1
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
3
|
Agircan D, Parlak TM, Tufan O, Demircioglu M, Dik B. Neuroprotective Effects of Bexarotene and Icariin in a Diabetic Rat Model. Cureus 2024; 16:e68238. [PMID: 39347352 PMCID: PMC11439453 DOI: 10.7759/cureus.68238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM), a chronic metabolic disorder affecting over 400 million people globally, is increasingly recognized for its detrimental impact on the central nervous system. T2DM is linked to neurodegenerative diseases like Alzheimer's and vascular dementia. This study investigates the neuroprotective effects of bexarotene and icariin in a T2DM rat model, focusing on brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and neurofilament-light chain (NfL) levels. Methods Before the study, rats underwent fasting blood glucose tests, lipid profile assessments, and general health evaluations, followed by a high-fat diet for two weeks and a single streptozotocin dose (35 mg/kg). Rats with fasting blood glucose levels ≥250 mg/dl were classified as diabetes mellitus (DM) and continued on the high-fat diet throughout the experiment. Forty-seven male Wistar Albino rats were divided into six groups: a healthy control group, a DM control group, a DM group treated with bexarotene, a DM group treated with icariin, and two DM groups treated with combinations of low and high doses of bexarotene and icariin. After the 45-day treatment, blood samples were collected under thiopental sodium anesthesia, with HbA1c (glycosylated hemoglobin) and hematological parameters analyzed within eight hours, and serum stored at -80°C for further analysis. The animals were then euthanized, and brain tissues were harvested, frozen, and stored at -80°C until further examination. Brain tissues were analyzed for BDNF, GFAP, and NfL levels using ELISA (enzyme-linked immunosorbent assay). For comparing multiple groups, the Kruskal-Wallis test was applied to nonparametric data, and one-way ANOVA was used for parametric data, followed by Bonferroni's post hoc test for pairwise comparisons. Statistical significance was determined with two-tailed tests at p < 0.05. Results Significant changes in GFAP levels were observed across groups (p < 0.001). The DM control group showed the highest GFAP levels, while treatment groups exhibited reductions. The DM control group also showed the highest BDNF levels, while treatment groups exhibited reductions. The DM control group showed the lowest NfL levels, while treatment groups exhibited increments. Conclusion This study highlights the neuroprotective potential of bexarotene and icariin in a diabetic rat model, evidenced by significant changes in GFAP levels. The lack of significant changes in BDNF and NfL suggests that longer study durations may be necessary to observe these effects. Future research should include extended study periods, larger sample sizes, varied dosages, and comprehensive behavioral assessments to better understand the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Dilek Agircan
- Department of Neurology, Faculty of Medicine, Harran University, Sanlıurfa, TUR
| | - Tugba Melike Parlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| | - Oznur Tufan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| | - Muhammed Demircioglu
- Department of Histology and Embryology, Institute of Health Sciences, Dicle University, Diyarbakir, TUR
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| |
Collapse
|
4
|
Zhang C, Wei C, Huang X, Hou C, Liu C, Zhang S, Zhao Z, Liu Y, Zhang R, Zhou L, Li Y, Yuan X, Zhang J. MPC-n (IgG) improves long-term cognitive impairment in the mouse model of repetitive mild traumatic brain injury. BMC Med 2023; 21:199. [PMID: 37254196 DOI: 10.1186/s12916-023-02895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited. METHODS We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug. RESULTS Our results demonstrated that MPC-capsuled immunoglobulins (MPC-n (IgG)) significantly alleviated cognitive impairment, hippocampal atrophy, p-Tau deposition, and myelin injury in rmTBI mice compared with free IgG. Furthermore, MPC-n (IgG) can also effectively inhibit the activation of microglia and the release of inflammatory factors. CONCLUSIONS In the present study, we put forward an efficient strategy for the treatment of rmTBI-related cognitive impairment and provide evidence for the administration of low-dose IgG.
Collapse
Affiliation(s)
- Chaonan Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingqi Huang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changxin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chuan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zilong Zhao
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yafan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruiguang Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Zhou
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
5
|
Neuroblasts migration under control of reactive astrocyte-derived BDNF: a promising therapy in late neurogenesis after traumatic brain injury. Stem Cell Res Ther 2023; 14:2. [PMID: 36600294 DOI: 10.1186/s13287-022-03232-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a disease with high mortality and morbidity, which leads to severe neurological dysfunction. Neurogenesis has provided therapeutic options for treating TBI. Brain derived neurotrophic factor (BDNF) plays a key role in neuroblasts migration. We aimed to investigate to the key regulating principle of BDNF in endogenous neuroblasts migration in a mouse TBI model. METHODS In this study, controlled cortical impact (CCI) mice (C57BL/6J) model was established to mimic TBI. The sham mice served as control. Immunofluorescence staining and enzyme-linked immunosorbent assay were performed on the CCI groups (day 1, 3, 7, 14 and 21 after CCI) and the sham group. All the data were analyzed with Student's t-test or one-way or two-way analysis of variance followed by Tukey's post hoc test. RESULTS Our results revealed that neuroblasts migration initiated as early as day 1, peaking at day 7, and persisted till day 21. The spatiotemporal profile of BDNF expression was similar to that of neuroblasts migration, and BDNF level following CCI was consistently higher in injured cortex than in subventricular zone (SVZ). Reactive astrocytes account for the major resource of BDNF along the migrating path, localized with neuroblasts in proximity. Moreover, injection of exogenous CC chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, at random sites promoted neuroblasts migration and astrocytic BDNF expression in both normal and CCI mice (day 28). These provoked neuroblasts can also differentiate into mature neurons. CC chemokine ligand receptor 2 antagonist can restrain the neuroblasts migration after TBI. CONCLUSIONS Neuroblasts migrated along the activated astrocytic tunnel, directed by BDNF gradient between SVZ and injured cortex after TBI. CCL2 might be a key regulator in the above endogenous neuroblasts migration. Moreover, delayed CCL2 administration may provide a promising therapeutic strategy for late neurogenesis post-trauma.
Collapse
|
6
|
Chen P, Lin MH, Li YX, Huang ZJ, Rong YY, Lin QS, Ye ZC. Bexarotene enhances astrocyte phagocytosis via ABCA1-mediated pathways in a mouse model of subarachnoid hemorrhage. Exp Neurol 2022; 358:114228. [PMID: 36108713 DOI: 10.1016/j.expneurol.2022.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND PURPOSE Enhancing phagocytosis can facilitate the removal of inflammatory molecules, limit the toxicity of dead cells and debris, and promote recovery after brain injury. In this study, we aimed to explore the role of bexarotene (Bex), a retinoid X receptor (RXR) agonist, in promoting astrocyte phagocytosis and neurobehavioral recovery after subarachnoid hemorrhage (SAH). METHODS Mice SAH model was induced by pre-chiasmatic injection of blood. Modified Garcia score, novel object recognition, rotarod test, and Morris water maze were performed to assess neurological function. Immunofluorescence and electron microscopy were used to evaluate astrocyte phagocytosis in vivo. In addition, ABCA1/MEGF10&GULP1, the primary astrocyte phagocytosis pathway, were stimulated by Bex or suppressed by HX531 (a RXR antagonist) to evaluate their impacts on astrocyte phagocytosis and neurological recovery. RESULTS Astrocytes phagocytosis of blood components were observed in mice after SAH induction, which is further increased by Bex treatment. Bex dramatically attenuated neuroinflammation, reduced brain edema, improved early neurological performance and promoted neurocognitive recovery. Meanwhile, Bex decreased neurotoxic reactive astrocytes and preserved neurogenesis after SAH. Bex increased the expression of astrocyte phagocytosis-related proteins ABCA1, MEGF10, and GULP1. Bex also increased the lysosomal processing of engulfed blood components in astrocytes. Moreover, Bex significantly promoted astrocytes to phagocytize debris in vitro by increasing the expression of ABCA1, MEGF10 and GULP1, while HX531 inhibited astrocyte phagocytosis and decreased these protein levels. CONCLUSIONS Bex enhanced astrocyte phagocytosis through the ABCA1-mediated pathways, and promoted neurobehavior recovery in mice after SAH induction.
