1
|
Xu Q, Jin L, Wang L, Tang Y, Wu H, Chen Q, Sun L. The role of gonadal hormones in regulating opioid antinociception. Ann Med 2024; 56:2329259. [PMID: 38738380 PMCID: PMC11095291 DOI: 10.1080/07853890.2024.2329259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/06/2024] [Indexed: 05/14/2024] Open
Abstract
Opioids are the most prescribed drugs for the alleviation of pain. Both clinical and preclinical studies have reported strong evidence for sex-related divergence regarding opioid analgesia. There is an increasing amount of evidence indicating that gonadal hormones regulate the analgesic efficacy of opioids. This review presents an overview of the importance of gonadal steroids in modulating opioid analgesic responsiveness and focuses on elaborating what is currently known regarding the underlyingmechanism. We sought to identify the link between gonadal hormones and the effect of oipiod antinociception.
Collapse
Affiliation(s)
- Qi Xu
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lin Jin
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - LuYang Wang
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - YingYing Tang
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qing Chen
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - LiHong Sun
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Bautista-Abad Á, García-Magro N, Pinto-Benito D, Cáceres-Pajuelo JE, Alises CV, Ganchala D, Lagunas N, Negredo P, García-Segura LM, Arevalo MA, Grassi D. Aging is associated with sex-specific alteration in the expression of genes encoding for neuroestradiol synthesis and signaling proteins in the mouse trigeminal somatosensory input. GeroScience 2024; 46:6459-6472. [PMID: 38954130 PMCID: PMC11493896 DOI: 10.1007/s11357-024-01268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Pain perception is influenced by sex and aging, with previous studies indicating the involvement of aromatase, the estradiol synthase enzyme, in regulating pain perception. Previous research has established the presence of aromatase in dorsal root ganglia sensory neurons and its role in modulating pain perception. The present study aims to explore the implications of aging and sex on the expression of aromatase and estrogen receptors in the trigeminal ganglion. The study examined mRNA levels of aromatase, ERs, and the androgen receptor (AR) in the trigeminal ganglion of 3-month-old and 27-month-old male and female mice, as well as 3-month-old mice from the four-core genotype (FCG) transgenic model. The latter facilitates the assessment of gonadal hormone and sex chromosome implications for sex-specific traits. Aromatase localization in the ganglion was further assessed through immunohistochemistry. Aromatase immunoreactivity was observed for the first time in sensory neurons within the trigeminal ganglion. Trigeminal ganglion gene expressions were detected for aromatase, ERs, and AR in both sexes. Aromatase, ERβ, and GPER gene expressions were higher in young males versus young females. Analyses of the FCG model indicated that sex differences depended solely on gonadal sex. The aging process induced an enhancement in the expression of aromatase, ERs, and AR genes across both sexes, culminating in a reversal of the previously observed gender-based differences. the potential impact of estrogen synthesis and signaling in the trigeminal ganglion on age and sex differences warrants consideration, particularly in relation to trigeminal sensory functions and pain perception.
Collapse
MESH Headings
- Animals
- Female
- Aromatase/genetics
- Aromatase/metabolism
- Male
- Trigeminal Ganglion/metabolism
- Aging/genetics
- Aging/metabolism
- Aging/physiology
- Mice
- Estradiol/metabolism
- Mice, Transgenic
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Sex Factors
- Pain Perception/physiology
- Signal Transduction/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sensory Receptor Cells/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Mice, Inbred C57BL
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
Collapse
Affiliation(s)
- Álvaro Bautista-Abad
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Pinto-Benito
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Eduardo Cáceres-Pajuelo
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Carlos Vicente Alises
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Danny Ganchala
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Luis Miguel García-Segura
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria-Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain.
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
4
|
Dourson AJ, Darken RS, Baranski TJ, Gereau RW, Ross WT, Nahman-Averbuch H. The role of androgens in migraine pathophysiology. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100171. [PMID: 39498299 PMCID: PMC11532460 DOI: 10.1016/j.ynpai.2024.100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Migraine affects ∼12 % of the worldwide population and is more prevalent in females, which suggests a role of sex hormones in migraine pathophysiology. Most studies have focused on estrogen and progesterone, and the involvement of androgens has been less studied. However, due to the recent advances in androgen interventions, which could advance new androgen-based migraine treatments, it is critical to better understand the role of androgens in migraine. Testosterone, the most studied androgen, was found to have an antinociceptive effect in various animal and human pain studies. Thus, it could also have a protective effect related to lower migraine severity and prevalence. In this review, we discuss studies examining the role of androgens on migraine-related symptoms in migraine animal models. Additionally, we summarize the results of human studies comparing androgen levels between patients with migraine and healthy controls, studies assessing the relationships between androgen levels and migraine severity, and intervention studies examining the impact of testosterone treatment on migraine severity. Many of the studies have limitations, however, the results suggest that androgens may have a minor effect on migraine. Still, it is possible that androgens are involved in migraine pathophysiology in a sub-group of patients such as in adolescents or postmenopausal women. We discuss potential mechanisms in which testosterone, as the main androgen tested, can impact migraine. These mechanisms range from the cellular level to systems and behavior and include the effect of testosterone on sensory neurons, the immune and vascular systems, the stress response, brain function, and mood. Lastly, we suggest future directions to advance this line of research.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel S. Darken
- Department of Neurology, Washington University School of Medicine, St. Louis Missouri, USA
| | - Thomas J. Baranski
- Division of Endocrinology, Diabetes and Metabolism Washington University School of Medicine in St. Louis Missouri, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney Trotter Ross
- Division of Minimally Invasive Gynecologic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Sessle BJ. Modulatory Processes in Craniofacial Pain States. ADVANCES IN NEUROBIOLOGY 2024; 35:107-124. [PMID: 38874720 DOI: 10.1007/978-3-031-45493-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Pain is a common symptom associated with many disorders affecting the craniofacial tissues that include the teeth and their supporting structures, the jaw, face and tongue muscles, and the temporomandibular joint. Most acute craniofacial pain states are easily recognized and readily treated, but chronic craniofacial pain states (e.g., temporomandibular disorders [TMD], trigeminal neuropathies, and some headaches) may be especially challenging to manage successfully. This chapter provides an overview of the processes that underlie craniofacial pain, with a focus on the pain-modulatory mechanisms operating in craniofacial tissues and in the central nervous system (CNS), including the role of endogenous chemical processes such as those involving opioids. The chapter outlines in particular findings from preclinical studies that have provided substantial information about the neural as well as nonneural (e.g., glial) processes involved in the initiation, transmission, and modulation of nociceptive signals in the trigeminal system, and also draws attention to their clinical correlates. The increased understanding gained from these preclinical studies of how nociceptive signals can be modulated will contribute to improvements in presently available therapeutic approaches to manage craniofacial pain as well as to the development of novel analgesic approaches.
