1
|
Li J, Xie F, Ma X. Advances in nanomedicines: a promising therapeutic strategy for ischemic cerebral stroke treatment. Nanomedicine (Lond) 2024; 19:811-835. [PMID: 38445614 DOI: 10.2217/nnm-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Ischemic stroke, prevalent among the elderly, necessitates attention to reperfusion injury post treatment. Limited drug access to the brain, owing to the blood-brain barrier, restricts clinical applications. Identifying efficient drug carriers capable of penetrating this barrier is crucial. Blood-brain barrier transporters play a vital role in nutrient transport to the brain. Recently, nanoparticles emerged as drug carriers, enhancing drug permeability via surface-modified ligands. This article introduces the blood-brain barrier structure, elucidates reperfusion injury pathogenesis, compiles ischemic stroke treatment drugs, explores nanomaterials for drug encapsulation and emphasizes their advantages over conventional drugs. Utilizing nanoparticles as drug-delivery systems offers targeting and efficiency benefits absent in traditional drugs. The prospects for nanomedicine in stroke treatment are promising.
Collapse
Affiliation(s)
- Jun Li
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Fei Xie
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Xuemei Ma
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| |
Collapse
|
2
|
Wu C, Zou P, Feng S, Zhu L, Li F, Liu TCY, Duan R, Yang L. Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol 2023; 60:1749-1765. [PMID: 36567361 DOI: 10.1007/s12035-022-03175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress and neuroinflammation are the main physiopathological changes involved in the initiation and progression of various neurodegenerative disorders or brain injuries. Since the landmark finding reported in 2007 found that hydrogen reduced the levels of peroxynitrite anions and hydroxyl free radicals in ischemic stroke, molecular hydrogen's antioxidative and anti-inflammatory effects have aroused widespread interest. Due to its excellent antioxidant and anti-inflammatory properties, hydrogen therapy via different routes of administration exhibits great therapeutic potential for a wide range of brain disorders, including Alzheimer's disease, neonatal hypoxic-ischemic encephalopathy, depression, anxiety, traumatic brain injury, ischemic stroke, Parkinson's disease, and multiple sclerosis. This paper reviews the routes for hydrogen administration, the effects of hydrogen on the previously mentioned brain disorders, and the primary mechanism underlying hydrogen's neuroprotection. Finally, we discuss hydrogen therapy's remaining issues and challenges in brain disorders. We conclude that understanding the exact molecular target, finding novel routes, and determining the optimal dosage for hydrogen administration is critical for future studies and applications.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Fanghui Li
- School of Sports Science, Nanjing Normal University, Nanjing, 210046, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Yan H, Fan M, Liu H, Xiao T, Han D, Che R, Zhang W, Zhou X, Wang J, Zhang C, Yang X, Zhang J, Li Z. Microbial hydrogen "manufactory" for enhanced gas therapy and self-activated immunotherapy via reduced immune escape. J Nanobiotechnology 2022; 20:280. [PMID: 35705974 PMCID: PMC9199139 DOI: 10.1186/s12951-022-01440-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an antioxidant, hydrogen (H2) can selectively react with the highly toxic hydroxyl radical (·OH) in tumor cells to break the balance of reactive oxygen species (ROS) and cause oxidative stress. However, due to the high diffusibility and storage difficulty of hydrogen, it is impossible to achieve long-term release at the tumor site, which highly limited their therapeutic effect. RESULTS Photosynthetic bacteria (PSB) release a large amount of hydrogen to break the balance of oxidative stress. In addition, as a nontoxic bacterium, PSB could stimulate the immune response and increase the infiltration of CD4+ and CD8+ T cells. More interestingly, we found that hydrogen therapy induced by our live PSB did not lead to the up-regulation of PD-L1 after stimulating the immune response, which could avoid the tumor immune escape. CONCLUSION Hydrogen-immunotherapy significantly kills tumor cells. We believe that our live microbial hydrogen production system provides a new strategy for cancer hydrogen treatment combining with enhanced immunotherapy without up-regulating PD-L1.
Collapse
Affiliation(s)
- Hongyu Yan
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Miao Fan
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Dandan Han
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Ruijun Che
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth Peoples' Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaohan Zhou
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - June Wang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - Chi Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth Peoples' Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China.
| | - Zhenhua Li
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China.
| |
Collapse
|
4
|
Gianni S, Valsecchi C, Berra L. Therapeutic Gases and Inhaled Anesthetics as Adjunctive Therapies in Critically Ill Patients. Semin Respir Crit Care Med 2022; 43:440-452. [PMID: 35533689 DOI: 10.1055/s-0042-1747966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The administration of exogenous oxygen to support adequate gas exchange is the cornerstone of respiratory care. In the past few years, other gaseous molecules have been introduced in clinical practice to treat the wide variety of physiological derangement seen in critical care patients.Inhaled nitric oxide (NO) is used for its unique selective pulmonary vasodilator effect. Recent studies showed that NO plays a pivotal role in regulating ischemia-reperfusion injury and it has antibacterial and antiviral activity.Helium, due to its low density, is used in patients with upper airway obstruction and lower airway obstruction to facilitate gas flow and to reduce work of breathing.Carbon monoxide (CO) is a poisonous gas that acts as a signaling molecule involved in many biologic pathways. CO's anti-inflammatory and antiproliferative effects are under investigation in the setting of acute respiratory distress and idiopathic pulmonary fibrosis.Inhaled anesthetics are widely used in the operative room setting and, with the development of anesthetic reflectors, are now a valid option for sedation management in the intensive care unit.Many other gases such as xenon, argon, and hydrogen sulfide are under investigation for their neuroprotective and cardioprotective effects in post-cardiac arrest syndrome.With all these therapeutic options available, the clinician must have a clear understanding of the physiologic basis, therapeutic potential, and possible adverse events of these therapeutic gases. In this review, we will present the therapeutic gases other than oxygen used in clinical practice and we will describe other promising therapeutic gases that are in the early phases of investigation.
Collapse
Affiliation(s)
- Stefano Gianni
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carlo Valsecchi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Luo P, Ding Y, He Y, Chen D, He Q, Huang Z, Huang S, Lei W. Hydrogen-oxygen therapy alleviates clinical symptoms in twelve patients hospitalized with COVID-19: A retrospective study of medical records. Medicine (Baltimore) 2022; 101:e27759. [PMID: 35244034 PMCID: PMC8896485 DOI: 10.1097/md.0000000000027759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
A global public health crisis caused by the 2019 novel coronavirus disease (COVID-19) leads to considerable morbidity and mortality, which bring great challenge to respiratory medicine. Hydrogen-oxygen therapy contributes to treat severe respiratory diseases and improve lung functions, yet there is no information to support the clinical use of this therapy in the COVID-19 pneumonia.A retrospective study of medical records was carried out in Shishou Hospital of Traditional Chinese Medicine in Hubei, China. COVID-19 patients (aged ≥ 30 years) admitted to the hospital from January 29 to March 20, 2020 were subjected to control group (n = 12) who received routine therapy and case group (n = 12) who received additional hydrogen-oxygen therapy. The clinical characteristics of COVID-19 patients were analyzed. The physiological and biochemical indexes, including immune inflammation indicators, electrolytes, myocardial enzyme profile, and functions of liver and kidney, were examined and investigated before and after hydrogen-oxygen therapy.The results showed significant decreases in the neutrophil percentage and the concentration and abnormal proportion of C-reactive protein in COVID-19 patients received additional hydrogen-oxygen therapy.This novel therapeutic may alleviate clinical symptoms of COVID-19 patients by suppressing inflammation responses.
Collapse
Affiliation(s)
- Peng Luo
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanfang Ding
- Cardiology Department, Shishou Hospital of Traditional Chinese Medcine, Jingzhou, Hubei, China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dafeng Chen
- Department of Precision Laboratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qing He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zufeng Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Cardiology Department, Shishou Hospital of Traditional Chinese Medcine, Jingzhou, Hubei, China
| | - Shian Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Precision Laboratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
6
|
The Anti-Inflammatory Effect of Hydrogen Gas Inhalation and Its Influence on Laser-Induced Choroidal Neovascularization in a Mouse Model of Neovascular Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222112049. [PMID: 34769482 PMCID: PMC8584469 DOI: 10.3390/ijms222112049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly. Choroidal neovascularization (CNV) is the major pathologic feature of neovascular AMD. Oxidative damages and the ensuing chronic inflammation are representative of trigger events. Hydrogen gas (H2) has been demonstrated as an antioxidant and plays a role in the regulation of oxidative stress and inflammation. This experiment aimed to investigate the influence of H2 inhalation on a mouse model of CNV. Methods: Laser was used to induce CNV formation. C57BL/6J mice were divided into five groups: the control group; the laser-only group; and the 2 h, 5 h, and 2.5 h/2.5 h groups that received laser and H2 inhalation (21% oxygen, 42% hydrogen, and 37% nitrogen mixture) for 2 h, 5 h, and 2.5 h twice every day, respectively. Results: The severity of CNV leakage on fluorescence angiography showed a significant decrease in the H2 inhalation groups. The mRNA expression of hypoxia-inducible factor 1 alpha and its immediate downstream target vascular endothelial growth factor (VEGF) showed significant elevation after laser, and this elevation was suppressed in the H2 inhalation groups in an inhalation period length-related manner. The mRNA expression of cytokines, including tumor necrosis factor alpha and interlukin-6, also represented similar results. Conclusion: H2 inhalation could alleviate CNV leakage in a laser-induced mouse CNV model, and the potential mechanism might be related to the suppression of the inflammatory process and VEGF-driven CNV formation.