Collapse
Affiliation(s)
- Ping Chen
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, China
| | - Mou-Hui Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, China
| | - Yu-Xi Li
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, China
| | - Zhi-Jie Huang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, China
| | - Yu-You Rong
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, China
| | - Qing-Song Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Zu-Cheng Ye
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, China.
| |
Collapse
|
7
|
Fesharaki-Zadeh A. Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232113000. [PMID: 36361792 PMCID: PMC9657447 DOI: 10.3390/ijms232113000] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI) remains a major cause of disability worldwide. It involves a complex neurometabolic cascade, including oxidative stress. The products of this manuscript is examining the underlying pathophysiological mechanism, including reactive oxygen species (ROS) and reactive nitrogen species (RNS). This process in turn leads to secondary injury cascade, which includes lipid peroxidation products. These reactions ultimately play a key role in chronic inflammation and synaptic dysfunction in a synergistic fashion. Although there are no FDA approved antioxidant therapy for TBI, there is a number of antioxidant therapies that have been tested and include free radical scavengers, activators of antioxidant systems, inhibitors of free radical generating enzymes, and antioxidant enzymes. Antioxidant therapies have led to cognitive and functional recovery post TBI, and they offer a promising treatment option for patients recovering from TBI. Current major challenges in treatment of TBI symptoms include heterogenous nature of injury, as well as access to timely treatment post injury. The inherent benefits of antioxidant therapies include minimally reported side effects, and relative ease of use in the clinical setting. The current review also provides a highlight of the more studied anti-oxidant regimen with applicability for TBI treatment with potential use in the real clinical setting.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Yale School of Medicine, Department of Neurology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Xu H, Zheng LX, Chen XS, Pang QY, Yan YN, Liu R, Guo HM, Ren ZY, Yang Y, Gu ZY, Gao C, Gao Y, Luo CL, Zhao Y, Wang Y, Wang T, Tao LY. Brain-specific loss of Abcg1 disturbs cholesterol metabolism and aggravates pyroptosis and neurological deficits after traumatic brain injury. Brain Pathol 2022; 33:e13126. [PMID: 36271611 PMCID: PMC10154369 DOI: 10.1111/bpa.13126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Based on accumulating evidence, cholesterol metabolism dysfunction has been suggested to contribute to the pathophysiological process of traumatic brain injury (TBI) and lead to neurological deficits. As a key transporter of cholesterol that efflux from cells, the ATP-binding cassette (ABC) transporter family exerts many beneficial effects on central nervous system (CNS) diseases. However, there is no study regarding the effects and mechanisms of ABCG1 on TBI. As expected, TBI resulted in the different time-course changes of cholesterol metabolism-related molecules in the injured cortex. Considering ABCG1 is expressed in neuron and glia post-TBI, we generated nestin-specific Abcg1 knockout (Abcg1-KO) mice using the Cre/loxP recombination system. These Abcg1-KO mice showed reduced plasma high-density lipoprotein cholesterol levels and increased plasma lower-density lipoprotein cholesterol levels under the base condition. After TBI, these Abcg1-KO mice were susceptible to cholesterol metabolism turbulence. Moreover, Abcg1-KO exacerbated TBI-induced pyroptosis, apoptosis, neuronal cell insult, brain edema, neurological deficits, and brain lesion volume. Importantly, we found that treating with retinoid X receptor (RXR, the upstream molecule of ABCG1) agonist, bexarotene, in Abcg1-KO mice partly rescued TBI-induced neuronal damages mentioned above and improved functional deficits versus vehicle-treated group. These data show that, in addition to regulating brain cholesterol metabolism, Abcg1 improves neurological deficits through inhibiting pyroptosis, apoptosis, neuronal cell insult, and brain edema. Moreover, our findings demonstrate that the cerebroprotection of Abcg1 on TBI partly relies on the activation of the RXRalpha/PPARgamma pathway, which provides a potential therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Le-Xin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Xue-Shi Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qiu-Yu Pang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ya-Nan Yan
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Rong Liu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Han-Mu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Zhi-Yang Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yan Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Zhi-Ya Gu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Cheng-Liang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Lu-Yang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Hung SY, Chung HY, Luo ST, Chu YT, Chen YH, MacDonald IJ, Chien SY, Kotha P, Yang LY, Hwang LL, Dun NJ, Chuang DM, Chen YH. Electroacupuncture improves TBI dysfunction by targeting HDAC overexpression and BDNF-associated Akt/GSK-3β signaling. Front Cell Neurosci 2022; 16:880267. [PMID: 36016833 PMCID: PMC9396337 DOI: 10.3389/fncel.2022.880267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Acupuncture or electroacupuncture (EA) appears to be a potential treatment in acute clinical traumatic brain injury (TBI); however, it remains uncertain whether acupuncture affects post-TBI histone deacetylase (HDAC) expression or impacts other biochemical/neurobiological events. Materials and methods We used behavioral testing, Western blot, and immunohistochemistry analysis to evaluate the cellular and molecular effects of EA at LI4 and LI11 in both weight drop-impact acceleration (WD)- and controlled cortical impact (CCI)-induced TBI models. Results Both WD- and CCI-induced TBI caused behavioral dysfunction, increased cortical levels of HDAC1 and HDAC3 isoforms, activated microglia and astrocytes, and decreased cortical levels of BDNF as well as its downstream mediators phosphorylated-Akt and phosphorylated-GSK-3β. Application of EA reversed motor, sensorimotor, and learning/memory deficits. EA also restored overexpression of HDAC1 and HDAC3, and recovered downregulation of BDNF-associated signaling in the cortex of TBI mice. Conclusion The results strongly suggest that acupuncture has multiple benefits against TBI-associated adverse behavioral and biochemical effects and that the underlying mechanisms are likely mediated by targeting HDAC overexpression and aberrant BDNF-associated Akt/GSK-3 signaling.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Sih-Ting Luo
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Ting Chu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Hsin Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Iona J. MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Peddanna Kotha
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nae J. Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States
| | - De-Maw Chuang
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
- *Correspondence: Yi-Hung Chen,
| |
Collapse
|
10
|
Singh L, Kaur L, Singh G, Dhawan RK, Kaur M, Kaur N, Singh P. Determination of Alteration in Micromeritic Properties of a Solid Dispersion: Brunauer-Emmett-Teller Based Adsorption and Other Structured Approaches. AAPS PharmSciTech 2022; 23:209. [PMID: 35902454 PMCID: PMC9333898 DOI: 10.1208/s12249-022-02367-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
The present study is focused on the use of solid dispersion technology to triumph over the solubility-related problems of bexarotene which is currently used for treating various types of cancer and has shown potential inhibitory action on COVID-19 main protease and human ACE2 receptors. It is based on comparison of green locust bean gum and synthetic poloxamer as polymers using extensive mechanistic methods to explore the mechanism behind solubility enhancement and to find suitable concentration of drug to polymer ratio to prepare porous 3rd generation solid dispersion. The prepared solid dispersions were characterized using different studies like X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), differential scanning calorimetry (DSC), and particle size analysis in order to determine the exact changes occurred in the product which are responsible for enhancing solubility profiles of an insoluble drug. The results showed different profiles for particle size, solubility, dissolution rate, porosity, BET, and Langmuir specific surface area of prepared solid dispersions by using different polymers. In addition to the comparison of polymers, the BET analysis deeply explored the changes occurred in all dispersions when the concentration of polymer was increased. The optimized solid dispersion prepared with MLBG using lyophilization technique showed reduced particle size of 745.7±4.4 nm, utmost solubility of 63.97%, pore size of 211.597 Å, BET and Langmuir specific surface area of 5.6413 m2/g and 8.2757 m2/g, respectively.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
| | - Lakhvir Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India.
| | - Gurjeet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
| | - R K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
| | - Manjeet Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
| | - Navdeep Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143001, India
| | - Prabhpreet Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143001, India
| |
Collapse
|
11
|
Bahceli O, Pinar Seno S, Temiz-Resi M, Furkan Hor M, Sahan-Fira S, Tunctan B. Bexarotene Ameliorates LPS-Induced Hyperalgesia: Contribution of TLR4/MyD88-Dependent Pro-Inflammatory, Anti-Apoptotic and Anti-Inflammatory Signaling Pathways. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1171.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
The lncRNA-AK046375 Upregulates Metallothionein-2 by Sequestering miR-491-5p to Relieve the Brain Oxidative Stress Burden after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8188404. [PMID: 35222805 PMCID: PMC8865981 DOI: 10.1155/2022/8188404] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/08/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
We previously discovered that traumatic brain injury (TBI) induces significant perturbations in long noncoding RNA (lncRNA) levels in the mouse cerebral cortex, and lncRNA-AK046375 is one of the most significantly changed lncRNAs after TBI. lncRNA-AK046375 overexpression and knockdown models were successfully constructed both in vitro and in vivo. In cultured primary cortical neurons and astrocytes, lncRNA-AK046375 sequestered miR-491-5p, thereby enhancing the expression of metallothionein-2 (MT2), which ameliorated oxidative-induced cell injury. In addition, upregulated lncRNA-AK046375 promoted the recovery of motor, learning, and memory functions after TBI in C57BL/6 mice, and the underlying mechanism may be related to ameliorated apoptosis, inhibited oxidative stress, reduced brain edema, and relieved loss of tight junction proteins at the blood-brain barrier in the mouse brain. Therefore, we conclude that lncRNA-AK046375 enhances MT2 expression by sequestering miR-491-5p, ultimately strengthening antioxidant activity, which ameliorates neurological deficits post-TBI.
