1
|
Huang D, Li M, Qiao Z, Zhou H, Cai Y, Li X, Zhang Z, Zhou J. Effects of adolescent alcohol exposure on oligodendrocyte lineage cells and myelination in mice: Age and subregion differences. IBRO Neurosci Rep 2024; 17:220-234. [PMID: 39282551 PMCID: PMC11401168 DOI: 10.1016/j.ibneur.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Adolescence is an important phase for the structural and functional development of the brain. The immaturity of adolescent brain development is associated with high susceptibility to exogenous disturbances, including alcohol. In this study, the acquisition of conditioned place preference (CPP) in adolescent mice by alcohol (2 g/kg) and the parvalbumin-positive interneurons (PV+ interneurons), oligodendrocyte lineage cells (OPCs), and myelination in the medial prefrontal cortex (mPFC) were assessed. We aim to determine the age- and subregional-specificity of the effects of alcohol. Alcohol (2 g/kg) was injected intraperitoneally on even days, and saline was injected intraperitoneally on odd days. The control group received a continuous intraperitoneal injection with saline. Differences in alcohol-induced CPP acquisition were assessed, followed by immunohistochemical staining. The results showed a pronounced CPP acquisition in 4- and 5-week-old mice. In the mPFC, there were reduced PV+ interneurons and OPCs in 3-week-old mice and reduced oligodendrocyte numbers in 4-week-old mice. The 5-week-old mice showed impaired myelination and a decrease in the number of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC. Since the alterations in 5-week-old mice are more pronounced, we further explored the mPFC-associated subregional-specificity. In the alcohol-exposed mice, the oligodendrocyte numbers were decreased in the anterior cingulate cortex (ACC), PV+ interneuron numbers were declined in the prelimbic cortex (PL), and the number of oligodendrocytes, PV+ interneurons, and OPCs was also decreased with impaired myelination in the infralimbic cortex (IL). Our data suggest that adolescent alcohol exposure notably affected the acquisition of CPP, myelin formation, and the counts of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC in 5-week-old mice. Also, the IL subregion was the worst-affected subregion of the mPFC in alcohol-exposed 5-week-old mice. It reveals that the effects of alcohol on adolescence and its mPFC myelination show obvious age- and subregional-specificity.
Collapse
Affiliation(s)
- Dong Huang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Maolin Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifei Qiao
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongli Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Cai
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaolong Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zuo Zhang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiyin Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Oliva HNP, Prudente TP, Nunes EJ, Cosgrove KP, Radhakrishnan R, Potenza MN, Angarita GA. Substance use and spine density: a systematic review and meta-analysis of preclinical studies. Mol Psychiatry 2024; 29:2873-2885. [PMID: 38561468 DOI: 10.1038/s41380-024-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
The elucidation of synaptic density changes provides valuable insights into the underlying brain mechanisms of substance use. In preclinical studies, synaptic density markers, like spine density, are altered by substances of abuse (e.g., alcohol, amphetamine, cannabis, cocaine, opioids, nicotine). These changes could be linked to phenomena including behavioral sensitization and drug self-administration in rodents. However, studies have produced heterogeneous results for spine density across substances and brain regions. Identifying patterns will inform translational studies given tools that now exist to measure in vivo synaptic density in humans. We performed a meta-analysis of preclinical studies to identify consistent findings across studies. PubMed, ScienceDirect, Scopus, and EBSCO were searched between September 2022 and September 2023, based on a protocol (PROSPERO: CRD42022354006). We screened 6083 publications and included 70 for meta-analysis. The meta-analysis revealed drug-specific patterns in spine density changes. Hippocampal spine density increased after amphetamine. Amphetamine, cocaine, and nicotine increased spine density in the nucleus accumbens. Alcohol and amphetamine increased, and cannabis reduced, spine density in the prefrontal cortex. There was no convergence of findings for morphine's effects. The effects of cocaine on the prefrontal cortex presented contrasting results compared to human studies, warranting further investigation. Publication bias was small for alcohol or morphine and substantial for the other substances. Heterogeneity was moderate-to-high across all substances. Nonetheless, these findings inform current translational efforts examining spine density in humans with substance use disorders.
Collapse
Affiliation(s)
- Henrique Nunes Pereira Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Tiago Paiva Prudente
- Faculdade de Medicina, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Eric J Nunes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA.
| |
Collapse
|
3
|
Brocato ER, Easter R, Morgan A, Kakani M, Lee G, Wolstenholme JT. Adolescent binge ethanol impacts H3K9me3-occupancy at synaptic genes and the regulation of oligodendrocyte development. Front Mol Neurosci 2024; 17:1389100. [PMID: 38840776 PMCID: PMC11150558 DOI: 10.3389/fnmol.2024.1389100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Binge drinking in adolescence can disrupt myelination and cause brain structural changes that persist into adulthood. Alcohol consumption at a younger age increases the susceptibility of these changes. Animal models to understand ethanol's actions on myelin and white matter show that adolescent binge ethanol can alter the developmental trajectory of oligodendrocytes, myelin structure, and myelin fiber density. Oligodendrocyte differentiation is epigenetically regulated by H3K9 trimethylation (H3K9me3). Prior studies have shown that adolescent binge ethanol dysregulates H3K9 methylation and decreases H3K9-related gene expression in the PFC. Methods Here, we assessed ethanol-induced changes to H3K9me3 occupancy at genomic loci in the developing adolescent PFC. We further assessed ethanol-induced changes at the transcription level with qPCR time course approaches in oligodendrocyte-enriched cells to assess changes in oligodendrocyte progenitor and oligodendrocytes specifically. Results Adolescent binge ethanol altered H3K9me3 regulation of synaptic-related genes and genes specific for glutamate and potassium channels in a sex-specific manner. In PFC tissue, we found an early change in gene expression in transcription factors associated with oligodendrocyte differentiation that may lead to the later significant decrease in myelin-related gene expression. This effect appeared stronger in males. Conclusion Further exploration in oligodendrocyte cell enrichment time course and dose response studies could suggest lasting dysregulation of oligodendrocyte maturation at the transcriptional level. Overall, these studies suggest that binge ethanol may impede oligodendrocyte differentiation required for ongoing myelin development in the PFC by altering H3K9me3 occupancy at synaptic-related genes. We identify potential genes that may be contributing to adolescent binge ethanol-related myelin loss.
Collapse
Affiliation(s)
- Emily R. Brocato
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Rachel Easter
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Alanna Morgan
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Meenakshi Kakani
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Grace Lee
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Steiner NL, Purohit DC, Tiefenthaler CM, Mandyam CD. Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats. Brain Sci 2024; 14:431. [PMID: 38790410 PMCID: PMC11118749 DOI: 10.3390/brainsci14050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence.
Collapse
Affiliation(s)
- Noah L. Steiner
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
| | | | - Casey M. Tiefenthaler
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Sun S, Li J, Wang S, Li J, Ren J, Bao Z, Sun L, Ma X, Zheng F, Ma S, Sun L, Wang M, Yu Y, Ma M, Wang Q, Chen Z, Ma H, Wang X, Wu Z, Zhang H, Yan K, Yang Y, Zhang Y, Zhang S, Lei J, Teng ZQ, Liu CM, Bai G, Wang YJ, Li J, Wang X, Zhao G, Jiang T, Belmonte JCI, Qu J, Zhang W, Liu GH. CHIT1-positive microglia drive motor neuron ageing in the primate spinal cord. Nature 2023; 624:611-620. [PMID: 37907096 DOI: 10.1038/s41586-023-06783-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.
Collapse
Affiliation(s)
- Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The Chinese Glioma Genome Atlas, Beijing, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xibo Ma
- MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- College of Medicine and Biomedical Information Engineering, Northeastern University, Shenyang, China
| | - Fangshuo Zheng
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Liang Sun
- Aging Biomarker Consortium, Beijing, China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
| | - Yan Yu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miyang Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Chen
- MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - He Ma
- MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- College of Medicine and Biomedical Information Engineering, Northeastern University, Shenyang, China
| | - Xuebao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuanhan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ge Bai
- The MOE Frontier Research Center of Brain & Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yan-Jiang Wang
- Aging Biomarker Consortium, Beijing, China
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jian Li
- Aging Biomarker Consortium, Beijing, China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xiaoqun Wang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The Chinese Glioma Genome Atlas, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
6
|
Smith ML, Sergi Z, Mignogna KM, Rodriguez NE, Tatom Z, MacLeod L, Choi KB, Philip V, Miles MF. Identification of Genetic and Genomic Influences on Progressive Ethanol Consumption in Diversity Outbred Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.554349. [PMID: 37745421 PMCID: PMC10515943 DOI: 10.1101/2023.09.15.554349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genetic factors play a significant role in the risk for development of alcohol use disorder (AUD). Using 3-bottle choice intermittent access ethanol (IEA), we have employed the Diversity Outbred (DO) mouse panel as a model of alcohol use disorder in a genetically diverse population. Through use of gene expression network analysis techniques, in combination with expression quantitative trait loci (eQTL) mapping, we have completed an extensive analysis of the influence of genetic background on gene expression changes in the prefrontal cortex (PFC). This approach revealed that, in DO mice, genes whose expression was significantly disrupted by intermittent ethanol in the PFC also tended to be those whose expression correlated to intake. This finding is in contrast to previous studies of both mice and nonhuman primates. Importantly, these analyses identified genes involved in myelination in the PFC as significantly disrupted by IEA, correlated to ethanol intake, and having significant eQTLs. Genes that code for canonical components of the myelin sheath, such as Mbp, also emerged as key drivers of the gene expression response to intermittent ethanol drinking. Several regulators of myelination were also key drivers of gene expression, and had significant QTLs, indicating that genetic background may play an important role in regulation of brain myelination. These findings underscore the importance of disruption of normal myelination in the PFC in response to prolonged ethanol exposure, that genetic variation plays an important role in this response, and that this interaction between genetics and myelin disruption in the presence of ethanol may underlie previously observed behavioral changes under intermittent access ethanol drinking such as escalation of consumption.