Collapse
Affiliation(s)
- Barry J Sessle
- Department of Oral Physiology Faculty of Dentistry, Department of Physiology Faculty of Medicine, Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
7
|
Lesnak JB, Nakhla DS, Plumb AN, McMillan A, Saha S, Gupta N, Xu Y, Phruttiwanichakun P, Rasmussen L, Meyerholz DK, Salem AK, Sluka KA. Selective androgen receptor modulator microparticle formulation reverses muscle hyperalgesia in a mouse model of widespread muscle pain. Pain 2023; 164:1512-1523. [PMID: 36508167 PMCID: PMC10250561 DOI: 10.1097/j.pain.0000000000002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT Chronic pain is a significant health problem associated with disability and reduced quality of life. Current management of chronic pain is inadequate with only modest effects of pharmacological interventions. Thus, there is a need for the generation of analgesics for treating chronic pain. Although preclinical and clinical studies demonstrate the analgesic effects of testosterone, clinical use of testosterone is limited by adverse androgenic effects. Selective androgen receptor modulators (SARMs) activate androgen receptors and overcome treatment limitations by minimizing androgenic side effects. Thus, we tested whether daily soluble SARMs or a SARM-loaded microparticle formulation alleviated muscle hyperalgesia in a mouse-model of widespread pain (male and female C57BL/6J mice). We tested whether the analgesic effects of the SARM-loaded microparticle formulation was mediated through androgen receptors by blocking androgen receptors with flutamide pellets. In vitro and in vivo release kinetics were determined for SARM-loaded microparticles. Safety and toxicity of SARM treatment was determined using serum cardiac and liver toxicity panels, heart histology, and conditioned place preference testing. Subcutaneous daily SARM administration, and 2 injections, 1 week apart, of SARM-loaded microparticles alleviated muscle hyperalgesia in both sexes and was prevented with flutamide treatment. Sustained release of SARM, from the microparticle formulation, was observed both in vitro and in vivo for 4 weeks. Selective androgen receptor modulator treatment produced no cardiac or liver toxicity and did not produce rewarding behaviors. These studies demonstrate that SARM-loaded microparticles, which release drug for a sustained period, alleviate muscle pain, are safe, and may serve as a potential therapeutic for chronic muscle pain.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | - David S. Nakhla
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Ashley N. Plumb
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | - Alexandra McMillan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Sanjib Saha
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Pornpoj Phruttiwanichakun
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Lynn Rasmussen
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | | | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| |
Collapse
|
8
|
Khalilzadeh E, Aliyoldashi M, Abdkarimi B, Azarpey F, Vafaei Saiah G, Hazrati R, Caspani O. Reversal of cold intolerance by testosterone in orchiectomized mice after tibial nerve transection. Behav Brain Res 2023; 441:114269. [PMID: 36574845 DOI: 10.1016/j.bbr.2022.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Cold intolerance is a debilitating effect of nerve injury, has a strong impact on the life of patients and no advisable treatment exists against it. Testosterone influences pain pathways and has analgesic effects. A recent study showed testosterone as being an agonist of TRPM8, the predominant ion channel that contributes to cold hypersensitivity after injury. We investigated the effect of testosterone on cold sensitivity after nerve injury. Specifically, using the double plate test (DPT) (thermo-neutral-plate: 31 ºC and cold-plate: 18 ºC) we determined the thermal preference of mice at different points during the study design consisting of: orchiectomy, tibial nerve transection (TNT) (30 days after orchiectomy), 15-days-repeated subcutaneous injections of testosterone enanthate (250 or 500 µg/kg/day) or vehicle (started 12 h after TNT surgery). Different parameters such as time spent on cold plates, distance traveled, animal speed on the cold- and thermo-neutral-plates were determined in naïve, sham and neuropathic animals. Neither orchiectomy nor sham TNT surgery generate effects on cold intolerance and animal activity while TNT surgery decreased the time spent on the cold-plate and the distance traveled during DPT. Testosterone administration reversed the effect of nerve injury, decreasing the cold hypersensitivity and increasing activity of TNT mice. However, the effect of testosterone on cold avoidance reduced with time and at 14 days after TNT surgery, a higher dose was needed to reverse the effect generated by nerve injury. This indicates that although testosterone administration has a positive effect on cold intolerance, it might not be suitable for prolongated treatment.
