1
|
Lin MC, Pan YJ, Wu CS, Liu CL, Chen PC, Thompson WK, Fan CC, Wang SH. Prenatal and early childhood infections requiring hospitalization and risk of neurodevelopmental disorders in offspring: a population-based birth cohort study in Taiwan. Mol Psychiatry 2025; 30:1791-1800. [PMID: 39390224 DOI: 10.1038/s41380-024-02787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
In utero and early childhood infections have been associated with an increased risk of neurodevelopmental disorders; however, the observed associations may be confounded by familial predispositions. This study examined the neurodevelopmental disorders attributable to maternal infections during pregnancy and early childhood infections during the first year of life, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), tic disorders, and mental retardation (MR). We performed population and sibling comparison analyses to account for unmeasured familial confounding factors. We conducted a register-based cohort study with 2,885,662 individuals (comprising 1,864,660 full siblings) born in Taiwan between 2001 and 2018 and followed up until 2021. We employed Cox regression analysis to assess the association between in utero and early childhood infections requiring hospitalization and the subsequent risk of neurodevelopmental disorders. In the population analyses, an offspring exposed to maternal infection had an increased risk for ASD (hazard ratio (HR) = 1.19, 95% confidence interval (CI): 1.13-1.26), ADHD (HR = 1.14, 95% CI: 1.11-1.18), and MR (HR = 1.21, 95% CI: 1.13-1.30). These associations attenuated toward null in the sibling analyses. Individuals exposed to early childhood infection had an increased risk for ASD (HR = 1.13, 95% CI: 1.10-1.16), ADHD (HR = 1.16, 95% CI: 1.15-1.18), tic disorders (HR = 1.12, 95% CI: 1.09-1.15), and MR (HR = 1.64, 95% CI: 1.60-1.69) in the population analyses; these associations were also significant for ASD (HR = 1.14, 95% CI: 1.07-1.21) and MR (HR = 1.52, 95% CI: 1.44-1.62) in the sibling analyses. The association between maternal infection during pregnancy and offspring neurodevelopmental risk is largely due to familial confounding factors. Conversely, infection in early childhood may be attributable to it being a sensitive period and may play a role in the subsequent risk of ASD and MR.
Collapse
Affiliation(s)
- Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | | | - Pei-Chun Chen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Sonego AB, Prado DS, Uliana DL, Cunha TM, Grace AA, Resstel LBM. Pioglitazone attenuates behavioral and electrophysiological dysfunctions induced by two-hit model of schizophrenia in adult rodent offspring. Eur Neuropsychopharmacol 2024; 89:28-40. [PMID: 39332147 PMCID: PMC11606766 DOI: 10.1016/j.euroneuro.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/29/2024]
Abstract
Maternal infection and stress exposure, especially during childhood and adolescence, have been implicated as risk factors for schizophrenia. Both insults induce an exacerbated inflammatory response, which could mediate disturbance of neurodevelopmental processes and, ultimately, malfunctioning of neural systems observed in this disorder. Thus, anti-inflammatory drugs, such as PPARγ agonists, may potentially be used to prevent the development of schizophrenia. Microglia culture was prepared from the offspring of saline or poly(I:C)-injected mice. The cells were pretreated with pioglitazone and then, stimulated by LPS. Proinflammatory mediators and phagocytic activity were measured. Also, pregnant rats were injected with saline or poly(I:C) on GD17. The offspring were subjected to footshock during adolescence and subsequently injected with pioglitazone or vehicle. At adulthood, behavior and dopaminergic activity were evaluated. Pioglitazone reduced proinflammatory mediators induced by poly(I:C) microglia stimulated by LPS without affecting their decreased phagocytic activity. The PPARγ agonist also prevented the emergence of social and cognitive impairments, as well as attenuated the increased number of spontaneously active dopamine neurons in the VTA, observed in both males and females from poly(I:C) and stress group. Therefore, pioglitazone could potentially prevent the emergence of the schizophrenia-like alterations induced by the two-hit model via reduction of microglial activation.
Collapse
Affiliation(s)
- Andreza B Sonego
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA.
| | - Douglas S Prado
- Department of Immunology, University of Pittsburgh, The Assembly Building, 15213, Pittsburgh, PA, USA
| | - Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA
| | - Leonardo B M Resstel
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Santana-Coelho D. Does the kynurenine pathway play a pathogenic role in autism spectrum disorder? Brain Behav Immun Health 2024; 40:100839. [PMID: 39263315 PMCID: PMC11387593 DOI: 10.1016/j.bbih.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/28/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, sociability, and repetitive/stereotyped behavior. The etiology of autism is diverse, with genetic susceptibility playing an important role alongside environmental insults and conditions. Human and preclinical studies have shown that ASD is commonly accompanied by inflammation, and inhibition of the inflammatory response can ameliorate, or prevent the phenotype in preclinical studies. The kynurenine pathway, responsible for tryptophan metabolism, is upregulated by inflammation. Hence, this metabolic route has drawn the attention of investigators across different disciplines such as cancer, immunology, and neuroscience. Over the past decade, studies have identified evidence that the kynurenine pathway is also altered in autism spectrum disorders. In this mini review, we will explore the current status quo of the link between the kynurenine pathway and ASD, shedding light on the compelling but still preliminary evidence of this relationship.
Collapse
|
4
|
Arenella M, Matuleviciute R, Tamouza R, Leboyer M, McAlonan G, Bralten J, Murphy D. Immunogenetics of autism spectrum disorder: A systematic literature review. Brain Behav Immun 2023; 114:488-499. [PMID: 37717669 DOI: 10.1016/j.bbi.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
The aetiology of autism spectrum disorder (ASD) is complex and, partly, accounted by genetic factors. Nonetheless, the genetic underpinnings of ASD are poorly defined. The presence of immune dysregulations in autistic individuals, and their families, supports a role of the immune system and its genetic regulators. Albeit immune responses belong either to the innate or adaptive arms, the overall immune system genetics is broad, and encompasses a multitude of functionally heterogenous pathways which may have different influences on ASD. Hence, to gain insights on the immunogenetic underpinnings of ASD, we conducted a systematic literature review of previous immune genetic and transcription studies in ASD. We defined a list of immune genes relevant to ASD and explored their neuro-immune function. Our review confirms the presence of immunogenetic variability in ASD, accounted by inherited variations of innate and adaptive immune system genes and genetic expression changes in the blood and post-mortem brain of autistic individuals. Besides their immune function, the identified genes control neurodevelopment processes (neuronal and synaptic plasticity) and are highly expressed in pre/peri-natal periods. Hence, our synthesis bolsters the hypothesis that perturbation in immune genes may contribute to ASD by derailing the typical trajectory of neurodevelopment. Our review also helped identifying some of the limitations of prior immunogenetic research in ASD. Thus, alongside clarifying the neurodevelopment role of immune genes, we outline key considerations for future work into the aetiology of ASD and possible novel intervention targets.
Collapse
Affiliation(s)
- Martina Arenella
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Ryad Tamouza
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Marion Leboyer
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Sager REH, Walker AK, Middleton FA, Robinson K, Webster MJ, Gentile K, Wong ML, Shannon Weickert C. Changes in cytokine and cytokine receptor levels during postnatal development of the human dorsolateral prefrontal cortex. Brain Behav Immun 2023; 111:186-201. [PMID: 36958512 DOI: 10.1016/j.bbi.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
In addition to their traditional roles in immune cell communication, cytokines regulate brain development. Cytokines are known to influence neural cell generation, differentiation, maturation, and survival. However, most work on the role of cytokines in brain development investigates rodents or focuses on prenatal events. Here, we investigate how mRNA and protein levels of key cytokines and cytokine receptors change during postnatal development of the human prefrontal cortex. We find that most cytokine transcripts investigated (IL1B, IL18, IL6, TNF, IL13) are lowest at birth and increase between 1.5 and 5 years old. After 5 years old, transcriptional patterns proceeded in one of two directions: decreased expression in teens and young adults (IL1B, p = 0.002; and IL18, p = 0.004) or increased mean expression with maturation, particularly in teenagers (IL6, p = 0.004; TNF, p = 0.002; IL13, p < 0.001). In contrast, cytokine proteins tended to remain elevated after peaking significantly around 3 years of age (IL1B, p = 0.012; IL18, p = 0.026; IL6, p = 0.039; TNF, p < 0.001), with TNF protein being highest in teenagers. An mRNA-only analysis of cytokine receptor transcripts found that early developmental increases in cytokines were paralleled by increases in their ligand-binding receptor subunits, such as IL1R1 (p = 0.033) and IL6R (p < 0.001) transcripts. In contrast, cytokine receptor-associated signaling subunits, IL1RAP and IL6ST, did not change significantly between age groups. Of the two TNF receptors, the 'pro-death' TNFRSF1A and 'pro-survival' TNFRSF1B, only TNFRSF1B was significantly changed (p = 0.028), increasing first in toddlers and again in young adults. Finally, the cytokine inhibitor, IL13, was elevated first in toddlers (p = 0.006) and again in young adults (p = 0.053). While the mean expression of interleukin-1 receptor antagonist (IL1RN) was highest in toddlers, this increase was not statistically significant. The fluctuations in cytokine expression reported here support a role for increases in specific cytokines at two different stages of human cortical development. The first is during the toddler/preschool period (IL1B, IL18, and IL13), and the other occurs at adolescence/young adult maturation (IL6, TNF and IL13).
