic acid (poly I:C)) model relevant to the aetiology of schizophrenia; however, the effects of CBD treatment in females are unknown. Sex differences are observed in the onset of schizophrenia symptoms and response to APD treatment. Furthermore, the endogenous cannabinoid system, a direct target of CBD, is sexually dimorphic in humans and rodents. Therefore, the present work aimed to assess the therapeutic impact of CBD treatment on behaviour and neurochemical signalling markers in female poly I:C offspring. Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg; i.v.) or saline (control) on gestational day 15. From postnatal day 56, female offspring received CBD (10 mg/kg, i.p.) or vehicle treatment for approximately 3 weeks. Following 2 weeks of CBD treatment, offspring underwent behavioural testing, including the novel object recognition, rewarded alternation T-maze and social interaction tests to assess recognition memory, working memory and sociability, respectively. After 3 weeks of CBD treatment, the prefrontal cortex (PFC) and hippocampus (HPC) were collected to assess effects on endocannabinoid, glutamatergic and gamma-aminobutyric acid (GABA) signalling markers. CBD attenuated poly I:C-induced deficits in recognition memory, social interaction and glutamatergic N-methyl-d-aspartate receptor (NMDAR) binding in the PFC of poly I:C offspring. Working memory performance was similar between treatment groups. CBD also increased glutamate decarboxylase 67, the rate-limiting enzyme that converts glutamate to GABA, and parvalbumin protein levels in the HPC. In contrast to the CBD treatment effects observed in poly I:C offspring, CBD administration to control rats reduced social interaction, cannabinoid CB1 receptor and NMDAR binding density in the PFC, suggesting that CBD administration to healthy rats may have negative consequences on social behaviour and brain maturation in adulthood. Overall, the findings of this study support the therapeutic benefits of CBD on recognition memory and sociability in female poly I:C offspring, and provide insight into the neurochemical changes that may underlie the therapeutic benefits of CBD in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of Social Sciences, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Local Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
35
|
Effect of cannabidiol on muscarinic neurotransmission in the pre-frontal cortex and hippocampus of the poly I:C rat model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109640. [PMID: 31108177 DOI: 10.1016/j.pnpbp.2019.109640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Cognitive impairment is a core symptom of schizophrenia; however, current antipsychotic drugs have limited efficacy to treat these symptoms and can cause serious side-effects, highlighting a need for novel therapeutics. Cannabidiol (CBD) is a non-intoxicating phytocannabinoid that has demonstrated pro-cognitive effects in multiple disease states, including a maternal immune activation (poly I:C) model of schizophrenia, but the mechanisms underlying the efficacy of CBD require investigation. Muscarinic neurotransmission is highly implicated in the cognitive impairments of schizophrenia; however, the effect of CBD on this system is unknown. We examined alterations in markers of muscarinic neurotransmission in the pre-frontal cortex (PFC) and hippocampus (HPC) following CBD treatment. Pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg) or saline. Adult offspring were treated (3-weeks) with CBD (10 mg/kg) or vehicle. Receptor autoradiography (using [3H]pirenzepine) was used to examine changes in muscarinic M1/M4 receptor (M1/M4R) binding density. Levels of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) protein expression were examined using Western blot. M1/M4R binding density was downregulated in the PFC and CA1/CA2 and CA3 subregions in male poly I:C offspring. M1/M4R deficits were normalised after CBD treatment. ChAT protein expression was reduced in the HPC of male poly I:C offspring, while CBD treated poly I:C offspring exhibited control-like ChAT levels. AChE levels were unaltered in any of the groups. There were also no changes in muscarinic signalling in female offspring. These findings demonstrate that CBD can normalise muscarinic neurotransmission imbalances in male poly I:C offspring in regions of the brain implicated in cognition.