Collapse
Affiliation(s)
- Emad Khalilzadeh
- Division of physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; Neurophysiology Department, Medical Faculty Mannheim of the University of Heidelberg, Mannheim Center for Translational Neuroscience (MCTN), Ludolf-Krehl-Str., 68167 Mannheim, Germany.
| | - Mohammadhassan Aliyoldashi
- Division of physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Babak Abdkarimi
- Division of physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Farzin Azarpey
- Division of physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; Neurophysiology Department, Medical Faculty Mannheim of the University of Heidelberg, Mannheim Center for Translational Neuroscience (MCTN), Ludolf-Krehl-Str., 68167 Mannheim, Germany
| | - Gholamreza Vafaei Saiah
- Division of physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Hazrati
- Brain Research Center, Laval University, Quebec, Canada
| | - Ombretta Caspani
- Neurophysiology Department, Medical Faculty Mannheim of the University of Heidelberg, Mannheim Center for Translational Neuroscience (MCTN), Ludolf-Krehl-Str., 68167 Mannheim, Germany
| |
Collapse
|
9
|
Lesnak JB, Fahrion A, Helton A, Rasmussen L, Andrew M, Cunard S, Huey M, Kreber A, Landon J, Siwiec T, Todd K, Frey-Law LA, Sluka KA. Resistance training protects against muscle pain through activation of androgen receptors in male and female mice. Pain 2022; 163:1879-1891. [PMID: 35353765 PMCID: PMC9481652 DOI: 10.1097/j.pain.0000000000002638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Resistance training-based exercise is commonly prescribed in the clinic for the treatment of chronic pain. Mechanisms of aerobic exercise for analgesia are frequently studied, while little is known regarding resistance training mechanisms. We developed a resistance training model in mice and hypothesized resistance training would protect against development of muscle pain, mediated through the activation of androgen receptors. Activity-induced muscle hyperalgesia was produced by 2 injections of pH 5.0 stimuli with fatiguing muscle contractions. Resistance training was performed by having mice climb a ladder with attached weights, 3 times per week. Resistance training acutely increased blood lactate and prolonged training increased strength measured via forepaw grip strength and 1 repetition maximum, validating the exercise program as a resistance training model. Eight weeks of resistance training prior to induction of the pain model blocked the development of muscle hyperalgesia in both sexes. Resistance training initiated after induction of the pain model reversed muscle hyperalgesia in male mice only. A single resistance training bout acutely increased testosterone in male but not female mice. Administration of the androgen receptor antagonist flutamide (200 mg pellets) throughout the 8-week training program blocked the exercise-induced protection against muscle pain in both sexes. However, single administration of flutamide (1, 3, 10 mg/kg) in resistance-trained animals had no effect on existing exercise-induced protection against muscle pain. Therefore, resistance training acutely increases lactate and testosterone and strength overtime. Eight weeks of resistance training prevents the development of hyperalgesia through the activation of androgen receptors in an animal model of muscle pain.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Alexis Fahrion
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Amber Helton
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Lynn Rasmussen
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Megan Andrew
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Stefanie Cunard
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Michaela Huey
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Austin Kreber
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Joseph Landon
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Travis Siwiec
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Kenan Todd
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Laura A. Frey-Law
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| |
Collapse
|
10
|
Vassoler FM, Isgate SB, Budge KE, Byrnes EM. HPA axis dysfunction during morphine withdrawal in offspring of female rats exposed to opioids preconception. Neurosci Lett 2022; 773:136479. [PMID: 35085692 PMCID: PMC8908356 DOI: 10.1016/j.neulet.2022.136479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Opioid use and abuse remain a significant public health problem, particularly in the United States. Indeed, it is estimated that up to 10% of youths (age 12-18) have taken opioids illicitly. A growing body of evidence suggests that this level of widespread opioid exposure can have effects that extend to subsequent generations. Utilizing a well-established rodent model of preconception adolescent opioid exposure in females, we found decreased opioid self-administration coupled with increased cocaine self-administration in adult offspring. This bidirectional effect may be related to negative affect associated with opioid withdrawal, including enhanced stress reactivity. In this study, we tested the hypothesis that the adult offspring of females exposed to morphine during adolescence will demonstrate increased signs of opioid withdrawal when compared to offspring of saline controls. Females were administered increasing doses of morphine (5-25 mg/kg s.c.) or saline (1 ml/kg) from postnatal day 30 (PND30)-PND39. They were then maintained drug free for a minimum of 4 weeks and mated with drug-naïve males on or after PND70. As adults, their male and female offspring (referred to as Mor-F1 or Sal-F1) were administered morphine (10 mg/kg s.c.) twice a day for 5 days. They were then tested for spontaneous withdrawal behaviors for the next 4 days (∼PND70). Levels of corticotropin releasing hormone (Crh) and urocortin 3 (Ucn3) were examined in the amygdala at 48 h and 96 h of withdrawal. Circulating corticosterone was measured at 48 h. Results indicate that Mor-F1 males are heavier than Sal-F1 males with no baseline differences in females. However, Mor-F1 females did not gain weight at the same rate as Sal-F1 females during withdrawal. While there were no differences in somatic withdrawal signs, gene expression data revealed a sex-specific and time-dependent effect on Crh as well as increased Ucn3 and corticosterone in females at 48hrs withdrawal. Overall, these data point to differences in withdrawal and stress reactivity in Mor-F1 animals that may contribute to observed differences in addiction-like behaviors.