Collapse
Affiliation(s)
- Rachel E H Sager
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Adam K Walker
- Laboratory of Immunopsychiatry, Neuroscience Research Australia, Sydney, NSW, Australia; Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia; Monash Institute of Pharmaceutical Science, Monash University, Parkville, VIC, Australia
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kate Robinson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ma-Li Wong
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Liu J, Liu Y, Kirschen G, Liu A, Lei J, Burd I. Sex-specific differences in T-cell immune dysregulation and aberrant response to inflammatory stimuli in offspring exposed to maternal chronic inflammation. Am J Reprod Immunol 2023; 89:e13665. [PMID: 36504421 DOI: 10.1111/aji.13665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
PROBLEMS Maternal chronic inflammation (MI) can adversely affect offspring's immune development resulting in dysregulation of splenic T cells. Interleukin 1 beta (IL-1β) contributes to mediating inflammation in the placenta to induce fetal toxicity and cause long-term postnatal sequelae. In this study, we investigated how MI affects the T-cell immune development from the fetal to the neonatal period and how offspring responded to postnatal IL-1β challenge when exposed to an adverse intrauterine environment. We also extend these studies to examine the sex-specific differences. METHODS OF STUDY Time-pregnant CD1 dams were administrated with four consecutive injections of mouse recombinant Interleukin-1β (rIL-1β) or phosphate-buffered saline (PBS) from embryonic day (E)14 to E17. Pups were treated with rIL-1β or PBS at postnatal day (PND)11 (pre-weaning) or PND24 (post-weaning). Pups' splenic immune cells were isolated and then characterized using flow cytometry. RESULTS At PND12, no differences were observed either in Ctrl or MI offspring. At PND25, we observed elevated amount of CD8+ T cells, descending CD4+ /CD8+ and Treg/Teff ratio in MI offspring. Pre-weaning rIL-1β administration did not affect T-cell subpopulation in Ctrl pups while post-weaning rIL-1β administration increased T cells and CD8+ T cells and decreased CD4+ /CD8+ and Treg/Teff ratio in Ctrl offspring. Furthermore, pre-weaning rIL-1β administration decreased the frequency of T cells and Treg/Teff ratio in MI pups while post-weaning rIL-1β administration increased Tregs and Treg/Teff in MI pups. Regarding sex-specific changes, we observed that at PND12, MI females exhibited higher CD4+ /CD8+ and Treg/Teff ratio than Ctrl females. At PND25, we observed elevated amount of CD8+ T cells, descending CD4+ /CD8+ and Treg/Teff ratio in MI Females, while MI males did not show any changes in T-cell population. Pre-weaning rIL-1β administration decreased T-cell frequency in both MI males and females and decreased Treg/Teff ratio only in MI females. Post-weaning rIL-1β administration increased Tregs and Treg/Teff ratio, and decreased CD4+ /CD8+ ratio in MI females. CONCLUSIONS Prenatal-inflammation-exposed offspring exhibited dysfunctional T-cell immunity and regulatory immune responses to postnatal challenges, showing both sex-specific and age-dependent differences. It could be speculated from our results that experiencing environmental challenges or adverse stimuli during the vulnerable intrauterine period, such as maternal chronic inflammation, stress, preterm birth, and chronic infections, might induce fetal immune reprogramming and potentially cause long-term adverse immune consequences, such as a predisposition to allergic diseases, autoimmune diseases, asthma and pediatric mortality of unknown etiology.
Collapse
Affiliation(s)
- Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregory Kirschen
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anguo Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, USA
| |
Collapse
|
7
|
Distinct effects of interleukin-6 and interferon-γ on differentiating human cortical neurons. Brain Behav Immun 2022; 103:97-108. [PMID: 35429607 PMCID: PMC9278892 DOI: 10.1016/j.bbi.2022.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 01/17/2023] Open
Abstract
Translational evidence suggests that cytokines involved in maternal immune activation (MIA), such as interleukin-6 (IL-6) and interferon-γ (IFN-γ), can cross the placenta, injure fetal brain, and predispose to neuropsychiatric disorders. To elaborate developmental neuronal sequelae of MIA, we differentiated human pluripotent stem cells to cortical neurons over a two-month period, exposing them to IL-6 or IFN-γ. IL-6 impacted expression of genes regulating extracellular matrix, actin cytoskeleton and TGF-β signaling while IFN-γ impacted genes regulating antigen processing, major histocompatibility complex and endoplasmic reticulum biology. IL-6, but not IFN-γ, altered mitochondrial respiration while IFN-γ, but not IL-6, induced reduction in dendritic spine density. Pre-treatment with folic acid, which has known neuroprotective and anti-inflammatory properties, ameliorated IL-6 effects on mitochondrial respiration and IFN-γ effects on dendritic spine density. These findings suggest distinct mechanisms for how fetal IL-6 and IFN-γ exposure influence risk for neuropsychiatric disorders, and how folic acid can mitigate such risk.
Collapse
|
8
|
Wang R, Wu Z, Huang C, Hashimoto K, Yang L, Yang C. Deleterious effects of nervous system in the offspring following maternal SARS-CoV-2 infection during the COVID-19 pandemic. Transl Psychiatry 2022; 12:232. [PMID: 35668063 PMCID: PMC9169439 DOI: 10.1038/s41398-022-01985-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
During the Coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is universally susceptible to all types of populations. In addition to the elderly and children becoming the groups of great concern, pregnant women carrying new lives need to be even more alert to SARS-CoV-2 infection. Studies have shown that pregnant women infected with SARS-CoV-2 can lead to brain damage and post-birth psychiatric disorders in offspring. It has been widely recognized that SARS-CoV-2 can affect the development of the fetal nervous system directly or indirectly. Pregnant women are recommended to mitigate the effects of COVID-19 on the fetus through vaccination, nutritional supplements, and psychological support. This review summarizes the possible mechanisms of the nervous system effects of SARS-CoV-2 infection on their offspring during the pregnancy and analyzes the available prophylactic and treatment strategies to improve the prognosis of fetal-related neuropsychiatric diseases after birth.
Collapse
Affiliation(s)
- Ruting Wang
- grid.452253.70000 0004 1804 524XDepartment of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 China
| | - Zifeng Wu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chaoli Huang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Kenji Hashimoto
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Sandoval KC, Thackray SE, Wong A, Niewinski N, Chipak C, Rehal S, Dyck RH. Lack of Vesicular Zinc Does Not Affect the Behavioral Phenotype of Polyinosinic:Polycytidylic Acid-Induced Maternal Immune Activation Mice. Front Behav Neurosci 2022; 16:769322. [PMID: 35273483 PMCID: PMC8902171 DOI: 10.3389/fnbeh.2022.769322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc is important in neural and synaptic development and neuronal transmission. Within the brain, zinc transporter 3 (ZnT3) is essential for zinc uptake into vesicles. Loss of vesicular zinc has been shown to produce neurodevelopmental disorder (NDD)-like behavior, such as decreased social interaction and increased anxiety- and repetitive-like behavior. Maternal immune activation (MIA) has been identified as an environmental factor for NDDs, such as autism spectrum disorders (ASDs) and schizophrenia (SZ), in offspring, which occurs during pregnancy when the mother’s immune system reacts to the exposure to viruses or infectious diseases. In this study, we investigated the interaction effect of a genetic factor [ZnT3 knockout (KO) mice] and an environmental factor (MIA). We induced MIA in pregnant female (dams) mice during mid-gestation, using polyinosinic:polycytidylic acid (polyI:C), which mimics a viral infection. Male and female ZnT3 KO and wild-type (WT) offspring were tested in five behavioral paradigms: Ultrasonic Vocalizations (USVs) at postnatal day 9 (P9), Open Field Test, Marble Burying Test, three-Chamber Social Test, and Pre-pulse Inhibition (PPI) in adulthood (P60–75). Our results indicate that loss of vesicular zinc does not result in enhanced ASD- and SZ-like phenotype compared to WT, nor does it show a more pronounced phenotype in male ZnT3 KO compared to female ZnT3 KO. Finally, MIA offspring demonstrated an ASD- and SZ-like phenotype only in specific behavioral tests: increased calls emitted in USVs and fewer marbles buried. Our results suggest that there is no interaction between the loss of vesicular zinc and MIA induction in the susceptibility to developing an ASD- and SZ-like phenotype.
