1
|
Leuner LR, Hurley LM. What matters to a mouse? Effects of internal and external context on male vocal response to female squeaks. PLoS One 2025; 20:e0312789. [PMID: 39970156 PMCID: PMC11838898 DOI: 10.1371/journal.pone.0312789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
House mice adjust their signaling behavior depending on the social context of an interaction, but which aspects of context elicit the strongest responses from these individuals is often difficult to determine. To explore how internal and external contextual factors influence how house mice produce and respond to social signals, we assessed how dominant and subordinate male mice differed in their ultrasonic vocalization (USV) production in response to playback of broadband vocalizations (BBVs, or squeaks) when given limited access to a stimulus female. We used a repeated measures design in which each male was exposed to two types of trials with different odor conditions: either just female odors (Fem condition) or female odors in addition to the odors of potential competitors, other males (Fem+Male condition). The presence of odors from other males in this assay served as a proxy for an "audience" as the male interacted with the stimulus female. These conditions were replicated for two distinct cohorts of individuals: males exposed to the odor of familiar competitors in the Fem+Male condition (Familiar odor cohort), and males exposed to the odor of unfamiliar competitors in the Fem+Male condition (Unfamiliar odor cohort). By assessing dominance status of the focal individual and familiarity of the "audience", we are able to explore how these factors may affect one another as males respond to BBVs. Dominants and subordinates did not differ in their baseline vocal production (vocalizations produced prior to squeak playback) or response to squeaks. However, all groups, regardless of dominance status or odor condition, reduced their vocal production in response to BBV playback. The presence of unfamiliar male odor prompted mice to decrease their baseline level of calling and decrease the complexity of their vocal repertoire compared to trials that only included female odor, and this effect also did not differ across dominance status. Importantly, the presence of male odor did not affect vocal behavior when the male odor was familiar to the focal individual. These findings suggest that mice alter their vocal behavior during courtship interactions in response to cues that indicate the presence of potential competitors, and this response is modulated by the familiarity of these competitor cues.
Collapse
Affiliation(s)
- Lauren R. Leuner
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Grizzell JA, Clarity TT, Rodriguez RM, Marshall ZQ, Cooper MA. Effects of social dominance and acute social stress on morphology of microglia and structural integrity of the medial prefrontal cortex. Brain Behav Immun 2024; 122:353-367. [PMID: 39187049 PMCID: PMC11402560 DOI: 10.1016/j.bbi.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic stress increases activity of the brain's innate immune system and impairs function of the medial prefrontal cortex (mPFC). However, whether acute stress triggers similar neuroimmune mechanisms is poorly understood. Across four studies, we used a Syrian hamster model to investigate whether acute stress drives changes in mPFC microglia in a time-, subregion-, and social status-dependent manner. We found that acute social defeat increased expression of ionized calcium binding adapter molecule 1 (Iba1) in the infralimbic (IL) and prelimbic (PL) and altered the morphology Iba1+ cells 1, 2, and 7 days after social defeat. We also investigated whether acute defeat induced tissue degeneration and reductions of synaptic plasticity 2 days post-defeat. We found that while social defeat increased deposition of cellular debris and reduced synaptophysin immunoreactivity in the PL and IL, treatment with minocycline protected against these cellular changes. Finally, we tested whether a reduced conditioned defeat response in dominant compared to subordinate hamsters was associated with changes in microglia reactivity in the IL and PL. We found that while subordinate hamsters and those without an established dominance relationships showed defeat-induced changes in morphology of Iba1+ cells and cellular degeneration, dominant hamsters showed resistance to these effects of social defeat. Taken together, these findings indicate that acute social defeat alters microglial morphology, increases markers of tissue degradation, and impairs structural integrity in the IL and PL, and that experience winning competitive interactions can specifically protect the IL and reduce stress vulnerability.
Collapse
Affiliation(s)
- J Alex Grizzell
- Neuroscience and Behavioral Biology Program, Emory University, United States; Department of Psychology, University of Tennessee Knoxville, United States; Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Thomas T Clarity
- Department of Psychology, University of Tennessee Knoxville, United States
| | - R Mason Rodriguez
- Department of Psychology, University of Tennessee Knoxville, United States
| | - Zachary Q Marshall
- Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, United States.