Collapse
Affiliation(s)
- Fair M Vassoler
- Cummings School of Veterinary Medicine at Tufts University, Department of Comparative Pathobiology, Grafton, MA 01536, USA.
| | - Sara B Isgate
- Cummings School of Veterinary Medicine at Tufts University, Department of Comparative Pathobiology, Grafton, MA 01536, USA
| | - Kerri E Budge
- Cummings School of Veterinary Medicine at Tufts University, Department of Comparative Pathobiology, Grafton, MA 01536, USA
| | - Elizabeth M Byrnes
- Cummings School of Veterinary Medicine at Tufts University, Department of Comparative Pathobiology, Grafton, MA 01536, USA
| |
Collapse
|
11
|
Sharp JL, Pearson T, Smith MA. Sex differences in opioid receptor mediated effects: Role of androgens. Neurosci Biobehav Rev 2022; 134:104522. [PMID: 34995646 PMCID: PMC8872632 DOI: 10.1016/j.neubiorev.2022.104522] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/02/2022] [Indexed: 12/26/2022]
Abstract
An abundance of data indicates there are sex differences in endogenous opioid peptides and opioid receptors, leading to functional differences in sensitivity to opioid receptor mediated behaviors between males and females. Many of these sex differences are mediated by the effects of gonadal hormones on the endogenous opioid system. Whereas much research has examined the role of ovarian hormones on opioid receptor mediated endpoints, comparatively less research has examined the role of androgens. This review describes what is currently known regarding the influence of androgens on opioid receptor mediated endpoints and how androgens may contribute to sex differences in these effects. The review also addresses the clinical implications of androgenic modulation of opioid receptor mediated behaviors and suggests future lines of research for preclinical and clinical investigators. We conclude that further investigation into androgenic modulation of opioid receptor mediated effects may lead to new options for addressing conditions such as chronic pain and substance use disorders.
Collapse
Affiliation(s)
- Jessica L Sharp
- Department of Psychology and Program in Neuroscience, Davidson College, United States
| | - Tallia Pearson
- Department of Psychology and Program in Neuroscience, Davidson College, United States
| | - Mark A Smith
- Department of Psychology and Program in Neuroscience, Davidson College, United States.
| |
Collapse
|
12
|
Abstract
Chronic widespread pain conditions are more prevalent in women than men, suggesting a role for gonadal hormones in the observed differences. Previously, we showed that female mice, compared to male, develop widespread, more severe, and longer-duration hyperalgesia in a model of activity-induced muscle pain. We hypothesized testosterone protects males from developing the female pain phenotype. We tested whether orchiectomy of males before induction of an activity-induced pain model produced a female phenotype and whether testosterone administration produced a male phenotype in females. Orchiectomy produced longer-lasting, more widespread hyperalgesia, similar to females. Administration of testosterone to females or orchiectomized males produced unilateral, shorter-lasting hyperalgesia. Prior studies show that the serotonin transporter (SERT) is increased in the nucleus raphe magnus (NRM) in models of chronic pain, and that blockade of SERT in the NRM reduces hyperalgesia. We examined potential sex differences in the distribution of SERT across brain sites involved in nociceptive processing using immunohistochemistry. A sex difference in SERT was found in the NRM in the activity-induced pain model; females had greater SERT immunoreactivity than males. This suggests that testosterone protects against development of widespread, long-lasting muscle pain and that alterations in SERT may underlie the sex differences.
Collapse
|
13
|
Liu Q, He H, Mai L, Yang S, Fan W, Huang F. Peripherally Acting Opioids in Orofacial Pain. Front Neurosci 2021; 15:665445. [PMID: 34017236 PMCID: PMC8129166 DOI: 10.3389/fnins.2021.665445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of opioid receptors by exogenous or endogenous opioids can produce significant analgesic effects in peripheral tissues. Numerous researchers have demonstrated the expression of peripheral opioid receptors (PORs) and endogenous opioid peptides (EOPs) in the orofacial region. Growing evidence has shown the involvement of PORs and immune cell-derived EOPs in the modulation of orofacial pain. In this review, we discuss the role of PORs and EOPs in orofacial pain and the possible cellular mechanisms involved. Furthermore, the potential development of therapeutic strategies for orofacial pain is also summarized.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
14
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Liu Q, Fan W, He H, Huang F. The role of peripheral opioid receptors in orofacial pain. Oral Dis 2020; 27:1106-1114. [PMID: 32437594 DOI: 10.1111/odi.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Opioid receptors are widely distributed in the central and peripheral nervous systems and non-neuronal tissues. Numerous researchers have noted the pivotal role of peripheral opioid receptors (PORs) in analgesia. Accumulating evidence has shown the existence of PORs in the trigeminal nerve system, indicating that PORs may be involved in the modulation of orofacial pain. In this review, we summarise the recent evidence for the role of PORs in orofacial pain and discuss the possible cellular mechanisms.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
16
|
Bai X, Wang C, Zhang X, Feng Y, Zhang X. The role of testosterone in mu-opioid receptor expression in the trigeminal ganglia of opioid-tolerant rats. Neurosci Lett 2020; 723:134868. [PMID: 32109552 DOI: 10.1016/j.neulet.2020.134868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Although tolerance serves as a major limitation in the long-term clinical use of opioids in patients with chronic severe pain, mechanisms of opioid tolerance are poorly understood. In this study, a morphine tolerance model was established by subcutaneously injecting male rats with morphine (10 mg/kg) twice a day for 10 consecutive days. In addition, a subset of morphine-tolerant rats underwent testosterone replacement therapy. The levels of mu-opioid receptor (MOR) mRNA and protein in the trigeminal ganglia (TGs) of morphine-tolerant versus control rats and of morphine-tolerant rats with vs. without testosterone replacement therapy were measured. We found that testosterone levels were significantly lower in morphine-tolerant rats than in the controls (1.248 ± 0.231 ng/ml vs. 2.223 ± 0.153 ng/ ml, respectively; p = 0.008). Furthermore, chronic morphine exposure led to a downregulation in the levels of MOR mRNA to 79.3%, and of MOR protein to 68.9%. Testosterone replacement therapy restored MOR mRNA and protein levels specifically in rats who had developed a tolerance to morphine, thereby suggesting a potential role of testosterone in the opioid-receptor response to chronic morphine exposure. In summary, our study provides evidence for the involvement of testosterone in the proper regulation of the peripheral MOR system in rats following prolonged morphine exposure. We also suggest that analgesic therapeutic measures should take into account the testosterone levels of patients who have built up a tolerance to morphine.