Collapse
Affiliation(s)
- Katy Celina Sandoval
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Sarah E. Thackray
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Alison Wong
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Nicole Niewinski
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Colten Chipak
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Suhkjinder Rehal
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Richard H. Dyck
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- *Correspondence: Richard H. Dyck,
| |
Collapse
|
10
|
Jash S, Sharma S. Pathogenic Infections during Pregnancy and the Consequences for Fetal Brain Development. Pathogens 2022; 11:pathogens11020193. [PMID: 35215136 PMCID: PMC8877441 DOI: 10.3390/pathogens11020193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Pathogens comprised of viruses, bacteria, gut microbiome, and parasites are a leading cause of ever-emerging diseases in humans. Studying pathogens for their ability to cause diseases is a topic of critical discussion among scientists and pharmaceutical centers for effective drug development that diagnose, treat, and prevent infection-associated disorders. Pathogens impact health either directly by invading the host or by eliciting an acute inflammatory immune response. This paradigm of inflammatory immune responses is even more consequential in people who may be immunocompromised. In this regard, pregnancy offers an altered immunity scenario, which may allow the onset of severe diseases. Viruses, such as Influenza, HIV, and now SARS-CoV-2, associated with the COVID-19 pandemic, raise new concerns for maternal and fetal/neonatal health. Intrauterine bacterial and parasitic infections are also known to impact pregnancy outcomes and neonatal health. More importantly, viral and bacterial infections during pregnancy have been identified as a common contributor to fetal brain development defects. Infection-mediated inflammatory uterine immune milieu is thought to be the main trigger for causing poor fetal brain development, resulting in long-term cognitive impairments. The concept of in utero programming of childhood and adult disorders has revolutionized the field of neurodevelopment and its associated complications. Recent findings in mice and humans clearly support the idea that uterine immunity during pregnancy controls the health trajectory of the child and considerably influences the cognitive function and mental health. In this review, we focus on the in utero programming of autism spectrum disorders (ASD) and assess the effects of pathogens on the onset of ASD-like symptoms.
Collapse
|
11
|
Liu R, Tang W, Wang W, Xu F, Fan W, Zhang Y, Zhang C. NLRP3 Influences Cognitive Function in Schizophrenia in Han Chinese. Front Genet 2021; 12:781625. [PMID: 34956329 PMCID: PMC8702823 DOI: 10.3389/fgene.2021.781625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
It has been proposed that immune abnormalities may be implicated with pathophysiology of schizophrenia. The nod-like receptor pyrin domain-contraining protein 3 (NLRP3) can trigger immune-inflammatory cascade reactions. In this study, we intended to identify the role of gene encoding NLRP3 (NLRP3) in susceptibility to schizophrenia and its clinical features. For the NLRP3 mRNA expression analysis, 53 drug-naïve patients with first-episode schizophrenia and 56 healthy controls were enrolled. For the genetic study, a total of 823 schizophrenia patients and 859 controls were recruited. Among them, 239 drug-naïve patients with first-episode schizophrenia were enrolled for clinical evaluation. There is no significant difference in NLRP3 mRNA levels between patients with schizophrenia and healthy controls (p = 0.07). We did not observe any significant differences in allele and genotype frequencies of rs10754558 polymorphism between the schizophrenia and control groups. We noticed significant differences in the scores of RBANS attention and total scores between the patients with different genotypes of rs10754558 polymorphism (p = 0.001 and p < 0.01, respectively). Further eQTL analysis presented a significant association between the rs10754558 polymorphism and NLRP3 in frontal cortex (p = 0.0028, p = 0.028 after Bonferroni correction). Although our findings did not support NLRP3 confer susceptibility to schizophrenia, NLRP3 may be a risk factor for cognitive impairment, especially attention deficit in this disorder.
Collapse
Affiliation(s)
- Ruimei Liu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiping Wang
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Feikang Xu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
13
|
Zhao F, Guan S, Fu Y, Wang K, Liu Z, Ng TB. Lycium barbarum polysaccharide attenuates emotional injury of offspring elicited by prenatal chronic stress in rats via regulation of gut microbiota. Biomed Pharmacother 2021; 143:112087. [PMID: 34474339 DOI: 10.1016/j.biopha.2021.112087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/23/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stress during pregnancy is not only detrimental to a woman's own physical and mental health, but can also cause changes in the intrauterine environment and even have an impact on later growth and development, this study was designed to understand the changes of gut microbiota in the maternal and offspring caused by prenatal chronic stress, and to explore the regulatory effect of LBP on gut microbiota, and then to improve the emotional damage caused by prenatal chronic stress in the offspring. A rat model of prenatal chronic stress was made and used LBP to intervene by gavage. Fresh feces of offspring were collected, the concentration of microbial metabolites were tested by ELISA. Illumina MiSeqPE300 sequencing technology was used to determine the sequence of 16S rRNA V3-V4 of microorganisms. On the PND 42, the emotional function of offspring were tested by open-field test (OFT), sucrose preference test (SPT) and tail of suspend test (TST). Results indicated that stress factors increased the plasma corticosterone level of rats during pregnancy and they appeared depressive behaviors. The body weight of offspring during prenatal chronic stress was lower than the control group, and the plasma corticosterone level was increased. Prenatal chronic stress had a significant impact on emotional performance of the offspring on OFT, SPT and TST. Alpha diversity of gut microbiota and microbiota composition in offspring of prenatal chronic stress was attenuated and some relationships existed between these parameters. LBP treatment reduced offspring's plasma corticosterone level and improved their body weight, changed the emotional function, increased the diversity of gut microbiota. Collectively, these findings disclose that prenatal chronic stress not only causes emotional injury on the offspring, but also changes the gut microbiota of the mother and offspring; LBP may regulate the intestinal flora of the mother, then reducing the influence of stress factors on the emotional injury of offspring.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Suzhen Guan
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Youjuan Fu
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Kai Wang
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Zhihong Liu
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
14
|
Alpha lipoic acid ameliorates detrimental effects of maternal lipopolysaccharides exposure on prefrontal white matter in adult male offspring rats. J Chem Neuroanat 2021; 118:102038. [PMID: 34610418 DOI: 10.1016/j.jchemneu.2021.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Activation of the maternal immune system by lipopolysaccharide (LPS) increases the production of proinflammatory cytokines, free radicals, and reactive oxygen species (ROS), all of which play a significant role in the pathogenesis of many offspring neurodevelopmental disorders. Alpha Lipoic Acid (ALA) is a natural compound that has anti-inflammatory and antioxidant properties. This study was performed to assess the effect of prenatal exposure to LPS on the prefrontal white matter of rat offspring and evaluate the potential protective effects of ALA co-administration during pregnancy. METHODS Pregnant Wistar rats were randomly divided into six groups (n = 6 each group): (1) control, (2) received LPS (100 μg/kg, intraperitoneally (IP) on gestational day 9.5 (GD 9.5), (3) received ALA (20 mg/kg) from GD1 to GD11, (4) LPS+ALA received LPS on GD9.5 and ALA from GD1 to GD11, (5 and 6) received LPS and ALA vehicle respectively. In each group, 21-day old male offspring (2 male pups from each mother) was harvested, and then their prefrontal white matter was separated and prepared for the ultrastructural, stereological, and molecular assays. RESULTS In utero exposure to LPS led to a significant decrease in nerve cell counts, ultrastructural alterations in myelinated axons, and abnormal changes in genes expression of Sox10,Olig1,yrf,Wnt in the prefrontal of the rat offspring. Co-administration of ALA resulted in amelioration of those abnormal changes in the LPS rat offspring. CONCLUSION The findings of our preclinical study, explore that prenatal ALA treatment efficiently protects the nervous system against LPS induced abnormal changes in the offspring.
Collapse
|
15
|
Lins B. Maternal immune activation as a risk factor for psychiatric illness in the context of the SARS-CoV-2 pandemic. Brain Behav Immun Health 2021; 16:100297. [PMID: 34308388 PMCID: PMC8279925 DOI: 10.1016/j.bbih.2021.100297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Inflammation, due to infectious pathogens or other non-infectious stimuli, during pregnancy is associated with elevated risk for neurodevelopmental disorders such as schizophrenia and autism in the offspring. Although historically identified through retrospective epidemiologic studies, the relationship between maternal immune activation and offspring neurodevelopmental disease risk is now well established because of clinical studies which utilized prospective birth cohorts, serologically confirmed infection records, and subsequent long-term offspring follow-up. These efforts have been corroborated by preclinical research which demonstrates anatomical, biochemical, and behavioural alterations that resemble the clinical features of psychiatric illnesses. Intervention studies further demonstrate causal roles of inflammatory mediators, such as cytokines, in these long-lasting changes in behaviour and brain. This review summarizes a selection of maternal immune activation literature that explores the relationship between these inflammatory mediators and the neuropsychiatric-like effects later observed in the offspring. This literature is presented alongside emerging information regarding SARS-CoV-2 infection in pregnancy, with discussion of how these data may inform future research regarding the effects of the present coronavirus pandemic on emerging birth cohorts.