| |
Collapse
|
3
|
Coleman PT, Costanza-Chavez GW, Martin HN, Amat J, Frank MG, Sanchez RJ, Potter GJ, Mellert SM, Carter RK, Bonnici GN, Maier SF, Baratta MV. Prior experience with behavioral control over stress facilitates social dominance. Neurobiol Stress 2024; 28:100597. [PMID: 38213318 PMCID: PMC10783635 DOI: 10.1016/j.ynstr.2023.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Dominance status has extensive effects on physical and mental health, and an individual's relative position can be shaped by experiential factors. A variety of considerations suggest that the experience of behavioral control over stressors should produce winning in dominance tests and that winning should blunt the impact of later stressors, as does prior control. To investigate the interplay between competitive success and stressor control, we first examined the impact of stressor controllability on subsequent performance in a warm spot competition test modified for rats. Prior experience of controllable, but not physically identical uncontrollable, stress increased later effortful behavior and occupation of the warm spot. Controllable stress subjects consistently ranked higher than did uncontrollable stress subjects. Pharmacological inactivation of the prelimbic (PL) cortex during behavioral control prevented later facilitation of dominance. Next, we explored whether repeated winning experiences produced later resistance against the typical sequelae of uncontrollable stress. To establish dominance status, triads of rats were given five sessions of warm spot competition. The development of stable dominance was prevented by reversible inactivation of the PL or NMDA receptor blockade in the dorsomedial striatum. Stable winning blunted the later stress-induced increase in dorsal raphe nucleus serotonergic activity, as well as prevented uncontrollable stress-induced social avoidance. In contrast, endocrine and neuroimmune responses to uncontrollable stress were unaffected, indicating a selective impact of prior dominance. Together, these data demonstrate that instrumental control over stress promotes later dominance, but also reveal that winning experiences buffer against the neural and behavioral outcomes of future adversity.
Collapse
Affiliation(s)
| | | | - Heather N. Martin
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Jose Amat
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Matthew G. Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Rory J. Sanchez
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Garrett J. Potter
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Simone M. Mellert
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Rene K. Carter
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Gianni N. Bonnici
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Steven F. Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| |
Collapse
|
4
|
Coleman PT, Costanza-Chavez GW, Martin HN, Amat J, Frank MG, Sanchez RJ, Potter GJ, Mellert SM, Carter RK, Bonnici GN, Maier SF, Baratta MV. Prior experience with behavioral control over stress facilitates social dominance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543982. [PMID: 37333397 PMCID: PMC10274770 DOI: 10.1101/2023.06.06.543982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Dominance status has extensive effects on physical and mental health, and an individual's relative position can be shaped by experiential factors. A variety of considerations suggest that the experience of behavioral control over stressors should produce winning in dominance tests and that winning should blunt the impact of later stressors, as does prior control. To investigate the interplay between competitive success and stressor control, we first examined the impact of stressor controllability on subsequent performance in a warm spot competition test modified for rats. Prior experience of controllable, but not physically identical uncontrollable, stress increased later effortful behavior and occupation of the warm spot. Controllable stress subjects consistently ranked higher than did uncontrollable stress subjects. Pharmacological inactivation of the prelimbic (PL) cortex during behavioral control prevented later facilitation of dominance. Next, we explored whether repeated winning experiences produced later resistance against the typical sequelae of uncontrollable stress. To establish dominance status, triads of rats were given five sessions of warm spot competition. Reversible inactivation of the PL or NMDA receptor blockade in the dorsomedial striatum led to a long-term reduction in social rank. Stable dominance blunted the later stress-induced increase in dorsal raphe nucleus serotonergic activity, as well as prevented stress-induced social avoidance. In contrast, endocrine and neuroimmune responses to uncontrollable stress were unaffected, indicating a selective impact of prior dominance. Together, these data demonstrate that instrumental control over stress promotes later dominance, but also reveal that winning experiences buffer against the neural and behavioral outcomes of future adversity.
Collapse
|
5
|
Voisin DA, Wakeford A, Nye J, Mun J, Jones SR, Locke J, Huhman KL, Wilson ME, Albers HE, Michopoulos V. Sex and social status modify the effects of fluoxetine on socioemotional behaviors in Syrian hamsters and rhesus macaques. Pharmacol Biochem Behav 2022; 215:173362. [PMID: 35219757 PMCID: PMC8983589 DOI: 10.1016/j.pbb.2022.173362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Social subordination increases risk for psychiatric disorders, while dominance increases resilience to these disorders. Fluoxetine, a selective serotonin (5HT) reuptake inhibitor whose actions are mediated in part by the 5HT1A receptor (5HT1AR), has sex- and social status-specific effects on socioemotional behavior and aggressive behavior. However, the impact of social status on these sex-specific effects remains unclear. The current study evaluated the impact of acute fluoxetine treatment and social status on dominance-related behaviors in female and male hamsters, and the impact of chronic fluoxetine treatment on socioemotional behavior and 5HT1AR binding potential (5HT1ARBP) in female rhesus macaques. We hypothesized that sex differences in the effects of fluoxetine on aggression in hamsters would be diminished in dominant and enhanced in subordinate males and that aggression in female hamsters would be enhanced in dominants and diminished in subordinates. In female rhesus macaques, we hypothesized that chronic fluoxetine would alter socioemotional behaviors and site-specific 5HT1ARBP in a status-dependent manner. Male (n = 46) and female (n = 56) hamsters were paired with conspecifics for three days to establish social rank. Hamsters received a single dose of 20 mg/kg fluoxetine or vehicle two-hours prior to a test with a non-aggressive intruder. Female rhesus monkeys (n = 14) housed were administered fluoxetine (2.8 mg/kg/day) or vehicle injections chronically for 14-days, separated by a three-week washout period. On Day 15, positron emission tomography neuroimaging for 5HT1ARBP was conducted. Fluoxetine treatment decreased aggression in subordinate female monkeys and subordinate female hamsters but not in dominant females of either species. Fluoxetine decreased aggression in dominant but not in subordinate male hamsters. Fluoxetine also reduced and increased prefrontal 5HT1ARBP in dominant and subordinate females, respectively. Taken together, these results provide cross-species evidence that social status and sex impact how increased 5HT modulates agonistic behavior.