Collapse
Affiliation(s)
- Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Chun Wang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Xuedi Zhang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Yingbo Feng
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Xia Zhang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China.
| |
Collapse
|
17
|
Nasser SA, Afify EA. Sex differences in pain and opioid mediated antinociception: Modulatory role of gonadal hormones. Life Sci 2019; 237:116926. [PMID: 31614148 DOI: 10.1016/j.lfs.2019.116926] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Sex-related differences in pain and opioids has been the focus of many researches. It is demonstrated that women experience greater clinical pain, lower pain threshold and tolerance, more sensitivity and distress to experimentally induced pain compared to men. Sex differences in response to opioid treatment revealed inconsistent results. However, the etiology of these disparities is not fully elucidated. It is, therefore, conceivable now that this literature merits to be revisited comprehensively. Possible multifaceted factors seem to be associated. These include neuroanatomical, hormonal, neuroimmunological, psychological, social and cultural aspects and comorbidities. This review aims at providing an overview of the substantial literature documenting the sex differences in pain and analgesic response to opioids from animal and human studies within the context of the modulatory effects of the aforementioned factors. A detailed and critical discussion of the cellular and molecular signaling pathways underlying the modulatory actions of gonadal hormones in the sexual dimorphism in pain processing and opioid analgesia is extensively presented. It is indicated that sexual dimorphic activation of certain brain regions contributes to differential pain sensitivity between females and males. Plausible crosstalk between sex hormones and neuroimmunological signaling pertinent to toll-like and purinergic receptors is uncovered as causal cues underlying sexually dimorphic pain and opioid analgesia. Conceivably, a thorough understanding of these factors may aid in sex-related advancement in pain therapeutic management.
Collapse
Affiliation(s)
- Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
18
|
Barbosa Neto JO, Garcia JBS, Cartágenes MDSDS, Amaral AG, Onuchic LF, Ashmawi HA. Influence of androgenic blockade with flutamide on pain behaviour and expression of the genes that encode the NaV1.7 and NaV1.8 voltage-dependent sodium channels in a rat model of postoperative pain. J Transl Med 2019; 17:287. [PMID: 31455381 PMCID: PMC6712891 DOI: 10.1186/s12967-019-2031-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/18/2019] [Indexed: 11/29/2022] Open
Abstract
Background Experimental studies suggest that testosterone reduces the nociceptive response after inflammatory and neuropathic stimuli, however the underlying mechanisms have not been fully elucidated. The aims of this study were to evaluate the effect of peripheral blockade of testosterone on pain behaviour and on expression levels of the genes that encode the NaV1.7 and NaV1.8 channels, in dorsal root ganglia in an acute postoperative pain model, as well as the influence of androgen blockade on the expression of these genes. Methods Postoperative pain was induced by a plantar incision and the study group received flutamide to block testosterone receptor. The animals were submitted to behavioural evaluation preoperatively, 2 h after incision, and on the 1st, 2nd, 3rd and 7th postoperative days. Von Frey test was used to evaluate paw withdrawal threshold after mechanical stimuli and the guarding pain test to assess spontaneous pain. The expression of the genes encoding the sodium channels at the dorsal root ganglia was determined by real time quantitative polymerase chain reaction. Results Animals treated with flutamide presented lower paw withdrawal threshold at the 1st, 2nd, 3rd, and 7th postoperative days. The guarding pain test showed significant decrease in the flutamide group at 2 h and on the 3rd and 7th postoperative days. No difference was detected between the study and control groups for the gene expression. Conclusions Our data suggest an antinociceptive effect of androgens following plantar incision. The expression of genes that encode voltage-gated sodium channels was not influenced by androgen blockade.
Collapse
Affiliation(s)
- José Osvaldo Barbosa Neto
- LIM/08 - Laboratório de Anestesiologia - Laboratórios de Investigação Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | - Andressa Godoy Amaral
- LIM/29 - Laboratório de Nefrologia Celular, Genética e Molecular - Laboratórios de Investigação Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Fernando Onuchic
- LIM/29 - Laboratório de Nefrologia Celular, Genética e Molecular - Laboratórios de Investigação Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Hazem Adel Ashmawi
- LIM/08 - Laboratório de Anestesiologia - Laboratórios de Investigação Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Khalil R, Humann J. Testosterone modulation of ethanol effects on the �‑opioid receptor kinetics in castrated rats. Biomed Rep 2019; 11:103-109. [PMID: 31423304 PMCID: PMC6684941 DOI: 10.3892/br.2019.1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/05/2019] [Indexed: 11/17/2022] Open
Abstract
The present investigation was conducted to evaluate the effects of testosterone on ethanol-induced alterations of µ-opioid receptor binding kinetics in specific brain regions of castrated rats. Male Sprague Dawley rats (100-124 g) adapted to a 12-h light/dark cycle were used. Animals were castrated under pentobarbital anesthesia. After a recovery period of 14 days, ethanol [3 g/kg as 22.5% solution in saline via intraperitoneal injection (i.p.)], testosterone [2.5 mg in 0.2 ml of olive oil via subcutaneous injection (s.c.) in the dorsal neck region] or the combination of ethanol and testosterone were administered to rats at 9:00 a.m. The control group was injected i.p. with 2 ml saline and s.c. with 0.2 ml olive oil for 7 days. Animals were sacrificed by decapitation at 2 h after the final injection. The brains were immediately removed, and the cortex, hippocampus, hypothalamus and midbrain were dissected. In an attempt to elucidate the mechanism involved in the hormonal modulation of the effects of ethanol and testosterone on the endogenous opioid system, the binding kinetics of the µ-opioid receptors were determined. The results obtained in the present study assisted in identifying the regulatory role of testosterone on ethanol-induced changes on µ-opioid receptor binding kinetics.