Collapse
Affiliation(s)
- Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
16
|
Gardner RM, Samuelsson I, Severance EG, Sjöqvist H, Yolken RH, Dalman C, Karlsson H. Maternal antibodies to gliadin and autism spectrum disorders in offspring-A population-based case-control study in Sweden. Autism Res 2021; 14:2002-2016. [PMID: 34213825 DOI: 10.1002/aur.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 11/08/2022]
Abstract
While individuals diagnosed with autism spectrum disorders (ASD) have higher levels of antibodies directed towards gliadin, a component of wheat gluten, no study has examined anti-gliadin antibodies (AGA) in etiologically relevant periods before diagnosis. The objective of this study was to investigate if maternal levels of AGA, during pregnancy and at the time of birth, are associated with ASD in offspring. We analyzed AGA in archived neonatal dried blood spots (NDBS) for 921 ASD cases and 1090 controls, and in paired maternal sera collected earlier in pregnancy for a subset of 547 cases and 428 controls. We examined associations with ASD diagnoses as a group and considering common comorbidities (intellectual disability [ID] and attention-deficit/hyperactivity disorder). We compared 206 cases to their unaffected siblings to examine the potential for confounding by shared familial factors. Odds of ASD tended to be lower among those with the highest levels (≥90th percentile) of AGA compared to those with low levels (<80th percentile; OR 0.78, 95% CI 0.56-1.09, measured in NDBS). This pattern was more apparent for ASD with comorbid ID when measured in NDBS (0.51, 0.30-0.87), with a similar trend in maternal sera (0.55, 0.24-1.29). High levels of AGA were similarly associated with lower odds of ASD in the sibling comparison. In summary, we found little association between maternal antibodies raised against components of gluten and risk of ASD in general. Exposure to high levels of AGA in the pre- and perinatal periods may be protective in terms of risk for ASD with ID. LAY SUMMARY: There is a debate among both scientists and community members as to whether an immune reaction to gluten exposure could be considered a cause of autism. We examined antibodies that are directed against gliadin, a part of gluten, in samples collected from pregnant mothers and their newborn babies. We did not see any major differences in the antibody level among those children diagnosed with ASD or their mothers compared to children who were not diagnosed with ASD. High levels of the antibodies were in fact associated with a somewhat lower risk of ASD with co-occurring intellectual disabilities, though we cannot tell from this study why that might be the case.
Collapse
Affiliation(s)
- Renee M Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Ida Samuelsson
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Emily G Severance
- Stanley Division of Developmental Neurovirology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hugo Sjöqvist
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Christina Dalman
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Quagliato LA, de Matos U, Nardi AE. Maternal immune activation generates anxiety in offspring: A translational meta-analysis. Transl Psychiatry 2021; 11:245. [PMID: 33903587 PMCID: PMC8076195 DOI: 10.1038/s41398-021-01361-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy is recognized as an etiological risk factor for various psychiatric disorders, such as schizophrenia, major depressive disorder, and autism. Prenatal immune challenge may serve as a "disease primer" for alteration of the trajectory of fetal brain development that, in combination with other genetic and environmental factors, may ultimately result in the emergence of different psychiatric conditions. However, the association between MIA and an offspring's chance of developing anxiety disorders is less clear. To evaluate the effect of MIA on offspring anxiety, a systematic review and meta-analysis of the preclinical literature was conducted. We performed a systematic search of the PubMed, Web of Science, PsycINFO, and Cochrane Library electronic databases using the PRISMA and World Health Organization (WHO) methodologies for systematic reviews. Studies that investigated whether MIA during pregnancy could cause anxiety symptoms in rodent offspring were included. Overall, the meta-analysis showed that MIA induced anxiety behavior in offspring. The studies provide strong evidence that prenatal immune activation impacts specific molecular targets and synapse formation and function and induces an imbalance in neurotransmission that could be related to the generation of anxiety in offspring. Future research should further explore the role of MIA in anxiety endophenotypes. According to this meta-analysis, MIA plays an important role in the pathophysiological mechanisms of anxiety disorders and is a promising therapeutic target.
Collapse
Affiliation(s)
- Laiana A Quagliato
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, 22270-010, Rio de Janeiro, Brazil.
| | - Ursula de Matos
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, 22270-010, Rio de Janeiro, Brazil
| | - Antonio E Nardi
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, 22270-010, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
The Effect of Maternal Immune Activation on Social Play-Induced Ultrasonic Vocalization in Rats. Brain Sci 2021; 11:brainsci11030344. [PMID: 33803154 PMCID: PMC8001568 DOI: 10.3390/brainsci11030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Prenatal maternal infection is associated with an increased risk of various neurodevelopmental disorders, including autism spectrum disorders (ASD). Maternal immune activation (MIA) can be experimentally induced by prenatal administration of polyinosinic:polycytidylic acid (poly I:C), a synthetic viral-like double-stranded RNA. Although this MIA model is adopted in many studies, social and communicative deficits, included in the first diagnostic criterion of ASD, are poorly described in the offspring of poly(I:C)-exposed dams. This study aimed to characterize the impact of prenatal poly(I:C) exposure on socio-communicative behaviors in adolescent rats. For this purpose, social play behavior was assessed in both males and females. We also analyzed quantitative and structural changes in ultrasonic vocalizations (USVs) emitted by rats during the play test. Deficits of social play behaviors were evident only in male rats. Males also emitted a significantly decreased number of USVs during social encounters. Prenatal poly(I:C) exposure also affected acoustic call parameters, as reflected by the increased peak frequencies. Additionally, repetitive behaviors were demonstrated in autistic-like animals regardless of sex. This study demonstrates that prenatal poly(I:C) exposure impairs socio-communicative functioning in adolescent rats. USVs may be a useful tool for identifying early autistic-like abnormalities.
Collapse
|
19
|
Matelski L, Morgan RK, Grodzki AC, Van de Water J, Lein PJ. Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Mol Psychiatry 2021; 26:875-887. [PMID: 31965031 PMCID: PMC7371517 DOI: 10.1038/s41380-020-0647-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Maternal infection during pregnancy is associated with increased risk of psychiatric and neurodevelopmental disorders (NDDs). Experimental animal models demonstrate that maternal immune activation (MIA) elevates inflammatory cytokine levels in the maternal and fetal compartments and causes behavioral changes in offspring. Individual cytokines have been shown to modulate neurite outgrowth and synaptic connectivity in cultured rodent neurons, but whether clinically relevant cytokine mixtures similarly modulate neurodevelopment in human neurons is not known. To address this, we quantified apoptosis, neurite outgrowth, and synapse number in the LUHMES human neuronal cell line exposed to varying concentrations of: (1) a mixture of 12 cytokines and chemokines (EMA) elevated in mid-gestational serum samples from mothers of children with autism and intellectual disability; (2) an inflammatory cytokine mixture (ICM) comprised of five cytokines elevated in experimental MIA models; or (3) individual cytokines in ICM. At concentrations that activated nuclear factor-kappa B (NF-κB) in LUHMES cells, EMA and ICM induced caspase-3/7 activity. ICM altered neurite outgrowth, but only at concentrations that also reduced cell viability, whereas ICM reduced synapse number independent of changes in cell viability. Individual cytokines in ICM phenocopied the effects of ICM on NF-κB activation and synaptic connectivity, but did not completely mimic the effects of ICM on apoptosis. These results demonstrate that clinically relevant cytokine mixtures modulate apoptosis and synaptic density in developing human neurons. Given the relevance of these neurodevelopmental processes in NDDs, our findings support the hypothesis that cytokines contribute to the adverse effects of MIA on children.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Internal Medicine, University of California, Davis,Department of Molecular Biosciences, University of California, Davis
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, University of California, Davis
| | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis
| |
Collapse
|
20
|
Silva MG, Daros GC, Santos GM, Angelino IP, Bitencourt RM, Fortunato JJ. Impact of prenatal lipopolysaccharide exposure on the development of rats. AN ACAD BRAS CIENC 2020; 92:e20200837. [PMID: 33295581 DOI: 10.1590/0001-3765202020200837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022] Open
Abstract
The intrauterine environment is infl uenced by several factors, genetic or environmental, which are essential in understanding the pathophysiological mechanisms of some diseases. In this study, the aim was to investigate the impact of prenatal lipopolysaccharide exposure on the development of rats. Fifty pregnant rats received intraperitoneal administration of lipopolysaccharide (100 µg/kg), or saline at the same dose, on the 9.5th day of pregnancy. The offspring of these rats were analyzed for indicators of brain and somatic development and maturation of physical characteristics. Refl ex ontogenesis was also analyzed by vibrissae placement, negative geotaxis, palmar grasp, precipice aversion, decubitus recovery and acceleration reaction. Administration of lipopolysaccharide on the 9.5th gestational day caused delayed opening of the auditory pavilion, reduction in the length of the tail, body, cranial axes, and body weight. Thus, maternal infections can interfere in the intrauterine environment, impairing functional and structural aspects of the central nervous system, as well as the maturation of physical characteristics.
