1
|
Cao Y, Yin X, Wu L, Huang D, Wang Z, Wu F, Jiang J, Chen G, Wang Q. High-Efficiency Ocular Delivery of Brain-Derived Neurotrophic Factor and Oligomycin for Neuroprotection in Glaucoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500623. [PMID: 40357695 DOI: 10.1002/adma.202500623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/19/2025] [Indexed: 05/15/2025]
Abstract
Glaucoma is a retinal neurodegenerative disease characterized by progressive apoptosis of retinal ganglion cells (RGCs) and irreversible visual impairment. Current therapies rarely offer direct protection for RGCs, highlighting the need for new neuroprotective approaches. Although viral delivery of brain-derived neurotrophic factor (BDNF) has shown potential, concerns about retinal inflammation and limited applicability persist. Meanwhile, non-viral vectors remain inefficient for in vivo ocular gene delivery. Here, a highly biocompatible nanoplatform-PBAE-PLGA-Oligomycin-pBDNF nanoparticles (PPOB NPs) is reported-that co-delivers oligomycin (an ATP inhibitor) and a BDNF plasmid to Müller cells in vivo. This nanoplatform attains an unprecedented transfection efficiency of 64.26% in Müller cells, thereby overcoming the limitations of monotherapeutic neurotrophic approaches that fail to inhibit ATP overproduction and attendant inflammatory responses. In a chronic ocular hypertension rat model, oligomycin effectively mitigated RGC damage by suppressing Müller cell hyperactivation and excessive ATP production under elevated intraocular pressure. Concurrently, it synergistically enhanced BDNF expression in Müller cells, achieving robust protection of RGCs and preservation of optic nerve function. These findings underscore the promise of PPOB NPs as a dual-functional platform, featuring high biocompatibility and efficient gene delivery, for multifaceted therapies against glaucoma and other ocular diseases.
Collapse
Affiliation(s)
- Yuheng Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xue Yin
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, 21006, China
| | - Lanrong Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiang Jiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Hu Y, Grodzki LM, Bartsch U. Survival and Axonal Regeneration of Retinal Ganglion Cells in a Mouse Optic Nerve Crush Model After a Cell-Based Intravitreal Co-Administration of Ciliary Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor at Different Post-Lesion Time Points. Cells 2025; 14:643. [PMID: 40358167 PMCID: PMC12071274 DOI: 10.3390/cells14090643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
We recently showed, in a mouse optic nerve crush model, that a sustained cell-based intravitreal administration of ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) synergistically slowed the lesion-induced degeneration of retinal ganglion cells (RGCs), resulting in the presence of approximately 35% viable RGCs eight months after the lesion. However, the combinatorial neuroprotective treatment was initiated shortly after the lesion. To mimic a more clinically relevant situation, we co-administered both factors either three or five days after an intraorbital nerve crush when approximately 35% or 57% of the RGCs were degenerated, respectively. Analyses of the retinas at different time points after the lesion consistently revealed the presence of significantly more surviving RGCs in retinas co-treated with CNTF and GDNF than in retinas treated with either factor alone. For example, when the neurotrophic factors were administered five days after the nerve crush and the animals were analyzed two months after the lesion, retinas co-treated with CNTF and GDNF contained approximately 40% of the RGCs present at the start of treatment. In comparison, monotherapy with either CNTF or GDNF protected only about 15% or 10% of the RGCs present at baseline, respectively. The number of regenerating axons in the distal nerve stumps was similar in CNTF- and CNTF/GDNF-treated animals, despite the significantly higher number of rescued RGCs in the latter group. These findings have potential implications for studies aimed at developing neuroprotective treatments for optic neuropathies such as glaucoma.
Collapse
Affiliation(s)
| | | | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (Y.H.); (L.M.G.)
| |
Collapse
|
3
|
Zhang S, Zhu H, Li G, Zhu M. Cathepsin B promotes optic nerve axonal regeneration. Neuroreport 2025; 36:279-289. [PMID: 40177832 PMCID: PMC11949221 DOI: 10.1097/wnr.0000000000002148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 04/05/2025]
Abstract
This study explored the role of cathepsin B (CTSB) in optic nerve regeneration. Sprague-Dawley rats were utilized for optic nerve crush and long-range crush injury model. Gene and protein expression changes were analyzed via reverse transcription quantitative polymerase chain reaction and western blot. Primary cortical neurons and BV2 cells were cultured to assess CTSB's effects on neuronal outgrowth and microglial activity. Local CTSB administration degraded chondroitin sulfate proteoglycans (CSPGs), promoting axonal growth in-vivo. In-vitro, CTSB neutralized CSPG-mediated inhibition of neuronal growth. Quantitative proteomics revealed elevated microglial marker proteins in the regenerative environment. Activation of signal transducer and activator of transcription 3 (STAT3) and signal transducer and activator of transcription 6 (STAT6) pathways in BV2 cells increased CTSB secretion. These findings suggest that postinjury regenerative microenvironment reconstruction is associated with upregulated CTSB, which degrades CSPGs to facilitate axonal growth. Microglia-derived CTSB, regulated by STAT3/STAT6 signaling, may play a key role in this process. Modulating CTSB expression could thus be a therapeutic strategy to enhance optic nerve regeneration by modifying the injury microenvironment.
Collapse
Affiliation(s)
- Si Zhang
- Department of Ophthalmology, The First People’s Hospital of Foshan
| | - Hui Zhu
- Department of Ophthalmology, The Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guopei Li
- Department of Ophthalmology, The First People’s Hospital of Foshan
| | - Min Zhu
- Department of Ophthalmology, The First People’s Hospital of Foshan
| |
Collapse
|
4
|
Deng J, Feng Z, Luodan A, Ma C, He J, Gong Y, Huang X, Xiao W, Fan X, Xu H. Immune-responsive gene 1/itaconate pathway inhibits microglia activation to alleviate traumatic optic neuropathy in mice. Int Immunopharmacol 2025; 149:114199. [PMID: 39904042 DOI: 10.1016/j.intimp.2025.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/15/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Retinal inflammatory microenvironment caused by microglia over-activation is deemed to be crucial pathological changes that lead to the massive death of retinal ganglion cells (RGCs) after traumatic optic neuropathy (TON), which then results in visual impairment and even blindness. Therefore, exploring effective targets to suppress microglia activation is a promising therapeutic strategy for TON. In the present work, we determined the roles of immune-responsive gene 1 (IRG1)/itaconate pathway on retinal microglia activation and neuroinflammation after TON, through endogenously manipulating Irg1 expression and exogenously supplementing itaconate derivatives, we evaluated its effects on RGCs survival, retinal structural damage and visual function after TON. Finally, we identified the downstream mechanism by which the Irg1/itaconate pathway regulates microglia through transcriptome analysis. We found that specifically overexpression of Irg1 in retinal microglia significantly inhibited microglia activation and alleviated neuroinflammation after TON, thereby promoting RGCs survival and improving visual function. While knockdown of Irg1 caused microglia over-activation and exacerbated neuroinflammation, thus aggravating RGCs damage and deteriorating visual function after TON. Further in vivo and in vitro experiments confirmed that itaconate derivatives significantly inhibited microglia activation and alleviated neuroinflammation, hence alleviated RGCs damage and visual impairment. Finally, transcriptome analysis indicated that complement and coagulation cascades pathway might be the crucial downstream mechanism of the Irg1/itaconate pathway. Our study identifies the Irg1/itaconate pathway as a prospective target for treating TON.
Collapse
Affiliation(s)
- Jiaxing Deng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Zhou Feng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China; Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China
| | - A Luodan
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Chao Ma
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China
| | - Juncai He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Yu Gong
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Weizuo Xiao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038 China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China.
| |
Collapse
|
5
|
Liu ZG, Zhou LY, Sun YQ, Ma YH, Liu CM, Zhang BY. Unlocking the potential for optic nerve regeneration over long distances: a multi-therapeutic intervention. Front Neurol 2025; 15:1526973. [PMID: 39850731 PMCID: PMC11754882 DOI: 10.3389/fneur.2024.1526973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration in vivo through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration. At present, research on promoting optic nerve regeneration remains slow, with most studies unable to achieve axonal growth beyond the optic chiasm or reestablish connections with the brain. Future research priorities include directing axonal growth along correct pathways, facilitating synapse formation and myelination, and modifying the inhibitory microenvironment. These strategies are crucial not only for optic nerve regeneration but also for broader applications in central nervous system repair. In this review, we discuss multifactors therapeutic strategies for optic nerve regeneration, offering insights into advancing nerve regeneration research.