Collapse
|
36
|
Gonçalves J, Rosado T, Soares S, Simão AY, Caramelo D, Luís Â, Fernández N, Barroso M, Gallardo E, Duarte AP. Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E31. [PMID: 30813390 PMCID: PMC6473697 DOI: 10.3390/medicines6010031] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Although the medicinal properties of Cannabis species have been known for centuries, the interest on its main active secondary metabolites as therapeutic alternatives for several pathologies has grown in recent years. This potential use has been a revolution worldwide concerning public health, production, use and sale of cannabis, and has led inclusively to legislation changes in some countries. The scientific advances and concerns of the scientific community have allowed a better understanding of cannabis derivatives as pharmacological options in several conditions, such as appetite stimulation, pain treatment, skin pathologies, anticonvulsant therapy, neurodegenerative diseases, and infectious diseases. However, there is some controversy regarding the legal and ethical implications of their use and routes of administration, also concerning the adverse health consequences and deaths attributed to marijuana consumption, and these represent some of the complexities associated with the use of these compounds as therapeutic drugs. This review comprehends the main secondary metabolites of Cannabis, approaching their therapeutic potential and applications, as well as their potential risks, in order to differentiate the consumption as recreational drugs. There will be also a focus on the analytical methodologies for their analysis, in order to aid health professionals and toxicologists in cases where these compounds are present.
Collapse
Affiliation(s)
- Joana Gonçalves
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Y Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Débora Caramelo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Nicolás Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA). Junín 956 7mo piso. Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires C1113AAD, Argentina.
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses - Delegação do Sul, 1169-201 Lisboa, Portugal.
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| |
Collapse
|
37
|
Kasten CR, Zhang Y, Boehm SL. Acute Cannabinoids Produce Robust Anxiety-Like and Locomotor Effects in Mice, but Long-Term Consequences Are Age- and Sex-Dependent. Front Behav Neurosci 2019; 13:32. [PMID: 30842732 PMCID: PMC6391357 DOI: 10.3389/fnbeh.2019.00032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022] Open
Abstract
The rise in cannabinoid legalization and decriminalization in the US has been paired with an increase in adolescents that perceive marijuana as a “no risk” drug. However, a comprehensive review of human literature indicates that cannabinoid usage may have both beneficial and detrimental effects, with adolescent exposure being a critical window for harming cognitive development. Although the cannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are often used together for recreational and medical purposes, no study has previously observed the acute and long-lasting effects of THC+CBD in a battery of behavioral assays analogous to subjective human reports. The current study observed the acute and long-term effects of THC, CBD, and THC+CBD on object recognition memory, anxiety-like behavior, and activity levels in adolescent and adult mice of both sexes. Acute THC alone and in combination with CBD resulted in robust effects on anxiety-like and locomotor behavior. A history of repeated cannabinoid treatment followed by a period without drug administration resulted in minimal effects in these behavioral assays. Most notably, the strongest effects of repeated cannabinoid treatment were seen in adult females administered THC+CBD, which significantly impaired their object recognition. No effects of repeated cannabinoid history were present on hippocampal protein expression. These studies represent a detailed examination of age- and sex-effects of acute and repeated cannabinoid administration. However, the acute and long-term effects of THC with and without CBD on additional behaviors in adolescents and adults will need to be examined for a more complete picture of these drug effects.
Collapse
Affiliation(s)
- Chelsea R Kasten
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Yanping Zhang
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Stephen L Boehm
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States.,Indiana Alcohol Research Center, Indianapolis, IN, United States
| |
Collapse
|
38
|
Saravia R, Ten-Blanco M, Grande MT, Maldonado R, Berrendero F. Anti-inflammatory agents for smoking cessation? Focus on cognitive deficits associated with nicotine withdrawal in male mice. Brain Behav Immun 2019; 75:228-239. [PMID: 30391635 DOI: 10.1016/j.bbi.2018.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 01/20/2023] Open
Abstract
Nicotine withdrawal is associated with cognitive deficits including attention, working memory, and episodic memory impairments. These cognitive deficits are a hallmark of nicotine abstinence which could be targeted in order to prevent smoking relapse. The underlying mechanisms, however, are poorly understood. In this study, memory impairment was observed in mice 4 days after the precipitation of nicotine withdrawal by the nicotinic antagonist mecamylamine. The presence of cognitive deficits correlated with microglial activation in the hippocampus and the prefrontal cortex. Moreover, an increased expression of neuroinflammatory markers including IL1β, TNFα and IFNγ was found in both memory-related brain regions. Notably, flow cytometric analysis also revealed an enhancement of TNFα and IFNγ plasmatic levels at the same time point during nicotine withdrawal. Impaired neurogenesis, as shown by reduction in the expression of the endogenous cell proliferation marker Ki67 and the early neuron marker doublecortin, was also associated with nicotine abstinence. Treatment with the non-psychoactive cannabinoid cannabidiol abolished memory impairment of nicotine withdrawal and microglia reactivity, reduced the expression of IL1β and IFNγ in the hippocampus and the prefrontal cortex, respectively, and normalized Ki67 levels. The nonsteroidal anti-inflammatory drug indomethacin also prevented cognitive deficits and microglial reactivity during withdrawal. These data underline the usefulness of anti-inflammatory agents to improve cognitive performance during early nicotine abstinence.