Collapse
Affiliation(s)
- Marina G Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Laboratório de Neurociência Comportamental, Av. José Acácio Moreira, 787, Dehon, 88704-900 Tubarão, SC, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Av. José Acácio Moreira, 787, Dehon, 88704-900 Tubarão, SC, Brazil
| | - Guilherme C Daros
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Laboratório de Neurociência Comportamental, Av. José Acácio Moreira, 787, Dehon, 88704-900 Tubarão, SC, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Av. José Acácio Moreira, 787, Dehon, 88704-900 Tubarão, SC, Brazil
| | - Gabriela M Santos
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Av. José Acácio Moreira, 787, Dehon, 88704-900 Tubarão, SC, Brazil
| | - Isabella P Angelino
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Av. José Acácio Moreira, 787, Dehon, 88704-900 Tubarão, SC, Brazil
| | - Rafael M Bitencourt
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Laboratório de Neurociência Comportamental, Av. José Acácio Moreira, 787, Dehon, 88704-900 Tubarão, SC, Brazil
| | - JucÉlia J Fortunato
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Av. José Acácio Moreira, 787, Dehon, 88704-900 Tubarão, SC, Brazil
| |
Collapse
|
21
|
Involvement of NLRP3 inflammasome in schizophrenia-like behaviour in young animals after maternal immune activation. Acta Neuropsychiatr 2020; 32:321-327. [PMID: 32660670 DOI: 10.1017/neu.2020.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To evaluate the involvement of nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in schizophrenia-like behaviour in young animals exposed to maternal immune activation (MIA). METHODS To this aim, on the 15th gestational day, the females received an injection of lipopolysaccharides. When the animals completed 7, 14 and 45 postnatal days, they were killed and the whole brain was dissected for biochemical analysis. Animals with 45 postnatal days were submitted to behavioural tests of locomotor activity, social interaction and stereotyped movements. RESULTS It was observed that the animals presented schizophrenia-like behaviour at 45 postnatal days associated with the increase of NLRP3 inflammasome expression and IL-1β levels on 7, 14 and 45 postnatal days. CONCLUSION This study shows that MIA may be associated with a schizophrenia-like behaviour. This behaviour can be induced to a neuroinflammatory profile in the brain. These evidences may base future studies on the relationship between neuroinflammation and psychiatric disorders.
Collapse
|
22
|
Ferreira FR, de Paula GC, de Carvalho RJV, Ribeiro-Barbosa ER, Spini VBMG. Impact of Season of Birth on Psychiatric Disorder Susceptibility and Drug Abuse Incidence in a Population from the Köppen Tropical Savanna Region of Brazil. Neuropsychobiology 2020; 79:131-140. [PMID: 31574505 DOI: 10.1159/000503069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite much evidence that season of birth (SOB) my influence the vulnerability to psychiatric disorders, divergence has been reported, in particular between populations born in the northern and southern hemispheres. We analyzed the potential modified risk by SOB to psychiatric disorder or drug addiction comorbidity in a population born in the Triângulo Mineiro region, a southern hemisphere Köppen tropical savanna region in Brazil. METHOD We accessed the records of 98,457 of patients and healthy controls of the National Datacenter of Medical Promptuary to evaluate the influence of SOB as a modifying factor on the occurrence of mental disorders and drug abuse conditions among individuals born from the year 2000 to 2016. RESULTS The data revealed significant modification of the relative incidence of major depressive disorder (MDD) (F11, 72 = 2.898; p = 0.003; eta-squared, ES = 0.313; ⍺ = 0.97), anxiety-related disorder (ARD) (F11, 81 =2.389; p = 0.013; ES = 0.241; ⍺ = 0.932), and schizophrenia (SZ) (F11, 83 = 2.764; p = 0.005; ES = 0.303; α = 0.963), while there was no increase in the number of healthy controls born in any month of the year (F11, 71 = 1.469; p = 0.163). Post hoc analyses indicated a significant higher vulnerability to MDD or ARD if the patient was born in August, or October to December, respectively. A relative increase in the incidence of SZ was also observed in patients born from August to October, compared to patients born from November to January. CONCLUSIONS SOB may influence the risk for psychiatric disorders in the TMR population. Regional particularities associated with the climatic regime may account for the apparent divergence between studies.
Collapse
Affiliation(s)
| | - Gustavo C de Paula
- Clinical Hospital of the Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Erika R Ribeiro-Barbosa
- Physiology Department, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Vanessa B M G Spini
- Physiology Department, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
23
|
Serati M, Bertino V, Malerba MR, Mucci F, Barkin JL, Grassi S, Altamura AC, Buoli M. Obstetric complications and subsequent risk of mood disorders for offspring in adulthood: a comprehensive overview. Nord J Psychiatry 2020; 74:470-478. [PMID: 32297541 DOI: 10.1080/08039488.2020.1751878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 01/21/2023]
Abstract
Background: A number of studies reported obstetric complications (OCs) to be a risk factor for the development of psychiatric conditions in the adulthood, including mood disorders.Aim: The aim of this study was to review the literature about the link between OCs during the perinatal period (items of Lewis-Murray scale) and the future risk of developing a mood disorder in adulthood, such as the major depressive disorder (MDD) or the bipolar disorder (BD).Methods: A research in the main database sources has been conducted to obtain an overview of the association mentioned above.Results: Few studies have investigated the role of OCs in the development of mood disorders in adulthood. The most robust evidence is that low birth weight (LBW) and preterm birth may be risk factors for the development of MDD in the future, even if some of the available data come from studies with small sample sizes or a retrospective design.Conclusion: OCs may confer a risk of developing mood disorders in adulthood. Future research should confirm these preliminary findings and clarify if other obstetric or neonatal complications (e.g. cyanosis or newborn epileptic seizures) may have a role in the future onset of mood disorders.
Collapse
Affiliation(s)
- Marta Serati
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vincenzo Bertino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rosaria Malerba
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Mucci
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jennifer L Barkin
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Silvia Grassi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Ferreira FR, de Moura NSB, Hassib L, Pombo TR. Resveratrol ameliorates the effect of maternal immune activation associated with schizophrenia in adulthood offspring. Neurosci Lett 2020; 734:135100. [PMID: 32473196 DOI: 10.1016/j.neulet.2020.135100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
Maternal exposure to infectious agents such as arboviruses, bacteria, or other protozoans has been associated with an elevated risk of schizophrenia (SZ). Evidence suggests that immunological processes occurring during infection may disturb the neural progenitor, impacting the central nervous system (CNS) functions. Moreover, growing evidence suggests that resveratrol (RSV) has neuroprotective activity through anti-oxidant and anti-inflammatory mechanisms. Therefore, we investigated if the treatment with RSV during pregnancy would prevent the abnormalities associated with a SZ-like phenotype induced by maternal immune activation (MIA). Pregnant dams stimulated with a subcutaneous (s.c.) injection of polyriboinosinic-polyribocytidylic acid (poly I:C; 50 mg/kg), a viral nucleic acid mimetic or vehicle, on gestational day (GD) 12.5, were treated with RSV (40 mg/kg, s.c.) or saline, from GD 9.5 to GD 14.5. On day 45 after birth, the offspring was evaluated using a three-compartment social interaction test, elevated plus maze, and hyperlocomotion test induced by amphetamine. After the behavioral tests, the relative expression of mRNA to synapsin 1 (Syn1), oligodendrocyte transcription factor 1 (Olig1), and SRY (sex-determining region Y)-box 2 (Sox2) was determined in the hippocampus and cortex. Treatment with RSV restored the social behavior and attenuated the hyperlocomotion of the offspring bred by dams submitted to MIA. RSV prevented the effects of MIA on Syn1 and Olig1 expression in the hippocampus and Syn1 in the cortex. The present study showed that maternal treatment with RSV attenuates some of the negative behavioral impacts caused by MIA, with modulation of synaptic and oligodendrogenesis processes.
Collapse
Affiliation(s)
| | - Nathalia Souza Barros de Moura
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Hassib
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiane Rebelo Pombo
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Haddad FL, Patel SV, Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci Biobehav Rev 2020; 113:546-567. [PMID: 32320814 DOI: 10.1016/j.neubiorev.2020.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) in response to a viral infection during early and mid-gestation has been linked through various epidemiological studies to a higher risk for the child to develop autism or schizophrenia-related symptoms.. This has led to the establishment of the pathogen-free poly I:C-induced MIA animal model for neurodevelopmental disorders, which shows relatively high construct and face validity. Depending on the experimental variables, particularly the timing of poly I:C administration, different behavioural and molecular phenotypes have been described that relate to specific symptoms of neurodevelopmental disorders such as autism spectrum disorder and/or schizophrenia. We here review and summarize epidemiological evidence for the effects of maternal infection and immune activation, as well as major findings in different poly I:C MIA models with a focus on poly I:C exposure timing, behavioural and molecular changes in the offspring, and characteristics of the model that relate it to autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Salonee V Patel
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
26
|
Maternal serum C-reactive protein (CRP) and offspring attention deficit hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry 2020; 29:239-247. [PMID: 31312974 PMCID: PMC7024691 DOI: 10.1007/s00787-019-01372-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Exposure to infection and inflammation during the fetal period are associated with offspring neuropsychiatric disorders. Few previous studies have examined this association with ADHD with mixed findings. This study aims to examine the association between early gestational maternal C-reactive protein (CRP), prospectively assayed in stored maternal sera and the risk of ADHD in offspring. This study is based on the Finnish Prenatal studies of ADHD (FIPS-ADHD) with a nested case-control design. It includes all singleton-born children in Finland between January 1, 1998 and December 31, 1999 and diagnosed with ADHD. A total of 1079 cases and equal number of controls were matched on date of birth, sex and place of birth. Maternal CRP levels were assessed using a latex immunoassay from archived maternal serum specimens, collected during the first and early second trimester of pregnancy. Elevated maternal CRP when analyzed as a continuous variable was not associated with offspring ADHD (OR 1.05, 95% CI 0.96-1.15). No significant associations were seen in the highest quintile of CRP (OR 1.18, 95% CI 0.88-1.58). The results were similar in both sexes as well as among ADHD cases with or without comorbid ASD or conduct disorder. In this first study examining CRP, a biomarker for inflammation, during early pregnancy in relation to offspring ADHD, we report no significant associations. The lack of any association, when considered with positive findings seen in ASD and schizophrenia, and negative findings in bipolar disorder suggests different pathways linking maternal immune activation and development of various neuropsychiatric disorders.