Collapse
Affiliation(s)
- Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yi-Hang Ma
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bo-Yin Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Chiang B, Heng K, Jang K, Dalal R, Liao YJ, Myung D, Goldberg JL. Development of a novel SupraChoroidal-to-Optic-NervE (SCONE) drug delivery system. Drug Deliv 2024; 31:2379369. [PMID: 39010743 PMCID: PMC467098 DOI: 10.1080/10717544.2024.2379369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
PURPOSE Targeted drug delivery to the optic nerve head may be useful in the preclinical study and later clinical management of optic neuropathies, however, there are no FDA-approved drug delivery systems to achieve this. The purpose of this work was to develop an optic nerve head drug delivery technique. METHODS Different strategies to approach the optic nerve head were investigated, including standard intravitreal and retroorbital injections. A novel SupraChoroidal-to-Optic-NervE (SCONE) delivery was optimized by creating a sclerotomy and introducing a catheter into the suprachoroidal space. Under direct visualization, the catheter was guided to the optic nerve head. India ink was injected. The suprachoroidal approach was performed in New Zealand White rabbit eyes in vivo (25 animals total). Parameters, including microneedle size and design, catheter design, and catheter tip angle, were optimized ex vivo and in vivo. RESULTS Out of the candidate optic nerve head approaches, intravitreal, retroorbital, and suprachoroidal approaches were able to localize India ink to within 2 mm of the optic nerve. The suprachoroidal approach was further investigated, and after optimization, was able to deposit India ink directly within the optic nerve head in up to 80% of attempts. In eyes with successful SCONE delivery, latency and amplitude of visual evoked potentials was not different than the naïve untreated eye. CONCLUSIONS SCONE delivery can be used for targeted drug delivery to the optic nerve head of rabbits without measurable toxicity measured anatomically or functionally. Successful development of this system may yield novel opportunities to study optic nerve head-specific drug delivery in animal models, and paradigm-shifting management strategies for treating optic neuropathies. TRANSLATIONAL RELEVANCE Here we demonstrate data on a new method for targeted delivery to the optic nerve head, addressing a significant unmet need in therapeutics for optic neuropathies.
Collapse
Affiliation(s)
- Bryce Chiang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Kathleen Heng
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Kyeongwoo Jang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Roopa Dalal
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - David Myung
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| |
Collapse
|
7
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Liu F, Hou Y, Chen X, Chen Z, Su G, Lin R. Moxibustion Promoted Axonal Regeneration and Improved Learning and Memory of Post-stroke Cognitive Impairment by Regulating PI3K/AKt and TACC3. Neuroscience 2024; 551:299-306. [PMID: 38848775 DOI: 10.1016/j.neuroscience.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND This study aimed to investigate whether moxibustion could affect PI3K/Akt pathway to regulate Transforming acidic coiled-coil containing protein 3 (TACC3) and promote axonal regeneration to improve learning and memory function in middle cerebral artery occlusion (MCAO) rats. METHODS Sixty SD rats were randomly divided into 4 groups: sham-operated control group (SC), model control group (MC), model + moxibustion group (MM), and model + inhibitor + moxibustion group (MIM). The rats in MC, MM, and MIM groups were made into MCAO models, and PI3K inhibitor LY294002 was injected into the rats in MIM group before modeling; while the rats in SC group were only treated with artery separation without monofilament inserting. After that, the rats in MM and MIM groups were intervented with moxibustion. We used the Zea-Longa scale, micro-Magnetic Resonance Imaging (micro-MRI), Morris water maze (MWM), TUNEL, western blot (WB), immunofluorescence and immunohistochemistry to evaluate the neurological deficits, cerebral infarct volume, learning and memory, apoptotic cell percentage in the hippocampal, the expression level of axonal regeneration and PI3K/AKt related proteins, the expression level of TACC3. The detection of 2 h after surgery showed the result before moxibustion and 7 days after the intervention showed the results after moxibustion. RESULTS After 7 d of intervention, the scores of Zea-Longa and the cerebral infarct volume, the escape latency, the percentage of apoptosis cells of MM group were lower than that of MC and MIM groups; the frequency of rats crossed the previous platform location, PI3K, p-Akt/t-Akt and TACC3, the level of GAP-43 in MM group was more than MC and MIM groups (P < 0.05). While no statistical difference existed between MIM group and MC group (P > 0.05). CONCLUSION Moxibustion can promote axonal regeneration and improve learning and memory of Post-stroke cognitive impairment via activating the PI3K/AKT signaling pathway and TACC3.
Collapse
Affiliation(s)
- Fang Liu
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - YuFei Hou
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xin Chen
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ziqiong Chen
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guiting Su
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruhui Lin
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
9
|
Yu H, Shen B, Han R, Zhang Y, Xu S, Zhang Y, Guo Y, Huang P, Huang S, Zhong Y. CX3CL1-CX3CR1 axis protects retinal ganglion cells by inhibiting microglia activation in a distal optic nerve trauma model. Inflamm Regen 2024; 44:30. [PMID: 38844990 PMCID: PMC11154987 DOI: 10.1186/s41232-024-00343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The chemokine CX3CL1 has been reported to play an important role in optic nerve protection, but the underlying mechanism is still unclear. CX3CR1, the only receptor of CX3CL1, is specifically expressed on retinal microglia, whose activation plays a role in the pathological process of optic nerve injury. This study aimed to evaluate whether CX3CL1 exerts optic neuroprotection by affecting the activation of microglia by combining with CX3CR1. METHODS A mouse model of distal optic nerve trauma (ONT) was used to evaluate the effects of the CX3CL1-CX3CR1 axis on the activation of microglia and survival or axonal regeneration of retinal ganglion cells (RGCs). The activation of microglia, loss of RGCs, and damage to visual function were detected weekly till 4 weeks after modeling. CX3CL1 was injected intravitreally immediately or delayed after injury and the status of microglia and RGCs were examined. RESULTS Increases in microglia activation and optic nerve damage were accompanied by a reduced production of the CX3CL1-CX3CR1 axis after the distal ONT modeling. Both immediate and delayed intravitreal injection of CX3CL1 inhibited microglia activation, promoted survival of RGCs, and improved axonal regenerative capacity. Injection with CX3CL1 was no longer effective after 48 h post ONT. The CX3CL1-CX3CR1 axis promotes survival and axonal regeneration, as indicated by GAP43 protein and gene expression, of RGCs by inhibiting the microglial activation after ONT. CONCLUSIONS The CX3CL1-CX3CR1 axis could promote survival and axonal regeneration of RGCs by inhibiting the microglial activation after optic nerve injury. The CX3CL1-CX3CR1 axis may become a potential target for the treatment of optic nerve injury. Forty-eight hours is the longest time window for effective treatment after injury. The study is expected to provide new ideas for the development of targeted drugs for the repair of optic nerve.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shushu Xu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yanzhi Guo
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
10
|
Li CP, Wu S, Sun YQ, Peng XQ, Gong M, Du HZ, Zhang J, Teng ZQ, Wang N, Liu CM. Lhx2 promotes axon regeneration of adult retinal ganglion cells and rescues neurodegeneration in mouse models of glaucoma. Cell Rep Med 2024; 5:101554. [PMID: 38729157 PMCID: PMC11148806 DOI: 10.1016/j.xcrm.2024.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Chang-Ping Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xue-Qi Peng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Maolei Gong
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450052, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
11
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Benowitz LI, Xie L, Yin Y. Inflammatory Mediators of Axon Regeneration in the Central and Peripheral Nervous Systems. Int J Mol Sci 2023; 24:15359. [PMID: 37895039 PMCID: PMC10607492 DOI: 10.3390/ijms242015359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Although most pathways in the mature central nervous system cannot regenerate when injured, research beginning in the late 20th century has led to discoveries that may help reverse this situation. Here, we highlight research in recent years from our laboratory identifying oncomodulin (Ocm), stromal cell-derived factor (SDF)-1, and chemokine CCL5 as growth factors expressed by cells of the innate immune system that promote axon regeneration in the injured optic nerve and elsewhere in the central and peripheral nervous systems. We also review the role of ArmC10, a newly discovered Ocm receptor, in mediating many of these effects, and the synergy between inflammation-derived growth factors and complementary strategies to promote regeneration, including deleting genes encoding cell-intrinsic suppressors of axon growth, manipulating transcription factors that suppress or promote the expression of growth-related genes, and manipulating cell-extrinsic suppressors of axon growth. In some cases, combinatorial strategies have led to unprecedented levels of nerve regeneration. The identification of some similar mechanisms in human neurons offers hope that key discoveries made in animal models may eventually lead to treatments to improve outcomes after neurological damage in patients.
Collapse
Affiliation(s)
- Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Zhao WJ, Fan CL, Hu XM, Ban XX, Wan H, He Y, Zhang Q, Xiong K. Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials. Cell Mol Neurobiol 2023; 43:3161-3178. [PMID: 37338781 PMCID: PMC11410022 DOI: 10.1007/s10571-023-01373-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Glaucoma is a group of diseases characterized by the degeneration of retinal ganglion cells (RGCs) and progressive, irreversible vision loss. High intraocular pressure (IOP) heightens the likelihood of glaucoma and correlates with RGC loss. While the current glaucoma therapy prioritizes lower the IOP; however, RGC, and visual loss may persist even when the IOP is well-controlled. As such, discovering and creating IOP-independent neuroprotective strategies for safeguard RGCs is crucial for glaucoma management. Investigating and clarifying the mechanism behind RGC death to counteract its effects is a promising direction for glaucoma control. Empirical studies of glaucoma reveal the role of multiple regulated cell death (RCD) pathways in RGC death. This review delineates the RCD of RGCs following IOP elevation and optic nerve damage and discusses the substantial benefits of mitigating RCD in RGCs in preserving visual function.