Collapse
|
13
|
Huang XJ, Su GJ, Wu CW, Sha XS, Zou JF, Liu XS, Li M, He Y. Knockdown of rno_circRNA_009194 Improves Outcomes in Traumatic Brain Injury Rats through Inhibiting Voltage-Gated Sodium Channel Nav1.3. J Neurotrauma 2021; 39:196-210. [PMID: 34726508 DOI: 10.1089/neu.2020.7520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive activation of voltage-gated sodium channel Nav1.3 has been recently reported in secondary traumatic brain injury (TBI). However, the molecular mechanisms underlying regulating voltage-gated sodium channel (Nav1.3) have not been well understood. The present study used a TBI rat model induced by a fluid percussion device and performed a circular RNA (circRNA) microarray (n = 3) to profile the altered circRNAs in the hippocampus after TBI. After polymerase chain reaction (PCR) validation, certain circRNAs were selected to investigate the function and mechanism in regulating Nav1.3 in the TBI rat model by intracerebroventricular injection with lentivirus. The neurological outcome was evaluated by Morris water maze test, modified Neurological Severity Score (mNSS), brain water content measurement, and hematoxylin and eosin staining. The related molecular mechanisms were explored with PCR, Western blotting, luciferase reporter, chromatin immunoprecipitation assay, and electrophoretic mobility shift assay (EMSA). A total of 347 circRNAs were observed to be differentially expressed (fold change [FC] ≥ 1.2 and p < 0.05) after TBI, including 234 up-regulated and 113 down-regulated circRNAs. Among 10 validated circRNAs, we selected circRNA_009194 with the maximized up-regulated fold change (n = 5, FC = 4.45, p < 0.001) for the in vivo functional experiments. Down-regulation of circRNA_009194 resulted in a 27.5% reduced mNSS in rat brain (n = 6, p < 0.01) after TBI and regulated the expression levels of miR-145-3p, Sp1, and Nav1.3, which was reversed by sh-miR-145-3p or Sp1/Nav1.3 overexpression (n = 5, p < 0.05). Mechanistically, circRNA_009194 might act as a sponge for miR-145-3p to regulate Sp1-mediated Nav1.3. This study demonstrated that circRNA_009194 knockdown could improve neurological outcomes in TBI in vivo by inhibiting Nav1.3, directly or indirectly.
Collapse
Affiliation(s)
- Xian-Jian Huang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Gao-Jian Su
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Chu-Wei Wu
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Song Sha
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jun-Feng Zou
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xian-Sheng Liu
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Min Li
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yun He
- Department of Intensive Care Unit, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Zhang J, Lin L, Dai X, Xiao N, Ye Q, Chen X. ApoE4 increases susceptibility to stress-induced age-dependent depression-like behavior and cognitive impairment. J Psychiatr Res 2021; 143:292-301. [PMID: 34530340 DOI: 10.1016/j.jpsychires.2021.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/01/2023]
Abstract
Though apolipoprotein E ε4 (APOE ε4) is a major genetic risk factor for late-onset Alzheimer's disease, its association with depression remains controversial. In present study, 3-month-old and 8-month-old apoE-targeted replacement (TR) mice were both subjected to chronic unpredictable mild stress (CUMS) for six weeks. The results showed that 8-month apoE4-TR mice were more susceptible to the CUMS-induced depression-like behaviors and cognitive impairment than age-matched apoE3-TR mice. Stress induced a loss of GABAergic neurons and decline of Reelin level in the prefrontal cortex (PFC) and in the dentate gyrus (DG) of the hippocampus in both 3-month-old and 8-month-old apoE-TR mice, which were more pronounced in the 8-month-old apoE4-TR mice. Of note, stress decreased the level of PSD95 in the hippocampal synaptosome and increased the phosphorylation of N-methyl-D-aspartate receptor subunit GluN2B in the hippocampus of 8-month-old apoE4-TR mice. However, the expressions of apoE and apoE receptor 2 (apoER2) were not affected by stress. The study provides rodent evidence that APOE ε4 may increase the risk of depression and dementia in the elderly population by impairing the GABAergic signaling pathway and enhancing the GluN2B phosphorylation, which signifies that GluN2B inhibitors in clinical settings may be effective for elderly depression patients with APOE4 carriers.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Lanyan Lin
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China; Department of Geriatrics, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou, Fujian, 350001, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Nai'an Xiao
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
15
|
Chen M, Lai X, Wang X, Ying J, Zhang L, Zhou B, Liu X, Zhang J, Wei G, Hua F. Long Non-coding RNAs and Circular RNAs: Insights Into Microglia and Astrocyte Mediated Neurological Diseases. Front Mol Neurosci 2021; 14:745066. [PMID: 34675776 PMCID: PMC8523841 DOI: 10.3389/fnmol.2021.745066] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Microglia and astrocytes maintain tissue homeostasis in the nervous system. Both microglia and astrocytes have pro-inflammatory phenotype and anti-inflammatory phenotype. Activated microglia and activated astrocytes can contribute to several neurological diseases. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two groups of non-coding RNAs (ncRNAs), can function as competing endogenous RNAs (ceRNAs) to impair the microRNA (miRNA) inhibition on targeted messenger RNAs (mRNAs). LncRNAs and circRNAs are involved in various neurological disorders. In this review, we summarized that lncRNAs and circRNAs participate in microglia dysfunction, astrocyte dysfunction, neuron damage, and inflammation. Thereby, lncRNAs and circRNAs can positively or negatively regulate neurological diseases, including spinal cord injury (SCI), traumatic brain injury (TBI), ischemia-reperfusion injury (IRI), stroke, neuropathic pain, epilepsy, Parkinson’s disease (PD), multiple sclerosis (MS), and Alzheimer’s disease (AD). Besides, we also found a lncRNA/circRNA-miRNA-mRNA regulatory network in microglia and astrocyte mediated neurological diseases. Through this review, we hope to cast light on the regulatory mechanisms of lncRNAs and circRNAs in microglia and astrocyte mediated neurological diseases and provide new insights for neurological disease treatment.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, China
| | - Xingning Lai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
16
|
Kryczyk-Poprawa A, Zupkó I, Bérdi P, Żmudzki P, Piotrowska J, Pękala E, Berdys A, Muszyńska B, Opoka W. Photodegradation of Bexarotene and Its Implication for Cytotoxicity. Pharmaceutics 2021; 13:pharmaceutics13081220. [PMID: 34452181 PMCID: PMC8401567 DOI: 10.3390/pharmaceutics13081220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
A detailed understanding of the stability of an active pharmaceutical ingredient and a pharmaceutical dosage form is essential for the drug-development process and for safe and effective use of medicines. Photostability testing as an inherent part of stability studies provides valuable knowledge on degradation pathways and structures of products generated under UV irradiation. Photostability is particularly important for topically administered drugs, as they are more exposed to UV radiation. Bexarotene is a more recent third-generation retinoid approved by the U.S. Food and Drug Administration and the European Medicines Agency as a topically applied anticancer agent. The present study aimed to assess bexarotene photostability, including the presence of UV filters, which have been permitted to be used in cosmetic products in Europe and the USA. The bexarotene photostability testing was performed in ethanol solutions and in formulations applied on PMMA plates. The UPLC-MS/MS technique was used to determine the tested substance. The presence of photocatalysts such as TiO2 or ZnO, as well as the organic UV filters avobenzone, benzophenone-3, meradimate, and homosalate, could contribute to degradation of bexarotene under UV irradiation. Four photocatalytic degradation products of bexarotene were identified for the first time. The antiproliferative properties of the degradation products of bexarotene were assessed by MTT assay on a panel of human adherent cancer cells, and concentration-dependent growth inhibition was evidenced on all tested cell lines. The cytotoxicity of the formed products after 4 h of UV irradiation was significantly higher than that of the parent compound (p < 0.05). Furthermore non-cancerous murine fibroblasts exhibited marked concentration-dependent inhibition by bexarotene, while the degradation products elicited more pronounced antiproliferative action only at the highest applied concentration.
Collapse
Affiliation(s)
- Agata Kryczyk-Poprawa
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (J.P.); (W.O.)
- Correspondence:
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary; (I.Z.); (P.B.)
- Interdisciplinary Centre for Natural Products, University of Szeged, H-6720 Szeged, Hungary
| | - Péter Bérdi
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary; (I.Z.); (P.B.)
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Joanna Piotrowska
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (J.P.); (W.O.)
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | | | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Jagiellonian University Collegium Medicum, 30-688 Kraków, Poland;
| | - Włodzimierz Opoka
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (J.P.); (W.O.)
| |
Collapse
|
17
|
Xu C, Chen H, Zhou S, Sun C, Xia X, Peng Y, Zhuang J, Fu X, Zeng H, Zhou H, Cao Y, Yu Q, Li Y, Hu L, Zhou G, Yan F, Chen G, Li J. Pharmacological Activation of RXR-α Promotes Hematoma Absorption via a PPAR-γ-dependent Pathway After Intracerebral Hemorrhage. Neurosci Bull 2021; 37:1412-1426. [PMID: 34142331 DOI: 10.1007/s12264-021-00735-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.