Collapse
Affiliation(s)
- Rocio Saravia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain
| | - Marc Ten-Blanco
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain
| | - María T Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain.
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
39
|
Carty DR, Miller ZS, Thornton C, Pandelides Z, Kutchma ML, Willett KL. Multigenerational consequences of early-life cannabinoid exposure in zebrafish. Toxicol Appl Pharmacol 2018; 364:133-143. [PMID: 30594692 DOI: 10.1016/j.taap.2018.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022]
Abstract
While Δ9-tetrahydrocannabinol (THC) has been widely studied in the realm of developmental and reproductive toxicology, few studies have investigated potential toxicities from a second widely used cannabis constituent, cannabidiol (CBD). CBD is popularized for its therapeutic potential for reducing seizure frequencies in epilepsy. This study investigated developmental origins of health and disease (DOHaD) via multigenerational gene expression patterns, behavior phenotypes, and reproductive fitness of a subsequent F1 following an F0 developmental exposure of zebrafish (Danio rerio) to THC (0.024, 0.12, 0.6 mg/L; 0.08, 0.4, 2 μM) or CBD (0.006, 0.03, 0.15 mg/L; 0.02, 0.1, 0.5 μM). Embryonic exposure at these concentrations did not cause notable morphological abnormalities in either F0 or F1 generations. However, during key developmental stages (14, 24, 48, 72, and 96 h post fertilization) THC and CBD caused differential expression of c-fos, brain-derived neurotrophic factor (bdnf), and deleted-in-azoospermia like (dazl), while in F1 larvae only CBD differentially expressed dazl. Larval photomotor behavior was reduced (F0) or increased (F1) by THC exposure, while CBD had no effect on F0 larvae, but decreased activity in the unexposed F1 larvae. These results support our hypothesis of cannabinoid-related developmental neurotoxicity. As adults, F0 fecundity was reduced, but it was not in F1 adults. Conversely, in the adult open field test there were no significant effects in F0 fish, but a significant reduction in the time in periphery was seen in F1 fish from the highest THC exposure group. The results highlight the need to consider long-term ramifications of early-life exposure to cannabinoids.