Collapse
Affiliation(s)
- Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Alison Wakeford
- Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Jonathon Nye
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jiyoung Mun
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Molecular Imaging Department, Charles River Laboratories, Mattawan, MI, United States of America
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Jason Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Mark E Wilson
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
6
|
Altwaijri N, Abualait T, Aljumaan M, Albaradie R, Arain Z, Bashir S. Defense mechanism responses to COVID-19. PeerJ 2022; 10:e12811. [PMID: 35186458 PMCID: PMC8842651 DOI: 10.7717/peerj.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has had a wide range of negative physical and mental impacts. This review begins with a theoretical explanation of the psychological defense mechanisms used to deal with the pandemic. It then discusses different categories of defense mechanisms and their roles in managing the impacts of psychological distress. The aim of this review is to highlight the various psychological defense mechanisms individuals use to deal with the pandemic and to discuss how adjustment mechanisms can protect individuals from internal and external threats by shielding the integrity of the ego (the mind) and helping individuals maintain their self-schema.
Collapse
Affiliation(s)
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Aljumaan
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Raidah Albaradie
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Zahid Arain
- Liver Transplant Department, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Santos-Costa N, Baptista-de-Souza D, Canto-de-Souza L, Fresca da Costa V, Nunes-de-Souza RL. Glutamatergic Neurotransmission Controls the Functional Lateralization of the mPFC in the Modulation of Anxiety Induced by Social Defeat Stress in Male Mice. Front Behav Neurosci 2021; 15:695735. [PMID: 34497496 PMCID: PMC8419264 DOI: 10.3389/fnbeh.2021.695735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
The rodent medial prefrontal cortex (mPFC) is anatomically divided into cingulate (Cg1), prelimbic (PrL), and infralimbic (IL) subareas. The left and right mPFC (L and RmPFC) process emotional responses induced by stress-related stimuli, and LmPFC and RmPFC inhibition elicit anxiogenesis and anxiolysis, respectively. Here we sought to investigate (i) the mPFC functional laterality on social avoidance/anxiogenic-like behaviors in male mice subjected to chronic social defeat stress (SDS), (ii) the effects of left prelimbic (PrL) inhibition (with local injection of CoCl2) on the RmPFC glutamatergic neuronal activation pattern (immunofluorescence assay), and (iii) the effects of the dorsal right mPFC (Cg1 + PrL) NMDA receptor blockade (with local injection of AP7) on the anxiety induced by left dorsal mPFC inhibition in mice exposed to the elevated plus maze (EPM). Results showed that chronic SDS induced anxiogenic-like behaviors followed by the rise of ΔFosB labeling and by ΔFosB + CaMKII double-labeling bilaterally in the Cg1 and IL subareas of the mPFC. Chronic SDS also increased ΔFosB and by ΔFosB + CaMKII labeling only on the right PrL. Also, the left PrL inhibition increased cFos + CaMKII labeling in the contralateral PrL and IL. Moreover, anxiogenesis induced by the left PrL inhibition was blocked by NMDA receptor antagonist AP7 injected into the right PrL. These findings suggest the lateralized control of the glutamatergic neurotransmission in the modulation of emotional-like responses in mice subjected to chronic SDS.
Collapse
Affiliation(s)
- Nathália Santos-Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Vinícius Fresca da Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| |
Collapse
|
8
|
Kingsbury L, Huang S, Wang J, Gu K, Golshani P, Wu YE, Hong W. Correlated Neural Activity and Encoding of Behavior across Brains of Socially Interacting Animals. Cell 2019; 178:429-446.e16. [PMID: 31230711 PMCID: PMC6625832 DOI: 10.1016/j.cell.2019.05.022] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022]
Abstract
Social interactions involve complex decision-making tasks that are shaped by dynamic, mutual feedback between participants. An open question is whether and how emergent properties may arise across brains of socially interacting individuals to influence social decisions. By simultaneously performing microendoscopic calcium imaging in pairs of socially interacting mice, we find that animals exhibit interbrain correlations of neural activity in the prefrontal cortex that are dependent on ongoing social interaction. Activity synchrony arises from two neuronal populations that separately encode one's own behaviors and those of the social partner. Strikingly, interbrain correlations predict future social interactions as well as dominance relationships in a competitive context. Together, our study provides conclusive evidence for interbrain synchrony in rodents, uncovers how synchronization arises from activity at the single-cell level, and presents a role for interbrain neural activity coupling as a property of multi-animal systems in coordinating and sustaining social interactions between individuals.