Collapse
Affiliation(s)
- Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shengjun Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chenjun Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xiaolong Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qian Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Libin Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
18
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
19
|
Senol SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S, Tunctan B. Suppression of TLR4/MyD88/TAK1/NF-κB/COX-2 Signaling Pathway in the Central Nervous System by Bexarotene, a Selective RXR Agonist, Prevents Hyperalgesia in the Lipopolysaccharide-Induced Pain Mouse Model. Neurochem Res 2021; 46:624-637. [PMID: 33389386 DOI: 10.1007/s11064-020-03197-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
A selective RXR agonist, bexarotene, has been shown to have anti-inflammatory, anti-nociceptive, and neuroprotective effects in several models of numerous neurological diseases characterized by systemic inflammation. The mechanisms underlying these effects remains unknown. To elucidate these mechanisms, we investigated whether the TLR4/MyD88/TAK1/NF-κB/COX-2 signaling pathway in the CNS mediates the effect of bexarotene to prevent hyperalgesia in the LPS-induced inflammatory pain mouse model. The reaction time to thermal stimuli within 30 s was evaluated by the hot plate test in male mice treated with saline, LPS (10 mg/kg), DMSO, and/or bexarotene (0.1, 1, 3, or 10 mg/kg) after 6 h. The latency to the thermal stimulus (18.11 ± 1.36 s) in the LPS-treated mice was significantly decreased by 30% compared with saline-treated mice (25.84 ± 1.99 s). Treatment with bexarotene only at a dose of 10 mg/kg showed a significant increase in the latency by 22.49 ± 1.00 s compared with LPS-treated mice. Bexarotene also prevented the reduction in RXRα protein expression associated with a rise in the expression of TLR4, MyD88, phosphorylated TAK1, NF-κB p65, phosphorylated NF-κB p65, COX-2, and IL-1β proteins, in addition to COX-2 activity and levels of PGE2 and IL-1β in the brains and spinal cords of the LPS-treated animals. Likely, decreased activity of TLR4/MyD88/TAK1/NF-κB/COX-2 signaling pathway in addition to increased pro-inflammatory cytokine formation in the CNS of mice participates in the protective effect of bexarotene against hyperalgesia induced by LPS.
Collapse
Affiliation(s)
- Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ayse Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| |
Collapse
|
20
|
Yang MS, Xu XJ, Zhang B, Niu F, Liu BY. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury. Neural Regen Res 2021; 16:1235-1243. [PMID: 33318400 PMCID: PMC8284282 DOI: 10.4103/1673-5374.301028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The heterogeneity of traumatic brain injury (TBI)-induced secondary injury has greatly hampered the development of effective treatments for TBI patients. Targeting common processes across species may be an innovative strategy to combat debilitating TBI. In the present study, a cross-species transcriptome comparison was performed for the first time to determine the fundamental processes of secondary brain injury in Sprague-Dawley rat and C57/BL6 mouse models of TBI, caused by acute controlled cortical impact. The RNA sequencing data from the mouse model of TBI were downloaded from the Gene Expression Omnibus (ID: GSE79441) at the National Center for Biotechnology Information. For the rat data, peri-injury cerebral cortex samples were collected for transcriptomic analysis 24 hours after TBI. Differentially expressed gene-based functional analysis revealed that common features between the two species were mainly involved in the regulation and activation of the innate immune response, including complement cascades as well as Toll-like and nucleotide oligomerization domain-like receptor pathways. These findings were further corroborated by gene set enrichment analysis. Moreover, transcription factor analysis revealed that the families of signal transducers and activators of transcription (STAT), basic leucine zipper (BZIP), Rel homology domain (RHD), and interferon regulatory factor (IRF) transcription factors play vital regulatory roles in the pathophysiological processes of TBI, and are also largely associated with inflammation. These findings suggest that targeting the common innate immune response might be a promising therapeutic approach for TBI. The animal experimental procedures were approved by the Beijing Neurosurgical Institute Animal Care and Use Committee (approval No. 201802001) on June 6, 2018.
Collapse
Affiliation(s)
- Meng-Shi Yang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Jian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bai-Yun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders; China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
21
|
He J, Huang Y, Liu H, Sun X, Wu J, Zhang Z, Liu L, Zhou C, Jiang S, Huang Z, Zhong J, Guo Z, Jiang L, Cheng C. Bexarotene promotes microglia/macrophages - Specific brain - Derived Neurotrophic factor expression and axon sprouting after traumatic brain injury. Exp Neurol 2020; 334:113462. [PMID: 32916173 DOI: 10.1016/j.expneurol.2020.113462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) has been regarded as one of the leading cause of injury-related death and disability. White matter injury after TBI is characterized by axon damage and demyelination, resulting in neural network impairment and neurological deficit. Brain-derived neurotrophic factor (BDNF) can promote white matter repair. The activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been reported to promote microglia/macrophages towards anti-inflammatory state and therefore to promote axon regeneration. Bexarotene, an agonist of retinoid X receptor (RXR), can activate RXR/PPARγ heterodimers. The aim of the present study was to identify the effect of bexarotene on BDNF in microglia/macrophages and axon sprouting after TBI in mice. Bexarotene was administered intraperitoneally in C57BL/6 mice undergoing controlled cortical impact (CCI). PPARγ dependency was determined by intraperitoneal administration of a PPARγ antagonist T0070907. We found that bexarotene promoted axon regeneration indicated by increased growth associated protein 43 (GAP43) expression, myelin basic protein (MBP) expression, and biotinylated dextran amine (BDA)+ axon sprouting. Bexarotene also increased microglia/macrophages-specific brain derived neurotrophic factor (BDNF) expression after TBI. In addition, bexarotene reduced the number of pro-inflammatory microglia/macrophages while increased the number of anti-inflammatory microglia/macrophages after TBI. Moreover, bexaortene inhibited pro-inflammatory cytokine secretion. In addition, bexarotene treatment improved neurological scores and cognitive function of CCI-injured mice. These effects of bexarotene were partially abolished by T0070907. In conclusion, bexarotene promotes axon sprouting, increases microglia/macrophages-specific BDNF expression, and induces microglia/macrophages from a pro-inflammatory state towards an anti-inflammatory one after TBI at least partially in a PPARγ-dependent manner.
Collapse
Affiliation(s)
- Junchi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yike Huang
- Department of Ophthalmology, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, China
| | - Han Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingchuan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaoqiu Jiang
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
de Oliveira Junior ER, Santos LCR, Salomão MA, Nascimento TL, de Almeida Ribeiro Oliveira G, Lião LM, Lima EM. Nose-to-brain drug delivery mediated by polymeric nanoparticles: influence of PEG surface coating. Drug Deliv Transl Res 2020; 10:1688-1699. [PMID: 32613550 DOI: 10.1007/s13346-020-00816-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intranasal administration of mucus-penetrating nanoparticles is an emerging trend to increase drug delivery to the brain. In order to overcome rapid nasal mucociliary clearance, low epithelial permeation, and local enzymatic degradation, we investigated the influence of PEGylation on nose-to-brain delivery of polycaprolactone (PCL) nanoparticles (PCL-NPs) encapsulating bexarotene, a potential neuroprotective compound. PEGylation with 1, 3, 5, and 10% PCL-PEG did not affect particle diameter or morphology. Upon incubation with artificial nasal mucus, only 5 and 10% of PCL-PEG coating were able to ensure NP stability and homogeneity in mucus. Rapid mucus-penetrating ability was observed for 98.8% of PCL-PEG5% NPs and for 99.5% of PCL-PEG10% NPs. Conversely, the motion of non-modified PCL-NPs was markedly slower. Fluorescence microscopy showed that the presence of PEG on NP surface did not reduce their uptake by RMPI 2650 cells. Fluorescence tomography images evidenced higher translocation into the brain for PCL-PEG5% NPs. Bexarotene loaded into PCL-PEG5% NPs resulted in area under the curve in the brain (AUCbrain) 3 and 2-fold higher than that for the drug dispersion and for non-PEGylated NPs (p < 0.05), indicating that approximately 4% of the dose was directly delivered to the brain. Combined, these results indicate that PEGylation of PCL-NPs with PCL-PEG5% is able to reduce NP interactions with the mucus, leading to a more efficient drug delivery to the brain following intranasal administration. Graphical abstract.
Collapse
Affiliation(s)
- Edilson Ribeiro de Oliveira Junior
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Lílian Cristina Rosa Santos
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Mariana Arraes Salomão
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Thais Leite Nascimento
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | | | - Luciano Morais Lião
- LabRMN, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Eliana Martins Lima
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil.