Collapse
Affiliation(s)
- Dennis R Carty
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Zachary S Miller
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zacharias Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Marisa L Kutchma
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
40
|
Akinola O, Ogbeche EO, Olumoh-Abdul HA, Alli-Oluwafuyi AO, Oyewole AL, Amin A, AbdulMajeed WI, Olajide OJ, Nafiu AB, Njan AA, Olorundare OE, Gbotosho GO. Oral Ingestion of Cannabis sativa: Risks, Benefits, and Effects on Malaria-Infected Hosts. Cannabis Cannabinoid Res 2018; 3:219-227. [PMID: 30498786 PMCID: PMC6260522 DOI: 10.1089/can.2018.0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: The emergence of a multidrug-resistant strain of Plasmodium falciparum (Pf Pailin) raises concern about malaria control strategies. Unfortunately, the role(s) of natural plants/remedies in curtailing malaria catastrophe remains uncertain. The claims of potential antimalarial activity of Cannabis sativa in vivo have not been well established nor the consequences defined. This study was, therefore, designed to evaluate the effects of whole cannabis consumption on malaria-infected host. Methods: Thirty mice were inoculated with dose of 1×107 chloroquine-resistant Plasmodium berghei ANKA-infected erythrocyte and divided into six treatment groups. Cannabis diet formulations were prepared based on weighted percentages of dried cannabis and standard mice diet and the study animals were fed ad libitum. Chemosuppression of parasitemia, survival rates, parasite clearance, and recrudescence time were evaluated. Histopathological studies were performed on the prefrontal cortex (PFC) and hippocampus of the animals after 14 days' consumption of cannabis diet formulation by naive mice. Results: There was a significant difference (p<0.05) in the day-4 chemosuppression of parasitemia between the animals that were fed C. sativa and chloroquine relative to the untreated controls. There was also a significant difference in the survival rate (p<0.05) of animals fed C. sativa diet (40%, 20%, 10%, and 1%) in contrast to control animals on standard mice diet. A parasite clearance time of 2.18±0.4 was recorded in the chloroquine treatment group, whereas recrudescence in chloroquine group occurred on day 7. There were slight histomorphological changes in the PFC and cell densities of the dentate gyrus of the hippocampus of animals that were fed C. sativa. Conclusions:C. sativa displayed mild antimalarial activity in vivo. There was evident reduction in symptomatic manifestation of malaria disease, though unrelated to levels of parasitemia. This disease tolerance status may be beneficial, but may also constitute a transmission burden through asymptomatic carriage of parasites by habitual cannabis users.
Collapse
Affiliation(s)
- Olugbenga Akinola
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria.,Biomedical Research Group, University of Ilorin, Ilorin, Nigeria.,Malaria Research Laboratories, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth O Ogbeche
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Hidayah A Olumoh-Abdul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ilorin, Ilorin, Nigeria
| | - Abdulmusawwir O Alli-Oluwafuyi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria.,Biomedical Research Group, University of Ilorin, Ilorin, Nigeria
| | - Aboyeji L Oyewole
- Biomedical Research Group, University of Ilorin, Ilorin, Nigeria.,Department of Physiology, University of Ilorin, Ilorin, Nigeria
| | - Abdulbasit Amin
- Biomedical Research Group, University of Ilorin, Ilorin, Nigeria.,Department of Physiology, University of Ilorin, Ilorin, Nigeria
| | - Wahab Imam AbdulMajeed
- Biomedical Research Group, University of Ilorin, Ilorin, Nigeria.,Department of Physiology, University of Ilorin, Ilorin, Nigeria
| | - Olayemi Joseph Olajide
- Biomedical Research Group, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, University of Ilorin, Ilorin, Nigeria
| | - Abdurrazaq B Nafiu
- Biomedical Research Group, University of Ilorin, Ilorin, Nigeria.,Department of Physiology, University of Ilorin, Ilorin, Nigeria
| | - Anoka A Njan
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olufunke E Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Grace O Gbotosho
- Malaria Research Laboratories, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
41
|
New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp). Molecules 2018; 23:molecules23102639. [PMID: 30322208 PMCID: PMC6222702 DOI: 10.3390/molecules23102639] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/23/2022] Open
Abstract
Cannabis sativa L. is a dioecious plant belonging to the Cannabaceae family. The main phytochemicals that are found in this plant are represented by cannabinoids, flavones, and terpenes. Some biological activities of cannabinoids are known to be enhanced by the presence of terpenes and flavonoids in the extracts, due to a synergistic action. In the light of all the above, the present study was aimed at the multi-component analysis of the bioactive compounds present in fibre-type C. sativa (hemp) inflorescences of different varieties by means of innovative HPLC and GC methods. In particular, the profiling of non-psychoactive cannabinoids was carried out by means of HPLC-UV/DAD, ESI-MS, and MS2. The content of prenylated flavones in hemp extracts, including cannflavins A and B, was also evaluated by HPLC. The study on Cannabis volatile compounds was performed by developing a new method based on headspace solid-phase microextraction (HS-SPME) coupled with GC-MS and GC-FID. Cannabidiolic acid (CBDA) and cannabidiol (CBD) were found to be the most abundant cannabinoids in the hemp samples analysed, while β-myrcene and β-caryophyllene were the major terpenes. As regards flavonoids, cannflavin A was observed to be the main compound in almost all the samples. The methods developed in this work are suitable for the comprehensive chemical analysis of both hemp plant material and related pharmaceutical or nutraceutical products in order to ensure their quality, efficacy, and safety.