Collapse
|
7
|
Du J, Li J, Li R, Yan X. High concentration of hydrogen ameliorates lipopolysaccharide-induced acute lung injury in a sirt1-dependent manner. Respir Physiol Neurobiol 2021; 296:103808. [PMID: 34757082 DOI: 10.1016/j.resp.2021.103808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/28/2023]
Abstract
The aim of this study was to investigate the efficacy and underlying mechanism of high concentration of hydrogen on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We have established a corresponding mouse model and examined the function of hydrogen inhalation on lung pathology and pulmonary edema induced by LPS, as well as contents of IL-1β, TNF-α and IL-8. The pulmonary microvascular permeability and 66.7 % hydrogen on the expression of sirt1 and its downstream signaling molecules were tested. Results showed that 66.7 % hydrogen alleviated lung pathological changes and pulmonary edema caused by LPS, and reduced the degree of ALI by inhibiting pro-inflammatory cytokine release and oxidative stress response, thereby decreasing the expression of molecules related to intercellular adhesion. sirt1 contributed to the repair of LPS-induced ALI by hydrogen through the regulation of NF-κB and catalase expression. In conclusion, 66.7 % hydrogen protected against LPS-induced ALI by suppressing inflammatory response and oxidative stress mediated by NF-κB and catalase in a sirt1-dependent manner.
Collapse
Affiliation(s)
- Junfeng Du
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, Cangzhou 061001, China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Respiratory and Critical Diseases, Shijiazhuang 050000, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Respiratory and Critical Diseases, Shijiazhuang 050000, China; Hebei Provincial Institute of Respiratory Diseases, Shijiazhuang 050000, China.
| |
Collapse
|
8
|
Sun R, Zhao N, Wang Y, Su Y, Zhang J, Wang Y, Yu Y, Wang G, Wang Z, Xie K. High concentration of hydrogen gas alleviates Lipopolysaccharide-induced lung injury via activating Nrf2 signaling pathway in mice. Int Immunopharmacol 2021; 101:108198. [PMID: 34634688 DOI: 10.1016/j.intimp.2021.108198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS The lung is the first organ to fail in sepsis. Our previous studies have proven that 2% molecular hydrogen (H2) inhalation remain a protective effect on a septic animal model via its anti-inflammatory and anti-apoptosis properties. This current research aims to observe the therapeutic effect of high concentration hydrogen (67%, HCH) on lipopolysaccharide (LPS) induced acute lung injury (ALI), and further investgate the role of Nrf2 signaling pathway. METHODS ALI model was induced by LPS areosol inhalation. HCH were treated for 1 h at 1 and 6 h after modelling. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected 4 and 24 h after the exposure of LPS. The histological scores, wet/dry weight ratios, myeloperoxidase (MPO) activity, protein content and cytokine levels in BALF, apoptosis condition of lung cells, expression of Nrf2 and NF-κB were assessed in both wild type and Nrf2-knockout mice. RESULTS HCH Inhalation significantly alleviated LPS-induced pathological alterations of lung, and reduced the protein concentration, the wet/dry weight ratio, and the MPO activity of lung tissue. HCH Inhalation improved LPS-induced increasement in caspase-3 activity and the number of TUNEL-positive cells. HCH inhalation attenuated the LPS induced increased total cell content and polymorphonuclear granulocyte content, and pro-inflammatory cytokines, Nrf2 and NF-κB expression. HCH could not produce protective effct in Nrf2-knockout mice. CONCLUSION HCH can effectively alleviate LPS-induced ALI, which may be related to activation of Nrf2 signaling pathway and inhibition of inflammatory response and cell apoptosis mediated by NF-κB.
Collapse
Affiliation(s)
- Ruiqiang Sun
- Department of Anesthesiology, Tianjin Eye Hospital, Tianjin 300020, China; Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Nan Zhao
- Department of Anesthesiology, Tianjin Chest Hospital, Tianjin 300222, China
| | - Yuzun Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yanchao Su
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayan Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Translational Research Institute of Intensive Care Medicine, College of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong Province, China.
| |
Collapse
|
9
|
Wang L, Xu L, Du J, Zhao X, Liu M, Feng J, Hu K. Nose-to-brain delivery of borneol modified tanshinone IIA nanoparticles in prevention of cerebral ischemia/reperfusion injury. Drug Deliv 2021; 28:1363-1375. [PMID: 34180761 PMCID: PMC8245080 DOI: 10.1080/10717544.2021.1943058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Targeted treatment of cerebral ischemia/reperfusion injury (CIRI) remains a problem due to the difficulty in drug delivery across the blood–brain barrier (BBB). In this study, we developed Bo-TSA-NP, a novel tanshinone IIA (TSA) loaded nanoparticles modified by borneol, which has long been proved with the ability to enhance other drugs’ transport across the BBB. The Bo-TSA-NP, with a particle size of about 160 nm, drug loading of 3.6%, showed sustained release and P-glycoprotein (P-gp) inhibition property. It demonstrated a significantly higher uptake by 16HBE cells in vitro through the clathrin/caveolae-mediated endocytosis and micropinocytosis. Following intranasal (IN) administration, Bo-TSA-NP significantly improved the preventive effect on a rat model of CIRI with improved neurological scores, decreased cerebral infarction areas and a reduced content of malondialdehyde (MDA) and increased activity of superoxide dismutase (SOD) in rat brain. In conclusion, these results indicate that Bo-TSA-NP is a promising nose-to-brain delivery system that can enhance the prevention effect of TSA on CIRI.
Collapse
Affiliation(s)
- Luting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lin Xu
- Institute of Interdisciplinary Integrative Medicine Research, Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Interdisciplinary Integrative Medicine Research, The Center for TCM Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Junfeng Du
- Institute of Interdisciplinary Integrative Medicine Research, Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiao Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Mei Liu
- Institute of Interdisciplinary Integrative Medicine Research, Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianfang Feng
- Institute of Interdisciplinary Integrative Medicine Research, Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, People's Republic of China
| | - Kaili Hu
- Institute of Interdisciplinary Integrative Medicine Research, Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Liu L, Yang C, Qiu T, Shen X, Liu B, Qi X, Song G. Hydrogen alleviates acute lung injury induced by limb ischaemia/reperfusion in mice. Life Sci 2021; 279:119659. [PMID: 34052293 DOI: 10.1016/j.lfs.2021.119659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/18/2023]
Abstract
AIMS Limb ischaemia/reperfusion (LIR) occurs in various clinical conditions including critical limb ischaemia, abdominal aortic aneurysm, and traumatic arterial injury. Reperfusion of the acutely ischemic limb can lead to a systemic inflammation response and multiple organ dysfunction syndrome, further resulting in significant morbidity and mortality. Molecular hydrogen exhibits therapeutic activity for the treatment and prevention of many diseases. Our study investigated the possible therapeutic effects of hydrogen and its mechanism of action in a LIR-induced acute lung injury (ALI) model. MATERIALS AND METHODS Limb ischaemia/-reperfusion model was established in mice. The hydrogen-saturated saline was administered by intraperitoneal injection. Protein level of nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase-1 (HO1) and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1) was evaluated by immunohistochemistry staining and western blotting. Autophagy-related molecules were evaluated by western blotting. Malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by assay kits. Quantification of ceramides in lung was performed by high-performance liquid chromatography-tandem mass spectrometry. KEY FINDINGS Molecular hydrogen exhibited a protective effect on the LIR-induced ALI model. Hydrogen decreased malondialdehyde and increased superoxide dismutase activity in lung tissues. Additionally, hydrogen activated Nrf2 signalling in lung tissues. Hydrogen could inhibit the upregulation of autophagy in the present rodent model. Furthermore, ceramide was accumulated in lung tissues because of LIR; however, hydrogen altered the accumulation status. SIGNIFICANCE Molecular hydrogen was found to be therapeutically effective in the LIR-induced ALI model; the mechanisms of action included modulation of antioxidation and autophagy.