Collapse
Affiliation(s)
- Lyle Kingsbury
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shan Huang
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Wang
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ken Gu
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Golshani
- Department of Neurology and Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ye Emily Wu
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Social modulation of drug use and drug addiction. Neuropharmacology 2019; 159:107545. [PMID: 30807753 DOI: 10.1016/j.neuropharm.2019.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
This review aims to demonstrate how social science and behavioral neurosciences have highlighted the influence of social interactions on drug use in animal models. In neurosciences, the effect of global social context that are distal from drug use has been widely studied. For human and other social animals such as monkeys and rodents, positive social interactions are rewarding, can overcome drug reward and, in all, protect from drug use. In contrast, as other types of stress, negative social experiences facilitate the development and maintenance of drug abuse. However, interest recently emerged in the effect of so-called "proximal" social factors, that is, social interactions during drug-taking. These recent studies have characterized the role of the drug considered, the sharing of drug experience and the familiarity of the peer which interaction are made with. We also examine the few studies regarding the sensorial mediator of social behaviors and critically review the neural mediation of social factors on drug use. However, despite considerable characterization of the factors modulating distal influences, the mechanisms for proximal influences on drug use remain largely unknown. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
10
|
Lyons DM, Buckmaster CL, Schatzberg AF. Learning to actively cope with stress in female mice. Psychoneuroendocrinology 2018; 96:78-83. [PMID: 29909293 DOI: 10.1016/j.psyneuen.2018.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/18/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022]
Abstract
Repeated exposure to a same-sex resident stranger enhances subsequent indications of active coping that generalize across multiple contexts in intruder male mice. Here we investigate female mice for comparable learning to cope training effects. Stress coping research focused on females is important because stress related mood and anxiety disorders are more prevalent in women than men. Female mice were monitored for coping behavior in open-field, object-exploration, and tail-suspension tests conducted after repeated exposure to a same-sex resident stranger. During repeated exposure sessions of training staged in the resident's home cage, behavioral measures of aggression and risk assessment were collected and plasma measures of the stress hormone corticosterone were obtained from separate samples of mice. Repeated exposure to a same-sex resident stranger subsequently enhanced active coping behavior exemplified by diminished freezing and increased center entries in the open-field, shorter object-exploration latencies, and a tendency toward decreased immobility on tail-suspension tests. Open-field locomotion considered as an index of non-specific activity was not increased by repeated sessions of exposure and did not correlate significantly with any measure of active coping. During repeated sessions of exposure to a same-sex resident stranger, risk assessment behavior and consistent but limited aggression occurred and corticosterone responses increased over repeated sessions. Exposure to a same-sex resident stranger is mildly stressful and promotes learning to actively cope in mice assessed in three different contexts.
Collapse
Affiliation(s)
- David M Lyons
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States.
| | - Christine L Buckmaster
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
11
|
Tielbeek JJ, Al-Itejawi Z, Zijlmans J, Polderman TJC, Buckholtz JW, Popma A. The impact of chronic stress during adolescence on the development of aggressive behavior: A systematic review on the role of the dopaminergic system in rodents. Neurosci Biobehav Rev 2018; 91:187-197. [DOI: 10.1016/j.neubiorev.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/04/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
|
12
|
Chen CC, Lu J, Yang R, Ding JB, Zuo Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol Psychiatry 2018; 23:1614-1625. [PMID: 28761082 PMCID: PMC5794672 DOI: 10.1038/mp.2017.159] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Stress, a prevalent experience in modern society, is a major risk factor for many psychiatric disorders. Although sensorimotor abnormalities are often present in these disorders, little is known about how stress affects the sensory cortex. Combining behavioral analyses with in vivo synaptic imaging, we show that stressful experiences lead to progressive, clustered loss of dendritic spines along the apical dendrites of layer (L) 5 pyramidal neurons (PNs) in the mouse barrel cortex, and such spine loss closely associates with deteriorated performance in a whisker-dependent