Collapse
Affiliation(s)
- Wen-Juan Zhao
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Chun-Ling Fan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Ye He
- Changsha Aier Eye Hospital, Hunan Province, No. 188, Furong Road, Furong District, Changsha City, 410015, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410013, China.
| |
Collapse
|
14
|
Lu W, Wen J. H 2S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination After Ischemic Stroke. Mol Neurobiol 2023; 60:5493-5504. [PMID: 37322287 DOI: 10.1007/s12035-023-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke is one of the main reasons of disability and death. Stroke-induced functional deficits are mainly due to the secondary degeneration of the white matter characterized by axonal demyelination and injury of axon-glial integrity. Enhancement of the axonal regeneration and remyelination could promote the neural functional recovery. However, cerebral ischemia-induced activation of RhoA/Rho kinase (ROCK) pathway plays a crucial and harmful role in the process of axonal recovery and regeneration. Inhibition of this pathway could promote the axonal regeneration and remyelination. In addition, hydrogen sulfide (H2S) has the significant neuroprotective role during the recovery of ischemic stroke via inhibiting the inflammatory response and oxidative stress, regulating astrocyte function, promoting the differentiation of endogenous oligodendrocyte precursor cells (OPCs) to mature oligodendrocyte. Among all of these effects, promoting the formation of mature oligodendrocyte is a crucial part of axonal regeneration and remyelination. Furthermore, numerous studies have uncovered the crosstalk between astrocytes and oligodendrocyte, microglial cells and oligodendrocyte in the axonal remyelination following ischemic stroke. The purpose of this review was to discuss the relationship among H2S, RhoA/ROCK pathway, astrocytes, and microglial cells in the axonal remyelination following ischemic stroke to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Rosa JGS, Disner GR, Pinto FJ, Lima C, Lopes-Ferreira M. Revisiting Retinal Degeneration Hallmarks: Insights from Molecular Markers and Therapy Perspectives. Int J Mol Sci 2023; 24:13079. [PMID: 37685886 PMCID: PMC10488251 DOI: 10.3390/ijms241713079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Visual impairment and blindness are a growing public health problem as they reduce the life quality of millions of people. The management and treatment of these diseases represent scientific and therapeutic challenges because different cellular and molecular actors involved in the pathophysiology are still being identified. Visual system components, particularly retinal cells, are extremely sensitive to genetic or metabolic alterations, and immune responses activated by local insults contribute to biological events, culminating in vision loss and irreversible blindness. Several ocular diseases are linked to retinal cell loss, and some of them, such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and diabetic retinopathy, are characterized by pathophysiological hallmarks that represent possibilities to study and develop novel treatments for retinal cell degeneration. Here, we present a compilation of revisited information on retinal degeneration, including pathophysiological and molecular features and biochemical hallmarks, and possible research directions for novel treatments to assist as a guide for innovative research. The knowledge expansion upon the mechanistic bases of the pathobiology of eye diseases, including information on complex interactions of genetic predisposition, chronic inflammation, and environmental and aging-related factors, will prompt the identification of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Monica Lopes-Ferreira
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503900, Brazil; (J.G.S.R.); (G.R.D.); (F.J.P.); (C.L.)
| |
Collapse
|
16
|
Cen LP, Park KK, So KF. Optic nerve diseases and regeneration: How far are we from the promised land? Clin Exp Ophthalmol 2023; 51:627-641. [PMID: 37317890 PMCID: PMC10519420 DOI: 10.1111/ceo.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
The retinal ganglion cells (RGCs) are the sole output neurons that connect information from the retina to the brain. Optic neuropathies such as glaucoma, trauma, inflammation, ischemia and hereditary optic neuropathy can cause RGC loss and axon damage, and lead to partial or total loss of vision, which is an irreversible process in mammals. The accurate diagnoses of optic neuropathies are crucial for timely treatments to prevent irrevocable RGCs loss. After severe ON damage in optic neuropathies, promoting RGC axon regeneration is vital for restoring vision. Clearance of neuronal debris, decreased intrinsic growth capacity, and the presence of inhibitory factors have been shown to contribute to the failure of post-traumatic CNS regeneration. Here, we review the current understanding of manifestations and treatments of various common optic neuropathies. We also summarise the current known mechanisms of RGC survival and axon regeneration in mammals, including specific intrinsic signalling pathways, key transcription factors, reprogramming genes, inflammation-related regeneration factors, stem cell therapy, and combination therapies. Significant differences in RGC subtypes in survival and regenerative capacity after injury have also been found. Finally, we highlight the developmental states and non-mammalian species that are capable of regenerating RGC axons after injury, and cellular state reprogramming for neural repair.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Department of Neuro-Ophthalmology, Joint Shantou International Eye Centre of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Kevin K. Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kowk-Fai So
- Guangzhou-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Aier School of Ophthalmology, Changsha Aier Hospital of Ophthalmology, Changsha, China
| |
Collapse
|
17
|
Yuan XL, Chen SL, Xu Y, Yao Y, Liang JJ, Zhuang X, Hald ES, Ng TK. Green tea extract enhances retinal ganglion cell survival and axonal regeneration in rats with optic nerve injury. J Nutr Biochem 2023; 117:109333. [PMID: 36965783 DOI: 10.1016/j.jnutbio.2023.109333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Current clinical treatments have not yet effectively cured progressive retinal ganglion cell (RGC) death and axonal degeneration after optic nerve (ON) injury. We previously demonstrated green tea extract (GTE) can reduce RGC death in rats after ischemic injury. Here, we aim to determine the prophylactic and therapeutic effects and mechanisms of GTE on RGC survival and axonal regeneration in rats with ON injury. GTE (275 or 550 mg/kg) was administered intragastrically for 7 d before or 14 d post-ON crush surgery in adult Fischer 344 rats. Rats with pre- or post-operative treatment of 275 mg/kg GTE showed significantly higher numbers of RGCs and regenerated axons post-ON injury with improved pupillary light reflex as compared to saline-treated rats. Akt and Erk p42/44 activation was higher in the retina of rats given 275 mg/kg GTE pre-surgery, whereas Stat3 activation was higher in those with 275 mg/kg GTE post-operation. Less activated microglia were observed in rats with pre-treatment of 275 or 550 mg/kg GTE. RNA sequencing analysis identified the downregulation of inflammation, apoptosis, and microglia activation genes in the retina of rats with pre- or post-treatment with 275 mg/kg GTE as compared to the saline-treated rats. In summary, this study revealed the prophylactic and therapeutic treatment effects of GTE on RGC survival and axonal regeneration in rats with ON injury, indicating a potential alternative treatment for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Eric S Hald
- Department of Biomedical Engineering, Shantou University, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
18
|
Yao Y, Xu Y, Liang JJ, Zhuang X, Ng TK. Longitudinal and simultaneous profiling of 11 modes of cell death in mouse retina post-optic nerve injury. Exp Eye Res 2022; 222:109159. [PMID: 35753433 DOI: 10.1016/j.exer.2022.109159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023]
Abstract
Retinal ganglion cell (RGC) death is a critical pathological trigger leading to irreversible visual impairment and blindness after optic nerve (ON) injury. Yet, there is still no effective clinical treatment to rescue RGC death after ON injury. Understanding the involvement of different modes of cell death post-ON injury could facilitate the development of targeting treatments against RGC death. Herein we aimed to characterize the regulation of 11 modes of cell death simultaneously and longitudinally in mouse retina post-ON injury. The number of RGCs gradually decreased from Day 3-14 in mice post-ON injury. Increase in the apoptosis (cleaved caspase-3), autolysis (cleaved cathespin B) and pyroptosis (cleaved caspase-1) marker expression in the retina began at Day 3 post-ON injury. Meanwhile, the markers for autophagy (Atg7 and Becn1) and phagocytosis (Mfge8 and Mertk) were downregulated from Day 1 to Day 5. Additionally, the expression of ferroptosis marker (4-hydroxynonenal) was upregulated from Day 7 to Day 14 post-ON injury following the early reduction of Gpx4. Yet, the reduction of parthanatos, sarmoptosis, and mitochondrial permeable transition could be related to autophagy and apoptosis. The markers for necroptosis did not show significant changes post-ON injury. In summary, this study revealed that the activation of apoptosis, autolysis, pyroptosis and ferroptosis, together with the early downregulation of autophagy and phagocytosis, are the major modes of cell death involved in the RGC death post-ON injury. Simultaneously targeting multiple modes of cell death at different time courses could be a potential treatment approach against RGC death for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
19
|
Xie L, Cen LP, Li Y, Gilbert HY, Strelko O, Berlinicke C, Stavarache MA, Ma M, Wang Y, Cui Q, Kaplitt MG, Zack DJ, Benowitz LI, Yin Y. Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells' response to Pten deletion. Proc Natl Acad Sci U S A 2022; 119:e2113751119. [PMID: 35394873 PMCID: PMC9169637 DOI: 10.1073/pnas.2113751119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell–derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.
Collapse
Affiliation(s)
- Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Ling-Ping Cen
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Yiqing Li
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510085, China
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Oleksandr Strelko
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mihaela A. Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Madeline Ma
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Yongting Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Cui
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
20
|
Tan S, Yao Y, Yang Q, Yuan XL, Cen LP, Ng TK. Diversified Treatment Options of Adult Stem Cells for Optic Neuropathies. Cell Transplant 2022; 31. [PMID: 36165292 PMCID: PMC9523835 DOI: 10.1177/09636897221123512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Optic neuropathies refer to a group of ocular disorders with abnormalities or dysfunction of the optic nerve, sharing a common pathophysiology of retinal ganglion cell (RGC) death and axonal loss. RGCs, as the retinal neurons in the central nervous system, show limited capacity in regeneration or recovery upon diseases or after injuries. Critically, there is still no effective clinical treatment to cure most types of optic neuropathies. Recently, stem cell therapy was proposed as a potential treatment strategy for optic neuropathies. Adult stem cells, including mesenchymal stem cells and hematopoietic stem cells, have been applied in clinical trials based on their neuroprotective properties. In this article, the applications of adult stem cells on different types of optic neuropathies and the related mechanisms will be reviewed. Research updates on the strategies to enhance the neuroprotective effects of human adult stem cells will be summarized. This review article aims to enlighten the research scientists on the diversified functions of adult stem cells and consideration of adult stem cells as a potential treatment for optic neuropathies in future clinical practices.