| |
Collapse
|
23
|
Di Pietro V, Yakoub KM, Caruso G, Lazzarino G, Signoretti S, Barbey AK, Tavazzi B, Lazzarino G, Belli A, Amorini AM. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants (Basel) 2020; 9:antiox9030260. [PMID: 32235799 PMCID: PMC7139349 DOI: 10.3390/antiox9030260] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023] Open
Abstract
Due to a multiplicity of causes provoking traumatic brain injury (TBI), TBI is a highly heterogeneous pathology, characterized by high mortality and disability rates. TBI is an acute neurodegenerative event, potentially and unpredictably evolving into sub-chronic and chronic neurodegenerative events, with transient or permanent neurologic, cognitive, and motor deficits, for which no valid standardized therapies are available. A vast body of literature demonstrates that TBI-induced oxidative/nitrosative stress is involved in the development of both acute and chronic neurodegenerative disorders. Cellular defenses against this phenomenon are largely dependent on low molecular weight antioxidants, most of which are consumed with diet or as nutraceutical supplements. A large number of studies have evaluated the efficacy of antioxidant administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. Points of weakness of preclinical studies are represented by the large variability in the TBI model adopted, in the antioxidant tested, in the timing, dosages, and routes of administration used, and in the variety of molecular and/or neurocognitive parameters evaluated. The analysis of the very few clinical studies does not allow strong conclusions to be drawn on the real effectiveness of antioxidant administration to TBI patients. Standardizing TBI models and different experimental conditions, as well as testing the efficacy of administration of a cocktail of antioxidants rather than only one, should be mandatory. According to some promising clinical results, it appears that sports-related concussion is probably the best type of TBI to test the benefits of antioxidant administration.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA;
| | - Kamal M. Yakoub
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Giuseppe Caruso
- Department of Laboratories, Oasi Research Institute – IRCCS, Via Conte Ruggero 73, 94018 Troina (EN), Italy;
| | - Giacomo Lazzarino
- UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Stefano Signoretti
- UOC Neurochirurgia, ASL Roma2, S. Eugenio Hospital, Piazzale dell’Umanesimo 10, 00144 Rome, Italy;
| | - Aron K. Barbey
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA;
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F.Vito 1, 00168 Rome, Italy
- Department of Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S.Sofia 97, 95123 Catania, Italy;
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S.Sofia 97, 95123 Catania, Italy;
| |
Collapse
|
24
|
Huang ZJ, Cao F, Wu Y, Peng JH, Zhong JJ, Jiang Y, Yin C, Guo ZD, Sun XC, Jiang L, Cheng CJ. Apolipoprotein E promotes white matter remodeling via the Dab1-dependent pathway after traumatic brain injury. CNS Neurosci Ther 2020; 26:698-710. [PMID: 32115899 PMCID: PMC7298982 DOI: 10.1111/cns.13298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Axonal injury results in long‐term neurological deficits in traumatic brain injury (TBI) patients. Apolipoprotein E (ApoE) has been reported to activate intracellular adaptor protein Disabled‐1 (Dab1) phosphorylation via its interaction with ApoE receptors. The Dab1 pathway acts as a regulator of axonal outgrowth and growth cone formation in the brain. Aims We hypothesized that ApoE may alleviate axonal injury and regulate axonal regeneration via the Dab1 pathway after TBI. Results In this study, we established a model of controlled cortical impact (CCI) to mimic TBI in vivo. Using diffusion tensor imaging to detect white matter integrity, we demonstrated that APOE‐deficient mice exhibited lower fractional anisotropy (FA) values than APOE+/+ mice at 28 days after injury. The expression levels of axonal regeneration and synapse plasticity biomarkers, including growth‐associated protein 43 (GAP43), postsynaptic density protein 95 (PSD‐95), and synaptophysin, were also lower in APOE‐deficient mice. In contrast, APOE deficiency exerted no effects on the levels of myelin basic protein (MBP) expression, oligodendrocyte number, or oligodendrocyte precursor cell number. Neurological severity score (NSS) and behavioral measurements in the rotarod, Morris water maze, and Y maze tests revealed that APOE deficiency caused worse neurological deficits in CCI mice. Furthermore, Dab1 activation downregulation by the ApoE receptor inhibitor receptor‐associated protein (RAP) or Dab1 shRNA lentivirus attenuated the beneficial effects of ApoE on FA values, GAP43, PSD‐95, and synaptophysin expression, and neurological function tests. Additionally, the effects of ApoE on axonal regeneration were further validated in vitro. In a mechanical scratch injury model of primary cultured neurons, recombinant ApoE protein treatment enhanced axonal outgrowth and growth cone formation in injured neurons; however, these effects were attenuated by Dab1 shRNA, consistent with the in vivo results. Conclusion Collectively, these data suggest that ApoE promotes axonal regeneration partially through the Dab1 pathway, thereby contributing to functional recovery following TBI.
Collapse
Affiliation(s)
- Zhi-Jian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Cao
- Department of Cerebrovascular, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Hua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Yin
- Department of Neurosurgery, Affiliated Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zong-Duo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Activation of the Hedgehog Pathway Promotes Recovery of Neurological Function After Traumatic Brain Injury by Protecting the Neurovascular Unit. Transl Stroke Res 2020; 11:720-733. [DOI: 10.1007/s12975-019-00771-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023]
|
26
|
Chang CF, Massey J, Osherov A, Angenendt da Costa LH, Sansing LH. Bexarotene Enhances Macrophage Erythrophagocytosis and Hematoma Clearance in Experimental Intracerebral Hemorrhage. Stroke 2019; 51:612-618. [PMID: 31826730 DOI: 10.1161/strokeaha.119.027037] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background and Purpose- Enhancement of erythrophagocytosis by macrophages in a timely manner can limit the toxic effects of erythrocyte metabolites and promote brain recovery after intracerebral hemorrhage (ICH). In the current study, we investigated the therapeutic effect of retinoid X receptor agonist, bexarotene, in facilitating erythrophagocytosis and neurobehavioral recovery in 2 mouse models of ICH. Methods- Bone marrow-derived macrophages and fluorescently labeled erythrocytes were used to study erythrophagocytosis in vitro with phenotypic changes quantified by gene expression. ICH was modeled in vivo using intrastriatal autologous blood and collagenase injection in mice with and without bexarotene treatment beginning 3 hours after ICH. In vivo phagocytosis, ability and hematoma clearance were evaluated by erythrophagocytosis assays, flow cytometry, and histological analysis. Neurological deficits and functional recovery were also quantified. Results- Bexarotene increased macrophage expression of phagocytosis receptors and erythrophagocytosis and reduced macrophage TNF (tumor necrosis factor) production in vitro. In vivo, bexarotene treatment enhanced erythrophagocytosis, reduced hematoma volume, and ultimately improved neurological recovery after ICH in 2 distinct models of ICH. Conclusions- Bexarotene administration is beneficial for recovery after ICH by enhancing hemorrhage phagocytosis, modulating macrophage phenotype, and improving functional recovery.
Collapse
Affiliation(s)
- Che-Feng Chang
- From the Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei (C.-F.C.).,Department of Neurology, Yale University School of Medicine, New Haven, CT (C.-F.C., J.M., A.O., L.H.S.)
| | - Jordan Massey
- Department of Neurology, Yale University School of Medicine, New Haven, CT (C.-F.C., J.M., A.O., L.H.S.)
| | - Artem Osherov
- Department of Neurology, Yale University School of Medicine, New Haven, CT (C.-F.C., J.M., A.O., L.H.S.)
| | - Luís Henrique Angenendt da Costa
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (L.H.A.d.C.)
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT (C.-F.C., J.M., A.O., L.H.S.)
| |
Collapse
|
27
|
Bexarotene Attenuates Focal Cerebral Ischemia–Reperfusion Injury via the Suppression of JNK/Caspase-3 Signaling Pathway. Neurochem Res 2019; 44:2809-2820. [DOI: 10.1007/s11064-019-02902-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/12/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
|
28
|
Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimer´s disease. PLoS One 2019; 14:e0223578. [PMID: 31596896 PMCID: PMC6785083 DOI: 10.1371/journal.pone.0223578] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Bexarotene, a retinoid X receptor agonist, improves cognition in murine models of Alzheimer’s disease (AD). This study evaluated the effects of bexarotene on pathological and electrophysiological changes in very old triple transgenic AD mice (3xTg-AD mice). Methods 24-month-old 3xTg-AD mice were treated with bexarotene (100 mg/kg/day for 30 days). The Morris water maze was used to evaluate spatial memory; immunofluorescence and confocal microscopy were used to evaluate pathological changes; and in vivo electrophysiological recordings were used to evaluate basal transmission and plasticity in the commissural CA3-CA1 pathway. Results In addition to cognitive improvement, bexarotene-treated 3xTg-AD mice were found to have 1) reductions of astrogliosis and reactive microglia both in cortex and hippocampus; 2) increased ApoE expression restricted to CA1; 3) increased number of cells co-labeled with ApoE and NeuN; 4) recovery of NeuN expression, suggesting neuronal protection; and, 5) recovery of basal synaptic transmission and synaptic plasticity. Discussion These results indicate that bexarotene-induced improvement in cognition is due to multiple changes that contribute to recovery of synaptic plasticity.
Collapse
|
29
|
Li Y, Xing Q, Wei Y, Zhao L, Zhang P, Han X, Wang J. Activation of RXR by bexarotene inhibits inflammatory conditions in human rheumatoid arthritis fibroblast‑like synoviocytes. Int J Mol Med 2019; 44:1963-1970. [PMID: 31545398 DOI: 10.3892/ijmm.2019.4336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 11/06/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating joint disease characterized by chronic inflammation, pathologic alteration of fibroblast‑like synoviocytes (FLS), destruction of cartilage and bone, and the formation of an invasive pannus. RA‑FLS exhibit increased proliferation and resistance to apoptosis. The retinoid X receptor (RXR) has a role in regulating cell cycle, differentiation and apoptosis, and agonism of RXR has been investigated as a treatment strategy in several types of cancer. However, there is little research on the effects of RXR agonism in other diseases. Bexarotene is a novel selective RXR ligand used in the treatment of T‑cell lymphoma. In the present study, bexarotene was used to investigate the involvement of RXR in tumor necrosis factor‑α (TNF‑α)‑induced RA conditions in human FLS. To the best of our knowledge, this is the first time that RXR has been demonstrated to be expressed in FLS and to be downregulated in response to TNF‑α stimulation. The present study also demonstrated that bexarotene exerted an anti‑inflammatory effect by downregulating expression of interleukin (IL)‑6, IL‑8, monocyte chemoattractant protein‑1, and high mobility group box‑1. Notably, bexarotene also rescued the TNF‑α‑induced downregulation of the anti‑inflammatory cytokines IL‑4 and transforming growth factor‑β1. Bexarotene treatment exhibited a potential protective effect against cartilage degradation by downregulating the expression of matrix metalloproteinase (MMP)‑1, MMP‑3 and MMP‑13. In addition, the present results demonstrated that the effects of bexarotene were mediated through the p38 mitogen‑activated protein kinase/nuclear factor‑κB pathway, via inhibition of p38 protein and the inhibitor α of κB phosphorylation. Taken together, the present findings demonstrated the potential of RXR agonism using bexarotene as a treatment against the development and progression of RA.