texture discrimination task. Furthermore, the activity of parvalbumin-expressing inhibitory interneurons (PV+ INs) decreases in the stressed mouse due to reduced excitability of these neurons. Importantly, both behavioral defects and structural changes of L5 PNs are prevented by selective pharmacogenetic activation of PV+INs in the barrel cortex during stress. Finally, stressed mice raised under environmental enrichment (EE) maintain normal activation of PV+ INs, normal texture discrimination, and L5 PN spine dynamics similar to unstressed EE mice. Our findings suggest that the PV+ inhibitory circuit is crucial for normal synaptic dynamics in the mouse barrel cortex and sensory function. Pharmacological, pharmacogenetic and environmental approaches to prevent stress-induced maladaptive behaviors and synaptic malfunctions converge on the regulation of PV+ IN activity, pointing to a potential therapeutic target for stress-related disorders.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA,Correspondence: Dr. Yi Zuo, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA, , Phone: +1-831-459-3812, Fax: +1-831-459-3139
| |
Collapse
|
13
|
Nasanbuyan N, Yoshida M, Takayanagi Y, Inutsuka A, Nishimori K, Yamanaka A, Onaka T. Oxytocin-Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice. Endocrinology 2018; 159:763-775. [PMID: 29186377 DOI: 10.1210/en.2017-00606] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/14/2017] [Indexed: 11/19/2022]
Abstract
Social stress has deteriorating effects on various psychiatric diseases. In animal models, exposure to socially dominant conspecifics (i.e., social defeat stress) evokes a species-specific defeat posture via unknown mechanisms. Oxytocin neurons have been shown to be activated by stressful stimuli and to have prosocial and anxiolytic actions. The roles of oxytocin during social defeat stress remain unclear. Expression of c-Fos, a marker of neuronal activation, in oxytocin neurons and in oxytocin receptor‒expressing neurons was investigated in mice. The projection of oxytocin neurons was examined with an anterograde viral tracer, which induces selective expression of membrane-targeted palmitoylated green fluorescent protein in oxytocin neurons. Defensive behaviors during double exposure to social defeat stress in oxytocin receptor‒deficient mice were analyzed. After social defeat stress, expression of c-Fos protein was increased in oxytocin neurons of the bed nucleus of the stria terminalis, supraoptic nucleus, and paraventricular hypothalamic nucleus. Expression of c-Fos protein was also increased in oxytocin receptor‒expressing neurons of brain regions, including the ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray. Projecting fibers from paraventricular hypothalamic oxytocin neurons were found in the ventrolateral part of the ventromedial hypothalamus and in the ventrolateral periaqueductal gray. Oxytocin receptor‒deficient mice showed reduced defeat posture during the second social defeat stress. These findings suggest that social defeat stress activates oxytocin-oxytocin receptor systems, and the findings are consistent with the view that activation of the oxytocin receptor in brain regions, including the ventrolateral part of the ventromedial hypothalamus and the ventrolateral periaqueductal gray, facilitates social defeat posture.
Collapse
Affiliation(s)
- Naranbat Nasanbuyan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Miyagi-ken, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| |
Collapse
|
14
|
Yanovich C, Kirby ML, Michaelevski I, Yadid G, Pinhasov A. Social rank-associated stress vulnerability predisposes individuals to cocaine attraction. Sci Rep 2018; 8:1759. [PMID: 29379100 PMCID: PMC5789078 DOI: 10.1038/s41598-018-19816-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Studies of personality have suggested that dissimilarities in ability to cope with stressful situations results in differing tendency to develop addictive behaviors. The present study used selectively bred stress-resilient, socially-dominant (Dom) and stress-vulnerable, socially-submissive (Sub) mice to investigate the interaction between environmental stress and inbred predisposition to develop addictive behavior to cocaine. In a Conditioned Place Preference (CPP) paradigm using cocaine, Sub mice displayed an aversion to drug, whereas Dom mice displayed drug attraction. Following a 4-week regimen of Chronic Mild Stress (CMS), Sub mice in CPP displayed a marked increase (>400%) in cocaine attraction, whereas Dom mice did not differ in attraction from their non-stressed state. Examination of hippocampal gene expression revealed in Sub mice, exposure to external stimuli, stress or cocaine, increased CRH expression (>100%), which was evoked in Dom mice only by cocaine exposure. Further, stress-induced decreases in DRD1 (>60%) and DRD2 (>50%) expression in Sub mice differed markedly from a complete lack of change in Dom mice. From our findings, we propose that social stratification dictates vulnerability to stress-induced attraction that may lead to addiction via differential regulation of hippocampal response to dopaminergic input, which in turn may influence differing tendency to develop addictive behaviors.