Collapse
Affiliation(s)
- Ling Liu
- Taian City central Hospital of Shandong Province, Taian 271000, China
| | - Chao Yang
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Tingting Qiu
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Xin Shen
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Boyan Liu
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China.
| | - Guohua Song
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China.
| |
Collapse
|
11
|
Huang L, Lenahan C, Boling W, Tang J, Zhang JH. Molecular Hydrogen Application in Stroke: Bench to Bedside. Curr Pharm Des 2021; 27:703-712. [PMID: 32940172 DOI: 10.2174/1381612826666200917152316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Stroke is a major cause of mortality and morbidity worldwide. Effective treatments are limited. Molecular hydrogen is emerging as a novel medical gas with therapeutic potential for various neurological diseases, including stroke. We reviewed the experimental and clinical findings of the effects of molecular hydrogen therapy in stroke patients and models. The underlying neuroprotective mechanisms against stroke pathology were also discussed.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92324, United States
| | - Warren Boling
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| | - Jiping Tang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92324, United States
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| |
Collapse
|
12
|
Hydrogen gas represses the progression of lung cancer via down-regulating CD47. Biosci Rep 2021; 40:222726. [PMID: 32314789 PMCID: PMC7189362 DOI: 10.1042/bsr20192761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023] Open
Abstract
Hydrogen gas (H2) has been identified to play an anti-tumor role in several kinds of cancers, but the molecular mechanisms remain largely unknown. In our previous study, our project group found that H2 could decrease the expression of CD47 in lung cancer A549 cells via the next-generation sequencing, indicating that CD47 might be involved in H2-mediated lung cancer repression. Therefore, the present study aimed to explore the effects of CD47 on H2-induced lung cancer repression. Western blotting and real-time PCR (RT-PCR) assays were used to detect the levels of proteins and mRNAs, respectively. Cell proliferation, invasion, migration and apoptosis were detected by using the cell counting kit-8 (CCK-8), Transwell chambers, wound healing and flow cytometry assays, respectively. The results showed that H2 treatment caused decreases in the expression levels of CD47 and cell division control protein 42 (CDC42) in a dose-dependent manner. Up-regulation of CD47 abolished H2 roles in promoting lung cancer cell apoptosis and repressing cell growth, invasion and migration in both A549 and H1975 cell lines. However, knockdown of CD47 enhanced H2 role in lung cancer inhibition. Moreover, we also observed that H2 treatment induced obvious inhibitions in the expression levels of CDC42 and CD47 in mice tumor tissues, as well as reinforced macrophage-mediated phagocytosis in A549 and H1975 cells. In conclusion, the current study reveals that H2 inhibits the progression of lung cancer via down-regulating CD47, which might be a potent method for lung cancer treatment.
Collapse
|
13
|
Zhu B, Cui H, Xu W. Hydrogen inhibits the proliferation and migration of gastric cancer cells by modulating lncRNA MALAT1/miR-124-3p/EZH2 axis. Cancer Cell Int 2021; 21:70. [PMID: 33482814 PMCID: PMC7821405 DOI: 10.1186/s12935-020-01743-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer is one of the most prevalent and deadly malignancies without efficient treatment option. This study aimed to investigate the effect of hydrogen gas on the behavior of gastric cancer cells. Methods Gastric cancer cell lines MGC-803 and BGC-823 were treated with or without H2 /O2 gas mixture (66.7%:33.3% v/v). Proliferation and migration were assessed by MTT and scratch wound healing assays respectively. The expression of lncRNA MALAT1, miR-124-3p, and EZH2 was analyzed by real-time quantitative PCR and/or western blot. Tumor growth was estimated using xenograft mouse model. Results H2 gas significantly inhibited gastric tumor growth in vivo and the proliferation, migration, and lncRNA MALAT1 and EZH2 expression of gastric cancer cells while upregulated miR-124-3p expression. LncRNA MALAT1 overexpression abolished all the aforementioned effects of H2. LncRNA MALAT1 and miR-124-3p reciprocally inhibited the expression of each other. MiR-124-3p mimics abrogated lncRNA MALAT1 promoted EZH2 expression and gastric cancer cell proliferation and migration. Conclusions These data demonstrated that H2 might be developed as a therapeutics of gastric cancer and lncRNA MALAT1/miR-124-3p/EZH2 axis could be a target for intervention.
Collapse
Affiliation(s)
- Baocheng Zhu
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hengguan Cui
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiqiang Xu
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China. .,Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
14
|
Panina E, Ivanov A, Petrov D. The condition of the hairline of Chinchilla lanigera after the introduction of a hydrogen antioxidant into the diet. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213606026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It was found that the inclusion of water enriched with molecular hydrogen into the diet of a long-tailed chinchilla changed the fur quality indicators. In animals of the experimental group, the guard and downy hairs were thinner than in the control group. The length of downy hair in the experimental group was higher, the number of hairs in the follicle in the chinchillas of the experimental group was greater than in the control group, besides, the hair was stronger and softer. The animals of the experimental group showed less tendency to gnaw out fur. When considering the data on the chemical composition, it was found that in the dry matter of the hair of the animals of the experimental group, there were less organic substances, and there were more minerals in comparison with the animals of the control group.
Collapse
|
15
|
Lin HY, Lai PC, Chen WL. A narrative review of hydrogen-oxygen mixture for medical purpose and the inhaler thereof. Med Gas Res 2021; 10:193-200. [PMID: 33380588 PMCID: PMC8092144 DOI: 10.4103/2045-9912.295226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent development regarding mixture of H2 (concentration of ~66%) with O2 (concentration of ~34%) for medical purpose, such as treatment of coronavirus disease-19 (COVID-19) patients, is introduced. Furthermore, the design principles of a hydrogen inhaler which generates mixture of hydrogen (~66%) with oxygen (~34%) for medical purpose are proposed. With the installation of the liquid blocking module and flame arresters, the air pathway of the hydrogen inhaler is divided by multiple isolation zones to prevent any unexpected explosion propagating from one zone to the other. An integrated filtering/cycling module is utilized to purify the impurity, and cool down the temperature of the electrolytic module to reduce the risk of the explosion. Moreover, a nebulizer is provided to selectively atomize the water into vapor which is then mixed with the filtered hydrogen-oxygen mix gas, such that the static electricity of a substance hardly occurs to reduce the risk of the explosion. Furthermore, hydrogen concentration detector is installed to reduce the risk of hydrogen leakage. Result shows that the hydrogen inhaler implementing the aforesaid design rules could effectively inhibit the explosion, even ignition at the outset of the hydrogen inhaler which outputs hydrogen-oxygen gas (approximately 66% hydrogen: 34% oxygen).
Collapse
|
16
|
Panina E, Ivanov A, Petrov D, Panteleeva N. Influence of molecular hydrogen on behavioral adaptation of Сhinchilla lanigera taking into account gender factor in conditions of cage keeping. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213607006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It was found that the inclusion of water enriched with molecular hydrogen in the diet of animals increased the overall proportion of active behavior. According to the form of behavior "moving around the cage", it was found that males and females of the experimental group spent more time than animals of the control group. Males of the experimental group were 24% more active at night, and females were 60% more active than in the control group. In the daily dynamics, the period of activity of animals in the experimental group was from 19:00 to 8:00, and in the control group-from 22:00 to 8:00. In the daily balance according to the form of behavior "moving around the cage", chinchillas of the experimental group spent 5% more than in the control group.
Collapse
|
17
|
Abstract
Traumatic brain injury (TBI) is a serious global public health problem. Survivors of TBI often suffer from long-term disability, which puts a heavy burden on society and families. Unfortunately, up to now, there is no efficacious treatment for TBI patients in clinical practice. As a reducing gas, hydrogen has been shown to be neuroprotective in multiple cerebral disease models; however, its efficacy in TBI remains controversial. In this review, we will focus on the results of hydrogen in experimental TBI, elaborate the potential mechanisms, and put forward for future researches based on our current understanding and views.