Collapse
Affiliation(s)
- Yu Li
- Ache Department, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Qunzhi Xing
- Department of Anesthesiology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yuanzhang Wei
- Ache Department, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Lei Zhao
- Ache Department, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Pei Zhang
- Ache Department, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xuechang Han
- Department of Anesthesiology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jing Wang
- Ache Department, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
30
|
Li Z, Han K, Zhang D, Chen J, Xu Z, Hou L. The role of long noncoding RNA in traumatic brain injury. Neuropsychiatr Dis Treat 2019; 15:1671-1677. [PMID: 31303755 PMCID: PMC6605043 DOI: 10.2147/ndt.s206624] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI), a mainly lethal and highly debilitating condition, is increasing worldwide. However, the underlying mechanism has not been fully elucidated and effective therapy is needed. Long noncoding RNAs (lncRNAs), which form a major class of noncoding RNAs, have emerged as novel targets for regulating physiological functions and mediating numerous neurological diseases. Notably, gene expression profile analyses have demonstrated aberrant changes in lncRNA expression in the cerebral cortex and hippocampus of rats, mice and human after TBI. lncRNAs may be associated with multiple pathophysiological processes following TBI and might play a crucial role in complications of TBI, such as traumatic optic neuropathy due to the regulation of specific signaling pathways. Some lncRNAs have also been found to be therapeutic targets for motor and cognitive recovery after TBI. lncRNAs may be promising biomarkers for TBI diagnosis, treatment, and prognosis prediction. However, further research isneeded to clarify the underlying mechanisms and therapeutic effects of lncRNAs on TBI. We review the current progress of studies on lncRNAs in TBI to draw more attention to their roles in this debilitating condition.
Collapse
Affiliation(s)
- Zhenxing Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Kaiwei Han
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jigang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Zheng Xu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Chen M, Xie M, Peng C, Long S. The absorption of apolipoprotein E by damaged neurons facilitates neuronal repair. Cell Biol Int 2019; 43:623-633. [PMID: 30958617 DOI: 10.1002/cbin.11135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Min Chen
- Department of NeurologyThe First Affiliated Hospital of University of South China421001 Hengyang China
| | - Ming Xie
- Department of NeurologyThe First Affiliated Hospital of University of South China421001 Hengyang China
| | - Chao Peng
- Department of NeurologyThe First Affiliated Hospital of University of South China421001 Hengyang China
| | - Shuangqi Long
- Department of CardiologyThe Central Hospital of Yongzhou425000 Yongzhou China
| |
Collapse
|
32
|
Zhang Z, Zhao G, Liu L, He J, Darwazeh R, Liu H, Chen H, Zhou C, Guo Z, Sun X. Bexarotene Exerts Protective Effects Through Modulation of the Cerebral Vascular Smooth Muscle Cell Phenotypic Transformation by Regulating PPARγ/FLAP/LTB 4 After Subarachnoid Hemorrhage in Rats. Cell Transplant 2019; 28:1161-1172. [PMID: 31010302 PMCID: PMC6767892 DOI: 10.1177/0963689719842161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play an important role after a subarachnoid hemorrhage (SAH). The changes in VSMCs following bexarotene treatment after SAH are unknown. In the present study, neurological impairment, decreased cerebral cortical blood flow and transformation of cerebral VSMCs from a contractile to a synthetic phenotype were observed after SAH. Bexarotene reduced neurological impairment, improved cerebral cortical blood flow, inhibited VSMC phenotypic transformation and suppressed the expression of 5-lipoxygenase-activating protein (FLAP) and leukotriene B4 (LTB4), which was partly reversed by GW9662, an inhibitor of peroxisome proliferator-activated receptor gamma (PPARγ). Mechanistically, sh-PPARγ-mediated phenotypic transformation of VSMCs was partially suppressed by MK886, an antagonist of FLAP. Therefore, we conclude that bexarotene reduced neurological impairment, improved cerebral cortical blood flow and inhibited the VSMC phenotypic transformation after SAH, which was achieved by activating PPARγ-mediated inhibition of FLAP/LTB4 in VSMCs.
Collapse
Affiliation(s)
- Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junchi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rami Darwazeh
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
APOE Genotype Specific Effects on the Early Neurodegenerative Sequelae Following Chronic Repeated Mild Traumatic Brain Injury. Neuroscience 2019; 404:297-313. [DOI: 10.1016/j.neuroscience.2019.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
|
34
|
Zuo Y, Huang L, Enkhjargal B, Xu W, Umut O, Travis ZD, Zhang G, Tang J, Liu F, Zhang JH. Activation of retinoid X receptor by bexarotene attenuates neuroinflammation via PPARγ/SIRT6/FoxO3a pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 2019; 16:47. [PMID: 30791908 PMCID: PMC6385420 DOI: 10.1186/s12974-019-1432-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a life-threatening subtype of stroke with high mortality and disabilities. Retinoid X receptor (RXR) has been shown to be neuroprotective against ischemia/reperfusion injury. This study aimed to investigate the effects of the selective RXR agonist bexarotene on neuroinflammation in a rat model of SAH. METHODS Two hundred male Sprague-Dawley rats were used. The endovascular perforation induced SAH. Bexarotene was administered intraperitoneally at 1 h after SAH induction. To investigate the underlying mechanism, the selective RXR antagonist UVI3003 and RXR siRNA or SIRT6 inhibitor OSS128167 was administered via intracerebroventricular 1 h before SAH induction. Post-SAH assessments including SAH grade, neurological score, brain water content, Western blot, and immunofluorescence were performed. RESULTS The endogenous RXR and sirtuin 6 (SIRT6) protein levels were increased after SAH. Bexarotene treatment significantly reduced brain edema and improved the short-/long-term neurological deficit after SAH. Mechanistically, bexarotene increased the levels of PPARγ and SIRT6; decreased the expression of phosphorylated FoxO3a (p-FoxO3a), IL-6, IL-1β, and TNF-a; and inhibited the microglia activation and neutrophils infiltration at 24 h after SAH. Either UVI3003, OSS128167, or RXR siRNA abolished the neuroprotective effects of bexarotene and its regulation on protein levels of PPARγ/SIRT6/p-FoxO3a after SAH. CONCLUSIONS The activation of RXR by bexarotene attenuated neuroinflammation and improved neurological deficits after SAH. The anti-neuroinflammatory effect was at least partially through regulating PPARγ/SIRT6/FoxO3a pathway. Bexarotene may be a promising therapeutic strategy in the management of SAH patients.
Collapse
Affiliation(s)
- Yuchun Zuo
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013 China
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St. Risley Hall, Loma Linda, CA 92354 USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St. Risley Hall, Loma Linda, CA 92354 USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St. Risley Hall, Loma Linda, CA 92354 USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St. Risley Hall, Loma Linda, CA 92354 USA
| | - Ocak Umut
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St. Risley Hall, Loma Linda, CA 92354 USA
| | - Zachary D. Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University, Loma Linda, CA 92354 USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St. Risley Hall, Loma Linda, CA 92354 USA
| | - Fei Liu
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013 China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St. Risley Hall, Loma Linda, CA 92354 USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| |
Collapse
|
35
|
Speidell AP, Demby T, Lee Y, Rodriguez O, Albanese C, Mandelblatt J, Rebeck GW. Development of a Human APOE Knock-in Mouse Model for Study of Cognitive Function After Cancer Chemotherapy. Neurotox Res 2019; 35:291-303. [PMID: 30284204 PMCID: PMC6333492 DOI: 10.1007/s12640-018-9954-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/12/2023]
Abstract
Cancer-related cognitive impairment in breast cancer patients exposed to multi-agent chemotherapy regimens is associated with the apolipoprotein E4 (APOE4) allele. However, it is difficult to determine the effects of specific agents on cognitive impairment in human studies. We describe the development of a human APOE knock-in congenic C57BL/6J mouse model to study cancer-related cognitive impairment. Female APOE3 and APOE4 homozygous mice were either left untreated or treated with the most commonly used breast cancer therapeutic agent, doxorubicin. APOE3 and APOE4 mice had similar behaviors in exploratory and anxiety assays, which were affected transiently by doxorubicin treatment. Spatial learning and memory were measured in a Barnes maze: after 4 days of training, control APOE3 and APOE4 mice were able to escape with similar latencies. In contrast, doxorubicin-treated APOE4 mice had markedly impaired learning compared to doxorubicin-treated APOE3 mice at all time points. Voxel-based morphometry of magnetic resonance images revealed that doxorubicin treatment caused significant changes in the cortex and hippocampus of in both APOE3 and APOE4 mouse brains, but the differences were significantly greater in the APOE4 brains. The results indicate that doxorubicin-exposed APOE4 mice recapitulate key aspects of human cancer-related cognitive impairment. These data support the usefulness of this novel preclinical model for future elucidation of the genetic and molecular interactions of APOE genotype with chemotherapy; this model can also allow extension to prospective studies of older mice to study these interactions in the context of aging.