Collapse
|
42
|
Peres FF, Diana MC, Levin R, Suiama MA, Almeida V, Vendramini AM, Santos CM, Zuardi AW, Hallak JEC, Crippa JA, Abílio VC. Cannabidiol Administered During Peri-Adolescence Prevents Behavioral Abnormalities in an Animal Model of Schizophrenia. Front Pharmacol 2018; 9:901. [PMID: 30186164 PMCID: PMC6113576 DOI: 10.3389/fphar.2018.00901] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is considered a debilitating neurodevelopmental psychiatric disorder and its pharmacotherapy remains problematic without recent major advances. The development of interventions able to prevent the emergence of schizophrenia would therefore represent an enormous progress. Here, we investigated whether treatment with cannabidiol (CBD - a compound of Cannabis sativa that presents an antipsychotic profile in animals and humans) during peri-adolescence would prevent schizophrenia-like behavioral abnormalities in an animal model of schizophrenia: the spontaneously hypertensive rat (SHR) strain. Wistar rats and SHRs were treated with vehicle or CBD from 30 to 60 post-natal days. In experiment 1, schizophrenia-like behaviors (locomotor activity, social interaction, prepulse inhibition of startle and contextual fear conditioning) were assessed on post-natal day 90. Side effects commonly associated with antipsychotic treatment were also evaluated: body weight gain and catalepsy throughout the treatment, and oral dyskinesia 48 h after treatment interruption and on post-natal day 90. In experiment 2, serum levels of triglycerides and glycemia were assessed on post-natal day 61. In experiment 3, levels of BDNF, monoamines, and their metabolites were evaluated on post-natal days 61 and 90 in the prefrontal cortex and striatum. Treatment with CBD prevented the emergence of SHRs' hyperlocomotor activity (a model for the positive symptoms of schizophrenia) and deficits in prepulse inhibition of startle and contextual fear conditioning (cognitive impairments). CBD did not induce any of the potential motor or metabolic side effects evaluated. Treatment with CBD increased the prefrontal cortex 5-HIAA/serotonin ratio and the levels of 5-HIAA on post-natal days 61 and 90, respectively. Our data provide pre-clinical evidence for a safe and beneficial effect of peripubertal and treatment with CBD on preventing positive and cognitive symptoms of schizophrenia, and suggest the involvement of the serotoninergic system on this effect.
Collapse
Affiliation(s)
- Fernanda F Peres
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana C Diana
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Raquel Levin
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Mayra A Suiama
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Valéria Almeida
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Ana M Vendramini
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Camila M Santos
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Antônio W Zuardi
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaime E C Hallak
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Crippa
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
43
|
Peres FF, Lima AC, Hallak JEC, Crippa JA, Silva RH, Abílio VC. Cannabidiol as a Promising Strategy to Treat and Prevent Movement Disorders? Front Pharmacol 2018; 9:482. [PMID: 29867488 PMCID: PMC5958190 DOI: 10.3389/fphar.2018.00482] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Movement disorders such as Parkinson's disease and dyskinesia are highly debilitating conditions linked to oxidative stress and neurodegeneration. When available, the pharmacological therapies for these disorders are still mainly symptomatic, do not benefit all patients and induce severe side effects. Cannabidiol is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. Although the studies that investigate the effects of this compound on movement disorders are surprisingly few, cannabidiol emerges as a promising compound to treat and/or prevent them. Here, we review these clinical and pre-clinical studies and draw attention to the potential of cannabidiol in this field.