Collapse
Affiliation(s)
- Chen Yanovich
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Michael L Kirby
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Gal Yadid
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
15
|
Laman-Maharg A, Trainor BC. Stress, sex, and motivated behaviors. J Neurosci Res 2017; 95:83-92. [PMID: 27870436 DOI: 10.1002/jnr.23815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
Stress is a major risk factor for development of psychiatric disorders such as depression and development of substance use disorder. Although there are important sex differences in the prevalence of these disorders, most preclinical models used to study stress-induced disorders have used males only. Social defeat stress is a commonly used method to induce stress in an ethologically relevant way but has only recently begun to be used in female rodents. Using these new female models, recent studies have examined how social defeat stress affects males and females differently at the behavioral, circuit, and molecular levels. This Mini-Review discusses sex differences in the effects of social defeat stress on social behavior and drug-seeking behavior as well as its impact on the mesolimbic dopamine system and the highly connected region of the bed nucleus of the stria terminalis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abigail Laman-Maharg
- Neuroscience Graduate Group, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California.,Center for Neuroscience, University of California, Davis, Davis, California
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California.,Center for Neuroscience, University of California, Davis, Davis, California
| |
Collapse
|
16
|
Cooper MA, Seddighi S, Barnes AK, Grizzell JA, Dulka BN, Clinard CT. Dominance status alters restraint-induced neural activity in brain regions controlling stress vulnerability. Physiol Behav 2017; 179:153-161. [PMID: 28606772 PMCID: PMC5581240 DOI: 10.1016/j.physbeh.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 01/29/2023]
Abstract
Understanding the cellular mechanisms that control resistance and vulnerability to stress is an important step toward identifying novel targets for the prevention and treatment of stress-related mental illness. In Syrian hamsters, dominant and subordinate animals exhibit different behavioral and physiological responses to social defeat stress, with dominants showing stress resistance and subordinates showing stress vulnerability. We previously found that dominant and subordinate hamsters show different levels of defeat-induced neural activity in brain regions that modulate coping with stress, although the extent to which status-dependent differences in stress vulnerability generalize to non-social stressors is unknown. In this study, dominant, subordinate, and control male Syrian hamsters were exposed to acute physical restraint for 30min and restraint-induced c-Fos immunoreactivity was quantified in select brain regions. Subordinate animals showed less restraint-induced c-Fos immunoreactivity in the infralimbic (IL), prelimbic (PL), and ventral medial amygdala (vMeA) compared to dominants, which is consistent with the status-dependent effects of social defeat stress. Subordinate animals did not show increased c-Fos immunoreactivity in the rostroventral dorsal raphe nucleus (rvDRN), which is in contrast to the effects of social defeat stress. These findings indicate that status-dependent changes in neural activity generalize from one stressor to another in a brain region-dependent manner. These findings further suggest that while some neural circuits may support a generalized form of stress resistance, others may provide resistance to specific stressors.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States.
| | - Sahba Seddighi
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Abigail K Barnes
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - J Alex Grizzell
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Brooke N Dulka
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Catherine T Clinard
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| |
Collapse
|
17
|
Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress. Curr Biol 2017; 27:2202-2210.e4. [PMID: 28712571 DOI: 10.1016/j.cub.2017.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 11/21/2022]
Abstract
Extensive data highlight the existence of major differences in individuals' susceptibility to stress [1-4]. While genetic factors [5, 6] and exposure to early life stress [7, 8] are key components for such neurobehavioral diversity, intriguing observations revealed individual differences in response to stress in inbred mice [9-12]. This raised the possibility that other factors might be critical in stress vulnerability. A key challenge in the field is to identify non-invasively risk factors for vulnerability to stress. Here, we investigated whether behavioral factors, emerging from preexisting dominance hierarchies, could predict vulnerability to chronic stress [9, 13-16]. We applied a chronic social defeat stress (CSDS) model of depression in C57BL/6J mice to investigate the predictive power of hierarchical status to pinpoint which individuals will exhibit susceptibility to CSDS. Given that the high social status of dominant mice would be the one particularly challenged by CSDS, we predicted and found that dominant individuals were the ones showing a strong susceptibility profile as indicated by strong social avoidance following CSDS, while subordinate mice were not affected. Data from 1H-NMR spectroscopy revealed that the metabolic profile in the nucleus accumbens (NAc) relates to social status and vulnerability to stress. Under basal conditions, subordinates show lower levels of energy-related metabolites compared to dominants. In subordinates, but not dominants, levels of these metabolites were increased after exposure to CSDS. To the best of our knowledge, this is the first study that identifies non-invasively the origin of behavioral risk factors predictive of stress-induced depression-like behaviors associated with metabolic changes.