Collapse
Affiliation(s)
- M L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K M Mignogna
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - N E Rodriguez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Tatom
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - L MacLeod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K B Choi
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - V Philip
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - M F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
7
|
Qiu X, Sun X, Li HO, Wang DH, Zhang SM. Maternal alcohol consumption and risk of postpartum depression: a meta-analysis of cohort studies. Public Health 2022; 213:163-170. [PMID: 36423494 DOI: 10.1016/j.puhe.2022.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The relationship between maternal alcohol consumption and postpartum depression (PPD) is still controversial. The objective of the present study was to assess the association between maternal alcohol consumption and the risk of developing PPD by means of a meta-analysis of cohort studies. STUDY DESIGN This was a meta-analysis. METHODS PubMed, Web of Science, Embase, Cochrane Library, China Biology Medicine disc, Chinese National Knowledge Infrastructure, Weipu, and Wanfang databases were searched up to February 4, 2021, to identify relevant studies that evaluated the association between maternal alcohol consumption and PPD. Meta-analysis was conducted using RevMan software and Stata software. Subgroup and sensitivity analyses were performed to explore the potential heterogeneity source, and Begg's funnel plots and Begg's linear regression test were conducted to assess the potential publication bias. RESULTS A total of 12 studies involving 50,377 participants were identified in our study. Overall, pregnant women who were exposed to alcohol were at a significantly greater risk of developing PPD compared with those who did not consume alcohol (odds ratio = 1.21; 95% confidence interval: 1.04-1.41; P = 0.020). CONCLUSIONS Maternal alcohol consumption is significantly associated with the risk of developing PPD. These results emphasize the necessity of enhancing health awareness, improving the public health policies and regulations concerning alcohol use, and strengthening the prevention and intervention of maternal alcohol consumption to promote maternal mental health.
Collapse
Affiliation(s)
- X Qiu
- Department of Nursing, Xiangya School of Nursing, Central South University, Changsha, Hunan, China
| | - X Sun
- Department of Humanistic Nursing, School of Nursing, Changsha Medical University, Changsha, Hunan, China
| | - H O Li
- Department of Humanistic Nursing, School of Nursing, Changsha Medical University, Changsha, Hunan, China
| | - D H Wang
- Department of Humanistic Nursing, School of Nursing, Changsha Medical University, Changsha, Hunan, China
| | - S M Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Narendra S, Klengel C, Hamzeh B, Patel D, Otten J, Lardenoije R, Newman EL, Miczek KA, Klengel T, Ressler KJ, Suh J. Genome-wide transcriptomics of the amygdala reveals similar oligodendrocyte-related responses to acute and chronic alcohol drinking in female mice. Transl Psychiatry 2022; 12:476. [PMID: 36371333 PMCID: PMC9653459 DOI: 10.1038/s41398-022-02231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics targeting development of AUD, particularly in women, have been validated. To gain a better understanding of molecular mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. Surprisingly, we found that both drinking modes triggered similar changes in gene expression and canonical pathways, including upregulation of ribosome-related/translational pathways and myelination pathways, and downregulation of chromatin binding and histone modification. In addition, analyses of hub genes and upstream regulatory pathways revealed that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor, Sox17. Furthermore, a viral vector-assisted knockdown of Sox17 gene expression in the amygdala prevented a gradual increase in alcohol consumption during repeated accesses. Overall, these results suggest that the expression of oligodendrocyte-related genes in the amygdala is sensitive to voluntary alcohol drinking in female mice. These findings suggest potential molecular targets for future therapeutic approaches to prevent the development of AUD, due to repeated excessive alcohol consumption, particularly in women.
Collapse
Affiliation(s)
- Sharvari Narendra
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Claudia Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Bilal Hamzeh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Drasti Patel
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Joy Otten
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roy Lardenoije
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Emily L Newman
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Klaus A Miczek
- Psychology and Neuroscience Departments, Tufts University, Medford, MA, 02155, USA
| | - Torsten Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
9
|
Morris V, Bock N, Minuzzi L, MacKillop J, Amlung M. Intracortical myelin in individuals with alcohol use disorder: An initial proof-of-concept study. Brain Behav 2022; 12:e2762. [PMID: 36102109 PMCID: PMC9575605 DOI: 10.1002/brb3.2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Disruption of cortical gray matter and white matter tracts are well-established markers of alcohol use disorder (AUD), but less is known about whether similar differences are present in intracortical myelin (ICM, i.e., highly myelinated gray matter in deeper cortical layers). The goal of this study was to provide initial proof-of-concept for using an optimized structural magnetic resonance imaging (MRI) sequence to detect differences in ICM in individuals with AUD compared to control participants reporting drinking within recommended guidelines. METHODS This study used an optimized 3T MRI sequence for high intracortical contrast to examine ICM-related MRI signal in 30 individuals with AUD and 33 healthy social drinkers. Surface-based analytic techniques were used to quantify ICM-related MRI signal in 20 bilateral a priori regions of interest based on prior cortical thickness studies, and exploratory vertex-wise analyses were examined using Cohen's d effect size. RESULTS The global distribution of ICM-related signal was largely comparable between groups. Region of interest analysis indicated that AUD group exhibited greater ICM-related MRI signal in precuneus, ventromedial prefrontal cortex, posterior cingulate, middle anterior cingulate, middle/posterior insula, and dorsolateral prefrontal cortex (Cohen's ds = 0.50-0.75). Four regions (right precuneus, ventromedial prefrontal cortex, posterior cingulate and left dorsolateral prefrontal cortex) remained significant (p < .05) after covarying for smoking status. CONCLUSION These findings provide initial evidence of ICM differences in a moderately sized sample of individuals with AUD compared to controls, although the inflation of type 1 error rate necessitates caution in drawing conclusions. Robustly establishing these differences in larger samples is necessary. The cross-sectional design cannot address whether the observed differences predate AUD or are consequences of heavy alcohol consumption.
Collapse
Affiliation(s)
- Vanessa Morris
- Peter Boris Center for Addictions Research, McMaster University, Hamilton, Canada.,Department of Psychology, York University, Toronto, Canada.,Department of Psychology, University of New Brunswick Saint John, Saint John, Canada
| | - Nicholas Bock
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - James MacKillop
- Peter Boris Center for Addictions Research, McMaster University, Hamilton, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Michael Amlung
- Peter Boris Center for Addictions Research, McMaster University, Hamilton, Canada.,Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, Kansas, USA.,Department of Applied Behavioral Science, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Melugin PR, Wu F, Munoz C, Phensy A, Pradhan G, Luo Y, Nofal A, Manepalli R, Kroener S. The effects of acamprosate on prefrontal cortical function are mimicked by CaCl2 and they are influenced by the history of alcohol exposure. Neuropharmacology 2022; 212:109062. [PMID: 35430241 PMCID: PMC10804777 DOI: 10.1016/j.neuropharm.2022.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Alcohol use disorder is associated with functional changes in the medial prefrontal cortex (mPFC), which include altered glutamatergic transmission and deficits in executive functions that contribute to relapse. Acamprosate (calcium-bis N-acetylhomotaurinate) reduces alcohol craving and relapse, effects that are thought to be mediated by acamprosate's ability to ameliorate alcohol-induced dysregulation of glutamatergic signaling. Treatment with acamprosate and its active moiety calcium (CaCl2) both improve deficits in cognitive flexibility in postdependent mice following chronic intermittent ethanol (CIE) exposure. Here, we show that mice that self-administered alcohol under goal-directed conditions (i.e., operant responding on a fixed-ratio schedule) also display similar deficits in cognitive flexibility and altered glutamatergic signaling in the mPFC, both of which were improved with acamprosate or CaCl2. However, under conditions shown to bias behavior towards habitual responding (operant self-administration after CIE exposure, or on a variable interval schedule), alcohol-induced changes to glutamatergic transmission were unaffected by either acamprosate or CaCl2 treatment. Together, these findings suggest that the variable effects of acamprosate on synaptic signaling may reflect a shift in mPFC networks related to the loss of behavioral control in habitual alcohol-seeking.