Collapse
Affiliation(s)
- Fernanda F Peres
- Laboratory of Behavioral Neurosciences, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq, FAPESP, CAPES), Ribeirão Preto, Brazil
| | - Alvaro C Lima
- Laboratory of Behavioral Neurosciences, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Jaime E C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq, FAPESP, CAPES), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq, FAPESP, CAPES), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - Regina H Silva
- Laboratory of Behavioral Neurosciences, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Vanessa C Abílio
- Laboratory of Behavioral Neurosciences, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq, FAPESP, CAPES), Ribeirão Preto, Brazil
| |
Collapse
|
44
|
de Sousa LP, de Almeida RF, Ribeiro-Gomes FL, de Moura Carvalho LJ, E Souza TM, de Souza DOG, Daniel-Ribeiro CT. Long-term effect of uncomplicated Plasmodium berghei ANKA malaria on memory and anxiety-like behaviour in C57BL/6 mice. Parasit Vectors 2018; 11:191. [PMID: 29554958 PMCID: PMC5859440 DOI: 10.1186/s13071-018-2778-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
Background Cerebral malaria, the main complication of Plasmodium falciparum infection in humans, is associated with persistent neurocognitive sequels both in human disease and the murine experimental model. In recent years, cognitive deficits related to uncomplicated (non-cerebral) malaria have also been reported in chronically exposed residents of endemic areas, but not in some murine experimental models of non-cerebral malaria. This study aimed at evaluating the influence of uncomplicated malaria on different behavioural paradigms associated with memory and anxiety-like parameters in a murine model that has the ability to develop cerebral malaria. Methods Plasmodium berghei ANKA-infected and non-infected C57BL/6 mice were used. Development of cerebral malaria was prevented by chloroquine treatment starting on the fourth day of infection. The control group (non-infected mice) were treated with PBS. The effect of uncomplicated malaria infection on locomotor habituation, short and long-term memory and anxious-like behaviour was evaluated 64 days after parasite clearance in assays including open field, object recognition, Y-maze and light/dark tasks. Results Plasmodium berghei ANKA-infected mice showed significant long-lasting disturbances reflected by a long-term memory-related behaviour on open field and object recognition tasks, accompanied by an anxious-like phenotype availed on open field and light-dark tasks. Conclusions Long-term neurocognitive sequels may follow an uncomplicated malaria episode in an experimental model prone to develop cerebral malaria, even if the infection is treated before the appearance of clinical signs of cerebral impairment.
Collapse
Affiliation(s)
- Luciana Pereira de Sousa
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) da Fundação Oswaldo Cruz (Fiocruz) e da Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro, Brazil.
| | - Roberto Farina de Almeida
- Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) da Fundação Oswaldo Cruz (Fiocruz) e da Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro, Brazil
| | - Leonardo José de Moura Carvalho
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) da Fundação Oswaldo Cruz (Fiocruz) e da Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro, Brazil
| | - Tadeu Mello E Souza
- Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) da Fundação Oswaldo Cruz (Fiocruz) e da Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
45
|
Cannabinoid Modulation of Object Recognition and Location Memory—A Preclinical Assessment. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Scarante FF, Vila-Verde C, Detoni VL, Ferreira-Junior NC, Guimarães FS, Campos AC. Cannabinoid Modulation of the Stressed Hippocampus. Front Mol Neurosci 2017; 10:411. [PMID: 29311804 PMCID: PMC5742214 DOI: 10.3389/fnmol.2017.00411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Exposure to stressful situations is one of the risk factors for the precipitation of several psychiatric disorders, including Major Depressive Disorder, Posttraumatic Stress Disorder and Schizophrenia. The hippocampal formation is a forebrain structure highly associated with emotional, learning and memory processes; being particularly vulnerable to stress. Exposure to stressful stimuli leads to neuroplastic changes and imbalance between inhibitory/excitatory networks. These changes have been associated with an impaired hippocampal function. Endocannabinoids (eCB) are one of the main systems controlling both excitatory and inhibitory neurotransmission, as well as neuroplasticity within the hippocampus. Cannabinoids receptors are highly expressed in the hippocampus, and several lines of evidence suggest that facilitation of cannabinoid signaling within this brain region prevents stress-induced behavioral changes. Also, chronic stress modulates hippocampal CB1 receptors expression and endocannabinoid levels. Moreover, cannabinoids participate in mechanisms related to synaptic plasticity and adult neurogenesis. Here, we discussed the main findings supporting the involvement of hippocampal cannabinoid neurotransmission in stress-induced behavioral and neuroplastic changes.