Collapse
|
27
|
Brydges NM, Reddaway J. Neuroimmunological effects of early life experiences. Brain Neurosci Adv 2020; 4:2398212820953706. [PMID: 33015371 PMCID: PMC7513403 DOI: 10.1177/2398212820953706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure to adverse experiences during development increases the risk of psychiatric illness later in life. Growing evidence suggests a role for the neuroimmune system in this relationship. There is now substantial evidence that the immune system is critical for normal brain development and behaviour, and responds to environmental perturbations experienced early in life. Severe or chronic stress results in dysregulated neuroimmune function, concomitant with abnormal brain morphology and function. Positive experiences including environmental enrichment and exercise exert the opposite effect, promoting normal brain and immune function even in the face of early life stress. The neuroimmune system may therefore provide a viable target for prevention and treatment of psychiatric illness. This review will briefly summarise the neuroimmune system in brain development and function, and review the effects of stress and positive environmental experiences during development on neuroimmune function. There are also significant sex differences in how the neuroimmune system responds to environmental experiences early in life, which we will briefly review.
Collapse
Affiliation(s)
- Nichola M. Brydges
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| | - Jack Reddaway
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
28
|
Knutson AO, Watters JJ. All roads lead to inflammation: Is maternal immune activation a common culprit behind environmental factors impacting offspring neural control of breathing? Respir Physiol Neurobiol 2019; 274:103361. [PMID: 31874263 DOI: 10.1016/j.resp.2019.103361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Despite numerous studies investigating how prenatal exposures impact the developing brain, there remains very little known about how these in utero exposures impact the life-sustaining function of breathing. While some exposures such as alcohol and drugs of abuse are well-known to alter respiratory function, few studies have evaluated other common maternal environmental stimuli, such as maternal infection, inhalation of diesel exhaust particles prevalent in urban areas, or obstructive sleep apnea during pregnancy, just to name a few. The goals of this review article are thus to: 1) highlight data on gestational exposures that impair respiratory function, 2) discuss what is known about the potential role of inflammation in the effects of these maternal exposures, and 3) identify less studied but potential in utero exposures that could negatively impact CNS regions important in respiratory motor control, perhaps by impacting maternal or fetal inflammation. We highlight gaps in knowledge, summarize evidence related to the possible contributions of inflammation, and discuss the need for further studies of life-long offspring respiratory function both at baseline and after respiratory challenge.
Collapse
Affiliation(s)
- Andrew O Knutson
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
29
|
Wedderburn CJ, Evans C, Yeung S, Gibb DM, Donald KA, Prendergast AJ. Growth and Neurodevelopment of HIV-Exposed Uninfected Children: a Conceptual Framework. Curr HIV/AIDS Rep 2019; 16:501-513. [PMID: 31732866 PMCID: PMC6920255 DOI: 10.1007/s11904-019-00459-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW The population of HIV-exposed uninfected (HEU) children is expanding rapidly, and over one million HEU infants are born each year globally. Several recent studies have reported that HEU children, particularly in low- and middle-income countries, are at risk of poor outcomes, including impaired growth and neurodevelopment. However, the reasons for poor clinical outcomes amongst HEU children remain unclear. RECENT FINDINGS We summarise the findings from recent large studies that have characterised growth and neurodevelopment in HEU children, identified risk factors and explored underlying mechanistic pathways. We propose a conceptual framework to explain how exposure to HIV and antiretroviral therapy (ART) may lead to adverse growth and neurodevelopment in uninfected children, and review the available evidence and research gaps. We propose that HEU children are affected both indirectly, through the augmentation of universal risk factors underlying poor growth and neurodevelopment, and directly through HIV/ART-specific pathways, which ultimately may converge through a series of common pathogenic mechanisms. In the era of universal ART, a better understanding of these pathways is crucial to inform future prevention and intervention strategies.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ceri Evans
- Blizard Institute, Queen Mary University of London, London, UK.
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| |
Collapse
|
30
|
Scola G. The importance of maternal immunity in psychiatry and neurodevelopment. Dev Med Child Neurol 2019; 61:866. [PMID: 30868553 DOI: 10.1111/dmcn.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gustavo Scola
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Cheng S, Han B, Ding M, Wen Y, Ma M, Zhang L, Qi X, Cheng B, Li P, Kafle OP, Liang X, Liu L, Du Y, Zhao Y, Zhang F. Identifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Brief Bioinform 2019; 21:1016-1022. [DOI: 10.1093/bib/bbz034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Psychiatric disorders are a group of complex psychological syndromes with high prevalence. It has been reported that gut microbiota has a dominant influence on the risks of psychiatric disorders through gut microbiota–brain axis. We extended the classic gene set enrichment analysis (GSEA) approach to detect the association between gut microbiota and complex diseases using published genome-wide association study (GWAS) and GWAS of gut microbiota summary data. We applied our approach to real GWAS data sets of five psychiatric disorders, including attention deficiency/hyperactive disorder (ADHD), autism spectrum disorder (AUT), bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD). To evaluate the performance of our approach, we also tested the genetic correlations of obesity and type 2 diabetes with gut microbiota. We identified several significant associations between psychiatric disorders and gut microbiota, such as ADHD and genus Desulfovibrio (P = 0.031), order Clostridiales (P = 0.034). For AUT, association signals were observed for genera Bacteroides (P = 0.012) and Desulfovibrio (P = 0.033). Genus Desulfovibrio (P = 0.005) appeared to be associated with BD. For MDD, association signals were observed for genus Desulfovibrio (P = 0.003), order Clostridiales (P = 0.004), family Lachnospiraceae (P = 0.007) and genus Bacteroides (P = 0.007). Genus Desulfovibrio (P = 0.012) and genus Bacteroides (P = 0.038) appeared to be associated with SCZ. Our study results provide novel clues for revealing the roles of gut microbiota in psychiatric disorders. This study also illustrated the good performance of GSEA approach for exploring the relationships between gut microbiota and complex diseases.
Collapse
Affiliation(s)
- Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Miao Ding
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ping Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Om Prakash Kafle
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Du
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Ginsberg Y, D'Onofrio BM, Rickert ME, Class QA, Rosenqvist MA, Almqvist C, Lichtenstein P, Larsson H. Maternal infection requiring hospitalization during pregnancy and attention-deficit hyperactivity disorder in offspring: a quasi-experimental family-based study. J Child Psychol Psychiatry 2019; 60:160-168. [PMID: 30136726 DOI: 10.1111/jcpp.12959] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Maternal infection during pregnancy (IDP) has been associated with increased risk of attention-deficit/hyperactivity disorder (ADHD) in offspring. However, infection is associated with social adversity, poor living conditions and other background familial factors. As such, there is a need to rule out whether the observed association between maternal IDP and ADHD might be attributed to such confounding. METHODS This nationwide population-based cohort study using a family-based, quasi-experimental design included 1,066,956 individuals born in Sweden between 1992 and 2002. Data on maternal IDP (bacterial or viral) requiring hospitalization and ADHD diagnosis in offspring were gathered from Swedish National Registers, with individuals followed up through the end of 2009. Ordinary and stratified Cox regression models were used for estimation of hazard ratios (HRs) and several measured covariates were considered. Cousin- and sibling-comparisons accounted for unmeasured genetic and environmental factors shared by cousins and siblings. RESULTS In the entire population, maternal IDP was associated with ADHD in offspring (HR = 2.31, 95% CI = 2.04-2.61). This association was attenuated when accounting for measured covariates (HR = 1.86, 95% CI = 1.65-2.10). The association was further attenuated when adjusting for unmeasured factors shared between cousins (HR = 1.52, 95% CI = 1.12-2.07). Finally, the association was fully attenuated in sibling comparisons (HR = 1.03, 95% CI = 0.76-1.41). CONCLUSIONS This study suggests that the association between maternal IDP and offspring ADHD is largely due to unmeasured familial confounding. Our results underscore the importance of adjusting for unobserved familial risk factors when exploring risk factors for ADHD.