Collapse
Affiliation(s)
- Hong-Wei Hu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Gang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
18
|
Wu S, Fang Z, Zhou S. Saturated hydrogen alleviates CCl 4-induced acute kidney injury via JAK2/STAT3/p65 signaling. J Int Med Res 2020; 48:300060519895353. [PMID: 31937177 PMCID: PMC7114280 DOI: 10.1177/0300060519895353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives This study assessed the protective effects of saturated hydrogen against CCl4-induced acute kidney injury (AKI) in mice, and investigated signaling pathways activated by exposure to saturated hydrogen. Methods A mouse model of CCl4-induced AKI was established; some mice were treated with saturated hydrogen. Levels of cystatin C and kidney injury molecule 1 were determined using enzyme-linked immunosorbent assays. Blood urea nitrogen and serum creatinine were measured on a fully automated biochemical analyzer. Interleukin-8, tumor necrosis factor-α, and interferon-γ in serum and kidney tissues were measured using enzyme-linked immunosorbent assays. Malondialdehyde, glutathione peroxidase, and superoxide dismutase in kidney tissues were measured using biochemical kits. Oxidative stress in kidney tissues was analyzed using nitrotyrosine staining. Expression levels of p-JAK2, p-STAT3, and p-p65 signal protein were assayed by immunohistochemistry and western blotting. Results Compared with untreated mice with CCl4-induced AKI, mice that were treated with saturated hydrogen exhibited improved renal function and reduced oxidative stress. Moreover, expression levels of p-JAK2, p-STAT3, and p-p65 were significantly reduced in mice treated with saturated hydrogen, compared with expression levels in untreated mice. Conclusions Treatment with saturated hydrogen can reduce oxidative stress and inflammatory cytokine activation, potentially through inhibition of JAK2/STAT3/p65 signaling, thereby protecting against AKI.
Collapse
Affiliation(s)
- Song Wu
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Zheng Fang
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Shujun Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Zang X, Zhou J, Zhang X, Han Y, Chen X. Ischemia Reperfusion Injury: Opportunities for Nanoparticles. ACS Biomater Sci Eng 2020; 6:6528-6539. [PMID: 33320610 DOI: 10.1021/acsbiomaterials.0c01197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ischemia reperfusion (IR)-induced oxidative stress, accompanied by inflammatory responses, contributes to morbidity and mortality in numerous diseases such as acute coronary syndrome, stroke, organ transplantation, and limb injury. Ischemia results in profound hypoxia and tissue dysfunction, whereas subsequent reperfusion further aggravates ischemic tissue damage through inducing cell death and activating inflammatory responses. In this review, we highlight recent studies of therapeutic strategies against IR injury. Furthermore, nanotechnology offers significant improvements in this area. Hence, we also review recent advances in nanomedicines for IR therapy, suggesting them as potent and promising strategies to improve drug delivery to IR-injured tissues and achieve protective effects.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xiaoxu Zhang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| |
Collapse
|
20
|
Zhang ZY, Fang YJ, Luo YJ, Lenahan C, Zhang JM, Chen S. The role of medical gas in stroke: an updated review. Med Gas Res 2020; 9:221-228. [PMID: 31898607 PMCID: PMC7802415 DOI: 10.4103/2045-9912.273960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Medical gas is a large class of bioactive gases used in clinical medicine and basic scientific research. At present, the role of medical gas in neuroprotection has received growing attention. Stroke is a leading cause of death and disability in adults worldwide, but current treatment is still very limited. The common pathological changes of these two types of stroke may include excitotoxicity, free radical release, inflammation, cell death, mitochondrial disorder, and blood-brain barrier disruption. In this review, we will discuss the pathological mechanisms of stroke and the role of two medical gases (hydrogen and hydrogen sulfide) in stroke, which may potentially provide a new insight into the treatment of stroke.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuan-Jian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yu-Jie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM; Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian-Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Huang JL, Liu WW, Manaenko A, Sun XJ, Mei QY, Hu Q. Hydrogen inhibits microglial activation and regulates microglial phenotype in a mouse middle cerebral artery occlusion model. Med Gas Res 2020; 9:127-132. [PMID: 31552875 PMCID: PMC6779010 DOI: 10.4103/2045-9912.266987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microglia participate in bi-directional control of brain repair after stroke. Previous studies have demonstrated that hydrogen protects brain after ischemia/reperfusion (I/R) by inhibiting inflammation, but the specific mechanism of anti-inflammatory effect of hydrogen is poorly understood. The goal of our study is to investigate whether inhalation of high concentration hydrogen (HCH) is able to attenuate I/R-induced microglia activation. Eighty C57B/L male mice were divided into four groups: sham, I/R, I/R + HCH and I/R + N2/O2 groups. Assessment of animals happened in “blind” matter. I/R was induced by occlusion of middle cerebral artery for one hour). After one hour, filament was withdrawn, which induced reperfusion. Hydrogen treated I/R animals inhaled mix of 66.7% H2 balanced with O2 for 90 minutes, starting immediately after initiation of reperfusion. Control animals (N2/O2) inhaled mix in which hydrogen was replaced with N2 for the same time (90 minutes). The brain injury, such as brain infarction and development of brain edema, as well as neurobehavioral deficits were determined 23 hours after reperfusion. Effect of HCH on microglia activation in the ischemic penumbra was investigated by immunostaining also 23 hours after reperfusion. mRNA expression of inflammation related genes was detected by PCR. Our results showed that HCH attenuated brain injury and consequently reduced neurological dysfunction after I/R. Furthermore, we demonstrated that HCH directed microglia polarization towards anti-inflammatory M2 polarization. This study indicates hydrogen may exert neuroprotective effects by inhibiting the microglial activation and regulating microglial polarization. This study was conducted in agreement with the Animal Care and Use Committee (IACUC) and Institutional Animal Care guidelines regulation (Shanghai Jiao Tong University, China (approval No. A2015-011) in November 2015.
Collapse
Affiliation(s)
- Jun-Long Huang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine; Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University; Department of Navy Aviation Medicine, Naval Medical center of PLA, the Naval Military Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai, China
| | - Anatol Manaenko
- Departments of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xue-Jun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai, China
| | - Qi-Yong Mei
- Department of Neurosurgery, Changzheng Hospital, the Naval Military Medical University, Shanghai, China
| | - Qin Hu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Huang L, Applegate Ii RL, Applegate PM, Gong L, Ocak U, Boling W, Zhang JH. Inhalation of high-concentration hydrogen gas attenuates cognitive deficits in a rat model of asphyxia induced-cardiac arrest. Med Gas Res 2020; 9:122-126. [PMID: 31552874 PMCID: PMC6779004 DOI: 10.4103/2045-9912.266986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cognitive deficits are a devastating neurological outcome seen in survivors of cardiac arrest. We previously reported water electrolysis derived 67% hydrogen gas inhalation has some beneficial effects on short-term outcomes in a rat model of global brain hypoxia-ischemia induced by asphyxia cardiac arrest. In the present study, we further investigated its protective effects in long-term spatial learning memory function using the same animal model. Water electrolysis derived 67% hydrogen gas was either administered 1 hour prior to cardiac arrest for 1 hour and at 1-hour post-resuscitation for 1 hour (pre- & post-treatment) or at 1-hour post-resuscitation for 2 hours (post-treatment). T-maze and Morris water maze were used for hippocampal memory function evaluation at 7 and 14 days post-resuscitation, respectively. Neuronal degeneration within hippocampal Cornu Ammonis 1 (CA1) regions was examined by Fluoro-Jade staining ex vivo. Hippocampal deficits were detected at 7 and 18 days post-resuscitation, with increased neuronal degeneration within hippocampal CA1 regions. Both hydrogen gas treatment regimens significantly improved spatial learning function and attenuated neuronal degeneration within hippocampal CA1 regions at 18 days post-resuscitation. Our findings suggest that water electrolysis derived 67% hydrogen gas may be an effective therapeutic approach for improving cognitive outcomes associated with global brain hypoxia-ischemia following cardiac arrest. The study was approved by the Animal Health and Safety Committees of Loma Linda University, USA (approval number: IACUC #8170006) on March 2, 2017.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Richard L Applegate Ii
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Patricia M Applegate
- Department of Cardiology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lei Gong
- Department of Pharmacy, 1st Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Umut Ocak
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Warren Boling
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
23
|
Abstract
Central nervous system injuries are a leading cause of death and disability worldwide. Although the exact pathophysiological mechanisms of various brain injuries vary, central nervous system injuries often result in an inflammatory response, and subsequently lead to brain damage. This suggests that neuroprotection may be necessany in the treatment of multiple disease models. The use of medical gases as neuroprotective agents has gained great attention in the medical field. Medical gases include common gases, such as oxygen, hydrogen and carbon dioxide; hydrogen sulphide and nitric oxide that have been considered toxic; volatile anesthetic gases, such as isoflurane and sevoflurane; and inert gases like helium, argon, and xenon. The neuroprotection from these medical gases has been investigated in experimental animal models of various types of brain injuries, such as traumatic brain injury, stroke, subarachnoid hemorrhage, cerebral ischemic/reperfusion injury, and neurodegenerative diseases. Nevertheless, the transition into the clinical practice is still lagging. This delay could be attributed to the contradictory paradigms and the conflicting results that have been obtained from experimental models, as well as the presence of inconsistent reports regarding their safety. In this review, we summarize the potential mechanisms underlying the neuroprotective effects of medical gases and discuss possible candidates that could improve the outcomes of brain injury.