Collapse
Affiliation(s)
- Andrew P Speidell
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Tamar Demby
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Yichien Lee
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Olga Rodriguez
- Department of Oncology, Georgetown University, Washington, DC, USA
| | | | | | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
36
|
Clemens V, Regen F, Le Bret N, Heuser I, Hellmann-Regen J. Retinoic Acid Enhances Apolipoprotein E Synthesis in Human Macrophages. J Alzheimers Dis 2019; 61:1295-1300. [PMID: 29376871 DOI: 10.3233/jad-170823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E (ApoE) represents a pivotal target in Alzheimer's disease (AD) and is modulated through retinoic acid (RA), an endogenous neuroprotective and anti-inflammatory compound. A major source of ApoE are microglia, which are pathologically activated in AD. Activated microglia are known to block RA signaling. This suggests a vicious cycle between inflammation, RA signaling, and ApoE homeostasis in AD pathogenesis. To test this hypothesis, we investigated effects of RA and proinflammatory activation on ApoE synthesis in primary human macrophage-derived microglial-like cells. Our results indicate that proinflammatory activation attenuates ApoE synthesis, an effect blocked by RA.
Collapse
Affiliation(s)
- Vera Clemens
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| | - Francesca Regen
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| | - Nathalie Le Bret
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| | - Isabella Heuser
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| |
Collapse
|
37
|
Gui Y, Duan S, Xiao L, Tang J, Li A. Bexarotent Attenuated Chronic Constriction Injury-Induced Spinal Neuroinflammation and Neuropathic Pain by Targeting Mitogen-Activated Protein Kinase Phosphatase-1. THE JOURNAL OF PAIN 2019; 21:1149-1159. [PMID: 30660765 DOI: 10.1016/j.jpain.2019.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
It is widely accepted that neuroinflammation in the spinal cord contributes to the development of central sensitization in neuropathic pain. Mitogen-activated protein kinase (MAPK) activation plays a vital role in the development of neuroinflammation in the spinal cord. In this study, we investigated the effect of bexarotene (bex), a retinoid X receptor agonist, on MAPKs activation in chronic constriction injury (CCI)-induced neuropathic pain. The data showed that daily treatment with bex 50 mg/kg significantly alleviated CCI-induced nociceptive hypersensitivity in rats. Bex 50 mg/kg/day inhibited CCI-induced MAPKs (p38MAPK, ERK1/2, and JNK) activation and upregulation of proinflammatory factors (IL-1β, tumor necrosis factor-α and IL-6). Bex also reversed CCI-induced microglia activation in the ipsilateral spinal cord. Furthermore, bex treatment significantly upregulated MKP-1 in the spinal cord. These effects were completely abrogated by MKP-1 inhibitor BCI. These results indicated that bex relieved CCI-induced neuroinflammation and neuropathic pain by targeting MKP-1. Therefore, bex might be a potential agent for the treatment of neuropathic pain. PERSPECTIVE: Bex could relieve neuropathic pain behaviors in animals by reversing MKP-1 downregulation and MAPKs activation in the spinal cord. Therapeutic applications of bex may be extended beyond cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Yulong Gui
- Department of Anesthesiology, Maternal and Child Hospital of Hunan Province, Changsha, Hunan, China
| | - Shunyuan Duan
- Department of Endocrinology, Yongzhou-affiliated Hospital of University of South China, Yongzhou, Hunan Province, China
| | - Lihong Xiao
- Department of Anesthesiology, Maternal and Child Hospital of Hunan Province, Changsha, Hunan, China
| | - Jing Tang
- Department of Anesthesiology, Maternal and Child Hospital of Hunan Province, Changsha, Hunan, China
| | - Aiyuan Li
- Department of Anesthesiology, Maternal and Child Hospital of Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
38
|
Significant changes in circular RNA in the mouse cerebral cortex around an injury site after traumatic brain injury. Exp Neurol 2018; 313:37-48. [PMID: 30529438 DOI: 10.1016/j.expneurol.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Circular RNA (circRNA) is an important type of non-coding RNA that has not been widely researched in traumatic brain injury (TBI). The present study aimd to detect the altered circRNA expression around an injury site in the mouse cerebral cortex after TBI and explore its potential functions. METHOD C57BL/6 mice were used to construct a controlled cortical impact (CCI) model to simulate TBI. At 24 h post-TBI, the cortex around the injury site was collected, and the total RNA was extracted to perform RNA sequencing (RNA-seq). The differentially expressed circRNAs were determined according to the following criteria: |log2(fold change)| > 1, P < .05 and FDR < 0.05. Among them, circRNA chr8_87,859,283-87,904,548 was preliminarily explored to determine its function. RESULTS A total of 8036 altered circRNAs were discovered, and among them, 16 were significantly changed (5 up-regulated and 11 down-regulated). The circRNA chr8_87,859,283-87,904,548 significantly increased by approximately 4 times in the cerebral cortex around the injury site after TBI and promoted neuro-inflammation through increasing the CXCR2 protein by sponging mmu-let-7a-5p. As a result, the increased circRNA chr8_87,859,283-87,904,548 blocked the restoration of neurological function after TBI. CONCLUSION Many circRNAs are significantly up-regulated or down-regulated in the traumatic cerebral penumbra cortex after TBI. Among them, the circRNA chr8_87,859,283-87,904,548 potentially plays a pro-inflammatory role, which may have a deleterious effect on neurological restoration after TBI. .
Collapse
|
39
|
Yin C, Guo ZD, He ZZ, Wang ZY, Sun XC. Apolipoprotein E Affects In Vitro Axonal Growth and Regeneration via the MAPK Signaling Pathway. Cell Transplant 2018; 28:691-703. [PMID: 30350715 PMCID: PMC6686436 DOI: 10.1177/0963689718808736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Following central nervous system injury in mammals, failed axonal regeneration is closely related to dysneuria. Previous studies have shown that the obvious effects of apolipoprotein E (ApoE) on traumatic brain injury (TBI) were associated with an axonal mechanism. However, little information on the actions of ApoE and its isoforms on axonal regeneration following TBI was provided. In our study, the cerebral cortices of ApoE-deficient (ApoE-/-) and wild-type (ApoE+/+) mice were cultured in vitro, and an axonal transection model was established. Interventions included the conditioned medium of astrocytes, human recombinant ApoE2/3/4 isoforms and inhibitors of the JNK/ERK/p38 pathway. Axonal growth and regeneration were evaluated by measuring the maximum distance and area of the axons. The expression levels of β-tubulin III, MAP2, ApoE, p-JNK, p-ERK and p-p38 were detected by immunofluorescence and western blotting. The results showed that ApoE mRNA and protein were expressed in intact axons and regenerated axons. Axonal growth and regeneration were attenuated in ApoE-/- mice but recovered by exogenous ApoE. Human recombinant ApoE3 positively influenced axonal growth and regeneration; these effects were mediated by the JNK/ERK/p38 pathway. These results suggest ApoE and its isoforms may have influenced axonal growth and regeneration via the MAPK signaling pathway in vitro.
Collapse
Affiliation(s)
- Cheng Yin
- 1 Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zong-Duo Guo
- 2 Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zong-Ze He
- 1 Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen-Yu Wang
- 1 Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Chuan Sun
- 2 Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
40
|
He J, Liu H, Zhong J, Guo Z, Wu J, Zhang H, Huang Z, Jiang L, Li H, Zhang Z, Liu L, Wu Y, Qi L, Sun X, Cheng C. Bexarotene protects against neurotoxicity partially through a PPARγ-dependent mechanism in mice following traumatic brain injury. Neurobiol Dis 2018; 117:114-124. [DOI: 10.1016/j.nbd.2018.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/05/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
|
41
|
Tu L, Yang XL, Zhang Q, Wang Q, Tian T, Liu D, Qu X, Tian JY. Bexarotene attenuates early brain injury via inhibiting micoglia activation through PPARγ after experimental subarachnoid hemorrhage. Neurol Res 2018; 40:702-708. [PMID: 29688151 DOI: 10.1080/01616412.2018.1463900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives Early brain injury (EBI) is considered to be one of the main causes of poor outcome in subarachnoid hemorrhage (SAH) patients. Bexarotene is an agonist of retinoid X receptor and plays a protective role in central nervous system diseases. However, the exact role of bexarotene in SAH has not been reported. Therefore, the present study was to determine whether bexarotene administration attenuate EBI after SAH in mice and to explore the underlying mechanism. Methods SAH was induced in C57BL/6 mice by endovascular perforation. Bexarotene was administrated intraperitoneally. Neurological score, cell death, microglia activation, and pro-inflammatory cytokines were detected at 24 h after SAH. The expression of PPARγ was measured by Western blot. Results Results showed that bexarotene significantly improved neurological score after SAH. In addition, the number of cell death and activated microglia were significantly reduced by bexarotene administration. Compared with vehicle-treated mice, bexarotene-treated mice showed reduced pro-inflammatory cytokines after SAH. The expression of PPARγ was significantly increased with bexarotene treatment compared with vehicle-treated controls. Discussion The present study demonstrats that bexarotene administration protects against EBI after SAH, inhibiting cell death, attenuating microglia activation, and alleviating neuroinflammation. The underlying mechanism may partially involve the activation of PPARγ.