Collapse
Affiliation(s)
- Shaoying Tan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Qichen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
21
|
Cen LP, Ng TK, Liang JJ, Xu C, Zhuang X, Liu YF, Chen SL, Xu Y, Yang Q, Yuan XL, Qin YJ, Chan SO, Chen H, Zhang M, Schally AV, Pang CP. Agonist of growth hormone-releasing hormone enhances retinal ganglion cell protection induced by macrophages after optic nerve injury. Proc Natl Acad Sci U S A 2021; 118:e1920834118. [PMID: 34244423 PMCID: PMC8285901 DOI: 10.1073/pnas.1920834118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Optic neuropathies are leading causes of irreversible visual impairment and blindness, currently affecting more than 100 million people worldwide. Glaucoma is a group of optic neuropathies attributed to progressive degeneration of retinal ganglion cells (RGCs). We have previously demonstrated an increase in survival of RGCs by the activation of macrophages, whereas the inhibition of macrophages was involved in the alleviation on endotoxin-induced inflammation by antagonist of growth hormone-releasing hormone (GHRH). Herein, we hypothesized that GHRH receptor (GHRH-R) signaling could be involved in the survival of RGCs mediated by inflammation. We found the expression of GHRH-R in RGCs of adult rat retina. After optic nerve crush, subcutaneous application of GHRH agonist MR-409 or antagonist MIA-602 promoted the survival of RGCs. Both the GHRH agonist and antagonist increased the phosphorylation of Akt in the retina, but only agonist MR-409 promoted microglia activation in the retina. The antagonist MIA-602 reduced significantly the expression of inflammation-related genes Il1b, Il6, and Tnf Moreover, agonist MR-409 further enhanced the promotion of RGC survival by lens injury or zymosan-induced macrophage activation, whereas antagonist MIA-602 attenuated the enhancement in RGC survival. Our findings reveal the protective effect of agonistic analogs of GHRH on RGCs in rats after optic nerve injury and its additive effect to macrophage activation, indicating a therapeutic potential of GHRH agonists for the protection of RGCs against optic neuropathies especially in glaucoma.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
- Shantou University Medical College, 515041 Shantou, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
| | - Yu-Fen Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
- Shantou University Medical College, 515041 Shantou, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
| | - Qichen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
- Shantou University Medical College, 515041 Shantou, China
| | - Yong Jie Qin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, 510080 Guangzhou, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Haoyu Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China
| | - Andrew V Schally
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136;
- Division of Medical Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, 515041 Shantou, China;
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
22
|
Liu YF, Liang JJ, Ng TK, Hu Z, Xu C, Chen S, Chen SL, Xu Y, Zhuang X, Huang S, Zhang M, Pang CP, Cen LP. CXCL5/CXCR2 modulates inflammation-mediated neural repair after optic nerve injury. Exp Neurol 2021; 341:113711. [PMID: 33785307 DOI: 10.1016/j.expneurol.2021.113711] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous studies reported that mild inflammation promotes retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) injury with involvement of infiltrating macrophages and neutrophils. Here we aimed to evaluate the involvement and regulation of the main inflammatory chemokine pathway CXCL5/CXCR2 in the inflammation-mediated RGC survival and axonal regeneration in mice after ON injury. METHODS The expressions and cellular locations of CXCL5 and CXCR2 were confirmed in mouse retina. Treatment effects of recombinant CXCL5 and CXCR2 antagonist SB225002 were studied in the explant culture and the ON injury model with or without lens injury. The number of RGCs, regenerating axons, and inflammatory cells were determined, and the activation of Akt andSTAT3 signaling pathways were evaluated. RESULTS Cxcr2 and Cxcl5 expressions were increased after ON and lens injury. Addition of recombinant CXCL5 promoted RGC survival and neurite outgrowth in retinal explant culture with increase in the number of activated microglia, which was inhibited by SB225002 or clodronate liposomes. Recombinant CXCL5 also alleviated RGC death and promoted axonal regeneration in mice after ON injury, and promoted the lens injury-induced RGC protection with increase in the number of activated CD68+ cells. SB225002 inhibited lens injury-induced cell infiltration and activation, and attenuated the promotion effect on RGC survival and axonal regeneration through reduction of lens injury-induced Akt activation. CONCLUSIONS CXCL5 promotes RGC survival and axonal regeneration after ON injury and further enhances RGC protection induced by lens injury with CD68+ cell activation, which is attenuated by CXCR2 antagonist. CXCL5/CXCR2 could be a potential therapeutic target for RGC survival promotion after ON injury.
Collapse
Affiliation(s)
- Yu-Fen Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Zhanchi Hu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaofen Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China.
| |
Collapse
|
23
|
Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021; 10:cells10061426. [PMID: 34200991 PMCID: PMC8228580 DOI: 10.3390/cells10061426] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the central nervous system, mammalian retinal ganglion cells (RGCs) lack significant regenerative capacity. Glaucoma causes progressive and irreversible vision loss by damaging RGCs and their axons, which compose the optic nerve. To functionally restore vision, lost RGCs must be replaced. Despite tremendous advancements in experimental models of optic neuropathy that have elucidated pathways to induce endogenous RGC neuroprotection and axon regeneration, obstacles to achieving functional visual recovery through exogenous RGC transplantation remain. Key challenges include poor graft survival, low donor neuron localization to the host retina, and inadequate dendritogenesis and synaptogenesis with afferent amacrine and bipolar cells. In this review, we summarize the current state of experimental RGC transplantation, and we propose a set of standard approaches to quantifying and reporting experimental outcomes in order to guide a collective effort to advance the field toward functional RGC replacement and optic nerve regeneration.
Collapse
|
24
|
Advances in Regeneration of Retinal Ganglion Cells and Optic Nerves. Int J Mol Sci 2021; 22:ijms22094616. [PMID: 33924833 PMCID: PMC8125313 DOI: 10.3390/ijms22094616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma, the second leading cause of blindness worldwide, is an incurable neurodegenerative disorder due to the dysfunction of retinal ganglion cells (RGCs). RGCs function as the only output neurons conveying the detected light information from the retina to the brain, which is a bottleneck of vision formation. RGCs in mammals cannot regenerate if injured, and RGC subtypes differ dramatically in their ability to survive and regenerate after injury. Recently, novel RGC subtypes and markers have been uncovered in succession. Meanwhile, apart from great advances in RGC axon regeneration, some degree of experimental RGC regeneration has been achieved by the in vitro differentiation of embryonic stem cells and induced pluripotent stem cells or in vivo somatic cell reprogramming, which provides insights into the future therapy of myriad neurodegenerative disorders. Further approaches to the combination of different factors will be necessary to develop efficacious future therapeutic strategies to promote ultimate axon and RGC regeneration and functional vision recovery following injury.
Collapse
|
25
|
Zhang S, Liu B, Zhu H, Jin H, Gong Z, Qiu H, Xu M, Chen M, Nan K, Wu W. A Novel Rat Model with Long Range Optic Nerve Injury to Study Retinal Ganglion Cells Endogenous Regeneration. Neuroscience 2021; 465:71-84. [PMID: 33895340 DOI: 10.1016/j.neuroscience.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
In adult mammals, axon regeneration is limited within the lesion site after injury to the optic nerve. Changes in the microenvironment of lesion sites play an important role in retinal ganglion cells (RGCs) axon regeneration along with other intrinsic factors. In this study, the effect of the lesion site on the microenvironment and axon growth was evaluated using a refined optic nerve crush (ONC) injury model, in which the injury range was extended compared to classical injury. The number of regenerated axons labeled anterogradely with cholera toxin B fragment (CTB) was significantly increased in the long-range crush injury (LI) group compared to the ONC group at distances of 500, 1000 and 1500 µm from the initial site of the injury. These data confirmed that RGC axons can regenerate inside the lesion site. Immunofluorescence and proteomic analysis showed that the microenvironment at the lesion site was highly heterogeneous. The levels of myelin-associated inhibitors, chondroitin-sulfate proteoglycans (CSPGs) and other axon growth inhibitors decreased inside the lesion site compared to the posterior segment of the optic nerve lesion site. The expression of multiple lysosome-related enzymes, metabolic inhibitors including cholesterol esterase, cathepsin B, D, Z and arylsulfatase B (ARSB) were significantly increased inside the lesion site for the LI group compared to the normal optic nerves. Our results suggest that the model of long range optic nerve injury is more useful towards understanding the lesion microenvironment and the endogenous regeneration of RGCs. Also, we showed that myelin and neurocan (a CSPG) are differently expressed in the optic nerve between the interior and posterior lesion sites and may explain why axons cannot reach the brain through the lesion site.
Collapse
Affiliation(s)
- Si Zhang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Bo Liu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Zhu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Haochen Jin
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zan Gong
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Haijun Qiu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Mingna Xu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Mei Chen
- Department of Ophthalmology, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Kaihui Nan
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China.