Collapse
|
18
|
Reyes BAS, Carvalho AF, Szot P, Kalamarides DJ, Wang Q, Kirby LG, Van Bockstaele EJ. Cortical adrenoceptor expression, function and adaptation under conditions of cannabinoid receptor deletion. Exp Neurol 2017; 292:179-192. [PMID: 28341460 PMCID: PMC5454488 DOI: 10.1016/j.expneurol.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
Abstract
A neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. Acute and repeated administration of a cannabinoid receptor synthetic agonist is capable of increasing multiple indices of noradrenergic activity. This includes cannabinoid-induced 1) increases in norepinephrine (NE) release in the medial prefrontal cortex (mPFC); 2) desensitization of cortical α2-adrenoceptor-mediated effects; 3) activation of c-Fos in brainstem locus coeruleus (LC) noradrenergic neurons; and 4) increases in anxiety-like behaviors. In the present study, we sought to examine adaptations in adrenoceptor expression and function under conditions of cannabinoid receptor type 1 (CB1r) deletion using knockout (KO) mice and compare these to wild type (WT) controls. Electrophysiological analysis of α2-adrenoceptor-mediated responses in mPFC slices in WT mice showed a clonidine-induced α2-adrenoceptor-mediated increase in mPFC cell excitability coupled with an increase in input resistance. In contrast, CB1r KO mice showed an α2-adrenoceptor-mediated decrease in mPFC cell excitability. We then examined protein expression levels of α2- and β1-adrenoceptor subtypes in the mPFC as well as TH expression in the locus coeruleus (LC) of mice deficient in CB1r. Both α2- and β1-adrenoceptors exhibited a significant decrease in expression levels in CB1r KO mice when compared to WT in the mPFC, while a significant increase in TH was observed in the LC. To better define whether the same cortical neurons express α2A-adrenoceptor and CB1r in mPFC, we utilized high-resolution immunoelectron microscopy. We localized α2A-adrenoceptors in a knock-in mouse that expressed a hemoagglutinin (HA) tag downstream of the α2A-adrenoceptor promoter. Although the α2A-adrenoceptor was often identified pre-synaptically, we observed co-localization of CB1r with α2-adrenoceptors post-synaptically in the same mPFC neurons. Finally, using receptor binding, we confirmed prior results showing that α2A-adrenoceptor is unchanged in mPFC following acute or chronic exposure to the synthetic cannabinoid receptor agonist, WIN 55,212-2, but is increased, following chronic treatment followed by a period of abstinence. Taken together, these data provide convergent lines of evidence indicating cannabinoid regulation of the cortical adrenergic system.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University Philadelphia, PA 19102, United States.
| | - A F Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - P Szot
- Northwest Network for Mental Illness Research, Education, and Clinical Center, Veterans Administration Puget Sound Health Care System and Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98108, United States
| | - D J Kalamarides
- Center for Substance Abuse Research and Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Q Wang
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - L G Kirby
- Center for Substance Abuse Research and Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University Philadelphia, PA 19102, United States
| |
Collapse
|
19
|
Terranova JI, Ferris CF, Albers HE. Sex Differences in the Regulation of Offensive Aggression and Dominance by Arginine-Vasopressin. Front Endocrinol (Lausanne) 2017; 8:308. [PMID: 29184535 PMCID: PMC5694440 DOI: 10.3389/fendo.2017.00308] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
Arginine-vasopressin (AVP) plays a critical role in the regulation of offensive aggression and social status in mammals. AVP is found in an extensive neural network in the brain. Here, we discuss the role of AVP in the regulation of aggression in the limbic system with an emphasis on the critical role of hypothalamic AVP in the control of aggression. In males, activation of AVP V1a receptors (V1aRs) in the hypothalamus stimulates offensive aggression, while in females activation of V1aRs inhibits aggression. Serotonin (5-HT) also acts within the hypothalamus to modulate the effects of AVP on aggression in a sex-dependent manner. Activation of 5-HT1a receptors (5-HT1aRs) inhibits aggression in males and stimulates aggression in females. There are also striking sex differences in the mechanisms underlying the acquisition of dominance. In males, the acquisition of dominance is associated with the activation of AVP-containing neurons in the hypothalamus. By contrast, in females, the acquisition of dominance is associated with the activation of 5-HT-containing neurons in the dorsal raphe. AVP and 5-HT also play critical roles in the regulation of a form of social communication that is important for the maintenance of dominance relationships. In both male and female hamsters, AVP acts via V1aRs in the hypothalamus, as well as in other limbic structures, to communicate social status through the stimulation of a form of scent marking called flank marking. 5-HT acts on 5-HT1aRs as well as other 5-HT receptors within the hypothalamus to inhibit flank marking induced by AVP in both males and females. Interestingly, while AVP and 5-HT influence the expression of aggression in opposite ways in males and females, there are no sex differences in the effects of AVP and 5-HT on the expression of social communication. Given the profound sex differences in the incidence of many psychiatric disorders and the increasing evidence for a relationship between aggressiveness/dominance and the susceptibility to these disorders, understanding the neural regulation of aggression and social status will have significant import for translational studies.
Collapse
Affiliation(s)
- Joseph I. Terranova
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Craig F. Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - H. Elliott Albers
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- *Correspondence: H. Elliott Albers,
| |
Collapse
|
20
|
Serotonin and arginine-vasopressin mediate sex differences in the regulation of dominance and aggression by the social brain. Proc Natl Acad Sci U S A 2016; 113:13233-13238. [PMID: 27807133 DOI: 10.1073/pnas.1610446113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are profound sex differences in the incidence of many psychiatric disorders. Although these disorders are frequently linked to social stress and to deficits in social engagement, little is known about sex differences in the neural mechanisms that underlie these phenomena. Phenotypes characterized by dominance, competitive aggression, and active coping strategies appear to be more resilient to psychiatric disorders such as posttraumatic stress disorder (PTSD) compared with those characterized by subordinate status and the lack of aggressiveness. Here, we report that serotonin (5-HT) and arginine-vasopressin (AVP) act in opposite ways in the hypothalamus to regulate dominance and aggression in females and males. Hypothalamic injection of a 5-HT1a agonist stimulated aggression in female hamsters and inhibited aggression in males, whereas injection of AVP inhibited aggression in females and stimulated aggression in males. Striking sex differences were also identified in the neural mechanisms regulating dominance. Acquisition of dominance was associated with activation of 5-HT neurons within the dorsal raphe in females and activation of hypothalamic AVP neurons in males. These data strongly indicate that there are fundamental sex differences in the neural regulation of dominance and aggression. Further, because systemically administered fluoxetine increased aggression in females and substantially reduced aggression in males, there may be substantial gender differences in the clinical efficacy of commonly prescribed 5-HT-active drugs such as selective 5-HT reuptake inhibitors. These data suggest that the treatment of psychiatric disorders such as PTSD may be more effective with the use of 5-HT-targeted drugs in females and AVP-targeted drugs in males.