Collapse
Affiliation(s)
- Rafaat Khalil
- Department of Biology, Florida A&M University College of Science and Technology, Tallahassee, FL 32307, USA
| | - Jessica Humann
- Department of Biology, Florida A&M University College of Science and Technology, Tallahassee, FL 32307, USA
| |
Collapse
|
20
|
Coluzzi F, Billeci D, Maggi M, Corona G. Testosterone deficiency in non-cancer opioid-treated patients. J Endocrinol Invest 2018; 41:1377-1388. [PMID: 30343356 PMCID: PMC6244554 DOI: 10.1007/s40618-018-0964-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE The use of opioids in patients with chronic non-cancer pain is common and can be associated with opioid-induced androgen deficiency (OPIAD) in men. This review aims to evaluate the current literature regarding the prevalence, clinical consequence and management of OPIAD. METHODS A database search was performed in Medline, Embase and Cochrane using terms such as "analgesics", "opioids" and "testosterone". Relevant literature from January 1969 to March 2018 was evaluated. RESULTS The prevalence of patients with OPIAD ranges from 19 to 86%, depending on the criteria for diagnosis of hypogonadism. The opioid-induced suppression of gonadotropin-releasing and luteinizing hormones represents the main important pathogenetic mechanisms. OPIAD has significant negative clinical consequences on sexual function, mood, bone density and body composition. In addition, OPIAD can also impair pain control leading to hyperalgesia, which can contribute to sexual dysfunction and mood impairment. CONCLUSIONS OPIAD is a common adverse effect of opioid treatment and contributes to sexual dysfunction, impairs pain relief and reduces overall quality of life. The evaluation of serum testosterone levels should be considered in male chronic opioid users and the decision to initiate testosterone treatment should be based on the clinical profile of individuals, in consultation with the patient.
Collapse
Affiliation(s)
- F Coluzzi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - D Billeci
- Neurosurgical Department, ULSS2 Treviso Hospital, University of Padua, Treviso, Italy
| | - M Maggi
- Department of Experimental and Clinical Biomedical Sciences, Sexual Medicine and Andrology Unit, University of Florence, Florence, Italy
| | - G Corona
- Endocrinology Unit, Medical Department, Azienda Usl di Bologna, Maggiore-Bellaria Hospital, Largo Nigrisoli 2, 40133, Bologna, Italy.
| |
Collapse
|
21
|
Fejes-Szabó A, Spekker E, Tar L, Nagy-Grócz G, Bohár Z, Laborc KF, Vécsei L, Párdutz Á. Chronic 17β-estradiol pretreatment has pronociceptive effect on behavioral and morphological changes induced by orofacial formalin in ovariectomized rats. J Pain Res 2018; 11:2011-2021. [PMID: 30310305 PMCID: PMC6165783 DOI: 10.2147/jpr.s165969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The prevalence of craniofacial pain disorders show sexual dimorphism with generally more common appearance in women suggesting the influence of estradiol, but the exact cause remains unknown. The common point in the pathogenesis of these disorders is the activation of trigeminal system. One of the animal experimental models of trigeminal activation is the orofacial formalin test, in which we investigated the effect of chronic 17β-estradiol pretreatment on the trigeminal pain-related behavior and activation of trigeminal second-order neurons at the level of spinal trigeminal nucleus pars caudalis (TNC). Methods Female Sprague Dawley rats were ovariectomized and silicone capsules were implanted subcutaneously containing cholesterol in the OVX group and 17β-estradiol and cholesterol in 1:1 ratio in the OVX+E2 group. We determined 17β-estradiol levels in serum after the implantation of capsules. Three weeks after operation, 50 µL of physiological saline or 1.5% of formalin solution was injected subcutaneously into the right whisker pad of rats. The time spent on rubbing directed to the injected area and c-Fos immunoreactivity in TNC was measured as the formalin-induced pain-related behavior, and as the marker of pain-related neuronal activation, respectively. Results The chronic 17β-estradiol pretreatment mimics the plasma levels of estrogen occurring in the proestrus phase and significantly increased the formalin-induced pain-related behavior and neuronal activation in TNC. Conclusion Our results demonstrate that the chronic 17β-estradiol treatment has strong pronociceptive effect on orofacial formalin-induced inflammatory pain suggesting modulatory action of estradiol on head pain through estrogen receptors, which are present in the trigeminal system.
Collapse
Affiliation(s)
| | - Eleonóra Spekker
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary,
| | - Lilla Tar
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Gábor Nagy-Grócz
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary, .,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary, .,Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary,
| | - Klaudia Flóra Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary, .,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary, .,Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary,
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary,
| |
Collapse
|
22
|
Kang SK, Lee YH, Park H, Ro JY, Auh QS. Effects of intramuscular morphine in men and women with temporomandibular disorder with myofascial pain. Oral Dis 2018; 24:1591-1598. [PMID: 29920852 DOI: 10.1111/odi.12919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This placebo-controlled randomized double-blinded clinical study assessed the analgesic efficacy of intramuscular morphine in TMD patients with myofascial pain and sex-dependent responses of the morphine treatment. SUBJECTS AND METHODS Men and women with TMD were treated with morphine (1.5 or 5 mg), lidocaine, or saline in the masseter muscle. VAS of pain intensity, PPT, and PPtol were compared between treatment groups and gender. An additional group was treated with morphine in the trapezius muscle to evaluate the systemic effect of morphine that may reduce pain in the masseter muscle. RESULTS There was a significant difference in VAS scores between the morphine 5 mg group and the saline group favoring morphine, but not between the morphine 5 mg and lidocaine. Morphine 1.5 and 5 mg treatments led to consistently and significantly elevated PPT and PPtol measures in men, but not in women. Morphine administered in the trapezius muscle did not affect the outcome measures. CONCLUSION A single dose intramuscular morphine produced analgesic effects up to 48 hr in patients with myofascial pain. Intramuscular morphine elevated mechanical pain threshold and tolerance in the masseter only in male patients, suggesting sex differences in local morphine effects. No systemic effect of intramuscular morphine was detected.