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
26
|
Tan J, Liu G, Lan C, Pang IH, Luo X, Wu S, Fan N, Zhang J, Wang N, Liu X. Lentiviral vector-mediated expression of C3 transferase attenuates retinal ischemia and reperfusion injury in rats. Life Sci 2021; 272:119269. [PMID: 33631175 DOI: 10.1016/j.lfs.2021.119269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
AIMS Our previous study showed that intravitreal delivery of self-complementary AAV2 (scAAV2)-mediated exoenzyme C3 transferase (C3) can attenuate retinal ischemia/reperfusion (I/R) injury. The current study investigated the neuroprotective effects of lentivirus (LV)-mediated C3 transgene expression on rat retinal I/R injury. MAIN METHODS The LV encoding C3 and green fluorescent protein (GFP) together (LV-C3-GFP) or GFP only (LV-GFP) was intravitreally injected to SPRAGUE-DAWLEY rats. On day 5 post-intravitreal injection, eyes were evaluated by slit-lamp examination. The GFP expression on retina was confirmed by in vivo and ex vivo assessments. RhoA GTPase expression in retina was examined by western blot. Retinal I/R injury was generated by transiently increasing intraocular pressure (110 mmHg, 90 min). Eyes were then enucleated, and retinas processed for morphological analysis and TdT-dUTP terminal nick-end labeling (TUNEL) assay. KEY FINDINGS No obvious inflammatory reactions or surgical complications were observed after intravitreal injection of LV vectors. There was a significant decrease of total RhoA GTPase level in the retina treated with LV-C3-GFP. Compared to the blank control group, LV-C3-GFP and LV-GFP did not affect the retinal thickness, cell density in ganglion cell layer (GCL), or numbers of apoptotic cells in retinal flat-mounts. In the LV-GFP-treated retinas, I/R decreased the retinal thickness and GCL cell density and increased apoptotic retinal cell numbers. LV-C3-GFP significantly protected against all these degenerative effects of I/R. SIGNIFICANCE This study indicated that LV-mediated C3 transgene expression exhibits neuroprotective effects on the retinal I/R injury and holds potential as a novel neuroprotective approach targeting certain retinopathies.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Iok-Hou Pang
- Department of Pharmaceutical Sciences and North Texas Eye Research Institute, University of North Texas Health Sciences Center, Fort Worth, TX 76107, United States
| | - Xiaolin Luo
- Department of Ophthalmology, the 2nd Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Shen Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Jingxue Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China; Department of Ophthalmology, the 2nd Clinical Medical College, Jinan University, Shenzhen 518020, China.
| |
Collapse
|
27
|
Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res 2021; 205:108506. [PMID: 33609512 DOI: 10.1016/j.exer.2021.108506] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Glaucoma is a neuropathic disease that causes optic nerve damage, loss of retinal ganglion cells (RGCs), and visual field defects. Most glaucoma patients have no early signs or symptoms. Conventional pharmacological glaucoma medications and surgeries that focus on lowering intraocular pressure are not sufficient; RGCs continue to die, and the patient's vision continues to decline. Recent evidence has demonstrated that neuroprotective approaches could be a promising strategy for protecting against glaucoma. In the case of glaucoma, neuroprotection aims to prevent or slow down disease progression by mitigating RGCs death and optic nerve degeneration. Notably, new pharmacologic medications such as antiglaucomatous agents, antibiotics, dietary supplementation, novel neuroprotective molecules, neurotrophic factors, translational methods such as gene therapy and cell therapy, and electrical stimulation-based physiotherapy are emerging to attenuate the death of RGCs, or to make RGCs resilient to attacks. Understanding the roles of these interventions in RGC protection may offer benefits over traditional pharmacological medications and surgeries. In this review, we summarize the recent neuroprotective strategy for glaucoma, both in clinical trials and in laboratory research.
Collapse
Affiliation(s)
- Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuanqi Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
28
|
Fudalej E, Justyniarska M, Kasarełło K, Dziedziak J, Szaflik JP, Cudnoch-Jędrzejewska A. Neuroprotective Factors of the Retina and Their Role in Promoting Survival of Retinal Ganglion Cells: A Review. Ophthalmic Res 2021; 64:345-355. [PMID: 33454713 DOI: 10.1159/000514441] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/09/2021] [Indexed: 11/19/2022]
Abstract
Retinal ganglion cells (RGCs) play a crucial role in the visual pathway. As their axons form the optic nerve, apoptosis of these cells causes neurodegenerative vision loss. RGC death could be triggered by increased intraocular pressure, advanced glycation end products, or mitochondrial dysfunction. In this review, we summarize the role of some neuroprotective factors in RGC injury: ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor, vascular endothelial growth factor, pigment epithelium-derived factor, glial cell line-derived neurotrophic factor, and Norrin. Each, in their own unique way, prevents RGC damage caused by glaucoma, ocular hypertension, ischemic neuropathy, and even oxygen-induced retinopathy. These factors are produced mainly by neurons, leukocytes, glial cells, and epithelial cells. Neuroprotective factors act via various signaling pathways, including JAK/STAT, MAPK, TrkA, and TrkB, which promotes RGC survival. Many attempts have been made to develop therapeutic strategies using these factors. There are ongoing clinical trials with CNTF and NGF, but they have not yet been accepted for clinical use.
Collapse
Affiliation(s)
- Ewa Fudalej
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland,
| | - Jacek Dziedziak
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Yuan YS, Yu F, Zhang YJ, Niu SP, Xu HL, Kou YH. Changes in proteins related to early nerve repair in a rat model of sciatic nerve injury. Neural Regen Res 2021; 16:1622-1627. [PMID: 33433493 PMCID: PMC8323673 DOI: 10.4103/1673-5374.301025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peripheral nerves have a limited capacity for self-repair and those that are severely damaged or have significant defects are challenging to repair. Investigating the pathophysiology of peripheral nerve repair is important for the clinical treatment of peripheral nerve repair and regeneration. In this study, rat models of right sciatic nerve injury were established by a clamping method. Protein chip assay was performed to quantify the levels of neurotrophic, inflammation-related, chemotaxis-related and cell generation-related factors in the sciatic nerve within 7 days after injury. The results revealed that the expression levels of neurotrophic factors (ciliary neurotrophic factor) and inflammation-related factors (intercellular cell adhesion molecule-1, interferon γ, interleukin-1α, interleukin-2, interleukin-4, interleukin-6, monocyte chemoattractant protein-1, prolactin R, receptor of advanced glycation end products and tumor necrosis factor-α), chemotaxis-related factors (cytokine-induced neutrophil chemoattractant-1, L-selectin and platelet-derived growth factor-AA) and cell generation-related factors (granulocyte-macrophage colony-stimulating factor) followed different trajectories. These findings will help clarify the pathophysiology of sciatic nerve injury repair and develop clinical treatments of peripheral nerve injury. This study was approved by the Ethics Committee of Peking University People’s Hospital of China (approval No. 2015-50) on December 9, 2015.
Collapse
Affiliation(s)
- Yu-Song Yuan
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Fei Yu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing; National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Ya-Jun Zhang
- National Center for Trauma Medicine, Beijing, China
| | - Su-Ping Niu
- Office of Academic Research, Peking University People's Hospital, Beijing, China
| | - Hai-Lin Xu
- Department of Trauma and Orthopedics; Diabetic Foot Treatment Center, Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
30
|
Carrella S, Indrieri A, Franco B, Banfi S. Mutation-Independent Therapies for Retinal Diseases: Focus on Gene-Based Approaches. Front Neurosci 2020; 14:588234. [PMID: 33071752 PMCID: PMC7541846 DOI: 10.3389/fnins.2020.588234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Gene therapy is proving to be an effective approach to treat or prevent ocular diseases ensuring a targeted, stable, and regulated introduction of exogenous genetic material with therapeutic action. Retinal diseases can be broadly categorized into two groups, namely monogenic and complex (multifactorial) forms. The high genetic heterogeneity of monogenic forms represents a significant limitation to the application of gene-specific therapeutic strategies for a significant fraction of patients. Therefore, mutation-independent therapeutic strategies, acting on common pathways that underly retinal damage, are gaining interest as complementary/alternative approaches for retinal diseases. This review will provide an overview of mutation-independent strategies that rely on the modulation in the retina of key genes regulating such crucial degenerative pathways. In particular, we will describe how gene-based approaches explore the use of neurotrophic factors, microRNAs (miRNAs), genome editing and optogenetics in order to restore/prolong visual function in both outer and inner retinal diseases. We predict that the exploitation of gene delivery procedures applied to mutation/gene independent approaches may provide the answer to the unmet therapeutic need of a large fraction of patients with genetically heterogeneous and complex retinal diseases.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
31
|
Li B, Xu Y, Quan Y, Cai Q, Le Y, Ma T, Liu Z, Wu G, Wang F, Bao C, Li H. Inhibition of RhoA/ROCK Pathway in the Early Stage of Hypoxia Ameliorates Depression in Mice via Protecting Myelin Sheath. ACS Chem Neurosci 2020; 11:2705-2716. [PMID: 32667781 DOI: 10.1021/acschemneuro.0c00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity and connectivity in the central nervous system (CNS) are easily damaged after hypoxia. Long-term exposure to an anoxic environment can lead to neuropsychiatric symptoms and increases the likelihood of depression. Demyelination is an important lesion of CNS injury that may occur in depression. Previous studies have found that the RhoA/ROCK pathway is upregulated in neuropsychiatric disorders such as multiple sclerosis, stroke, and neurodegenerative diseases. Therefore, the chief aim of this study is to explore the regulatory role of the RhoA/ROCK pathway in the development of depression after hypoxia by behavioral tests, Western blotting, immunostaining as well as electron microscopy. Results showed that HIF-1α, S100β, RhoA/ROCK, and immobility time in FST were increased, sucrose water preference ratio in SPT was decreased, and the aberrant activity of neurocyte and demyelination occurred after hypoxia. After the administration of Y-27632 and fluoxetine in hypoxia, these alterations were improved. Lingo1, a negative regulatory factor, was also overexpressed after hypoxia and its expression was decreased when the pathway blocked. However, fluoxetine had no effect on the expression of Lingo1. Then, we demonstrated that demyelination was associated with failures of oligodendrocyte precursor cell proliferation and differentiation and increased apoptosis of oligodendrocytes. Collectively, our data indicate that the RhoA/ROCK pathway plays a vital role in the initial depression during hypoxia. Blocking this pathway in the early stage of hypoxia can enhance the effectiveness of antidepressants, rescue myelin damage, and reduce the expression of the negative regulatory protein of myelination. The findings provide new insight into the prophylaxis and treatment of depression.