Collapse
Affiliation(s)
- Ylva Ginsberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Brian M D'Onofrio
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Martin E Rickert
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Quetzal A Class
- Department of Obstetrics and Gynecology, University of Illinois, Chicago, IL, USA
| | - Mina A Rosenqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
33
|
Toro CT, Eliassen E, Prusty BK. Does infection of cerebellar Purkinje neurons with human herpes virus 6A or 6B (HHV-6) increase the risk of developing mood disorders? Future Microbiol 2019; 14:85-88. [DOI: 10.2217/fmb-2018-0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Carla T Toro
- Applied Psychology, Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, UK
| | | | - Bhupesh K Prusty
- Institute for Virology & Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
34
|
Kimoto S, Makinodan M, Kishimoto T. Neurobiology and treatment of social cognition in schizophrenia: Bridging the bed-bench gap. Neurobiol Dis 2018; 131:104315. [PMID: 30391541 DOI: 10.1016/j.nbd.2018.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/01/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023] Open
Abstract
Social cognition refers to the psychological processes involved in the perception, encoding, storage, retrieval, and regulation of information about others and ourselves. This process is essential for survival and reproduction in complex social environments. Recent evidence suggests that impairments in social cognition frequently occur in schizophrenia, mainly contributing to poor functional outcomes, including the inability to engage in meaningful work and maintain satisfying interpersonal relationships. With the ambiguous definition of social cognition, the neurobiology underlying impaired social cognition remains unknown, and the effectiveness of currently available intervention strategies in schizophrenia remain limited. Considering the advances and challenges of translational research for schizophrenia, social cognition has been considered a high-priority domain for treatment development. Here, we describe the current state of the framework, clinical concerns, and intervention approaches for social cognition in schizophrenia. Next, we introduce translatable rodent models associated with schizophrenia that allow the evaluation of different components of social behaviors, providing deeper insights into the neural substrates of social cognition in schizophrenia. Our review presents a valuable perspective that indicates the necessity of building bridges between basic and clinical science researchers for the development of novel therapeutic approaches in impaired social cognition in schizophrenia.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan.
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
35
|
Gustafsson HC, Sullivan EL, Nousen EK, Sullivan CA, Huang E, Rincon M, Nigg JT, Loftis JM. Maternal prenatal depression predicts infant negative affect via maternal inflammatory cytokine levels. Brain Behav Immun 2018; 73:470-481. [PMID: 29920327 PMCID: PMC6129422 DOI: 10.1016/j.bbi.2018.06.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Maternal depressive symptoms during pregnancy are associated with risk for offspring emotional and behavioral problems, but the mechanisms by which this association occurs are not known. Infant elevated negative affect (increased crying, irritability, fearfulness, etc.) is a key risk factor for future psychopathology, so understanding its determinants has prevention and early intervention potential. An understudied yet promising hypothesis is that maternal mood affects infant mood via maternal prenatal inflammatory mechanisms, but this has not been prospectively examined in humans. Using data from a pilot study of women followed from the second trimester of pregnancy through six months postpartum (N = 68) our goal was to initiate a prospective study as to whether maternal inflammatory cytokines mediate the association between maternal depressive symptoms and infant offspring negative affect. The study sample was designed to examine a broad range of likely self-regulation and mood-regulation problems in offspring; to that end we over-selected women with a family history or their own history of elevated symptoms of attention-deficit/hyperactivity disorder. Results supported the hypothesis: maternal pro-inflammatory cytokines during the third trimester (indexed using a latent variable that included plasma interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1 concentrations as indicators) mediated the effect, such that higher maternal depressive symptoms were associated with higher maternal inflammation, and this mediated the effect on maternal report of infant negative affect (controlling for maternal affect during the infant period). This is the first human study to demonstrate that maternal inflammatory cytokines mediate the association between prenatal depression and infant outcomes, and the first to demonstrate a biological mechanism through which depressive symptoms impact infant temperament.
Collapse
Affiliation(s)
- Hanna C Gustafsson
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Elinor L Sullivan
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, USA; University of Oregon, 1585 E 13th Ave, Eugene, OR, USA.
| | - Elizabeth K Nousen
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Ceri A Sullivan
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Elaine Huang
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, USA.
| | - Monica Rincon
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Joel T Nigg
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Jennifer M Loftis
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, USA.
| |
Collapse
|
36
|
Prospective Analysis of the Effects of Maternal Immune Activation on Rat Cytokines during Pregnancy and Behavior of the Male Offspring Relevant to Schizophrenia. eNeuro 2018; 5:eN-NWR-0249-18. [PMID: 30225350 PMCID: PMC6140112 DOI: 10.1523/eneuro.0249-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023] Open
Abstract
Influenza during pregnancy is associated with the development of psychopathology in the offspring. We sought to determine whether maternal cytokines produced following administration of viral mimetic polyinosinic-polycytidylic acid (polyI:C) to pregnant rats were predictive of behavioral abnormalities in the adult offspring. Timed-pregnant Sprague Dawley rats received a single intravenous injection of 4-mg/kg polyI:C or saline on gestational day (GD)15. Blood was collected 3 h later for serum analysis of cytokine levels with ELISA. Male offspring were tested in a battery of behavioral tests during adulthood and behavior was correlated with maternal cytokine levels. Maternal serum levels of CXCL1 and interleukin (IL)-6, but not tumor necrosis factor (TNF)-α or CXCL2, were elevated in polyI:C-treated dams. PolyI:C-treated dams experienced post-treatment weight loss and polyI:C pups were smaller than controls at postnatal day (PND)1. Various behavior alterations were seen in the polyI:C-treated offspring. Male polyI:C offspring had enhanced MK-801-induced locomotion, and reduced sociability. PolyI:C offspring failed to display crossmodal and visual memory, and oddity preference was also impaired. Set-shifting, assessed with a lever-based operant conditioning task, was facilitated while touchscreen-based reversal learning was impaired. Correlations were found between maternal serum concentrations of CXCL1, acute maternal temperature and body weight changes, neonatal pup mass, and odd object discrimination and social behavior. Overall, while the offspring of polyI:C-treated rats displayed behavior abnormalities, maternal serum cytokines were not related to the long-term behavior changes in the offspring. Maternal sickness effects and neonatal pup size may be better indicators of later effects of maternal inflammation in the offspring.
Collapse
|
37
|
Willsey AJ, Morris MT, Wang S, Willsey HR, Sun N, Teerikorpi N, Baum TB, Cagney G, Bender KJ, Desai TA, Srivastava D, Davis GW, Doudna J, Chang E, Sohal V, Lowenstein DH, Li H, Agard D, Keiser MJ, Shoichet B, von Zastrow M, Mucke L, Finkbeiner S, Gan L, Sestan N, Ward ME, Huttenhain R, Nowakowski TJ, Bellen HJ, Frank LM, Khokha MK, Lifton RP, Kampmann M, Ideker T, State MW, Krogan NJ. The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell 2018; 174:505-520. [PMID: 30053424 PMCID: PMC6247911 DOI: 10.1016/j.cell.2018.06.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.
Collapse
Affiliation(s)
- A Jeremy Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Montana T Morris
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen R Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nia Teerikorpi
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tierney B Baum
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kevin J Bender
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward Chang
- Department of Neurological Surgery, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikaas Sohal
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel H Lowenstein
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Agard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael J Keiser
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian Shoichet
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark von Zastrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lennart Mucke
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Steven Finkbeiner
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li Gan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Ruth Huttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hugo J Bellen
- Departments of Molecular and Human Genetics and Neuroscience, Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew W State
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Tanabe S, Yamashita T. The role of immune cells in brain development and neurodevelopmental diseases. Int Immunol 2018; 30:437-444. [DOI: 10.1093/intimm/dxy041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shogo Tanabe
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka, Japan
| |
Collapse
|
39
|
Imai K, Kotani T, Tsuda H, Nakano T, Ushida T, Iwase A, Nagai T, Toyokuni S, Suzumura A, Kikkawa F. Administration of molecular hydrogen during pregnancy improves behavioral abnormalities of offspring in a maternal immune activation model. Sci Rep 2018; 8:9221. [PMID: 29907804 PMCID: PMC6003913 DOI: 10.1038/s41598-018-27626-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate long-term outcomes of the offspring in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) model and the effect of maternal molecular hydrogen (H2) administration. We have previously demonstrated in the MIA mouse model that maternal administration of H2 attenuates oxidative damage and neuroinflammation, including induced pro-inflammatory cytokines and microglial activation, in the fetal brain. Short-term memory, sociability and social novelty, and sensorimotor gating were evaluated using the Y-maze, three-chamber, and prepulse inhibition (PPI) tests, respectively, at postnatal 3 or 4 weeks. The number of neurons and oligodendrocytes was also analyzed at postnatal 5 weeks by immunohistochemical analysis. Offspring of the LPS-exposed dams showed deficits in short-term memory and social interaction, following neuronal and oligodendrocytic loss in the amygdala and cortex. Maternal H2 administration markedly attenuated these LPS-induced abnormalities. Moreover, we evaluated the effect of H2 on LPS-induced astrocytic activation, both in vivo and in vitro. The number of activated astrocytes with hypertrophic morphology was increased in LPS-exposed offspring, but decreased in the offspring of H2-administered dams. In primary cultured astrocytes, LPS-induced pro-inflammatory cytokines were attenuated by H2 administration. Overall, these findings indicate that maternal H2 administration exerts neuroprotective effects and ameliorates MIA-induced neurodevelopmental deficits of offspring later in life.