Collapse
Affiliation(s)
- Yue-Zhen Wang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ting-Ting Li
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hong-Ling Cao
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan-Chao Yang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
24
|
Kawamura M, Imamura R, Kobayashi Y, Taniguchi A, Nakazawa S, Kato T, Namba-Hamano T, Abe T, Uemura M, Kobayashi H, Nonomura N. Oral Administration of Si-Based Agent Attenuates Oxidative Stress and Ischemia-Reperfusion Injury in a Rat Model: A Novel Hydrogen Administration Method. Front Med (Lausanne) 2020; 7:95. [PMID: 32266279 PMCID: PMC7099649 DOI: 10.3389/fmed.2020.00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Organ ischemia-reperfusion injury (IRI), which is unavoidable in kidney transplantation, induces the formation of reactive oxygen species and causes organ damage. Although the efficacy of molecular hydrogen (H2) in IRI has been reported, oral intake of H2-rich water and inhalation of H2 gas are still not widely used in clinical settings because of the lack of efficiency and difficulty in handling. We successfully generated large quantities of H2 molecules by crushing silicon (Si) to nano-sized Si particles (nano-Si) which were allowed to react with water. The nano-Si or relatively large-sized Si particles (large-Si) were orally administered to rats with renal IRI. Animals were divided into four groups: sham, IRI, IRI + nano-Si, and IRI + large-Si. The levels of serum creatinine and urine protein were significantly decreased 72 h following IRI in rats that were administered nano-Si. The levels of oxidative stress marker, urinary 8-hydroxydeoxyguanosine were also significantly decreased with the nano-Si treatment. Transcriptome and gene ontology enrichment analyses showed that the oral nano-Si intake downregulated the biological processes related to oxidative stress, such as immune response, cytokine production, and extrinsic apoptotic signaling pathway. Alterations in the regulation of a subset of genes in the altered pathways were validated by quantitative polymerase chain reaction. Furthermore, immunohistochemical analysis demonstrated that the nano-Si treatment alleviated interstitial macrophage infiltration and tubular apoptosis, implicating the anti-inflammatory and anti-apoptotic effects of nano-Si. In conclusion, renal IRI was attenuated by the oral administration of nano-Si, which should be considered as a novel H2 administration method.
Collapse
Affiliation(s)
- Masataka Kawamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Ayumu Taniguchi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toyofumi Abe
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hikaru Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
25
|
Zhuang K, Zuo YC, Sherchan P, Wang JK, Yan XX, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci 2020; 13:1441. [PMID: 32038143 PMCID: PMC6985445 DOI: 10.3389/fnins.2019.01441] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with poor clinical outcome. Nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves a key role in inflammatory response, which may lead to endothelial cell injury and blood-brain barrier (BBB) disruption. Hydrogen (H2) is considered a neuroprotective antioxidant. This study was set out to explore whether hydrogen inhalation protects against SAH induced endothelial cell injury, BBB disruption, microthrombosis and vasospasm in rats. Methods: One hundred eighty-two male SD rats were used for the study. SAH was induced by endovascular perforation. H2 at a concentration of 3.3% was inhaled beginning at 0.5 h after SAH for duration of 30, 60 or 120 min, followed by single administration or once daily administration for 3 days. The temporal expression of NLRP3 and ASC in the brain was determined, with the effect of hydrogen inhalation evaluated. In addition, brain water content, oxidative stress markers, inflammasome, apoptotic markers, microthrombosis, and vasospasm were evaluated at 24 or 72 h after SAH. Results: The expression of NLRP3 and ASC were upregulated after SAH associated with elevated expression of MDA, 8-OHdG, 4-HNE, HO-1, TLR4/NF-κB, inflammatory and apoptotic makers. Hydrogen inhalation reduced the expression of these inflammatory and apoptotic makers in the vessels, brain edema, microthrombi formation, and vasospasm in rats with SAH relative to control. Hydrogen inhalation also improved short-term and long-term neurological recovery after SAH. Conclusion: Hydrogen inhalation can ameliorate oxidative stress related endothelial cells injury in the brain and improve neurobehavioral outcomes in rats following SAH. Mechanistically, the above beneficial effects might be related to, at least in part, the inhibition of activation of ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Kai Zhuang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ji-Kai Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Li TT, Yang WC, Wang YZ, Sun T, Cao HL, Chen JF, Li WZ. Effects of a high concentration of hydrogen on neurological function after traumatic brain injury in diabetic rats. Brain Res 2020; 1730:146651. [PMID: 31926128 DOI: 10.1016/j.brainres.2020.146651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/14/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species, inflammation, and apoptosis are major contributors to secondary injuries that follow traumatic brain injury (TBI) in diabetic patients. Hydrogen (H2) can selectively neutralize reactive oxygen species and downregulate inflammatory and apoptotic factors. Therefore, we investigated the effects of inhaled high and low concentrations of hydrogen on neurological function after TBI in diabetic rats and the potential mechanism. We found that the inhalation of high concentrations of H2 significantly improved outcomes following TBI in diabetic rats. The inhalation of 42% H2 for one hour per day for 48 h significantly reduced brain edema, decreased the extravasation of sodium fluorescein, and reduced oxidative stress markers (p < 0.05). In addition, the inhalation of a high concentration of H2 (42% for one hour per day for 7 days) improved neurological deficits (p < 0.05) and reduced the expression of apoptotic protein markers (p < 0.05). However, the inhalation of 3% H2 did not yield significant effects. These results showed that the inhalation of 42% H2 can alleviate nerve damage and improve neurological function after TBI in diabetic rats. Therefore, the inhalation of a high concentration of H2 may be associated with the treatment of traumatic brain injuries.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Wan-Chao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China.
| | - Yue-Zhen Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Tian Sun
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Hong-Ling Cao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Jian-Feng Chen
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China
| | - Wen-Zhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, NanGang District, Harbin 150086, People's Republic of China.
| |
Collapse
|
27
|
Feng S, Duan E, Shi X, Zhang H, Li H, Zhao Y, Chao L, Zhong X, Zhang W, Li R, Yan X. Hydrogen ameliorates lung injury in a rat model of subacute exposure to concentrated ambient PM2.5 via Aryl hydrocarbon receptor. Int Immunopharmacol 2019; 77:105939. [DOI: 10.1016/j.intimp.2019.105939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/22/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023]
|
28
|
Shen M, Zheng Y, Zhu K, Cai Z, Liu W, Sun X, Liu J, Zhu D. Hydrogen gas protects against delayed encephalopathy after acute carbon monoxide poisoning in a rat model. Neurol Res 2019; 42:22-30. [PMID: 31679470 DOI: 10.1080/01616412.2019.1685064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective: The protective effects of 2%-4% hydrogen gas in delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) have been previously reported. This study aimed to assess the neuroprotective effects of high concentration hydrogen (HCH) on DEACMP.Methods: A total of 36 male Sprague-Dawley rats were divided into 3 groups. In the DEACMP group, rats were exposed to CO to induce CO poisoning; in the HCH group, the animals were exposed to 67% H2 and 33% O2 at 3,000 mL/min for 90 min immediately after CO poisoning. Neurological function was evaluated at 1 and 9 days after poisoning. Then, the contents of malondialdehyde, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine, as well as superoxide dismutase activity in the serum, cortex and hippocampus were detected by ELISA. Additionally, the mRNA and protein expression levels of Nrf2 and downstream genes were detected by RT-PCR and Western blotting, respectively.Results: Our results showed that CO poisoning significantly impaired neurological function which was improved over time, and HCH markedly attenuated neurological impairment following CO poisoning. In addition, CO poisoning resulted in increased levels of malondialdehyde, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine and markedly reduced superoxide dismutase activity at 1 and 9 days, which were significantly inhibited by HCH at 9 days. Finally, CO poisoning increased the mRNA and protein levels of Nrf2 and downstream genes, and HCH further induced the anti-oxidative capability.Conclusion: These findings indicate the neuroprotective effects of HCH on DEACMP, which are related to the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Meihua Shen
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China.,Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Yijun Zheng
- Department of Critical Care Unit, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Kaimin Zhu
- Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Zhonghai Cai
- Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Wenwu Liu
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China
| | - Xuejun Sun
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Duming Zhu
- Department of Critical Care Unit, Zhongshan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
29
|
Fan M, Wen Y, Ye D, Jin Z, Zhao P, Chen D, Lu X, He Q. Acid-Responsive H 2 -Releasing 2D MgB 2 Nanosheet for Therapeutic Synergy and Side Effect Attenuation of Gastric Cancer Chemotherapy. Adv Healthc Mater 2019; 8:e1900157. [PMID: 30968583 DOI: 10.1002/adhm.201900157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/28/2019] [Indexed: 11/12/2022]
Abstract
The hydrogen molecule is recognized as a high potential to attenuate toxic side effects of chemotherapy and also enhance chemotherapeutic efficacy, and the development of a novel hydrogen-generating prodrug for facile, safe, and efficient hydrogen delivery is vitally important for combined hydrogenochemotherapy but is still challenging. Here, targeting gastric cancer, a 2D magnesium boride nanosheet (MBN) is synthesized as a new type of acid-responsive hydrogen-releasing prodrug by an ultrasound-assisted chemical etching route, which is used to realize hydrogenochemotherapy by combination of facile oral administration of polyvinylpyrrolidone (PVP)-encapsulating MBN (MBN@PVP) pills with routine intravenous injection of doxorubicin (DOX). The MBN@PVP pill has high stability in normal tissues/blood environments as well as high gastric acid-responsiveness with sustained release behavior, which matches well with its metabolism rate in the stomach in great favor of continuous and long-term hydrogen administration. Hydrogenochemotherapy with DOX+MBN@PVP has remarkably prolonged the survival time of gastric tumor-bearing mice by reducing the toxic side effects of chemotherapy. The mechanism for therapeutic synergy and side effect attenuation of hydrogenochemotherapy is discovered to be derived from the selectivity of hydrogen molecules in inhibiting aerobic respiration of gastric cells but activating aerobic respiration of normal cells including marrow mesenchymal stem cells and cardiac, hepatic, and splenic cells.