Collapse
Affiliation(s)
- Patrick R Melugin
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Fei Wu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA; Institute of Neurobiology, Jining Medical University, Jining, China
| | - Crystal Munoz
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Grishma Pradhan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Yi Luo
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Abraham Nofal
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Rohan Manepalli
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA.
| |
Collapse
|
11
|
Lawson K, Scarlata MJ, Cho WC, Mangan C, Petersen D, Thompson HM, Ehnstrom S, Mousley AL, Bezek JL, Bergstrom HC. Adolescence alcohol exposure impairs fear extinction and alters medial prefrontal cortex plasticity. Neuropharmacology 2022; 211:109048. [PMID: 35364101 PMCID: PMC9067297 DOI: 10.1016/j.neuropharm.2022.109048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
After experiencing a traumatic event people often turn to alcohol to cope with symptoms. In those with post-traumatic stress disorder (PTSD) and a co-occurring alcohol use disorder (AUD), PTSD symptoms can worsen, suggesting that alcohol changes how traumatic memory is expressed. The objective of this series of experiments is to identify how alcohol drinking (EtOH), following cued fear conditioning and extinction, impacts fear expression in mice. Molecular (activity-regulated cytoskeleton-associated protein, Arc/arg3.1) and structural (dendrite and spine morphometry) markers of neuronal plasticity were measured following remote extinction retrieval. Mouse age (adolescent and adult) and sex were included as interacting variables in a full factorial design. Females drank more EtOH than males and adolescents drank more EtOH than adults. Adolescent females escalated EtOH intake across drinking days. Adolescent drinkers exhibited more conditioned freezing during extinction retrieval, an effect that persisted for at least 20 days. Heightened cued freezing in the adolescent group was associated with greater Arc/arg3.1 expression in layer (L) 2/3 prelimbic (PL) cortex, greater spine density, and reduced basal dendrite complexity. In adults, drinking was associated with reduced L2/3 infralimbic (IL) Arc expression but no behavioral differences. Few sex interactions were uncovered throughout. Overall, these data identify prolonged age-related differences in alcohol-induced fear extinction impairment and medial prefrontal cortex neuroadaptations.
Collapse
Affiliation(s)
- K Lawson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - M J Scarlata
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - W C Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - C Mangan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - D Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H M Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - S Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - A L Mousley
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - J L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA.
| |
Collapse
|
12
|
Agarwal K, Manza P, Chapman M, Nawal N, Biesecker E, McPherson K, Dennis E, Johnson A, Volkow ND, Joseph PV. Inflammatory Markers in Substance Use and Mood Disorders: A Neuroimaging Perspective. Front Psychiatry 2022; 13:863734. [PMID: 35558424 PMCID: PMC9086785 DOI: 10.3389/fpsyt.2022.863734] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chronic exposure to addictive drugs in substance use disorders and stressors in mood disorders render the brain more vulnerable to inflammation. Inflammation in the brain, or neuroinflammation, is characterized by gliosis, microglial activation, and sustained release of cytokines, chemokines, and pro-inflammatory factors compromising the permeability of the blood-brain barrier. There is increased curiosity in understanding how substance misuse and/or repeated stress exposure affect inflammation and contribute to abnormal neuronal activity, altered neuroplasticity, and impaired cognitive control, which eventually promote compulsive drug-use behaviors and worsen mood disorders. This review will emphasize human imaging studies to explore the link between brain function and peripheral markers of inflammation in substance use disorders and mood disorders.
Collapse
Affiliation(s)
- Khushbu Agarwal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Peter Manza
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Marquis Chapman
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nafisa Nawal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Erin Biesecker
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Katherine McPherson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Evan Dennis
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Allison Johnson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Paule V Joseph
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 2021; 26:3152-3168. [PMID: 33093653 PMCID: PMC8060355 DOI: 10.1038/s41380-020-00921-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Sleep abnormalities are often a prominent contributor to withdrawal symptoms following chronic drug use. Notably, rapid eye movement (REM) sleep regulates emotional memory, and persistent REM sleep impairment after cocaine withdrawal negatively impacts relapse-like behaviors in rats. However, it is not understood how cocaine experience may alter REM sleep regulatory machinery, and what may serve to improve REM sleep after withdrawal. Here, we focus on the melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH), which regulate REM sleep initiation and maintenance. Using adult male Sprague-Dawley rats trained to self-administer intravenous cocaine, we did transcriptome profiling of LH MCH neurons after long-term withdrawal using RNA-sequencing, and performed functional assessment using slice electrophysiology. We found that 3 weeks after withdrawal from cocaine, LH MCH neurons exhibit a wide range of gene expression changes tapping into cell membrane signaling, intracellular signaling, and transcriptional regulations. Functionally, they show reduced membrane excitability and decreased glutamatergic receptor activity, consistent with increased expression of voltage-gated potassium channel gene Kcna1 and decreased expression of metabotropic glutamate receptor gene Grm5. Finally, chemogenetic or optogenetic stimulations of LH MCH neural activity increase REM sleep after long-term withdrawal with important differences. Whereas chemogenetic stimulation promotes both wakefulness and REM sleep, optogenetic stimulation of these neurons in sleep selectively promotes REM sleep. In summary, cocaine exposure persistently alters gene expression profiles and electrophysiological properties of LH MCH neurons. Counteracting cocaine-induced hypoactivity of these neurons selectively in sleep enhances REM sleep quality and quantity after long-term withdrawal.
Collapse
|
14
|
Liu W, Rohlman AR, Vetreno R, Crews FT. Expression of Oligodendrocyte and Oligoprogenitor Cell Proteins in Frontal Cortical White and Gray Matter: Impact of Adolescent Development and Ethanol Exposure. Front Pharmacol 2021; 12:651418. [PMID: 34025418 PMCID: PMC8134748 DOI: 10.3389/fphar.2021.651418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Adolescent development of prefrontal cortex (PFC) parallels maturation of executive functions as well as increasing white matter and myelination. Studies using MRI and other methods find that PFC white matter increases across adolescence into adulthood in both humans and rodents. Adolescent binge drinking is common and has been found to alter adult behaviors and PFC functions. This study examines development of oligoprogenitor (OPC) and oligodendrocytes (OLs) in Wistar rats from adolescence to adulthood within PFC white matter, corpus callosum forceps minor (fmi), PFC gray matter, and the neurogenic subventricular zone (SVZ) using immunohistochemistry for marker proteins. In addition, the effects of adolescent intermittent ethanol exposure [AIE; 5.0 g/kg/day, intragastric, 2 days on/2 days off on postnatal day (P)25-54], which is a weekend binge drinking model, were determined. OPC markers NG2+, PDGFRα+ and Olig2+IHC were differentially impacted by both age and PFC region. In both fmi and SVZ, NG2+IHC cells declined from adolescence to adulthood with AIE increasing adult NG2+IHC cells and their association with microglial marker Iba1. PFC gray matter decline in NG2+IHC in adulthood was not altered by AIE. Both adult maturation and AIE impacted OL expression of PLP+, MBP+, MAG+, MOG+, CNPase+, Olig1+, and Olig2+IHC in all three PFC regions, but in region- and marker-specific patterns. These findings are consistent with PFC region-specific changes in OPC and OL markers from adolescence to adulthood as well as following AIE that could contribute to lasting changes in PFC function.
Collapse
Affiliation(s)
| | | | | | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Kumar M, Rainville JR, Williams K, Lile JA, Hodes GE, Vassoler FM, Turner JR. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology 2021; 186:108469. [PMID: 33485944 PMCID: PMC7988821 DOI: 10.1016/j.neuropharm.2021.108469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/30/2022]
Abstract
Opioid use disorder is a leading cause of morbidity and mortality in the United States. Increasing pre-clinical and clinical evidence demonstrates sex differences in opioid use and dependence. However, the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are still obscure. Therefore, in this study, we investigated the effect of oxycodone exposure and withdrawal on sex- and region-specific neuroimmune response. Real-time PCR and multiplex cytokine array analysis demonstrated elevated neuroinflammation with increased pro-inflammatory cytokine levels, and aberrant oligodendroglial response in reward neurocircuitry, following withdrawal from chronic oxycodone treatment. Chronic oxycodone and withdrawal treated male mice had lower mRNA expression of TMEM119 along with elevated protein levels of pro-inflammatory cytokines/chemokines and growth factors (IL-1β, IL-2, IL-7, IL-9, IL-12, IL-15, IL17, M-CSF, VEGF) in the prefrontal cortex (PFC) as compared to their female counterparts. In contrast, reduced levels of pro-inflammatory cytokines/chemokines (IL-1β, IL-6, IL-9, IL-12, CCL11) was observed in the nucleus accumbens (NAc) of oxycodone and withdrawal-treated males as compared to female mice. No treatment specific effects were observed on the mRNA expression of putative microglial activation markers (Iba1, CD68), but an overall sex specific decrease in the mRNA expression of Iba1 and CD68 was found in the PFC and NAc of male mice as compared to females. Moreover, a sex and region-specific increase in the mRNA levels of oligodendrocyte lineage markers (NG2, Sox10) was also observed in oxycodone and withdrawal treated animals. These findings may open a new avenue for the development of sex-specific precision therapeutics for opioid dependence by targeting region-specific neuroimmune signaling.