Collapse
Affiliation(s)
- Soo-Kyung Kang
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Yeon-Hee Lee
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Hyeji Park
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jin Y Ro
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea.,Department of Neural and Pain Sciences, Program in Neuroscience, University of Maryland School of Dentistry, Baltimore, Maryland
| | - Q-Schick Auh
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
23
|
Da Silva JT, Zhang Y, Asgar J, Ro JY, Seminowicz DA. Diffuse noxious inhibitory controls and brain networks are modulated in a testosterone-dependent manner in Sprague Dawley rats. Behav Brain Res 2018; 349:91-97. [PMID: 29733874 PMCID: PMC7184319 DOI: 10.1016/j.bbr.2018.04.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Diffuse noxious inhibitory control (DNIC), which involves endogenous pain modulation, has been investigated as a potential mechanism for the differences in pain modulation observed between men and women, though the literature shows contradictory findings. We used a capsaicin-induced DNIC behavioral assay and resting state functional magnetic resonance imaging (rsfMRI) to assess the effect of testosterone on pain modulation and related brain circuitry in rats. We hypothesized that testosterone is required for DNIC that leads to efficient pain inhibition by increasing descending pain modulation. Male, female, and orchidectomized (GDX) male rats had a capsaicin injection into the forepaw to induce DNIC and mechanical thresholds were observed on the hindpaw. rsfMRI scans were acquired before and after capsaicin injection to analyze the effects of DNIC on periaqueductal gray (PAG), anterior cingulate cortex (ACC) and nucleus accumbens (NAc) connectivity to the whole brain. The strength of DNIC was higher in males compared to females and GDX males. PAG connectivity with prelimbic cortex (PrL), ACC and insula was stronger in males compared to females and GDX males, whereas females and GDX males had increased connectivity between the right ACC, hippocampus and thalamus. GDX males also showed a stronger connectivity between right ACC and NAc, and right NAc with PrL, ACC, insula and thalamus. Our findings suggest that testosterone plays a key role in reinforcing the endogenous pain inhibitory system, while circuitries related to reward and emotion are more strongly recruited in the absence of testosterone.
Collapse
Affiliation(s)
- Joyce T Da Silva
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States.
| | - Youping Zhang
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States
| | - Jamila Asgar
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States
| | - Jin Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, United States
| |
Collapse
|
24
|
Opposing Roles of Estradiol and Testosterone on Stress-Induced Visceral Hypersensitivity in Rats. THE JOURNAL OF PAIN 2018; 19:764-776. [PMID: 29496640 DOI: 10.1016/j.jpain.2018.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
Chronic stress produces maladaptive pain responses, manifested as alterations in pain processing and exacerbation of chronic pain conditions including irritable bowel syndrome. Female predominance, especially during reproductive years, strongly suggests a role of gonadal hormones. However, gonadal hormone modulation of stress-induced pain hypersensitivity is not well understood. In the present study, we tested the hypothesis that estradiol is pronociceptive and testosterone is antinociceptive in a model of stress-induced visceral hypersensitivity (SIVH) in rats by recording the visceromotor response to colorectal distention after a 3-day forced swim (FS) stress paradigm. FS induced visceral hypersensitivity that persisted at least 2 weeks in female, but only 2 days in male rats. Ovariectomy blocked and orchiectomy facilitated SIVH. Furthermore, estradiol injection in intact male rats increased SIVH and testosterone in intact female rats attenuated SIVH. Western blot analyses indicated estradiol increased excitatory glutamate ionotropic receptor NMDA type subunit 1 expression and decreased inhibitory metabotropic glutamate receptor 2 expression after FS in male thoracolumbar spinal cord. In addition, the presence of estradiol during stress increased spinal brain-derived neurotrophic factor (BDNF) expression independent of sex. In contrast, testosterone blocked the stress-induced increase in BDNF expression in female rats. These data suggest that estradiol facilitates and testosterone attenuates SIVH by modulating spinal excitatory and inhibitory glutamatergic receptor expression. PERSPECTIVE SIVH is more robust in female rats. Estradiol facilitates whereas testosterone dampens the development of SIVH. This could partially explain the greater prevalence of certain chronic visceral pain conditions in women. An increase in spinal BDNF is concomitant with increased stress-induced pain. Pharmaceutical interventions targeting this molecule could provide promising alleviation of SIVH in women.