Collapse
Affiliation(s)
- Mingjian Fan
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Yanyuan Wen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Dien Ye
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Penghe Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Xifeng Lu
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| |
Collapse
|
30
|
Chen L, Chao Y, Cheng P, Li N, Zheng H, Yang Y. UPLC-QTOF/MS-Based Metabolomics Reveals the Protective Mechanism of Hydrogen on Mice with Ischemic Stroke. Neurochem Res 2019; 44:1950-1963. [PMID: 31236794 DOI: 10.1007/s11064-019-02829-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/11/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
As a reductive gas, hydrogen plays an antioxidant role by selectively scavenging oxygen free radicals. It has been reported that hydrogen has protective effects against nerve damage caused by ischemia-reperfusion in stroke, but the specific mechanism is still unclear. Therefore, this study aims to investigate the protective effects of hydrogen on stroke-induced ischemia-reperfusion injury and its detailed mechanism. Two weeks after the inhalation of high concentrations (66.7%) of hydrogen, middle cerebral artery occlusion (MCAO) was induced in mice using the thread occlusion technique to establish an animal model of the focal cerebral ischemia-reperfusion. Then, a metabolomics analysis of mouse cerebral cortex tissues was first performed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) to study the metabolic changes and protective mechanisms of hydrogen on stroke ischemia-reperfusion injury. According to the metabolomic profiling of cortex tissues, 29 different endogenous metabolites were screened, including palmitoyl-L-carnitine, citric acid, glutathione, taurine, acetyl-L-carnitine, N-acetylaspartylglutamic acid (NAAG), L-aspartic acid, lysophosphatidylcholine (LysoPC) and lysophosphatidylethanolamine (LysoPE). Through pathway analysis, the metabolic pathways were concentrate on the glutathione pathway and the taurine pathway, mitochondrial energy metabolism and phospholipid metabolism that related to the oxidative stress process. This result reveals that hydrogen may protect against ischemic stroke by reducing oxidative stress during ischemia-reperfusion, thereby protecting nerve cells from reactive oxygen species(ROS).
Collapse
Affiliation(s)
- Lilin Chen
- College of Basic Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yufan Chao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Pengchao Cheng
- College of Basic Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Na Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Hongnan Zheng
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Yajuan Yang
- Department of Nursing, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
31
|
Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7415212. [PMID: 30984338 PMCID: PMC6431505 DOI: 10.1155/2019/7415212] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/11/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Obstructive sleep apnea (OSA) can cause intermittent changes in blood oxygen saturation, resulting in the generation of many reactive oxygen species (ROS). To discover new antioxidants and clarify the endoplasmic reticulum (ER) stress involved in cardiac injury in OSA, we established a chronic intermittent hypoxia (CIH) rat model with a fraction of inspired O2 (FiO2) ranging from 21% to 9%, 20 times/h for 8 h/day, and the rats were treated with H2-O2 mixture (67% hydrogen and 33% oxygen) for 2 h/day for 35 days. Our results showed that H2-O2 mixture remarkably improved cardiac dysfunction and myocardial fibrosis. We found that H2-O2 mixture inhalation declined ER stress-induced apoptosis via three major response pathways: PERK-eIF2α-ATF4, IRE 1-XBP1, and ATF 6. Furthermore, we revealed that H2-O2 mixture blocked c-Jun N-terminal kinase- (JNK-) MAPK activation, increased the ratio of Bcl-2/Bax, and inhibited caspase 3 cleavage to protect against CIH-induced cardiac apoptosis. In addition, H2-O2 mixture considerably decreased ROS levels via upregulating superoxide dismutase (SOD) and glutathione (GSH) as well as downregulating NADPH oxidase (NOX 2) expression in the hearts of CIH rats. All the results demonstrated that H2-O2 mixture significantly reduced ER stress and apoptosis and that H2 might be an efficient antioxidant against the oxidative stress injury induced by CIH.
Collapse
|
32
|
Zhang L, Zhao P, Yue C, Jin Z, Liu Q, Du X, He Q. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer's disease. Biomaterials 2019; 197:393-404. [DOI: 10.1016/j.biomaterials.2019.01.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
33
|
Fang S, Li X, Wei X, Zhang Y, Ma Z, Wei Y, Wang W. Beneficial effects of hydrogen gas inhalation on a murine model of allergic rhinitis. Exp Ther Med 2018; 16:5178-5184. [PMID: 30542474 PMCID: PMC6257674 DOI: 10.3892/etm.2018.6880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023] Open
Abstract
Allergic rhinitis (AR) is a common chronic inflammatory condition. It has been previously indicated that oxidative stress may contribute to allergic inflammation, including AR. Although molecular hydrogen (H2), an antioxidative agent, has been effective in treatment of numerous oxidative stress-associated diseases, the effect of inhalation of a high concentration of H2 on AR remains unknown. In the current study, female BALB/c mice were sensitized with ovalbumin (OVA) followed by intranasal OVA challenge to establish an animal model of AR. Mice were subjected to exposure to H2 and the inert gas helium at different frequencies and durations. The frequencies of sneezing/scratching and the body weights of mice were recorded. Histological analysis and multiplex cytokine assays were performed to evaluate the effects of H2 on AR. Challenge with OVA induced significant nasal mucosa inflammation. H2 inhalation reduced the infiltration of inflammatory cells into mucosa and lowered the levels of interleukin (IL)-5, IL-13 and monocyte chemoattractant protein-1 in serum. H2 inhalation slightly increased the level of interferon-γ, however the difference was not statistically significant. Treatment with H2 limited the weight increase in healthy mice and reversed the weight loss in mice with AR. Furthermore, H2 inhalation induced a therapeutic effect on AR in a dose-dependent manner. The current results demonstrate that H2 may demonstrate a therapeutic value for allergic diseases.
Collapse
Affiliation(s)
- Shengjian Fang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Xinqian Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Xian Wei
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhaoxin Ma
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Youzhen Wei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China.,Key Laboratory of Arrhythmias of The Ministry of Education of China, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Weihua Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
34
|
Hydrogen as a complementary therapy against ischemic stroke: A review of the evidence. J Neurol Sci 2018; 396:240-246. [PMID: 30529801 DOI: 10.1016/j.jns.2018.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is one of the most common sources of mortality in the world. Researchers have been trying to find a complementary therapy to treat ischemic stroke in order to improve its prognosis and expand the therapeutic window for reperfusion treatment. For this reason, many experimental and clinical trials studying the effects of hydrogen against ischemic stroke have been published. Hydrogen gas has been found to eliminate hydroxyl free radical and peroxynitrite anions as well as producing therapeutic effect in patients with ischemic stroke. Many studies have been published illustrating its anti-oxidative, anti-inflammatory and anti-apoptotic effects. The purpose of this article is to review the literature concerning treatment of cerebral I/R injury or ischemic stroke with hydrogen therapy. Specifically, we will examine the appropriate laboratory methods, mechanisms of hydrogen therapy, and outcomes of relevant clinical trials. We conclude this review with a discussion on future investigations of hydrogen therapy to treat ischemic stroke.