Collapse
Affiliation(s)
- Baichuan Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yang Xu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yong Quan
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Qiyan Cai
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yifan Le
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Teng Ma
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Guangyan Wu
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Chuncha Bao
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| |
Collapse
|
32
|
Hao Q, Zhang Y, Li X, Liang L, Shi H, Cui Z, Yang W. Upregulated neuregulin-1 protects against optic nerve injury by regulating the RhoA/cofilin/F-actin axis. Life Sci 2020; 264:118283. [PMID: 32798561 DOI: 10.1016/j.lfs.2020.118283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE In recent years, the roles of Neuregulin-1 (NRG-1) in optic nerve injury and retinal cells have been investigated. However, the molecular mechanism by which NRG-1 affects optic nerve injury remains elusive and merits deeper exploration. Hence, this study examined the specific function of NRG-1 in the RhoA/cofilin/F-actin axis in optic nerve injury. METHODS Retinal cells were isolated and identified for subsequent experimental uses. Reverse transcription quantitative polymerase chain reaction and Western blot assays were performed to measure NRG-1 expression in retinal cells which were cultured under elevated pressure. TUNEL staining was used to detect the cell apoptosis rate, and Western blot assay was performed to detect the expression of related genes. The axon growth was examined by immunofluorescence. The effects of NRG-1 on RhoA activity, cofilin phosphorylation, and F-actin were detected by Western blot assay. In other studies we established a rat model of acute optic nerve injury, and tested for beneficial effects of NRG-1 in vivo. RESULTS High expression of NRG-1 was evident in the retinal tissues of rats with optic nerve injury. Overexpressing NRG-1 successfully inhibited RhoA activity and the phosphorylation of cofilin and promoted F-actin expression. In cell experiments, overexpressed NRG-1 suppressed the apoptosis of retinal cells and promoted axon growth through the RhoA/cofilin/F-actin axis. In animal experiments, overexpressed NRG-1 relieved retinal injury. CONCLUSION Our results strongly suggest that overexpressed NRG-1 is highly effective in the protection of normal optic nerve function by suppressing RhoA activity and the phosphorylation of cofilin and rescuing F-actin function.
Collapse
Affiliation(s)
- Qian Hao
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Yan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Xiaohong Li
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Lingling Liang
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Hui Shi
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Zhihua Cui
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China.
| | - Wei Yang
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
33
|
Yuan R, Yang M, Fan W, Lan J, Zhou YG. Paired Immunoglobulin-like Receptor B Inhibition in Müller Cells Promotes Neurite Regeneration After Retinal Ganglion Cell Injury in vitro. Neurosci Bull 2020; 36:972-984. [PMID: 32445021 DOI: 10.1007/s12264-020-00510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.
Collapse
Affiliation(s)
- Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jian Lan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
34
|
Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, Wang X, Tian W, Dong X, Zhou L, Zhu X, Liu X, Fan N. scAAV2-Mediated C3 Transferase Gene Therapy in a Rat Model with Retinal Ischemia/Reperfusion Injuries. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:894-903. [PMID: 32382585 PMCID: PMC7200613 DOI: 10.1016/j.omtm.2020.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022]
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) death and axonal loss. Therefore, neuroprotection is important in treating glaucoma. In this study, we explored whether exoenzyme C3 transferase (C3)-based gene therapy could protect retinas in an ischemia/reperfusion (I/R) injury rat model. Self-complementary adeno-associated virus 2 (scAAV2) vectors encoding either C3 protein (scAAV2-C3) or enhanced green fluorescence protein (scAAV2-EGFP) were intravitreally delivered into both eyes of rats, and I/R models (acute ocular hypertension) were made in one eye of each rat at day 7 after the injection. The rats were divided into six groups: scAAV2-C3, scAAV2-C3 with I/R, scAAV2-EGFP, scAAV2-EGFP with I/R, blank control, and blank control with I/R. TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling), immunohistochemistry of cleaved caspase-3, NeuN and Brn-3a, and H&E staining were used to detect apoptotic cells and other changes in the retina. The results showed that scAAV2-C3 significantly reduced the number of apoptotic RGCs and decreased cell loss in the ganglion cell layer after I/R injury, and the I/R-injured retinas treated with scAAV2-C3 were the thickest in all I/R groups. These results suggest that scAAV2-mediated C3 gene therapy is able to protect the rat retina from I/R injury and has potential in the treatment of glaucoma in the future.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Xiaoguang Zhang
- Department of Medicine, Nanchang University, Nanchang 330006, China.,Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Danli Li
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Guo Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Daren Zhang
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Wenhong Tian
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Xiaoyan Dong
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial Hospital, Chengdu, Sichuan 610212, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial Hospital, Chengdu, Sichuan 610212, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China.,Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
35
|
Liu YF, Huang S, Ng TK, Liang JJ, Xu Y, Chen SL, Xu C, Zhang M, Pang CP, Cen LP. Longitudinal evaluation of immediate inflammatory responses after intravitreal AAV2 injection in rats by optical coherence tomography. Exp Eye Res 2020; 193:107955. [PMID: 32017940 DOI: 10.1016/j.exer.2020.107955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/05/2023]
Abstract
Gene therapy has been proposed as a feasible strategy for RGC survival and optic nerve regeneration. Some preclinical and clinical studies revealed intraocular inflammation after intravitreal injection of adeno-associated virus (AAV) by slit-lamp or indirect ophthalmoscope. Here we evaluate the longitudinal profile of immediate inflammatory responses after AAV2 injection in rat retina and vitreous body by optical coherence tomography (OCT). Adult Fischer F344 rats were intravitreally injected once with saline, AAV2 or zymosan. Retinal thickness and cell infiltration were recorded by OCT longitudinally for 2 months and verified by histological analysis. The transduction rate of single intravitreal AAV2 injection was 21.3 ± 4.9% of whole retina, and the transduction efficiency on RGCs was 91.5 ± 2.5% in the transduced area. Significant increase in cell infiltration was observed from Day 1-3 after AAV2 injection, compared to very few infiltrating cells observed in the saline-injected group. The infiltrating cells ceased at Day 5 after intravitreal injection and remained absent at 2 months. The thicknesses of total and inner retina were increased along Day 1-3 after AAV2 injection, but reverted to normal afterwards. The surviving RGCs in the AAV2-injected groups at Day 14 showed no significant difference compared to saline-injected group. In summary, this study revealed the immediate inflammatory responses and retinal edema after intravitreal AAV2 injection in normal rats, without influencing long-term retinal thickness and RGC survival. OCT can be implemented for the time-lapse in vivo evaluation of inflammatory response after AAV-mediated gene therapy through intravitreal injection.
Collapse
Affiliation(s)
- Yu-Fen Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Shaofen Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China.
| |
Collapse
|
36
|
RhoA-GTPase Modulates Neurite Outgrowth by Regulating the Expression of Spastin and p60-Katanin. Cells 2020; 9:cells9010230. [PMID: 31963385 PMCID: PMC7016723 DOI: 10.3390/cells9010230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
RhoA-GTPase (RhoA) is widely regarded as a key molecular switch to inhibit neurite outgrowth by rigidifying the actin cytoskeleton. However, during neurite outgrowth, whether and how microtubule dynamics are regulated by RhoA remains to be elucidated. Herein, CT04 and Y27632 were used to inactivate RhoA and its downstream effector Rho-associated coiled coil-forming kinase (ROCK), while the RhoAQ63L lentiviral vector was utilized to overexpress the constitutively activated RhoA in dorsal root ganglion (DRG) neurons or neuronal differentiated PC12 cells. The current data illustrate that the RhoA signaling pathway negatively modulates neurite outgrowth and elevates the expression of Glu-tubulin (a marker for a stabilized microtubule). Meanwhile, the microtubule-severing proteins spastin and p60-katanin were downregulated by the RhoA signaling pathway. When spastin and p60-katanin were knocked down, the effects of RhoA inhibition on neurite outgrowth were significantly reversed. Taken together, this study demonstrates that the RhoA pathway-mediated inhibition of neurite outgrowth is not only related to the modulation of microfilament dynamics but is also attributable to the regulation of the expression of spastin and p60-katanin and thus influences microtubule dynamics.