Collapse
Affiliation(s)
- Franciele F Scarante
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Vinícius L Detoni
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Nilson C Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Oláh A, Szekanecz Z, Bíró T. Targeting Cannabinoid Signaling in the Immune System: "High"-ly Exciting Questions, Possibilities, and Challenges. Front Immunol 2017; 8:1487. [PMID: 29176975 PMCID: PMC5686045 DOI: 10.3389/fimmu.2017.01487] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the "phytocannabinoids" [pCBs; e.g., (-)-trans-Δ9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances ["endocannabinoids" (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and "recreational" marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.
Collapse
Affiliation(s)
- Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
48
|
Kasten CR, Zhang Y, Boehm SL. Acute and long-term effects of Δ9-tetrahydrocannabinol on object recognition and anxiety-like activity are age- and strain-dependent in mice. Pharmacol Biochem Behav 2017; 163:9-19. [PMID: 29107728 DOI: 10.1016/j.pbb.2017.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
Use of exogenous cannabinoids disrupts the fine-tuned endocannabinoid receptor system, possibly leading to alterations in cognition, memory, and emotional processes that endure long after cannabinoid use has stopped. Long-term adolescent use may uniquely disrupt these behaviors when compared to adult use. The current study explored the acute and long-term behavioral effects of six 10mg/kg Δ9-tetrahydrocannabinol (THC) injections across the adolescent or early adult period in male inbred C57Bl/6J and DBA/2J mice. The acute and prolonged effects of THC on object memory using the novel object recognition task, unconditioned anxiety in the elevated plus maze and open field, and sedative effects in the open field were examined. Acute THC treatment resulted in anxiogenic activity in both strains, but only caused sedation in B6 mice. Repeated THC treatment resulted in a protracted effect on object recognition, but not unconditioned anxiety, assessed 4weeks later. In both strains, an adolescent history of THC treatment disrupted later object recognition. Interestingly, in B6 mice an adult history of THC exposure appeared to rescue a deficit in object recognition observed in vehicle-treated adults. Repeated THC administration also produced a protracted effected on CB1R protein expression. Animals treated with THC in adolescence maintained increased levels of CB1R protein expression compared to their adult THC-treated counterparts at five weeks following the last injection. These results indicate that THC use may have long-lasting effects with adolescence being a unique period of susceptibility.
Collapse
Affiliation(s)
- C R Kasten
- Department of Psychology, Indiana University - Purdue University - Indianapolis, 402 N Blackford St, LD 124, Indianapolis, IN 46202, United States.
| | - Y Zhang
- Department of Psychology, Indiana University - Purdue University - Indianapolis, 402 N Blackford St, LD 124, Indianapolis, IN 46202, United States
| | - S L Boehm
- Department of Psychology, Indiana University - Purdue University - Indianapolis, 402 N Blackford St, LD 124, Indianapolis, IN 46202, United States; Indiana Alcohol Research Center, 545 Barnhill Drive EH 317, Indianapolis, IN, United States.
| |
Collapse
|
49
|
Surowiec I, Gouveia-Figueira S, Orikiiriza J, Lindquist E, Bonde M, Magambo J, Muhinda C, Bergström S, Normark J, Trygg J. The oxylipin and endocannabidome responses in acute phase Plasmodium falciparum malaria in children. Malar J 2017; 16:358. [PMID: 28886714 PMCID: PMC5591560 DOI: 10.1186/s12936-017-2001-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxylipins and endocannabinoids are low molecular weight bioactive lipids that are crucial for initiation and resolution of inflammation during microbial infections. Metabolic complications in malaria are recognized contributors to severe and fatal malaria, but the impact of malaria infection on the production of small lipid derived signalling molecules is unknown. Knowledge of immunoregulatory patterns of these molecules in malaria is of great value for better understanding of the disease and improvement of treatment regimes, since the action of these classes of molecules is directly connected to the inflammatory response of the organism. METHODS Detection of oxylipins and endocannabinoids from plasma samples from forty children with uncomplicated and severe malaria as well as twenty controls was done after solid phase extraction followed by chromatography mass spectrometry analysis. The stable isotope dilution method was used for compound