Collapse
Affiliation(s)
- Mohit Kumar
- University of Kentucky, College of Pharmacy, KY, USA
| | - Jennifer R Rainville
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Kori Williams
- University of Kentucky, College of Pharmacy, KY, USA
| | - Joshua A Lile
- University of Kentucky, College of Medicine, KY, USA
| | - Georgia E Hodes
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Fair M Vassoler
- Tufts University, Cummings School of Veterinary Medicine, MA, USA
| | - Jill R Turner
- University of Kentucky, College of Pharmacy, KY, USA.
| |
Collapse
|
16
|
Avchalumov Y, Oliver RJ, Trenet W, Heyer Osorno RE, Sibley BD, Purohit DC, Contet C, Roberto M, Woodward JJ, Mandyam CD. Chronic ethanol exposure differentially alters neuronal function in the medial prefrontal cortex and dentate gyrus. Neuropharmacology 2021; 185:108438. [PMID: 33333103 PMCID: PMC7927349 DOI: 10.1016/j.neuropharm.2020.108438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Alterations in the function of prefrontal cortex (PFC) and hippocampus have been implicated in underlying the relapse to alcohol seeking behaviors in humans and animal models of moderate to severe alcohol use disorders (AUD). Here we used chronic intermittent ethanol vapor exposure (CIE), 21d protracted abstinence following CIE (21d AB), and re-exposure to one vapor session during protracted abstinence (re-exposure) to evaluate the effects of chronic ethanol exposure on basal synaptic function, neuronal excitability and expression of key synaptic proteins that play a role in neuronal excitability in the medial PFC (mPFC) and dentate gyrus (DG). CIE consistently enhanced excitability of layer 2/3 pyramidal neurons in the mPFC and granule cell neurons in the DG. In the DG, this effect persisted during 21d AB. Re-exposure did not enhance excitability, suggesting resistance to vapor-induced effects. Analysis of action potential kinetics revealed that altered afterhyperpolarization, rise time and decay time constants are associated with the altered excitability during CIE, 21d AB and re-exposure. Molecular adaptations that may underlie increases in neuronal excitability under these different conditions were identified. Quantitative polymerase chain reaction of large-conductance potassium (BK) channel subunit mRNA in PFC and DG tissue homogenates did not show altered expression patterns of BK subunits. Western blotting demonstrates enhanced phosphorylation of Ca2⁺/calmodulin-dependent protein kinase II (CaMKII), and reduced phosphorylation of glutamate receptor GluN2A/2B subunits. These results suggest a novel relationship between activity of CaMKII and GluN receptors in the mPFC and DG, and neuronal excitability in these brain regions in the context of moderate to severe AUD.
Collapse
Affiliation(s)
| | | | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | | | | | | | - Candice Contet
- Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, 92037, USA
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, 92037, USA
| | - John J Woodward
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, 92161, USA; Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, 92037, USA; Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA.
| |
Collapse
|
17
|
Somkuwar SS, Villalpando EG, Quach LW, Head BP, McKenna BS, Scadeng M, Mandyam CD. Abstinence from ethanol dependence produces concomitant cortical gray matter abnormalities, microstructural deficits and cognitive dysfunction. Eur Neuropsychopharmacol 2021; 42:22-34. [PMID: 33279357 PMCID: PMC7797163 DOI: 10.1016/j.euroneuro.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/12/2020] [Accepted: 11/07/2020] [Indexed: 12/20/2022]
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence (CIE-PA) produces significant alterations in oligodendrogenesis in the rodent medial prefrontal cortex (mPFC). Specifically, CIE-PA produced an unprecedented increase in premyelinating oligodendroglial progenitor cells and myelin, which have been associated with persistent elevated drinking behaviors during abstinence. The current study used neuroimaging and electron microscopy to evaluate the integrity of enhanced myelin and microstructural deficits underlying enhanced myelination in the mPFC in male rats experiencing forced abstinence for 1 day (D), 7D, 21D and 42D following seven weeks of CIE. In vivo diffusion tensor imaging (DTI) detected altered microstructural integrity in the mPFC and corpus callosum (CC). Altered integrity was characterized as reduced fractional anisotropy (FA) in the CC, and enhanced mean diffusivity (MD) in the mPFC in 7D abstinent rats. Increased MD occurred concomitantly with increases in myelin associated proteins, flayed myelin and enhanced mitochondrial stress in the mPFC in 7D abstinent rats, suggesting that the increases in myelination during abstinence was aberrant. Evaluation of cognitive performance via Pavlovian conditioning in 7D abstinent rats revealed reduced retrieval and recall of fear memories dependent on the mPFC. These findings indicate that forced abstinence from moderate to severe alcohol use disorder produces gray matter damage via myelin dysfunction in the mPFC and that these microstructural changes were associated with deficits in PFC dependent behaviors.
Collapse
Affiliation(s)
| | | | - Leon W Quach
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Brian P Head
- VA San Diego Healthcare System, San Diego, CA 92161, USA; Departments of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Benjamin S McKenna
- Departments of Psychiatry, University of California San Diego, San Diego, CA 92161, USA
| | - Miriam Scadeng
- Departments of Radiology, University of California San Diego, San Diego, CA 92161, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; Departments of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA.
| |
Collapse
|
18
|
Environmental and Nutritional "Stressors" and Oligodendrocyte Dysfunction: Role of Mitochondrial and Endoplasmatic Reticulum Impairment. Biomedicines 2020; 8:biomedicines8120553. [PMID: 33265917 PMCID: PMC7760976 DOI: 10.3390/biomedicines8120553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes are myelinating cells of the central nervous system which are generated by progenitor oligodendrocytes as a result of maturation processes. The main function of mature oligodendrocytes is to produce myelin, a lipid-rich multi-lamellar membrane that wraps tightly around neuronal axons, insulating them and facilitating nerve conduction through saltatory propagation. The myelination process requires the consumption a large amount of energy and a high metabolic turnover. Mitochondria are essential organelles which regulate many cellular functions, including energy production through oxidative phosphorylation. Any mitochondrial dysfunction impacts cellular metabolism and negatively affects the health of the organism. If the functioning of the mitochondria is unbalanced, the myelination process is impaired. When myelination has finished, oligodendrocyte will have synthesized about 40% of the total lipids present in the brain. Since lipid synthesis occurs in the cellular endoplasmic reticulum, the dysfunction of this organelle can lead to partial or deficient myelination, triggering numerous neurodegenerative diseases. In this review, the induced malfunction of oligodendrocytes by harmful exogenous stimuli has been outlined. In particular, the effects of alcohol consumption and heavy metal intake are discussed. Furthermore, the response of the oligodendrocyte to excessive mitochondrial oxidative stress and to the altered regulation of the functioning of the endoplasmic reticulum will be explored.
Collapse
|
19
|
Chatterton BJ, Nunes PT, Savage LM. The Effect of Chronic Ethanol Exposure and Thiamine Deficiency on Myelin-related Genes in the Cortex and the Cerebellum. Alcohol Clin Exp Res 2020; 44:2481-2493. [PMID: 33067870 DOI: 10.1111/acer.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term alcohol consumption has been linked to structural and functional brain abnormalities. Furthermore, with persistent exposure to ethanol (EtOH), nutrient deficiencies often develop. Thiamine deficiency is a key contributor to alcohol-related brain damage and is suspected to contribute to white matter pathology. The expression of genes encoding myelin proteins in several cortical brain regions is altered with EtOH exposure. However, there is limited research regarding the impact of thiamine deficiency on myelin dysfunction. METHODS A rat model was used to assess the impact of moderate chronic EtOH exposure (CET; 20% EtOH in drinking water for 1 or 6 months), pyrithiamine-induced thiamine deficiency treatment (PTD), both conditions combined (CET-PTD), or CET with thiamine injections (CET + T) on myelin-related gene expression (Olig1, Olig2, MBP, MAG, and MOG) in the frontal and parietal cortices and the cerebellum. RESULTS The CET-PTD treatments caused the greatest suppression in myelin-related genes in the cortex. Specifically, the parietal cortex was the region that was most susceptible to PTD-CET-induced alterations in myelin-related genes. In addition, PTD treatment, with and without CET, caused minor fluctuations in the expression of several myelin-related genes in the frontal cortex. In contrast, CET alone and PTD alone suppressed several myelin-related genes in the cerebellum. Regardless of the region, there was significant recovery of myelin-related genes with extended abstinence and/or thiamine restoration. CONCLUSION Moderate chronic EtOH alone had a minor effect on the suppression of myelin-related genes in the cortex; however, when combined with thiamine deficiency, the reduction was amplified. There was a suppression of myelin-related genes following long-term EtOH and thiamine deficiency in the cerebellum. However, the suppression in the myelin-related genes mostly occurred 24 h after EtOH removal or following thiamine restoration; within 3 weeks of abstinence or thiamine recovery, gene expression rebounded.