Collapse
|
35
|
Wu X, Li X, Liu Y, Yuan N, Li C, Kang Z, Zhang X, Xia Y, Hao Y, Tan Y. Hydrogen exerts neuroprotective effects on OGD/R damaged neurons in rat hippocampal by protecting mitochondrial function via regulating mitophagy mediated by PINK1/Parkin signaling pathway. Brain Res 2018; 1698:89-98. [DOI: 10.1016/j.brainres.2018.06.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
|
36
|
Zhao P, Jin Z, Chen Q, Yang T, Chen D, Meng J, Lu X, Gu Z, He Q. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018; 9:4241. [PMID: 30315173 PMCID: PMC6185976 DOI: 10.1038/s41467-018-06630-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
By delivering the concept of clean hydrogen energy and green catalysis to the biomedical field, engineering of hydrogen-generating nanomaterials for treatment of major diseases holds great promise. Leveraging virtue of versatile abilities of Pd hydride nanomaterials in high/stable hydrogen storage, self-catalytic hydrogenation, near-infrared (NIR) light absorption and photothermal conversion, here we utilize the cubic PdH0.2 nanocrystals for tumour-targeted and photoacoustic imaging (PAI)-guided hydrogenothermal therapy of cancer. The synthesized PdH0.2 nanocrystals have exhibited high intratumoural accumulation capability, clear NIR-controlled hydrogen release behaviours, NIR-enhanced self-catalysis bio-reductivity, high NIR-photothermal effect and PAI performance. With these unique properties of PdH0.2 nanocrystals, synergetic hydrogenothermal therapy with limited systematic toxicity has been achieved by tumour-targeted delivery and PAI-guided NIR-controlled release of bio-reductive hydrogen as well as generation of heat. This hydrogenothermal approach has presented a cancer-selective strategy for synergistic cancer treatment.
Collapse
Affiliation(s)
- Penghe Zhao
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Qian Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, 27695, NC, USA
| | - Tian Yang
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Jin Meng
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Xifeng Lu
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, 27695, NC, USA.
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
37
|
Huang L, Applegate RL, Applegate PM, Boling W, Zhang JH. Inhalation of high concentration hydrogen gas improves short-term outcomes in a rat model of asphyxia induced-cardiac arrest. Med Gas Res 2018; 8:73-78. [PMID: 30319760 PMCID: PMC6178639 DOI: 10.4103/2045-9912.241063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiogenic global brain hypoxia-ischemia is a devastating medical problem that is associated with unfavorable neurologic outcomes. Low dose hydrogen gas (up to 2.9%) has been shown to be neuroprotective in a variety of brain diseases. In the present study, we investigated the protective effect of water by electrolysis-derived high concentration hydrogen gas (60%) in a rat model of asphyxia induced-cardiac arrest and global brain hypoxia-ischemia. High concentration hydrogen gas was either administered starting 1 hour prior to cardiac arrest for 1 hour and starting 1 hour post-resuscitation for 1 hour (pre- & post-treatment) or starting 1 hour post-resuscitation for 2 hours (post-treatment). In animals subjected to 9 minutes of asphyxia, both therapeutic regimens tended to reduce the incidence of seizures and neurological deficits within 3 days post-resuscitation. In rats subjected to 11 minutes of asphyxia, significantly worse neurological deficits were observed compared to 9 minutes asphyxia, and pre- & post-treatment had a tendency to improve the success rate of resuscitation and to reduce the seizure incidence within 3 days post-resuscitation. Findings of this preclinical study suggest that water electrolysis-derived 60% hydrogen gas may improve short-term outcomes in cardiogenic global brain hypoxia-ischemia.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Science, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Richard L Applegate
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Patricia M Applegate
- Department of Cardiology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Warren Boling
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Science, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
38
|
Huang JL, Liu WW, Sun XJ. Hydrogen inhalation improves mouse neurological outcomes after cerebral ischemia/reperfusion independent of anti-necroptosis. Med Gas Res 2018; 8:1-5. [PMID: 29770189 PMCID: PMC5937297 DOI: 10.4103/2045-9912.229596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the role of necroptosis in the neuroprotection of hydrogen in a mouse model of cerebral ischemia/reperfusion (I/R) injury. C57BL mice were randomly divided into sham group, I/R group, hydrogen/oxygen group (HO), nitrogen/oxygen group (NO). Middle cerebral artery occlusion (MCAO) for 1 hour followed by reperfusion was introduced to animals which were allowed to inhale 66.7% hydrogen/33.3% oxygen for 90 minutes since the beginning of reperfusion. Mice in NO group inhaled 66.7% nitrogen/33.3% oxygen. 24 hours after MCAO, brain infarction, brain water content and neurological function were evaluated. The protein expression of mixed lineage kinase domain like protein (MLKL) was detected at 3, 6, 12, 24 and 72 hours after reperfusion in HO group and the protein and mRNA expression of MLKL at 24 hours after MCAO in four groups. Hydrogen inhalation significantly reduced infarct volume, attenuated brain edema and improved neurobehavioral deficit in MCAO mice. The MLKL expression increased after MCAO and peaked at 6-24 hours after reperfusion. However, hydrogen inhalation had no significant effect on the MLKL expression at transcriptional and translational levels after MCAO. This study indicates high concentration hydrogen improves mouse neurological outcome after cerebral I/R injury independent of anti-necroptosis.
Collapse
Affiliation(s)
- Jun-Long Huang
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.,Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Abstract
Postoperative cognitive decline is a major clinical problem with high morbidity and mortality after surgery. Many studies have found that molecular hydrogen (H2) has significant neuroprotection against acute and chronic neurological injury by regulating inflammation and apoptosis. In this study, we hypothesized that H2 treatment could ameliorate the development of cognitive impairment following surgery. Adult male rats were subjected to stabilized tibial fracture operation under anesthesia. Two percent of H2 was inhaled for 3 h beginning at 1 h after surgery. Separate cohorts of rats were tested for cognitive function with fear conditioning and the Y-maze test, or euthanized to assess blood-brain barrier integrity, and systemic and hippocampal proinflammatory cytokine and caspase-3 activity. Surgery-challenged animals showed significant cognitive impairment evidenced by a decreased percentage of freezing time and an increased number of learning trials on days 1, 3, and 7 after operation, which were significantly improved by H2 treatment. Furthermore, H2 treatment significantly ameliorated the increase in serum and hippocampal proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and high-mobility group protein 1 in surgery-challenged animals. Moreover, H2 treatment markedly improved blood-brain barrier integrity and reduced caspase-3 activity in the hippocampus of surgery-challenged animals. These findings suggest that H2 treatment could significantly mitigate surgery-induced cognitive impairment by regulating inflammation and apoptosis.
Collapse
|
40
|
Zhang N, Deng C, Zhang X, Zhang J, Bai C. Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice. Asthma Res Pract 2018; 4:3. [PMID: 29568538 PMCID: PMC5856384 DOI: 10.1186/s40733-018-0040-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/08/2018] [Indexed: 01/07/2023] Open
Abstract
Background Asthma is a worldwide common chronic airway disease that cannot be cured and results in the huge burden in public health. Oxidative stress was considered an important mechanism in the pathogenesis of asthma. Hydrogen gas been demonstrated to function as a novel antioxidant and exert therapeutic antioxidant activity in a number of diseases and the function of this nontoxic gas in asthma was unclear. The purpose of the study aims to examine the effect of inhalation hydrogen gas on the pathophysiology of a mouse model of asthma. Methods A murine model of ovalbumin (OVA)-induced allergic airway inflammation was used in this study. Briefly, Mice were sensitized to ovalbumin and received inhalation of 67% high concentration of hydrogen gas for 60 min once a day for 7 consecutive days after OVA or PBS challenge respectively. Lung function was assessed in the apparatus with 4 channels of biological signal system. Morphology and goblet cell hyperplasia were stained by H/E and Periodic acid-Schiff staining. Cytologic classification in the bronchial alveolar lavage fluid (BALF) was analyzed by Wright Giemsa staining. Serum, BALF and lung tissue were collected for biochemical assay. One-way analysis of variance (ANOVA) was used to determine statistical significance between groups. Multiple comparisons were made by Bonferroni’s Multiple Comparison Test by using GraphPad Prism 5 software. Results Inhalation of hydrogen gas abrogated ovalbumin-induced the increase in lung resistance. Concomitantly, the asthmatic mice showed severe inflammatory infiltration and goblet cell hyperplasia which were reversed by hydrogen gas inhalation. Hydrogen gas inhalation reduced significantly the number of total cells, eosinophils and lymphocytes in BALF. Increased level of IL-4, IL-13, TNF-α and CXCL15 in the BALF and IL-4 in the serum were decreased significantly after inhalation. Hydrogen gas inhalation markedly upregulated the activity of decreased superoxide dismutase and significantly attenuated the increased level of malondialdehyde and myeloperoxidase. Conclusions Hydrogen gas inhalation improves lung function and protects established airway inflammation in the allergic asthmatic mice model which may be associated with the inhibition of oxidative stress process. This study provides a potential alternative therapeutic opportunity for the clinical management of asthma.