Collapse
|
21
|
Clinard CT, Barnes AK, Adler SG, Cooper MA. Winning agonistic encounters increases testosterone and androgen receptor expression in Syrian hamsters. Horm Behav 2016; 86:27-35. [PMID: 27619945 PMCID: PMC5159211 DOI: 10.1016/j.yhbeh.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 09/08/2016] [Indexed: 11/16/2022]
Abstract
Winning aggressive disputes is one of several experiences that can alter responses to future stressful events. We have previously tested dominant and subordinate male Syrian hamsters in a conditioned defeat model and found that dominant individuals show less change in behavior following social defeat stress compared to subordinates and controls, indicating a reduced conditioned defeat response. Resistance to the effects of social defeat in dominants is experience-dependent and requires the maintenance of dominance relationships for 14days. For this study we investigated whether winning aggressive interactions increases plasma testosterone and whether repeatedly winning increases androgen receptor expression. First, male hamsters were paired in daily 10-min aggressive encounters and blood samples were collected immediately before and 15min and 30min after the formation of dominance relationships. Dominants showed an increase in plasma testosterone at 15min post-interaction compared to their pre-interaction baseline, whereas subordinates and controls showed no change in plasma testosterone. Secondly, we investigated whether 14days of dominant social status increased androgen or estrogen alpha-receptor immunoreactivity in brain regions that regulate the conditioned defeat response. Dominants showed more androgen, but not estrogen alpha, receptor immuno-positive cells in the dorsal medial amygdala (dMeA) and ventral lateral septum (vLS) compared to subordinates and controls. Finally, we showed that one day of dominant social status was insufficient to increase androgen receptor immunoreactivity compared to subordinates. These results suggest that elevated testosterone signaling at androgen receptors in the dMeA and vLS might contribute to the reduced conditioned defeat response exhibited by dominant hamsters.
Collapse
Affiliation(s)
- Catherine T Clinard
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States.
| | - Abigail K Barnes
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Samuel G Adler
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
22
|
Lüscher Dias T, Fernandes Golino H, Oliveira VEMD, Dutra Moraes MF, Schenatto Pereira G. c-Fos expression predicts long-term social memory retrieval in mice. Behav Brain Res 2016; 313:260-271. [DOI: 10.1016/j.bbr.2016.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/26/2016] [Accepted: 07/18/2016] [Indexed: 11/30/2022]
|
23
|
Steinman MQ, Trainor BC. Sex differences in the effects of social defeat on brain and behavior in the California mouse: Insights from a monogamous rodent. Semin Cell Dev Biol 2016; 61:92-98. [PMID: 27375045 DOI: 10.1016/j.semcdb.2016.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022]
Abstract
Women are nearly twice as likely as men to be diagnosed with major depressive disorder, yet the use of female animal models in studying the biological basis of depression lags behind that of males. The social defeat model uses social stress to generate depression-like symptoms in order to study the neurobiological mechanisms. In general, social defeat is difficult to apply in female rodents. However, male and female California mice (Peromyscus californicus) are territorial. This allows defeat to be studied in both sexes. Males exposed to defeat tend to exhibit proactive coping mechanisms and demonstrate aggression and reduced cognitive flexibility. Females exposed to defeat engage more in reactive coping mechanisms which is highlighted by social avoidance and low aggression. Importantly, effects of defeat on social interaction behavior in females is independent of adult gonadal steroids. These behavioral phenotypes are associated with sex-specific changes in arginine vasopressin (AVP) and oxytocin (OT), closely related peptides that regulate social behavior and stress reactivity. In brain regions associated with stress responses and social behavior, defeat induced long term decreases in AVP activity and increases in OT activity in males and females respectively. Intranasal OT administration was shown to mimic the effects of defeat-induced increases in endogenous OT activity, causing social withdrawal in undefeated females. This suggests that inhibition of OT activity could reduce the impact of stress on behavior in females. These results highlight the value of maintaining diverse rodent models in the search for sex-specific pharmacological approaches to treating mood disorders.
Collapse
Affiliation(s)
- Michael Q Steinman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Brian C Trainor
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA 95616, U.S.A..
| |
Collapse
|