Collapse
Affiliation(s)
- Bradley J Chatterton
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Polliana T Nunes
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Lisa M Savage
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
20
|
Smith ML, Lopez MF, Wolen AR, Becker HC, Miles MF. Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption. PLoS One 2020; 15:e0233319. [PMID: 32469986 PMCID: PMC7259766 DOI: 10.1371/journal.pone.0233319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022] Open
Abstract
Progressive increases in ethanol consumption is a hallmark of alcohol use disorder (AUD). Persistent changes in brain gene expression are hypothesized to underlie the altered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption. This model has previously been shown to produce long-lasting increased ethanol consumption, particularly when combining oral ethanol access with repeated cycles of intermittent vapor exposure. The interaction of CIE and oral consumption was studied by expression profiling and network analysis in medial prefrontal cortex, nucleus accumbens, hippocampus, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain region expression networks were analyzed for ethanol-responsive gene expression, correlation with ethanol consumption and functional content using extensive bioinformatics studies. In all brain-regions studied the largest number of changes in gene expression were seen when comparing ethanol naïve mice to those exposed to CIE and drinking. In the prefrontal cortex, however, unique patterns of gene expression were seen compared to other brain-regions. Network analysis identified modules of co-expressed genes in all brain regions. The prefrontal cortex and nucleus accumbens showed the greatest number of modules with significant correlation to drinking behavior. Across brain-regions, however, many modules with strong correlations to drinking, both baseline intake and amount consumed after CIE, showed functional enrichment for synaptic transmission and synaptic plasticity.
Collapse
Affiliation(s)
- Maren L. Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Marcelo F. Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aaron R. Wolen
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Howard C. Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States of America
- RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Michael F. Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
21
|
Zahr NM, Lenart AM, Karpf JA, Casey KM, Pohl KM, Sullivan EV, Pfefferbaum A. Multi-modal imaging reveals differential brain volumetric, biochemical, and white matter fiber responsivity to repeated intermittent ethanol vapor exposure in male and female rats. Neuropharmacology 2020; 170:108066. [PMID: 32240669 DOI: 10.1016/j.neuropharm.2020.108066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
A generally accepted framework derived predominately from animal models asserts that repeated cycles of chronic intermittent ethanol (EtOH; CIE) exposure cause progressive brain adaptations associated with anxiety and stress that promote voluntary drinking, alcohol dependence, and further brain changes that contribute to the pathogenesis of alcoholism. The current study used CIE exposure via vapor chambers to test the hypothesis that repeated episodes of withdrawals from chronic EtOH would be associated with accrual of brain damage as quantified using in vivo magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and MR spectroscopy (MRS). The initial study group included 16 male (~325g) and 16 female (~215g) wild-type Wistar rats exposed to 3 cycles of 1-month in vapor chambers + 1 week of abstinence. Half of each group (n = 8) was given vaporized EtOH to blood alcohol levels approaching 250 mg/dL. Blood and behavior markers were also quantified. There was no evidence for dependence (i.e., increased voluntary EtOH consumption), increased anxiety, or an accumulation of pathology. Neuroimaging brain responses to exposure included increased cerebrospinal fluid (CSF) and decreased gray matter volumes, increased Choline/Creatine, and reduced fimbria-fornix fractional anisotropy (FA) with recovery seen after one or more cycles and effects in female more prominent than in male rats. These results show transient brain integrity changes in response to CIE sufficient to induce acute withdrawal but without evidence for cumulative or escalating damage. Together, the current study suggests that nutrition, age, and sex should be considered when modeling human alcoholism.
Collapse
Affiliation(s)
- Natalie M Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA; Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, 94305, USA.
| | - Aran M Lenart
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Joshua A Karpf
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Keriann M Casey
- Department of Comparative Medicine, Stanford University, School of Medicine, Stanford, CA. 94305, USA
| | - Kilian M Pohl
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA; Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Adolf Pfefferbaum
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA; Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
22
|
Nguyen VT, Tieng QM, Mardon K, Zhang C, Chong S, Galloway GJ, Kurniawan ND. Magnetic Resonance Imaging and Micro-Computed Tomography reveal brain morphological abnormalities in a mouse model of early moderate prenatal ethanol exposure. Neurotoxicol Teratol 2019; 77:106849. [PMID: 31838218 DOI: 10.1016/j.ntt.2019.106849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/01/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND This study investigated the effects of early moderate prenatal ethanol exposure (PEE) on the brain in a mouse model that mimics a scenario in humans, whereby moderate daily drinking ceases after a woman becomes aware of her pregnancy. METHODS C57BL/6J pregnant mice were given 10% v/v ethanol from gestational day 0-8 in the drinking water. The male offspring were used for imaging. Anatomical and diffusion Magnetic Resonance Imaging were performed in vivo at postnatal day 28 (P28, adolescence) and P80 (adulthood). Micro-Computed Tomography was performed on fixed whole heads at P80. Tensor-based morphometry (TBM) was applied to detect alterations in brain structure and voxel-based morphometry (VBM) for skull morphology. Diffusion tensor and neurite orientation dispersion and density imaging models were used to detect microstructural changes. Neurofilament (NF) immunohistochemistry was used to validate findings by in vivo diffusion MRI. RESULTS TBM showed that PEE mice exhibited a significantly smaller third ventricle at P28 (family-wise error rate (FWE), p < 0.05). All other macro-structural alterations did not survive FWE corrections but when displayed with an uncorrected p < 0.005 showed multiple regional volume reductions and expansions, more prominently in the right hemisphere. PEE-induced gross volume changes included a bigger thalamus, hypothalamus and ventricles at P28, and bigger total brain volumes at both P28 and P80 (2-sample t-tests). Disproportionately smaller olfactory bulbs following PEE were revealed at both time-points. No alterations in diffusion parameters were detected, but PEE animals exhibited reduced NF positive staining in the thalamus and striatum and greater bone density in various skull regions. CONCLUSION Our results show that early moderate PEE can cause alterations in the brain that are detectable during development and adulthood.
Collapse
Affiliation(s)
- Van T Nguyen
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Quang M Tieng
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; National Imaging Facility, Brisbane, Queensland, Australia
| | - Christine Zhang
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Suyinn Chong
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Graham J Galloway
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia; National Imaging Facility, Brisbane, Queensland, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
23
|
Giacometti LL, Barker JM. Comorbid HIV infection and alcohol use disorders: Converging glutamatergic and dopaminergic mechanisms underlying neurocognitive dysfunction. Brain Res 2019; 1723:146390. [PMID: 31421128 PMCID: PMC6766419 DOI: 10.1016/j.brainres.2019.146390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Alcohol use disorders (AUDs) are highly comorbid with human immunodeficiency virus (HIV) infection, occurring at nearly twice the rate in HIV positive individuals as in the general population. Individuals with HIV who consume alcohol show worse long-term prognoses and may be at elevated risk for the development of HIV-associated neurocognitive disorders. The direction of this relationship is unclear, and likely multifactorial. Chronic alcohol exposure and HIV infection independently promote cognitive dysfunction and further may interact to exacerbate neurocognitive deficits through effects on common targets, including corticostriatal glutamate and dopamine neurotransmission. Additionally, drug and alcohol use is likely to reduce treatment adherence, potentially resulting in accelerated disease progression and subsequent neurocognitive impairment. The development of neurocognitive impairments may further reduce cognitive control over behavior, resulting in escalating alcohol use. This review will examine the complex relationship between HIV infection and alcohol use, highlighting impacts on dopamine and glutamate systems by which alcohol use and HIV act independently and in tandem to alter corticostriatal circuit structure and function to dysregulate cognitive function.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
24
|
Purohit DC, Mandyam AD, Terranova MJ, Mandyam CD. Voluntary wheel running during adolescence distinctly alters running output in adulthood in male and female rats. Behav Brain Res 2019; 377:112235. [PMID: 31521739 DOI: 10.1016/j.bbr.2019.112235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Adult female rats show greater running output compared with age-matched male rats, and the midbrain dopaminergic system may account for behavioral differences in running output. However, it is unknown if the lower running output in adult males can be regulated by wheel running experience during adolescence, and whether wheel running experience during adolescence will diminish the sex differences in running output during adulthood. We therefore determined and compared the exercise output in adult male and female rats that either had initiated voluntary wheel running only during adulthood or during adolescence. Our results demonstrate that running output in adult males were significantly higher when running was initiated during adolescence, and this higher running output was not significantly different from females. Running output did not differ during adulthood in females when wheel running was initiated during adolescence or during adulthood. Higher running output in females was associated with reduced expression of tyrosine hydroxylase and hyperactivation of calcium/calmodulin-dependent protein kinase II (CaMKII) in the dorsal striatum. Notably, running during adolescence-induced higher exercise output in adult males was associated with hyperactivation of CaMKII in the dorsal striatum, indicating a mechanistic role for CaMKII in running output. Together, the present results indicate sexually dimorphic adaptive biochemical changes in the dorsal striatum in rats that had escalated running activity, and highlight the importance of including sex as a biological variable in exploring neuroplasticity changes that predict enhanced exercise output in a voluntary physical activity paradigm.