quantification. Data analysis was done with multivariate (principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA®) and univariate approaches (receiver operating characteristic (ROC) curves, t tests, correlation analysis). RESULTS Forty different oxylipin and thirteen endocannabinoid metabolites were detected in the studied samples, with one oxylipin (thromboxane B2, TXB2) in significantly lower levels and four endocannabinoids (OEA, PEA, DEA and EPEA) at significantly higher levels in infected individuals as compared to controls according to t test analysis with Bonferroni correction. Three oxylipins (13-HODE, 9-HODE and 13-oxo-ODE) were higher in severe compared to uncomplicated malaria cases according to the results from multivariate analysis. Observed changes in oxylipin levels can be connected to activation of cytochrome P450 (CYP) and 5-lipoxygenase (5-LOX) metabolic pathways in malaria infected individuals compared to controls, and related to increased levels of all linoleic acid oxylipins in severe patients compared to uncomplicated ones. The endocannabinoids were extremely responsive to malaria infection with majority of this class of molecules found at higher levels in infected individuals compared to controls. CONCLUSIONS It was possible to detect oxylipin and endocannabinoid molecules that can be potential biomarkers for differentiation between malaria infected individuals and controls and between different classes of malaria. Metabolic pathways that could be targeted towards an adjunctive therapy in the treatment of malaria were also pinpointed.
Collapse
Affiliation(s)
- Izabella Surowiec
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sandra Gouveia-Figueira
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Judy Orikiiriza
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Immunology, Trinity College, Dublin, Ireland
- Rwanda Military Hospital, Kigali, Rwanda
| | | | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Charles Muhinda
- Rwanda Military Hospital, Kigali, Rwanda
- Department of Immunology and Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Johan Normark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
- Division of Infectious Diseases, Department Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Trygg
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Katzman MA, Bilkey TS, Chokka PR, Fallu A, Klassen LJ. Adult ADHD and comorbid disorders: clinical implications of a dimensional approach. BMC Psychiatry 2017; 17:302. [PMID: 28830387 PMCID: PMC5567978 DOI: 10.1186/s12888-017-1463-3] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) in the adult population is frequently associated with comorbid psychiatric diseases that complicate its recognition, diagnosis and management.The prevalence of ADHD in the general adult population is 2.5% and it is associated with substantial personal and individual burden. The most frequent comorbid psychopathologies include mood and anxiety disorders, substance use disorders, and personality disorders. There are strong familial links and neurobiological similarities between ADHD and the various associated psychiatric comorbidities. The overlapping symptoms between ADHD and comorbid psychopathologies represent challenges for diagnosis and treatment. Guidelines recommend that when ADHD coexists with other psychopathologies in adults, the most impairing condition should generally be treated first.Early recognition and treatment of ADHD and its comorbidities has the potential to change the trajectory of psychiatric morbidity later in life. The use of validated assessment scales and high-yield clinical questions can help identify adults with ADHD who could potentially benefit from evidence-based management strategies.
Collapse
Affiliation(s)
- Martin A. Katzman
- START Clinic for Mood and Anxiety Disorders, 32 Park Road, Toronto, ON M4W 2N4 Canada ,Adler Graduate Professional School, Toronto, ON Canada ,0000 0001 0687 7127grid.258900.6Northern Ontario School of Medicine, Laurentian and Lakehead University, Thunder Bay, ON Canada ,0000 0001 0687 7127grid.258900.6Department of Psychology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
| | - Timothy S. Bilkey
- Ontario Bilkey ADHD Clinics, 400 Bayfield Street, Suite 245, Barrie, ON L4M 5A1 Canada
| | - Pratap R. Chokka
- Chokka Center for Integrative Health, 2603 Hewes Way NW #201, Edmonton, Alberta T6L 6W6 Canada ,grid.17089.37University of Alberta, 1E1 Walter Mackenzie Centre, Edmonton, AB T6G 2R7 Canada
| | - Angelo Fallu
- Clinique Woodward, 717 rue Woodward, DIEX Research Inc., Sherbrooke, Quebec, J1G 1W4 Canada
| | - Larry J Klassen
- Eden Mental Health Centre, 1500 Pembina Ave, Winkler, MB R6W 1T4 Canada
| |
Collapse
|