Collapse
|
37
|
Quan Y, Wu Y, Zhan Z, Yang Y, Chen X, Wu K, Yu M. Inhibition of the leucine-rich repeat protein lingo-1 enhances RGC survival in optic nerve injury. Exp Ther Med 2019; 19:619-629. [PMID: 31885701 PMCID: PMC6913235 DOI: 10.3892/etm.2019.8250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (lingo-1) is selectively expressed on neurons and oligodendrocytes in the central nervous system and acts as a negative regulator in neural repair, implying a potential role in optic neuropathy. The aim of the present study was to determine whether adeno-associated virus serotype 2 (AAV2) vector-mediated transfer of lingo-1 short hairpin RNA could reduce nerve crush-induced axonal degeneration and enhance axonal regeneration following optic nerve (ON) injury in vivo. The expression of lingo-1 was knocked down in vivo using a green fluorescent protein (GFP)-tagged AAV2 encoding lingo-1 shRNA via intravitreal injection in adult Sprague-Dawley rats. Silencing effects of AAV2-lingo-1-shRNA were confirmed by detecting GFP labelling of RGCs, and by quantifying lingo-1 expression levels with reverse transcription-quantitative polymerase chain reaction and western blotting. Rats received an intravitreal injection of AAV2-lingo-1-shRNA or negative control shRNA. The ON crush (ONC) injury was performed 2 weeks after the intravitreal injection. RGC density, lesion volume of the injured ON and the visual electrophysiology [flash visual evoked potential (F-VEP)] at different time points post-injury were determined. Transduction with lingo-1-shRNA decreased lingo-1 expression levels and promoted RGC survival following ONC. Lingo-1-shRNA promoted ON tissue repair and functional recovery. The mechanism underlying the effect of AAV2-lingo-1-shRNA on RGCs may be the phosphorylation of protein kinase B (Akt) at Ser473 and activation of the Akt signaling pathway acting downstream of lingo-1. The results of the current study indicate that the inhibition of lingo-1 may enhance RGC survival and facilitate functional recovery following ON injury, representing a promising potential strategy for the repair of optic neuropathy.
Collapse
Affiliation(s)
- Yadan Quan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yali Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaotao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
38
|
Bastakis GG, Ktena N, Karagogeos D, Savvaki M. Models and treatments for traumatic optic neuropathy and demyelinating optic neuritis. Dev Neurobiol 2019; 79:819-836. [PMID: 31297983 DOI: 10.1002/dneu.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Pathologies of the optic nerve could result as primary insults in the visual tract or as secondary deficits due to inflammation, demyelination, or compressing effects of the surrounding tissue. The extent of damage may vary from mild to severe, differently affecting patient vision, with the most severe forms leading to complete uni- or bilateral visual loss. The aim of researchers and clinicians in the field is to alleviate the symptoms of these, yet uncurable pathologies, taking advantage of known and novel potential therapeutic approaches, alone or in combinations, and applying them in a limited time window after the insult. In this review, we discuss the epidemiological and clinical profile as well as the pathophysiological mechanisms of two main categories of optic nerve pathologies, namely traumatic optic neuropathy and optic neuritis, focusing on the demyelinating form of the latter. Moreover, we report on the main rodent models mimicking these pathologies or some of their clinical aspects. The current treatment options will also be reviewed and novel approaches will be discussed.
Collapse
Affiliation(s)
| | - Niki Ktena
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Domna Karagogeos
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Maria Savvaki
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
39
|
Factors governing the transduction efficiency of adeno-associated virus in the retinal ganglion cells following intravitreal injection. Gene Ther 2019; 26:109-120. [PMID: 30692605 DOI: 10.1038/s41434-019-0060-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/08/2023]
Abstract
Efficient transduction of the retinal ganglion cells (RGCs) is a prerequisite to maximize therapeutic outcomes in any form of gene therapy for optic neuropathies. Whereas subretinal injection of adeno-associated virus 2 (AAV2) has been well-characterized, the serotype, viral load, and promoter combinations that govern RGC transduction efficiency following intravitreal injection remains poorly understood. We evaluated the transduction efficiency of seven AAV2 serotypes (AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9) for the RGCs at 4 weeks following intravitreal injection in C57BL/6J mice. Intravitreal injection of 1 × 109 vg of AAV2/2 with eGFP driven by the CMV promoter attained a higher transduction efficiency for the RGCs (60.0 ± 4.2%) compared with the six other AAV2 serotypes with eGFP driven by the same promoter injected at the same viral load ( < 3.0%). Reporter driven by the CAG promoter had a lower transduction efficiency (up to 42.0 ± 5.8%) compared with that driven by the CMV reporter (60.0 ± 4.2%, p ≤ 0.024). There was a viral dose-dependent transduction effect of AAV2/2-CMV-eGFP and the transduction efficiency was 40.2 ± 3.9%, 16.6 ± 4.2%, and 2.6 ± 0.2% when the viral load decreased to 5 × 108 vg, 1 × 108 vg, and 1 × 107 vg, respectively. Optimizing viral serotype, viral load, and promoter construct of AAV2 is important to maximize transgene expression in RGC-targeted gene therapy.
Collapse
|
40
|
Cen LP, Liu YF, Ng TK, Luo JM, van Rooijen N, Zhang M, Pang CP, Cui Q. Casein kinase-II inhibition promotes retinal ganglion cell survival and axonal regeneration. Exp Eye Res 2018; 177:153-159. [PMID: 30118655 DOI: 10.1016/j.exer.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023]
Abstract
Neuron survival is critical for the maintenance of central nervous system physiology upon diseases or injury. We previously demonstrated that the blockage of phosphatidylinositol 3-kinase/Akt and Janus kinase/STAT3 pathways promotes retinal ganglion cell (RGC) survival and axonal regeneration via macrophage activation; yet, the complexity of the inflammatory regulation for neural repair indicates the involvement of additional unresolved signaling pathways. Here we report the effects and underlying mechanism of casein kinase-II (CK2) inhibition on RGC survival and axonal regeneration in rats after optic nerve (ON) injury. Adult rats received intravitreal injection of CK2 inhibitors, TBB (4,5,6,7-Tetrabromo-2-azabenzimidazole) and DMAT (2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole), after ON transection and peripheral nerve (PN) grafting. Intravitreal application of TBB and DAMT effectively suppressed the CK2 phosphorylation activity in the retina, and enhanced RGC survival and axonal regeneration in vivo. Meanwhile, the numbers of infiltrating macrophages were increased. Removal of macrophages by clodronate liposomes significantly abolished the CK2 inhibition-induced RGC survival and axonal regeneration. Clodronate liposomes also weakened the RGC protective effects by TBB and DMAT in vitro. In summary, this study revealed that inhibition of CK2 enhances RGC survival and axonal regeneration via macrophage activation in rats. CK2 could be a therapeutic target for RGC protection after ON injury.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.
| | - Yu-Fen Liu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Shantou University Medical College, Shantou, Guangdong, China
| | - Jian-Min Luo
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Nico van Rooijen
- Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, 1081 BT Amsterdam, Netherlands
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Qi Cui
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
41
|
Chakravarthy H, Devanathan V. Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets. J Mol Neurosci 2018; 66:445-461. [PMID: 30293228 DOI: 10.1007/s12031-018-1188-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes with a prevalence rate of 35%, and no effective treatment options. Since the most visible clinical features of DR are microvascular irregularities, therapeutic interventions often attempt to reduce microvascular injury, but only after permanent retinal damage has ensued. However, recent data suggests that diabetes initially affects retinal neurons, leading to neurodegeneration as an early occurrence in DR, before onset of the more noticeable vascular abnormalities. In this review, we delineate the sequence of initiating events leading to retinal degeneration in DR, considering neuronal dysfunction as a primary event. Key molecular mechanisms and potential biomarkers associated with retinal neuronal degeneration in diabetes are discussed. In addition to glial reactivity and inflammation in the diabetic retina, the contribution of neurotrophic factors, cell adhesion molecules, apoptosis markers, and G protein signaling to neurodegenerative pathways warrants further investigation. These studies could complement recent developments in innovative treatment strategies for diabetic retinopathy, such as targeting retinal neuroprotection, promoting neuronal regeneration, and attempts to re-program other retinal cell types into functional neurons. Indeed, several ongoing clinical trials are currently attempting treatment of retinal neurodegeneration by means of such novel therapeutic avenues. The aim of this article is to highlight the crucial role of neurodegeneration in early retinopathy progression, and to review the molecular basis of neuronal dysfunction as a first step toward developing early therapeutic interventions that can prevent permanent retinal damage in diabetes. ClinicalTrials.gov: NCT02471651, NCT01492400.
Collapse
Affiliation(s)
- Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research (IISER), Transit campus: C/o. Sree Rama Engineering College Campus, Karakambadi Road, Mangalam, Tirupati, 517507, India
| | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research (IISER), Transit campus: C/o. Sree Rama Engineering College Campus, Karakambadi Road, Mangalam, Tirupati, 517507, India.
| |
Collapse
|
42
|
Santiago CP, Keuthan CJ, Boye SL, Boye SE, Imam AA, Ash JD. A Drug-Tunable Gene Therapy for Broad-Spectrum Protection against Retinal Degeneration. Mol Ther 2018; 26:2407-2417. [PMID: 30078764 PMCID: PMC6171322 DOI: 10.1016/j.ymthe.2018.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022] Open
Abstract
Retinal degenerations are a large cluster of diseases characterized by the irreversible loss of light-sensitive photoreceptors that impairs the vision of 9.1 million people in the US. An attractive treatment option is to use gene therapy to deliver broad-spectrum neuroprotective factors. However, this approach has had limited clinical translation because of the inability to control transgene expression. To address this problem, we generated an adeno-associated virus vector named RPF2 that was engineered to express domains of leukemia inhibitory factor fused to the destabilization domain of bacterial dihydrofolate reductase. Fusion proteins containing the destabilization domain are degraded in mammalian cells but can be stabilized with the binding of the drug trimethoprim. Our data show that expression levels of RPF2 are tightly regulated by the dose of trimethoprim and can be reversed by trimethoprim withdrawal. We further show that stabilized RPF2 can protect photoreceptors and prevent blindness in treated mice.