Collapse
Affiliation(s)
- Li Tu
- a Department of Emergency , The Affiliated Hospital of Guizhou Medical University , Guizhou , China.,b Department of Emergency , Guizhou Provincial People's Hospital , Guizhou , China
| | - Xiu-Lin Yang
- b Department of Emergency , Guizhou Provincial People's Hospital , Guizhou , China
| | - Qian Zhang
- b Department of Emergency , Guizhou Provincial People's Hospital , Guizhou , China
| | - Qian Wang
- c Department of Neurology , Guizhou Provincial People's Hospital , Guizhou , China
| | - Tian Tian
- c Department of Neurology , Guizhou Provincial People's Hospital , Guizhou , China
| | - Dan Liu
- b Department of Emergency , Guizhou Provincial People's Hospital , Guizhou , China
| | - Xiang Qu
- a Department of Emergency , The Affiliated Hospital of Guizhou Medical University , Guizhou , China
| | - Jin-Yong Tian
- b Department of Emergency , Guizhou Provincial People's Hospital , Guizhou , China.,c Department of Neurology , Guizhou Provincial People's Hospital , Guizhou , China.,d Department of Medicine , Guizhou University , Guizhou , China
| |
Collapse
|
42
|
Wu H, Zhou S, Zhao H, Wang Y, Chen X, Sun X. Effects of apolipoprotein E gene polymorphism on the intracellular Ca 2+ concentration of astrocytes in the early stages post injury. Exp Ther Med 2017; 15:1417-1423. [PMID: 29434726 PMCID: PMC5774380 DOI: 10.3892/etm.2017.5555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/01/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the correlation between apolipoprotein E (APOE) polymorphisms and the intracellular concentration of Ca2+ in astrocytes in the early stages after an injury. The chondroitin sulfate region of three APOE alleles (ε2, ε3 and ε4) was obtained by reverse transcription-polymerase chain reaction (RT-PCR). A recombinant plasmid, pEGFP-N1-APOE, was constructed and identified by sequencing, while astrocytes were isolated from APOE gene-knockout mice and examined using immunocytochemistry. The recombinant plasmid was transfected into the astrocytes using the liposome-mediated method and cell injury models were constructed by a scratch assay. Laser confocal scanning microscopy (LCSM) was used to detect dynamic alterations in intracellular Ca2+ concentration at 12, 24, 48 and 72 h after injury. Compared with the control group, cells transfected with any of the three alleles demonstrated significant increases in the fluorescence intensity of Ca2+ (P<0.05). The fluorescence intensity of Ca2+ was weak at 12 h after injury, with no statistically significant difference detected between any two groups at this time point (P>0.05). However, the fluorescence intensity increased in a time-dependent manner and at 24, 48 and 72 h post injury, the fluorescence intensity of the ε4 allele-containing cells was significantly higher when compared with that of cells harboring the other two alleles (P<0.05). These results indicate that intracellular Ca2+ overloading may contribute to the deterioration of brain cells and poor outcome subsequent to traumatic brain injury in APOE ε4 carriers.
Collapse
Affiliation(s)
- Haitao Wu
- Department of Neurosurgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 654000, P.R. China
| | - Hongxin Zhao
- Department of Neurosurgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Yuyu Wang
- Department of Neurosurgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Xiaozhong Chen
- Department of Neurosurgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400000, P.R. China
| |
Collapse
|
43
|
Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury. Exp Neurol 2017; 299:97-108. [PMID: 29056364 DOI: 10.1016/j.expneurol.2017.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022]
Abstract
Apolipoprotein E (apoE), a plasma lipoprotein well known for its important role in lipid and cholesterol metabolism, has also been implicated in many neurological diseases. In this study, we examined the effect of apoE on the pathophysiology of traumatic spinal cord injury (SCI). ApoE-deficient mutant (apoE-/-) and wild-type mice received a T9 moderate contusion SCI and were evaluated using histological and behavioral analyses after injury. At 3days after injury, the permeability of spinal cord-blood-barrier, measured by extravasation of Evans blue dye, was significantly increased in apoE-/- mice compared to wild type. The inflammation and spared white matter was also significantly increased and decreased, respectively, in apoE-/- mice compared to the wild type ones. The apoptosis of both neurons and oligodendrocytes was also significantly increased in apoE-/- mice. At 42days after injury, the inflammation was still robust in the injured spinal cord in apoE-/- but not wild type mice. CD45+ leukocytes from peripheral blood persisted in the injured spinal cord of apoE-/- mice. The spared white matter was significantly decreased in apoE-/- mice compared to wild type ones. Locomotor function was significantly decreased in apoE-/- mice compared to wild type ones from week 1 to week 8 after contusion. Treatment of exogenous apoE mimetic peptides partially restored the permeability of spinal cord-blood-barrier in apoE-/- mice after SCI. Importantly, the exogenous apoE peptides decreased inflammation, increased spared white matter and promoted locomotor recovery in apoE-/- mice after SCI. Our results indicate that endogenous apoE plays important roles in maintaining the spinal cord-blood-barrier and decreasing inflammation and spinal cord tissue loss after SCI, suggesting its important neuroprotective function after SCI. Our results further suggest that exogenous apoE mimetic peptides could be a novel and promising neuroprotective reagent for SCI.
Collapse
|
44
|
Zhong J, Jiang L, Huang Z, Zhang H, Cheng C, Liu H, He J, Wu J, Darwazeh R, Wu Y, Sun X. The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav Immun 2017; 65:183-194. [PMID: 28483659 DOI: 10.1016/j.bbi.2017.05.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bexarotene treatments exert neuroprotective effects on mice following traumatic brain injury (TBI). The present study aims to investigate the potential roles of the long noncoding RNA Neat1 in the neuroprotective effects of bexarotene. MATERIALS AND METHODS Adult male C57BL/6J mice (n=80) and newborn mice (within 24h after birth) (n=20) were used to generate a "controlled cortical impact" (CCI) model and harvest primary cortex neurons, respectively. The HT22 cell line and the BV2 cell line were cultured under "normal" or "oxygen/glucose-deprived" (OGD) conditions. The relationship between RXR-α and the Neat1 promoter was clarified using ChIP-qPCR and dual-luciferase reporter gene assays. The mRNA alterations induced by Neat1 knockdown were measured using next-generation RNA sequencing. Proteins were captured by Neat1, pulled down and subjected to mass spectrometry. The neurological severity score, rotarod test and water maze test were employed to measure the animals' motor and cognitive functions. RESULTS Bexarotene prominently up-regulated the Neat1 level in an RXR-α-dependent manner. Neat1 knockdown induced significant changes in mRNA expression, and the altered mRNAs were involved in many biological processes, including synapse formation and axon guidance. In primary neurons, Neat1 knockdown inhibited and Neat1 over-expression prompted axon elongation. Multiple proteins, including Pidd1, were captured by Neat1. Neat1 inhibited cell apoptosis and restricted inflammation by capturing Pidd1. The in vitro anti-apoptotic and anti-inflammatory effects of Neat1 were further confirmed in C57BL/6 mice, which resulted in better motor and cognitive function after TBI. CONCLUSION Bexarotene up-regulates the lncRNA Neat1, which inhibits apoptosis and inflammation, thereby resulting in better functional recovery in mice after TBI.
Collapse
Affiliation(s)
- Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Li Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China.
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Hongrong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Han Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Junchi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Jingchuan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Rami Darwazeh
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
45
|
ApoE Influences the Blood-Brain Barrier Through the NF-κB/MMP-9 Pathway After Traumatic Brain Injury. Sci Rep 2017; 7:6649. [PMID: 28751738 PMCID: PMC5532277 DOI: 10.1038/s41598-017-06932-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein E (ApoE), encoded by the ApoE gene (APOE), influences the outcomes of traumatic brain injury (TBI), but the mechanism remains unclear. The present study aimed to investigate the effects of different ApoEs on the outcome of TBI and to explore the possible mechanisms. Controlled cortical impact (CCI) was performed on APOEε3 (E3) and APOEε4 (E4) transgenic mice, APOE-KO (KO) mice, and wild type (WT) mice to construct an in vivo TBI model. Neurological deficits, blood brain barrier (BBB) permeability and brain edema were detected at days 1, 3, and 7 after TBI. The results revealed no significant differences among the four groups at day 1 or day 3 after injury, but more severe deficits were found in E4 and KO mice than in E3 and WT mice. Furthermore, a significant loss of tight junction proteins was observed in E4 and KO mice compared with E3 and WT mice at day 7. Additionally, more expression and activation of NF-κB and MMP-9 were found in E4 mice compared with E3 mice. Different ApoEs had distinct effects on neuro-function and BBB integrity after TBI. ApoE3, but not E4, might inhibit the NF-κB/MMP-9 pathway to alleviate BBB disruption and improve TBI outcomes.
Collapse
|