Collapse
Affiliation(s)
- Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, 3-35, Michishita-Cho, Nakamura-Ku, Nagoya, 453-8511, Japan
| | - Tomoko Nakano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
40
|
Misiak B, Stramecki F, Gawęda Ł, Prochwicz K, Sąsiadek MM, Moustafa AA, Frydecka D. Interactions Between Variation in Candidate Genes and Environmental Factors in the Etiology of Schizophrenia and Bipolar Disorder: a Systematic Review. Mol Neurobiol 2018; 55:5075-5100. [PMID: 28822116 PMCID: PMC5948257 DOI: 10.1007/s12035-017-0708-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 08/01/2017] [Indexed: 12/29/2022]
Abstract
Schizophrenia and bipolar disorder (BD) are complex and multidimensional disorders with high heritability rates. The contribution of genetic factors to the etiology of these disorders is increasingly being recognized as the action of multiple risk variants with small effect sizes, which might explain only a minor part of susceptibility. On the other site, numerous environmental factors have been found to play an important role in their causality. Therefore, in recent years, several studies focused on gene × environment interactions that are believed to bridge the gap between genetic underpinnings and environmental insults. In this article, we performed a systematic review of studies investigating gene × environment interactions in BD and schizophrenia spectrum phenotypes. In the majority of studies from this field, interacting effects of variation in genes encoding catechol-O-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF), and FK506-binding protein 5 (FKBP5) have been explored. Almost consistently, these studies revealed that polymorphisms in COMT, BDNF, and FKBP5 genes might interact with early life stress and cannabis abuse or dependence, influencing various outcomes of schizophrenia spectrum disorders and BD. Other interactions still require further replication in larger clinical and non-clinical samples. In addition, future studies should address the direction of causality and potential mechanisms of the relationship between gene × environment interactions and various categories of outcomes in schizophrenia and BD.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368, Wroclaw, Poland.
| | - Filip Stramecki
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367, Wroclaw, Poland
| | - Łukasz Gawęda
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- II Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Maria M Sąsiadek
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368, Wroclaw, Poland
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Marcs Institute of Brain and Behaviour, Western Sydney University, Penrith, NSW, Australia
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367, Wroclaw, Poland
| |
Collapse
|
41
|
Corradini I, Focchi E, Rasile M, Morini R, Desiato G, Tomasoni R, Lizier M, Ghirardini E, Fesce R, Morone D, Barajon I, Antonucci F, Pozzi D, Matteoli M. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring. Biol Psychiatry 2018; 83:680-691. [PMID: 29146047 DOI: 10.1016/j.biopsych.2017.09.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND The association between maternal infection and neurodevelopmental defects in progeny is well established, although the biological mechanisms and the pathogenic trajectories involved have not been defined. METHODS Pregnant dams were injected intraperitoneally at gestational day 9 with polyinosinic:polycytidylic acid. Neuronal development was assessed by means of electrophysiological, optical, and biochemical analyses. RESULTS Prenatal exposure to polyinosinic:polycytidylic acid causes an imbalanced expression of the Na+-K+-2Cl- cotransporter 1 and the K+-Cl- cotransporter 2 (KCC2). This results in delayed gamma-aminobutyric acid switch and higher susceptibility to seizures, which endures up to adulthood. Chromatin immunoprecipitation experiments reveal increased binding of the repressor factor RE1-silencing transcription (also known as neuron-restrictive silencer factor) to position 509 of the KCC2 promoter that leads to downregulation of KCC2 transcription in prenatally exposed offspring. Interleukin-1 receptor type I knockout mice, which display braked immune response and no brain cytokine elevation upon maternal immune activation, do not display KCC2/Na+-K+-2Cl- cotransporter 1 imbalance when implanted in a wild-type dam and prenatally exposed. Notably, pretreatment of pregnant dams with magnesium sulfate is sufficient to prevent the early inflammatory state and the delay in excitatory-to-inhibitory switch associated to maternal immune activation. CONCLUSIONS We provide evidence that maternal immune activation hits a key neurodevelopmental process, the excitatory-to-inhibitory gamma-aminobutyric acid switch; defects in this switch have been unequivocally linked to diseases such as autism spectrum disorder or epilepsy. These data open the avenue for a safe pharmacological treatment that may prevent the neurodevelopmental defects caused by prenatal immune activation in a specific pregnancy time window.
Collapse
Affiliation(s)
- Irene Corradini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute of Neuroscience - National Research Council, Milan, Italy
| | - Elisa Focchi
- Institute of Neuroscience - National Research Council, Milan, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Rasile
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Hunimed University, Rozzano, Italy
| | - Raffaella Morini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | - Genni Desiato
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; University of Milano-Bicocca, Milan, Italy
| | - Romana Tomasoni
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | - Michela Lizier
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute for Genetic and Biomedical Research - National Research Council, Milan, Italy
| | - Elsa Ghirardini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Riccardo Fesce
- Hunimed University, Rozzano, Italy; Neuroscience Center, Dipartimento di Scienze Teoriche e Applicate, Insubria University, Busto Arsizio, Italy
| | - Diego Morone
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | | | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Davide Pozzi
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Hunimed University, Rozzano, Italy
| | - Michela Matteoli
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute of Neuroscience - National Research Council, Milan, Italy.
| |
Collapse
|
42
|
Abbott PW, Gumusoglu SB, Bittle J, Beversdorf DQ, Stevens HE. Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology 2018; 90:9-21. [PMID: 29407514 DOI: 10.1016/j.psyneuen.2018.01.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Risk for neuropsychiatric disorders is complex and includes an individual's internal genetic endowment and their environmental experiences and exposures. Embryonic development captures a particularly complex period, in which genetic and environmental factors can interact to contribute to risk. These environmental factors are incorporated differently into the embryonic brain than postnatal one. Here, we comprehensively review the human and animal model literature for studies that assess the interaction between genetic risks and one particular environmental exposure with strong and complex associations with neuropsychiatric outcomes-prenatal maternal stress. Gene-environment interaction has been demonstrated for stress occurring during childhood, adolescence, and adulthood. Additional work demonstrates that prenatal stress risk may be similarly complex. Animal model studies have begun to address some underlying mechanisms, including particular maternal or fetal genetic susceptibilities that interact with stress exposure and those that do not. More specifically, the genetic underpinnings of serotonin and dopamine signaling and stress physiology mechanisms have been shown to be particularly relevant to social, attentional, and internalizing behavioral changes, while other genetic factors have not, including some growth factor and hormone-related genes. Interactions have reflected both the diathesis-stress and differential susceptibility models. Maternal genetic factors have received less attention than those in offspring, but strongly modulate impacts of prenatal stress. Priorities for future research are investigating maternal response to distinct forms of stress and developing whole-genome methods to examine the contributions of genetic variants of both mothers and offspring, particularly including genes involved in neurodevelopment. This is a burgeoning field of research that will ultimately contribute not only to a broad understanding of psychiatric pathophysiology but also to efforts for personalized medicine.
Collapse
Affiliation(s)
- Parker W Abbott
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| | - Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, Interdisciplinary Intercampus Research Program, Thompson Center for Autism and Neurodevelopment Disorders, Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 2312 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| |
Collapse
|
43
|
Interaction Effects of Season of Birth and Cytokine Genes on Schizotypal Traits in the General Population. SCHIZOPHRENIA RESEARCH AND TREATMENT 2017; 2017:5763094. [PMID: 29464121 PMCID: PMC5804364 DOI: 10.1155/2017/5763094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/13/2017] [Indexed: 12/23/2022]
Abstract
Literature suggests that the effect of winter birth on vulnerability to schizophrenia might be mediated by increased expression of proinflammatory cytokines due to prenatal infection and its inadequate regulation by anti-inflammatory factors. As the response of the immune system depends on genotype, this study assessed the interaction effects of cytokine genes and season of birth (SOB) on schizotypy measured with the Schizotypal Personality Questionnaire (SPQ-74). We searched for associations of IL1B rs16944, IL4 rs2243250, and IL-1RN VNTR polymorphisms, SOB, and their interactions with the SPQ-74 total score in a sample of 278 healthy individuals. A significant effect of the IL4 X SOB interaction was found, p = 0.007 and η2 = 0.028. We confirmed this effect using an extended sample of 373 individuals. Homozygotes CC born in winter showed the highest SPQ total score and differed significantly from winter-born T allele carriers, p = 0.049. This difference was demonstrated for cognitive-perceptual and disorganized but not interpersonal dimensions. The findings are consistent with the hypothesis that the cytokine genes by SOB interaction can influence variability of schizotypal traits in the general population. The IL4 T allele appeared to have a protective effect against the development of positive and disorganized schizotypal traits in winter-born individuals.
Collapse
|