Collapse
Affiliation(s)
| | - Atulya D Mandyam
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92161, USA
| | | | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, 92161, USA; Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92161, USA.
| |
Collapse
|
25
|
Rice J, Gu C. Function and Mechanism of Myelin Regulation in Alcohol Abuse and Alcoholism. Bioessays 2019; 41:e1800255. [PMID: 31094014 DOI: 10.1002/bies.201800255] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Indexed: 12/26/2022]
Abstract
Excessive alcohol use has adverse effects on the central nervous system (CNS) and can lead to alcohol use disorders (AUDs). Recent studies have suggested that myelin reductions may directly contribute to CNS dysfunctions associated with AUDs. Myelin consists of compact lipid membranes wrapped around axons to provide electrical insulation and trophic support. Regulation of myelin is considered as a new form of neural plasticity due to its profound impacts on the computation of neural networks. In this review, the authors first discuss experimental evidence showing how alcohol exposure causes demyelination in different brain regions, often accompanied by deficits in cognition and emotion. Next, they discuss postulated molecular and cellular mechanisms underlying alcohol's impact on myelin. It is clear that more extensive investigations are needed in this important but underexplored research field in order to gain a better understanding of the myelin-behavior relationship and to develop new treatment strategies for AUDs.
Collapse
Affiliation(s)
- James Rice
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA
| |
Collapse
|
26
|
González-Reimers E, Romero-Acevedo L, Espelosín-Ortega E, Martín-González MC, Quintero-Platt G, Abreu-González P, José de-la-Vega-Prieto M, Martínez-Martínez D, Santolaria-Fernández F. Soluble Klotho and Brain Atrophy in Alcoholism. Alcohol Alcohol 2018; 53:503-510. [PMID: 29846497 DOI: 10.1093/alcalc/agy037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022] Open
Abstract
Aim Fibroblast growth factor (FGF-23) and α-Klotho (Klotho) levels may be altered in inflammatory conditions, possibly as compensatory mechanisms. Klotho exerts a protective effect on neurodegeneration and improves learning and cognition. No data exist about the association of Klotho and FGF-23 levels with brain atrophy observed in alcoholics. The aim of this study is to explore these relationships. Short summary FGF-23 and Klotho levels are altered in inflammation, possibly as compensatory mechanisms. Klotho enhances learning, but its role in ethanol-mediated brain atrophy is unknown. We found higher FGF-23 and lower Klotho levels in 131 alcoholics compared with 41 controls. Among cirrhotics, Klotho was higher and inversely related to brain atrophy. Methods The study was performed on 131 alcoholic patients (54 cirrhotics) and 41 age- and sex-matched controls, in whom a brain computed tomography (CT) was performed and several indices were calculated. Results Marked brain atrophy was observed among patients when compared with controls. Patients also showed higher FGF-23 and lower Klotho values. However, among cirrhotics, Klotho values were higher. Klotho was inversely related to brain atrophy (for instance, ventricular index (ρ = -0.23, P = 0.008)), especially in cirrhotics. Klotho was also directly related to tumor necrosis factor (TNF) alpha (ρ = 0.22; P = 0.026) and inversely to transforming growth factor (TGF)-β (ρ = -0.34; P = 0.002), but not to C-reactive protein (CRP) or malondialdehyde levels. FGF-23 was also higher among cirrhotics but showed no association with CT indices. Conclusions Klotho showed higher values among cirrhotics, and was inversely related to brain atrophy. FGF-23, although high among patients, especially cirrhotics, did not show any association with brain atrophy. Some inflammatory markers or cytokines, such as CRP or TGF-β were related to brain atrophy.
Collapse
Affiliation(s)
| | - Lucía Romero-Acevedo
- Servicio de Medicina Interna, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | - Pedro Abreu-González
- Departamento de Fisiología, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | |
Collapse
|
27
|
Piao C, Li Z, Ding J, Kong D. Analysis of BMSCs-intervened viscoelasticity of sciatic nerve in rats with chronic alcoholic intoxication 1. Acta Cir Bras 2018; 33:935-944. [PMID: 30484503 DOI: 10.1590/s0102-865020180100000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the impact of bone mesenchymal stem cells (BMSCs) intervention on the viscoelasticity of sciatic nerve in rats with chronic alcohol intoxication (CAI). METHODS The CAI rat models were prepared, divided into model groups, and treated with either BMSCs or basic fibroblast growth factor (bFGF). Then the rats underwent electrophysiological test and the serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), and metallothionein (MT) were measured. Histological observation, stress relaxation test, and creep test were performed for the sciatic nerve of the CAI model in each group. RESULTS The MDA level of group BMSC was significantly lower (p<0.05) than that of groups MOD (the CIA model) and bFGF. The SOD and MT levels were higher in group BMSC than in groups MOD and bFGF (p<0.05). The motor nerve conduction velocity and amplitude were higher in group BMSC than in groups MOD and bFGF (p<0.05). The amounts of 7200s stress reduction and 7200 s strain increase of the sciatic nerve in group BMSC were greater than those in groups bFGF and MOD (p<0.05). CONCLUSION Bone mesenchymal stem cells can improve the metabolism of free radicals, restore the tissue morphology and viscoelasticity of the chronic alcohol intoxication animal model, and positively affect the repairing of the injured sciatic nerve.
Collapse
Affiliation(s)
- Chengdong Piao
- PhD, Department of Orthopaedics, Second Hospital of Jilin University, China. Conception and design of the study
| | - Zhengwei Li
- PhD, Department of Orthopaedics, Second Hospital of Jilin University, China. Histopathological examinations
| | - Jie Ding
- Master, Department of Stomatology, Affiliated Hospital of Changchun University of Chinese Medicine, China. Acquisition of data
| | - Daliang Kong
- PhD, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, China. Technical procedures, analysis of data
| |
Collapse
|
28
|
Natividad LA, Steinman MQ, Laredo SA, Irimia C, Polis IY, Lintz R, Buczynski MW, Martin-Fardon R, Roberto M, Parsons LH. Phosphorylation of calcium/calmodulin-dependent protein kinase II in the rat dorsal medial prefrontal cortex is associated with alcohol-induced cognitive inflexibility. Addict Biol 2018; 23:1117-1129. [PMID: 28940879 PMCID: PMC5862723 DOI: 10.1111/adb.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Repeated cycles of alcohol [ethanol (EtOH)] intoxication and withdrawal dysregulate excitatory glutamatergic systems in the brain and induce neuroadaptations in the medial prefrontal cortex (mPFC) that contribute to cognitive dysfunction. The mPFC is composed of subdivisions that are functionally distinct, with dorsal regions facilitating drug-cue associations and ventral regions modulating new learning in the absence of drug. A key modulator of glutamatergic activity is the holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) that phosphorylates ionotropic glutamate receptors. Here, we examined the hypothesis that abstinence from chronic intermittent EtOH (CIE) exposure dysregulates CaMKII activity in the mPFC to impair cognitive flexibility. We used an operant model of strategy set shifting in male Long-Evans rats demonstrating reduced susceptibility to trial omissions during performance in a visual cue-guided task versus albino strains. Relative to naïve controls, rats experiencing approximately 10 days of abstinence from CIE vapor exposure demonstrated impaired performance during a procedural shift from visual cue to spatial location discrimination. Phosphorylation of CaMKII subtype α was upregulated in the dorsal, but not ventral mPFC of CIE-exposed rats, and was positively correlated with perseverative-like responding during the set shift. The findings suggest that abstinence from CIE exposure induces an undercurrent of kinase activity (e.g. CaMKII), which may promote aberrant glutamatergic responses in select regions of the mPFC. Given the role of the mPFC in modulating executive control of behavior, we propose that increased CaMKII subtype α activity reflects a dysregulated 'top-down' circuit that interferes with adaptive behavioral performance under changing environmental demands.