Collapse
Affiliation(s)
- Clayton P Santiago
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Casey J Keuthan
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Aisha A Imam
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Wen J, Tan D, Li L, Wang X, Pan M, Guo J. RhoA regulates Schwann cell differentiation through JNK pathway. Exp Neurol 2018; 308:26-34. [PMID: 29940159 DOI: 10.1016/j.expneurol.2018.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/25/2022]
Abstract
RhoA is a small GTPase that regulates many functions of mammalian cells via actin reorganization. Lots of studies uncovered that its activation acts as a major negative regulator of neurite extension, and inhibition of RhoA activity or reduction of its expression can promote neuron survival and axonal regeneration. However, little is known about whether RhoA also exerts important functions on Schwann cells (SCs) which are the glial cells of the peripheral nervous system (PNS). Recently, we reported that RhoA plays important roles in the proliferation, migration and myelination of SCs. In the present study, using RNA interference to knockdown RhoA expression and CT04 (a cell-permeable C3 Transferase) to inhibit RhoA activation we found that blocking RhoA can slack SC differentiation. Unexpectedly, inhibiting ROCK, the mostly well-known downstream effector of RhoA, has no influence on SC differentiation. Instead, the inhibition of RhoA in differentiating SCs results in the activation of JNK and p38 MAPK. And the inhibitor of JNK but not p38 MAPK can promote SC differentiation in the presence of RhoA inhibition. Overall results indicate that RhoA plays a vital role in SC differentiation via JNK pathway rather than ROCK pathway.
Collapse
Affiliation(s)
- Jinkun Wen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Dandan Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Lixia Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Xianghai Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Mengjie Pan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Jiasong Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China; Institute of Bone Biology, Academy of Orthopedics, Guangdong Province, Guangzhou 510665, China.
| |
Collapse
|
44
|
Cen LP, Ng TK, Liang JJ, Zhuang X, Yao X, Yam GHF, Chen H, Cheung HS, Zhang M, Pang CP. Human Periodontal Ligament-Derived Stem Cells Promote Retinal Ganglion Cell Survival and Axon Regeneration After Optic Nerve Injury. Stem Cells 2018; 36:844-855. [PMID: 29476565 DOI: 10.1002/stem.2812] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 02/05/2023]
Abstract
Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of βIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Xiaowu Yao
- Dentistry Department, Second Affiliated Hospital, Shantou University Medical College, Shantou, People's Republic of China
| | - Gary Hin-Fai Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Haoyu Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Herman S Cheung
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida, USA
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
45
|
Huang ZR, Chen HY, Hu ZZ, Xie P, Liu QH. PTEN knockdown with the Y444F mutant AAV2 vector promotes axonal regeneration in the adult optic nerve. Neural Regen Res 2018; 13:135-144. [PMID: 29451218 PMCID: PMC5840979 DOI: 10.4103/1673-5374.224381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lack of axonal regeneration is the major cause of vision loss after optic nerve injury in adult mammals. Activating the PI3K/AKT/mTOR signaling pathway has been shown to enhance the intrinsic growth capacity of neurons and to facilitate axonal regeneration in the central nervous system after injury. The deletion of the mTOR negative regulator phosphatase and tensin homolog (PTEN) enhances regeneration of adult corticospinal neurons and ganglion cells. In the present study, we used a tyrosine-mutated (Y444F) AAV2 vector to efficiently express a short hairpin RNA (shRNA) for silencing PTEN expression in retinal ganglion cells. We evaluated cell survival and axonal regeneration in a rat model of optic nerve axotomy. The rats received an intravitreal injection of wildtype AAV2 or Y444F mutant AAV2 (both carrying shRNA to PTEN) 4 weeks before optic nerve axotomy. Compared with the wildtype AAV2 vector, the Y444F mutant AAV2 vector enhanced retinal ganglia cell survival and stimulated axonal regeneration to a greater extent 6 weeks after axotomy. Moreover, post-axotomy injection of the Y444F AAV2 vector expressing the shRNA to PTEN rescued ~19% of retinal ganglion cells and induced axons to regenerate near to the optic chiasm. Taken together, our results demonstrate that PTEN knockdown with the Y444F AAV2 vector promotes retinal ganglion cell survival and stimulates long-distance axonal regeneration after optic nerve axotomy. Therefore, the Y444F AAV2 vector might be a promising gene therapy tool for treating optic nerve injury.
Collapse
Affiliation(s)
- Zheng-Ru Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Ophthalmology, the Second People's Hospital of Changshu, Changshu, Jiangsu Province, China
| | - Hai-Ying Chen
- Department of Ophthalmology, The Second People's Hospital of Changshu, Changshu, Jiangsu Province, China
| | - Zi-Zhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
46
|
Oswald J, Baranov P. Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol 2018; 10:2515841418774433. [PMID: 29998222 PMCID: PMC6016968 DOI: 10.1177/2515841418774433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
Following the fast pace of the growing field of stem cell research, retinal cell replacement is finally emerging as a feasible mean to be explored for clinical application. Although neuroprotective treatments are able to slow the progression of retinal degeneration caused by diseases such as age-related macular degeneration and glaucoma, they are insufficient to fully halt disease progression and unable to recover previously lost vision. Comprehensive, technological and intellectual advances over the past years, including the in vitro differentiation of retinal cells at manufacturing scale from embryonic stem (ES) cell and induced pluripotent stem (iPS) cell cultures, progress within the area of retinal disease modeling, and the first clinical trials have started to shape the way towards addressing this treatment gap and translating retinal cell replacement to the clinic. Here, summarize the most recent advances within retinal cell replacement from both a scientific and clinical perspective, and discuss the remaining challenges towards the delivery of the first retinal cell products.
Collapse
Affiliation(s)
- Julia Oswald
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA 02114, USA
| | - Petr Baranov
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
47
|
Ghasemi M, Alizadeh E, Saei Arezoumand K, Fallahi Motlagh B, Zarghami N. Ciliary neurotrophic factor (CNTF) delivery to retina: an overview of current research advancements. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1694-1707. [PMID: 29065723 DOI: 10.1080/21691401.2017.1391820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intraocular administration of the ciliary neurotrophic factor (CNTF) has been found to attenuate the photoreceptor degeneration and preserve retinal functions in the animal research models of the inherited or induced retinal disease. Studies with the aim of CNTF transfer to the posterior segment inside the eye have been directed to determine the best method for its administration. An ideal delivery method would overcome the eye drug elimination mechanisms or barriers and provide the sustained release of the CNTF into retina in the safest fashion with the minimum harm to the quality of life. This review focuses on the present state of CNTF delivery to retina, also provides an overview of available technologies and their challenges.
Collapse
Affiliation(s)
- Maryam Ghasemi
- a The Umbilical Cord Stem Cell Research Center (UCSRC) , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Effat Alizadeh
- a The Umbilical Cord Stem Cell Research Center (UCSRC) , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Khatereh Saei Arezoumand
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Nosratollah Zarghami
- a The Umbilical Cord Stem Cell Research Center (UCSRC) , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
48
|
Wen SY, Li AM, Mi KQ, Wang RZ, Li H, Liu HX, Xing Y. In vitro neuroprotective effects of ciliary neurotrophic factor on dorsal root ganglion neurons with glutamate-induced neurotoxicity. Neural Regen Res 2017; 12:1716-1723. [PMID: 29171438 PMCID: PMC5696854 DOI: 10.4103/1673-5374.217352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ciliary neurotrophic factor has neuroprotective effects mediated through signal transducer and Janus kinase (JAK) 2/activator of transcription 3 (STAT3) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. Whether ciliary neurotrophic factor is neuroprotective for glutamate-induced excitotoxicity of dorsal root ganglion neurons is poorly understood. In the present study, the in vitro neuroprotective effects of ciliary neurotrophic factor against glutamate-induced excitotoxicity were determined in a primary culture of dorsal root ganglion neurons from Wistar rat embryos at embryonic day 15. Whether the JAK2/STAT3 and PI3K/Akt signaling pathways were related to the protective effects of ciliary neurotrophic factor was also determined. Glutamate exposure inhibited neurite outgrowth, cell viability, and growth-associated protein 43 expression and promoted apoptotic neuronal cell death, all of which were reversed by the administration of exogenous ciliary neurotrophic factor. Additionally, preincubation with either JAK2 inhibitor AG490 or PI3K inhibitor LY294002 blocked the neuroprotective effect of ciliary neurotrophic factor. These data indicate that the two pathways JAK2/STAT3 and PI3K/Akt play major roles in mediating the in vitro neuroprotective effects of ciliary neurotrophic factor on dorsal root ganglion neurons with glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Shu-Yun Wen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province; Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ai-Min Li
- Department of Rheumatology, Qingdao Fifth People's Hospital, Qingdao, Shandong Province, China
| | - Kuan-Qing Mi
- Department of Neurosurgery, Jinan Fifth People's Hospital, Jinan, Shandong Province, China
| | - Rui-Zheng Wang
- Department of Neurosurgery, Jinan Fifth People's Hospital, Jinan, Shandong Province, China
| | - Hao Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Hua-Xiang Liu
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yi Xing
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|