Collapse
|
25
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
26
|
Alvarez P, Green PG, Levine JD. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats. THE JOURNAL OF PAIN 2018; 19:670-677. [PMID: 29432863 DOI: 10.1016/j.jpain.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. PERSPECTIVE NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, California; Division of Neuroscience, University of California, San Francisco, California
| | - Paul G Green
- Division of Neuroscience, University of California, San Francisco, California; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, California; Division of Neuroscience, University of California, San Francisco, California; Department of Medicine, University of California, San Francisco, California.
| |
Collapse
|
27
|
Bai X, Zhang X, Zhou Q. Effect of Testosterone on TRPV1 Expression in a Model of Orofacial Myositis Pain in the Rat. J Mol Neurosci 2017; 64:93-101. [PMID: 29209900 DOI: 10.1007/s12031-017-1009-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
Recent clinical studies have revealed sex differences in response to transient receptor potential vanilloid 1 (TRPV1) agonist-induced pain. However, the mechanism of these differences in TRPV1-related chronic pain remains unclear. In the present study, we investigate the effects of inflammation and gonadal hormones on TRPV1 expression in trigeminal ganglia. Inflammatory pain was modeled by injecting complete Freund's adjuvant (CFA) into the left masseter muscle in rats. TRPV1 mRNA and protein levels in the trigeminal ganglia of male and female rats following CFA injection were assessed. CFA-induced changes in TRPV1 mRNA and protein expression in the trigeminal ganglia from orchidectomized (ODX) male rats and testosterone-replaced ODX rats were examined. Additionally, TRPV1 mRNA levels in the trigeminal ganglia from ovariectomized (OVX) female and ODX male rats treated with tamoxifen were assessed. We found that the levels of TRPV1 mRNA and protein in the trigeminal ganglia from female rats following CFA injection were significantly higher than in the ganglia from naïve female rats. CFA-induced inflammatory hyperalgesia did not alter TRPV1 expression in the trigeminal ganglia from male rats. The TRPV1 mRNA and protein expression levels in the ODX male trigeminal ganglia were significantly upregulated on day 3 following the initiation of inflammation. However, CFA-induced inflammatory pain had no significant effect on TRPV1 mRNA or protein expression in testosterone-replaced ODX rats. Furthermore, tamoxifen was unable to inhibit the upregulation of TRPV1 expression in OVX female and ODX male rats after CFA injection. In summary, these data indicate that gender differences in TRPV1 function may be, in part, mediated by sex-dependent TRPV1 expression in sensory ganglia. Testosterone plays a key role in the inhibition of TRPV1 expression in this rat chronic inflammatory pain model.
Collapse
Affiliation(s)
- Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, People's Republic of China
| | - Xia Zhang
- Department of Anesthesiology, School & Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, People's Republic of China.
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, People's Republic of China
| |
Collapse
|
28
|
Abstract
Background Migraine is two to three times more prevalent in women than in men, but the mechanisms involved in this gender disparity are still poorly understood. In this respect, calcitonin gene-related peptide (CGRP) plays a key role in migraine pathophysiology and, more recently, the functional interactions between ovarian steroid hormones, CGRP and the trigeminovascular system have been recognized and studied in more detail. Aims To provide an overview of CGRP studies that have addressed gender differences utilizing animal and human migraine preclinical research models to highlight how the female trigeminovascular system responds differently in the presence of varying ovarian steroid hormones. Conclusions Gender differences are evident in migraine. Several studies indicate that fluctuations of ovarian steroid hormone (mainly estrogen) levels modulate CGRP in the trigeminovascular system during different reproductive milestones. Such interactions need to be considered when conducting future animal and human experiments, since these differences may contribute to the development of gender-specific therapies.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Eloísa Rubio-Beltrán
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Carlos M Villalón
- 2 Departamento de Farmacobiología, Cinvestav-I.P.N. (Unidad Sur), Ciudad de México, México
| | - Antoinette MaassenVanDenBrink
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Auh QS, Chun YH, Melemedjian OK, Zhang Y, Ro JY. Peripheral interactions between cannabinoid and opioid receptor agonists in a model of inflammatory mechanical hyperalgesia. Brain Res Bull 2016; 125:211-7. [PMID: 27450703 DOI: 10.1016/j.brainresbull.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
Abstract
Activation of opioid and cannabinoid receptors expressed in nociceptors induces effective antihyperalgesia. In this study, we examined whether combinations of opioid and cannabinoid receptor agonists directed at the injured site would enhance therapeutic effectiveness. Behavioral pharmacology experiments were performed to compare the effects of DAMGO, a selective agonist for μ-opioid receptor (MOR), ACPA, a specific agonist for CB1, and combinations of DAMGO and ACPA in attenuating complete Freund's adjuvant (CFA)-induced mechanical hyperalgesia in the rat hindpaw. DAMGO (1μg-1mg) or ACPA (1μg-2mg) was administered into the inflamed paw when mechanical hyperalgesia was fully developed. When administered individually, DAMGO and ACPA dose-dependently reversed the mechanical hyperalgesia. DAMGO displayed a lower ED50 value (57.4±2.49μg) than ACPA (111.6±2.18μg), but ACPA produced longer lasting antihyperalgesic effects. Combinations of DAMGO and ACPA also dose-dependently attenuated mechanical hyperalgesia, but the antihyperalgesic effects were partial and transient even at high doses. Using isobolographic analysis, we determined that combined treatment with DAMGO and ACPA produced antagonistic effects with the observed ED50 of 128.4±2.28μg. Our findings showed that MOR and CB1 agonists directed at the inflamed site effectively attenuate mechanical hyperalgesia when administered individually, but exert opposing effects when administered together. The antagonistic interactions between the two classes of drugs at the inflamed site suggest distinct mechanisms unique to peripheral nociceptors or inflamed tissue, and therefore require further studies to investigate whether the therapeutic utility of the combined drug treatments in chronic pain conditions can be optimized.
Collapse
Affiliation(s)
- Q-Schick Auh
- Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea
| | - Yang Hyun Chun
- Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea
| | - Ohannes K Melemedjian
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St., Baltimore, MD 21201, USA
| | - Youping Zhang
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St., Baltimore, MD 21201, USA
| | - Jin Y Ro
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St., Baltimore, MD 21201, USA; Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea.
| |
Collapse
|