Collapse
Affiliation(s)
| | | | - Sarah A. Laredo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Cristina Irimia
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Ilham Y. Polis
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Robert Lintz
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Matthew W. Buczynski
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, 92037, USA
| | | |
Collapse
|
29
|
Somkuwar SS, Quach LW, Quigley JA, Purohit DC, Fannon MJ, Koob GF, Mandyam CD. Ethanol Reinforcement Elicits Novel Response Inhibition Behavior in a Rat Model of Ethanol Dependence. Brain Sci 2018; 8:brainsci8070119. [PMID: 29949891 PMCID: PMC6070985 DOI: 10.3390/brainsci8070119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/12/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
Lower impulse control is a known risk factor for drug abuse vulnerability. Chronic experience with illicit drugs is suggested to enhance impulsivity and thereby perpetuate addiction. However, the nature of this relationship (directionality, causality) with regard to alcohol use disorder is unclear. The present study tested the hypothesis that higher impulsivity is observed during chronic intermittent ethanol vapor inhalation (CIE; a model of ethanol dependence) and subsequent abstinence from CIE in adult Wistar rats. Impulsivity was tested using a differential reinforcement of low rates 15 s (DRL15) schedule using either nondrug reward (palatable modified sucrose pellets) or sweetened ethanol. A decrease in the efficiency of earning reinforcers (expressed as % reinforcers/responses) is indicative of a decrease in response inhibition or an increase in impulsivity. The efficiency of reinforcement and amount of reinforcers earned were unaltered in CIE and control animals when the reinforcer was sucrose. When the reinforcer was sweetened ethanol, the efficiency of reinforcement increased in CIE rats compared with controls only during protracted abstinence. Responding for sweetened ethanol under a progressive-ratio schedule was more rapid in CIE rats during protracted abstinence. Contrary to the initial hypothesis, impulsivity did not increase in rats with a history of CIE; instead, it decreased when ethanol was used as the reinforcer. Furthermore, although the efficiency of ethanol reinforcement did not differ between CIE and control animals during CIE, CIE rats escalated the amount of sweetened ethanol consumed, suggesting that behavioral adaptations that are induced by CIE in rats that are tested under a DRL15 schedule appear to be targeted toward the maximization of ethanol intake and thus may contribute to escalation and relapse.
Collapse
Affiliation(s)
| | - Leon W Quach
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
| | | | | | | | - George F Koob
- National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
- The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
30
|
A Novel Role for Oligodendrocyte Precursor Cells (OPCs) and Sox10 in Mediating Cellular and Behavioral Responses to Heroin. Neuropsychopharmacology 2018; 43:1385-1394. [PMID: 29260792 PMCID: PMC5916371 DOI: 10.1038/npp.2017.303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Opiate abuse and addiction have become a worldwide epidemic with great societal and financial burdens, highlighting a critical need to understand the neurobiology of opiate addiction. Although several studies have focused on drug-dependent changes in neurons, the role of glia in opiate addiction remains largely unstudied. RNA sequencing pathway analysis from the prefrontal cortex (PFC) of male rats revealed changes in several genes associated with oligodendrocyte differentiation and maturation following heroin self-administration. Among these genes changed was Sox10, which is regulated, in part, by the chromatin remodeler BRG1/SMARCA4. To directly test the functional role of Sox10 in mediating heroin-induced behavioral plasticity, we selectively overexpressed Sox10 and BRG1 in the PFC. Overexpression of either Sox10 or BRG1 decreased the motivation to obtain heroin infusions in a progressive ratio test without altering the acquisition or maintenance of heroin self-administration. These data demonstrate a critical, and perhaps compensatory, role of Sox10 and BRG1 in oligodendrocytes in regulating the motivation for heroin.
Collapse
|
31
|
Varodayan FP, Sidhu H, Kreifeldt M, Roberto M, Contet C. Morphological and functional evidence of increased excitatory signaling in the prelimbic cortex during ethanol withdrawal. Neuropharmacology 2018; 133:470-480. [PMID: 29471053 PMCID: PMC5865397 DOI: 10.1016/j.neuropharm.2018.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption in humans induces deficits in decision making and emotional processing, which indicates a dysfunction of the prefrontal cortex (PFC). The present study aimed to determine the impact of chronic intermittent ethanol (CIE) inhalation on mouse medial PFC pyramidal neurons. Data were collected 6-8 days into withdrawal from 7 weeks of CIE exposure, a time point when mice exhibit behavioral symptoms of withdrawal. We found that spine maturity in prelimbic (PL) layer 2/3 neurons was increased, while dendritic spines in PL layer 5 neurons or infralimbic (IL) neurons were not affected. Corroborating these morphological observations, CIE enhanced glutamatergic transmission in PL layer 2/3 pyramidal neurons, but not IL layer 2/3 neurons. Contrary to our predictions, these cellular alterations were associated with improved, rather than impaired, performance in reversal learning and strategy switching tasks in the Barnes maze at an earlier stage of chronic ethanol exposure (5-7 days withdrawal from 3 to 4 weeks of CIE), which could result from the anxiety-like behavior associated with ethanol withdrawal. Altogether, this study adds to a growing body of literature indicating that glutamatergic activity in the PFC is upregulated following chronic ethanol exposure, and identifies PL layer 2/3 pyramidal neurons as a sensitive target of synaptic remodeling. It also indicates that the Barnes maze is not suitable to detect deficits in cognitive flexibility in CIE-withdrawn mice.
Collapse
Affiliation(s)
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Max Kreifeldt
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA.
| |
Collapse
|
32
|
Miguel-Hidalgo JJ. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders. Front Mol Neurosci 2018; 11:78. [PMID: 29615864 PMCID: PMC5869926 DOI: 10.3389/fnmol.2018.00078] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM) of the prefrontal cortex (PFC) in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs). Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA) metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs) that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and oligodendrocytes not only at the Nodes of Ranvier (NR), but also in gap junction-based astrocyte-oligodendrocyte contacts and other forms of cell-to-cell communication now understood to be critical for the maintenance and formation of myelin. Close interactions between astrocytes and oligodendrocytes also suggest that therapies for alcoholism based on a specific glial cell type pathology will require a better understanding of molecular interactions between different cell types, as well as considering the possibility of using combined molecular approaches for more effective therapies.
Collapse
Affiliation(s)
- José J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
33
|
Platelet Endothelial Cell Adhesion Molecule-1 and Oligodendrogenesis: Significance in Alcohol Use Disorders. Brain Sci 2017; 7:brainsci7100131. [PMID: 29035306 PMCID: PMC5664058 DOI: 10.3390/brainsci7100131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/11/2022] Open
Abstract
Alcoholism is a chronic relapsing disorder with few therapeutic strategies that address the core pathophysiology. Brain tissue loss and oxidative damage are key components of alcoholism, such that reversal of these phenomena may help break the addictive cycle in alcohol use disorder (AUD). The current review focuses on platelet endothelial cell adhesion molecule 1 (PECAM-1), a key modulator of the cerebral endothelial integrity and neuroinflammation, and a targetable transmembrane protein whose interaction within AUD has not been well explored. The current review will elaborate on the function of PECAM-1 in physiology and pathology and infer its contribution in AUD neuropathology. Recent research reveals that oligodendrocytes, whose primary function is myelination of neurons in the brain, are a key component in new learning and adaptation to environmental challenges. The current review briefly introduces the role of oligodendrocytes in healthy physiology and neuropathology. Importantly, we will highlight the recent evidence of dysregulation of oligodendrocytes in the context of AUD and then discuss their potential interaction with PECAM-1 on the cerebral endothelium.