Collapse
Affiliation(s)
- Ning Zhang
- 1Department of Naval Aeromedicine, The Second Military Medical University, Shanghai, 200433 China
| | - Changwen Deng
- 2Department of Respiratory and Critical care medicine, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 China
| | - Xingxing Zhang
- 2Department of Respiratory and Critical care medicine, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 China
| | - Jingxi Zhang
- 2Department of Respiratory and Critical care medicine, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 China
| | - Chong Bai
- 2Department of Respiratory and Critical care medicine, Changhai Hospital, the Second Military Medical University, Shanghai, 200433 China
| |
Collapse
|
41
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
42
|
Chen O, Cao Z, Li H, Ye Z, Zhang R, Zhang N, Huang J, Zhang T, Wang L, Han L, Liu W, Sun X. High-concentration hydrogen protects mouse heart against ischemia/reperfusion injury through activation of thePI3K/Akt1 pathway. Sci Rep 2017; 7:14871. [PMID: 29093541 PMCID: PMC5665927 DOI: 10.1038/s41598-017-14072-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
The study investigated the role of Akt1 through the cardioprotection of high-concentration hydrogen (HCH). C57BL/6 mice were randomly divided into the following groups: sham, I/R, I/R + HCH, I/R + HCH + LY294002 (PI3K inhibitor), I/R + HCH + wortmannin (PI3K inhibitor), I/R + LY294002, and I/R + wortmannin. After 45 min of ischemia, HCH (67% H2 and 33% O2) was administered to mice during a 90-min reperfusion. To investigate the role of Akt1 in the protective effects of HCH, mice were divided into the following groups: I/R + A-674563 (Akt1 selective inhibitor), I/R + HCH + A-674563, I/R + CCT128930 (Akt2 selective inhibitor), and I/R + HCH + CCT128930. After a 4-h reperfusion, serum biochemistry, histological, western blotting, and immunohistochemical analyses were performed to evaluate the role of the PI3K-Akt1 pathway in the protection of HCH. In vitro, 75% hydrogen was administered to cardiomyocytes during 4 h of reoxygenation after 3-h hypoxia. Several analyses were performed to evaluate the role of the Akt1 in the protective effects of hydrogen. HCH resulted in the phosphorylation of Akt1 but not Akt2, and Akt1 inhibition markedly abolished HCH-induced cardioprotection. Our findings reveal that HCH may exert cardioprotective effects through a PI3K-Akt1-dependent mechanism.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Clinical Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhiyong Cao
- Department of Cardiology, No.411 Hospital of PLA, Shanghai, 200081, People's Republic of China
| | - He Li
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Clinical Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhouheng Ye
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Rongjia Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ning Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Junlong Huang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ting Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Ling Han
- Central Laboratory, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wenwu Liu
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Xuejun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
43
|
Gao Q, Song H, Wang XT, Liang Y, Xi YJ, Gao Y, Guo QJ, LeBaron T, Luo YX, Li SC, Yin X, Shi HS, Ma YX. Molecular hydrogen increases resilience to stress in mice. Sci Rep 2017; 7:9625. [PMID: 28852144 PMCID: PMC5575246 DOI: 10.1038/s41598-017-10362-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
The inability to successfully adapt to stress produces pathological changes that can lead to depression. Molecular hydrogen has anti-oxidative and anti-inflammatory activities and neuroprotective effects. However, the potential role of molecular hydrogen in stress-related disorders is still poorly understood. The present study aims to investigate the effects of hydrogen gas on resilience to stress in mice. The results showed that repeated inhalation of hydrogen-oxygen mixed gas [67%:33% (V/V)] significantly decreased both the acute and chronic stress-induced depressive- and anxiety-like behaviors of mice, assessed by tail suspension test (TST), forced swimming test (FST), novelty suppressed feeding (NSF) test, and open field test (OFT). ELISA analyses showed that inhalation of hydrogen-oxygen mixed gas blocked CMS-induced increase in the serum levels of corticosterone, adrenocorticotropic hormone, interleukin-6, and tumor necrosis factor-α in mice exposed to chronic mild stress. Finally, inhalation of hydrogen gas in adolescence significantly increased the resilience to acute stress in early adulthood, which illustrates the long-lasting effects of hydrogen on stress resilience in mice. This was likely mediated by inhibiting the hypothalamic-pituitary-adrenal axis and inflammatory responses to stress. These results warrant further exploration for developing molecular hydrogen as a novel strategy to prevent the occurrence of stress-related disorders.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Nutrition, Hebei Medical University, Shijiazhuang, 050017, China
| | - Han Song
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiao-Ting Wang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ying Liang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan-Jie Xi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qing-Jun Guo
- Department of Surgery, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tyler LeBaron
- Molecular Hydrogen Foundation, Kissimmee, FL, 34744, USA
| | - Yi-Xiao Luo
- Department of Pharmacology, Medical School of Hunan Normal University, Changsha, 410013, China
| | - Shuang-Cheng Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Xi Yin
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang, 050011, China
| | - Hai-Shui Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yu-Xia Ma
- Department of Nutrition, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
44
|
Mardanpour MM, Yaghmaei S. Dynamical Analysis of Microfluidic Microbial Electrolysis Cell via Integrated Experimental Investigation and Mathematical Modeling. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Xu G, Gu H, Hu B, Tong F, Liu D, Yu X, Zheng Y, Gu J. PEG- b-(PELG- g-PLL) nanoparticles as TNF-α nanocarriers: potential cerebral ischemia/reperfusion injury therapeutic applications. Int J Nanomedicine 2017; 12:2243-2254. [PMID: 28356740 PMCID: PMC5367577 DOI: 10.2147/ijn.s130842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain ischemia/reperfusion (I/R) injury (BI/RI) is a leading cause of death and disability worldwide. However, the outcome of pharmacotherapy for BI/RI remains unsatisfactory. Innovative approaches for enhancing drug sensitivity and recovering neuronal activity in BI/RI treatment are urgently needed. The purpose of this study was to evaluate the protective effects of tumor necrosis factor (TNF)-α-loaded poly(ethylene glycol)-b-(poly(ethylenediamine L-glutamate)-g-poly(L-lysine)) (TNF-α/PEG-b-(PELG-g-PLL)) nanoparticles on BI/RI. The particle size of PEG-b-(PELG-g-PLL) and the loading and release rates of TNF-α were determined. The nanoparticle cytotoxicity was evaluated in vitro using rat cortical neurons. Sprague Dawley rats were preconditioned with free TNF-α or TNF-α/PEG-b-(PELG-g-PLL) polyplexes and then subjected to 2 hours ischemia and 22 hours reperfusion. Brain edema was assessed using the brain edema ratio, and the antioxidative activity was assessed by measuring the superoxide dismutase (SOD) activity and the malondialdehyde (MDA) content in the brain tissue. We further estimated the inflammatory activity and apoptosis level by determining the levels of interleukin-4 (IL-4), IL-6, IL-8, IL-10, and nitric oxide (NO), as well as the expression of glial fibrillary acidic protein (GFAP), intercellular adhesion molecule-1 (ICAM-1), and cysteine aspartase-3 (caspase-3), in the brain tissue. We provide evidence that TNF-α preconditioning attenuated the oxidative stress injury, the inflammatory activity, and the apoptosis level in I/R-induced cerebral injury, while the application of block copolymer PEG-b-(PELG-g-PLL) as a potential TNF-α nanocarrier with sustained release significantly enhanced the bioavailability of TNF-α. We propose that the block copolymer PEG-b-(PELG-g-PLL) may function as a potent nanocarrier for augmenting BI/RI pharmacotherapy, with unprecedented clinical benefits. Further studies are needed to better clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Guangtao Xu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Huan Gu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Physics, University of Maryland, College Park, Annapolis, MD, USA
| | - Bo Hu
- Department of Chemical Pathology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, Zhejiang, People’s Republic of China
| | - Fei Tong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Daojun Liu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
| | - Xiaojun Yu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
| | - Yongxia Zheng
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiang Gu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Correspondence: Jiang Gu, Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People’s Republic of China, Tel +86 754 8895 0207, Email
| |
Collapse
|