Collapse
|
34
|
Somkuwar SS, Vendruscolo LF, Fannon MJ, Schmeichel B, Nguyen TB, Guevara J, Sidhu H, Contet C, Zorrilla EP, Mandyam CD. Abstinence from prolonged ethanol exposure affects plasma corticosterone, glucocorticoid receptor signaling and stress-related behaviors. Psychoneuroendocrinology 2017; 84. [PMID: 28647675 PMCID: PMC5557646 DOI: 10.1016/j.psyneuen.2017.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alcohol dependence is linked to dysregulation of the hypothalamic-pituitary-adrenal axis. Here, we investigated effects of repeated ethanol intoxication-withdrawal cycles (using chronic intermittent ethanol vapor inhalation; CIE) and abstinence from CIE on peak and nadir plasma corticosterone (CORT) levels. Irritability- and anxiety-like behaviors as well as glucocorticoid receptors (GR) in the medial prefrontal cortex (mPFC) were assessed at various intervals (2h-28d) after cessation of CIE. Results show that peak CORT increased during CIE, transiently decreased during early abstinence (1-11d), and returned to pre-abstinence levels during protracted abstinence (17-27d). Acute withdrawal from CIE enhanced aggression- and anxiety-like behaviors. Early abstinence from CIE reduced anxiety-like behavior. mPFC-GR signaling (indexed by relative phosphorylation of GR at Ser211) was transiently decreased when measured at time points during early and protracted abstinence. Further, voluntary ethanol drinking in CIE (CIE-ED) and CIE-naïve (ED) rats, and effects of CIE-ED and ED on peak CORT levels and mPFC-GR were investigated during acute withdrawal (8h) and protracted abstinence (28d). CIE-ED and ED increased peak CORT during drinking. CIE-ED and ED decreased expression and signaling of mPFC-GR during acute withdrawal, an effect that was reversed by systemic mifepristone treatment. CIE-ED and ED demonstrate robust reinstatement of ethanol seeking during protracted abstinence and show increases in mPFC-GR expression. Collectively, the data demonstrate that acute withdrawal from CIE produces robust alterations in GR signaling, CORT and negative affect symptoms which could facilitate excessive drinking. The findings also show that CIE-ED and ED demonstrate enhanced relapse vulnerability triggered by ethanol cues and these changes are partially mediated by altered GR expression in the mPFC. Taken together, transition to alcohol dependence could be accompanied by alterations in mPFC stress-related pathways that may increase negative emotional symptoms and increase vulnerability to relapse.
Collapse
Affiliation(s)
| | | | | | - Brooke Schmeichel
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Tran Bao Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | | | - Harpreet Sidhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA,Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Anesthesiology, University of California San Diego, CA, USA
| |
Collapse
|
35
|
Somkuwar SS, Fannon-Pavlich MJ, Ghofranian A, Quigley JA, Dutta RR, Galinato MH, Mandyam CD. Wheel running reduces ethanol seeking by increasing neuronal activation and reducing oligodendroglial/neuroinflammatory factors in the medial prefrontal cortex. Brain Behav Immun 2016; 58:357-368. [PMID: 27542327 PMCID: PMC5067224 DOI: 10.1016/j.bbi.2016.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/26/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
The therapeutic effects of wheel running (WR) during abstinence on reinstatement of ethanol seeking behaviors in rats that self-administered ethanol only (ethanol drinking, ED) or ED with concurrent chronic intermittent ethanol vapor experience (CIE-ED) were investigated. Neuronal activation as well as oligodendroglial and neuroinflammatory factors were measured in the medial prefrontal cortex (mPFC) tissue to determine cellular correlates associated with enhanced ethanol seeking. CIE-ED rats demonstrated escalated and unregulated intake of ethanol and maintained higher drinking than ED rats during abstinence. CIE-ED rats were more resistant to extinction from ethanol self-administration, however, demonstrated similar ethanol seeking triggered by ethanol contextual cues compared to ED rats. Enhanced seeking was associated with reduced neuronal activation, and increased number of myelinating oligodendrocyte progenitors and PECAM-1 expression in the mPFC, indicating enhanced oligodendroglial and neuroinflammatory response during abstinence. WR during abstinence enhanced self-administration in ED rats, indicating a deprivation effect. WR reduced reinstatement of ethanol seeking in CIE-ED and ED rats, indicating protection against relapse. The reduced ethanol seeking was associated with enhanced neuronal activation, reduced number of myelinating oligodendrocyte progenitors, and reduced PECAM-1 expression. The current findings demonstrate a protective role of WR during abstinence in reducing ethanol seeking triggered by ethanol contextual cues and establish a role for oligodendroglia-neuroinflammatory response in ethanol seeking. Taken together, enhanced oligodendroglia-neuroinflammatory response during abstinence may contribute to brain trauma in chronic alcohol drinking subjects and be a risk factor for enhanced propensity for alcohol relapse.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - McKenzie J Fannon-Pavlich
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Atoosa Ghofranian
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Jacqueline A Quigley
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Rahul R Dutta
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa H Galinato
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
36
|
Ayers-Ringler JR, Jia YF, Qiu YY, Choi DS. Role of astrocytic glutamate transporter in alcohol use disorder. World J Psychiatry 2016; 6:31-42. [PMID: 27014596 PMCID: PMC4804266 DOI: 10.5498/wjp.v6.i1.31] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/18/2015] [Accepted: 01/11/2016] [Indexed: 02/05/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD.
Collapse
|
37
|
Collins MA, Neafsey EJ. Alcohol, Excitotoxicity and Adult Brain Damage: An Experimentally Unproven Chain-of-Events. Front Mol Neurosci 2016; 9:8. [PMID: 26903800 PMCID: PMC4748059 DOI: 10.3389/fnmol.2016.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Michael A Collins
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago Maywood, IL, USA
| | - Edward J Neafsey
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago Maywood, IL, USA
| |
Collapse
|
38
|
Burnett EJ, Chandler LJ, Trantham-Davidson H. Glutamatergic plasticity and alcohol dependence-induced alterations in reward, affect and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:309-20. [PMID: 26341050 PMCID: PMC4679411 DOI: 10.1016/j.pnpbp.2015.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/29/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Alcohol dependence is characterized by a reduction in reward threshold, development of a negative affective state, and significant cognitive impairments. Dependence-induced glutamatergic neuroadaptations in the neurocircuitry mediating reward, affect and cognitive function are thought to underlie the neural mechanism for these alterations. These changes serve to promote increased craving for alcohol and facilitate the development of maladaptive behaviors that promote relapse to alcohol drinking during periods of abstinence. OBJECTIVE To review the extant literature on the effects of chronic alcohol exposure on glutamatergic neurotransmission and its impact on reward, affect and cognition. RESULTS Evidence from a diverse set of studies demonstrates significant enhancement of glutamatergic activity following chronic alcohol exposure. In particular, up-regulation of GluN2B-containing NMDA receptor expression and function is a commonly observed phenomenon that likely reflects activity-dependent adaptive homeostatic plasticity. However, this observation as well as other glutamatergic neuroadaptations are often circuit and cell-type specific. DISCUSSION Dependence-induced alterations in glutamate signaling contribute to many of the symptoms experienced in addicted individuals and can persist well into abstinence. This suggests that they play an important role in the development of behaviors that increase the probability for relapse. As our understanding of the complexity of the neurocircuitry involved in the addictive process has advanced, it has become increasingly clear that investigations of cell-type and circuit-specific effects are required to gain a more comprehensive understanding of the glutamatergic adaptations and their functional consequences in alcohol addiction. CONCLUSION While pharmacological treatments for alcohol dependence and relapse targeting the glutamatergic system have shown great promise in preclinical models, more research is needed to uncover novel, possibly circuit-specific, therapeutic targets that exhibit improved efficacy and reduced side effects.
Collapse
Affiliation(s)
- Elizabeth J Burnett
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425.
| | | | | |
Collapse
|
39
|
Alcohol dependence-induced regulation of the proliferation and survival of adult brain progenitors is associated with altered BDNF-TrkB signaling. Brain Struct Funct 2015; 221:4319-4335. [PMID: 26659122 DOI: 10.1007/s00429-015-1163-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
Abstract
Effects of withdrawal from ethanol drinking in chronic intermittent ethanol vapor (CIE)-exposed dependent rats and air-exposed nondependent rats on proliferation and survival of progenitor cells in the hippocampus and the medial prefrontal cortex (mPFC) were investigated. Rats were injected with 5'-Bromo 2-deoxyuridine 72 h post-CIE to measure proliferation (2 h-old cells) and survival (29-day-old cells) of progenitors born during a time-point previously reported to elicit a proliferative burst in the hippocampus. Hippocampal and mPFC brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B receptor (TrkB) expression were measured 3 h or 21d post-CIE to evaluate neurotrophic signaling during a time point preceding the proliferative burst and survival of newly born progenitors. CIE rats demonstrated elevated drinking compared to nondependent rats and CIE rats maintained elevated drinking following protracted abstinence. Withdrawal from CIE increased BDNF levels in the hippocampus and mPFC, and subsequently increased proliferation in the hippocampus and mPFC compared to nondependent rats and controls. Protracted abstinence from CIE reduced BDNF expression to control levels, and subsequently reduced neurogenesis compared to controls and nondependent rats in the hippocampus. In the mPFC, protracted abstinence reduced BDNF expression to control levels, whereas increased oligodendrogenesis in dependent rats compared to nondependent rats and controls. These results suggest a novel relationship between BDNF and progenitors in the hippocampus and mPFC, in which increased ethanol drinking may alter hippocampal and cortical function in alcohol dependent subjects by altering the cellular composition of newly born progenitors in the hippocampus and mPFC.
Collapse
|
40
|
Staples MC, Somkuwar SS, Mandyam CD. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats. Neuroscience 2015. [PMID: 26220171 DOI: 10.1016/j.neuroscience.2015.07.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects.
Collapse
Affiliation(s)
- M C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - S S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - C D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|