1
|
Qiu J, Chen P, Wang M, Yang D, Cao J, Liu M, Yu J, Zhang X, Cheng H, Liu Q, Liu M. Compact Artificial Synapse-Neuron Module with Chemically Mediated Spiking Behaviors. ACS NANO 2025; 19:12298-12307. [PMID: 40114422 DOI: 10.1021/acsnano.5c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Neuromorphic electronic devices mimicking the structure and functionality of biological counterparts have shown promising applications in biorealistic computing and bioelectronic interfaces. However, current neuromorphic systems comprising synapses and neurons typically exhibit complex integrated structures and lack chemically mediated characteristics, hindering them from direct biointerfacing. Here, we report a compact artificial synapse-neuron module (ASNM) by seamlessly integrating an organic electrochemical synaptic transistor and a niobium dioxide Mott memristor, showing the chemically mediated synaptic plasticity and highly stable spiking characteristics (>1010 cycles). Sodium ions and dopamine neurotransmitter induce the short-term and long-term plasticity of synaptic transistors, respectively, thus enabling temporary and long-term modulation of the ASNM's firing frequency in a bioplausible range (0-100 Hz). Furthermore, we construct a chemically mediated artificial neuromuscular system based on the ASNM, which could replicate the learning processes of a shooting basketball. These results demonstrate that our ASNM could achieve multiple biorealistic functionalities including sensing, synaptic plasticity, and spiking in a compact structure, providing a promising way for direct biointerfacing.
Collapse
Affiliation(s)
- Jie Qiu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Pei Chen
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Ming Wang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Dongzi Yang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jie Cao
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| | - Mengyang Liu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jie Yu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xumeng Zhang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| | - Hongfei Cheng
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qi Liu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Ming Liu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- Zhangjiang Laboratory, Shanghai 201210, China
| |
Collapse
|
2
|
Tseng WY, Tseng IH, Chou LW. The Effects of Sensory Electrical Stimulation and Local Vibration on Motor Learning and Motor Function. Phys Ther Res 2025; 28:9-13. [PMID: 40321688 PMCID: PMC12047047 DOI: 10.1298/ptr.r0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/30/2025] [Indexed: 05/08/2025]
Abstract
Sensory afferent inputs play a crucial role in neuromuscular control. Enhancing sensory input through electrical or mechanical stimulation of the limbs may improve motor function and facilitate motor learning. This scoping review synthesizes literature investigating the effects of sensory electrical stimulation (SES) and local vibration (LV) on motor function and learning in both healthy individuals and those with musculoskeletal or neurological disorders. The findings suggest that SES can enhance motor learning and improve motor function. Furthermore, its efficacy is maximized when combined with rehabilitation programs and motor training rather than being used as a stand-alone intervention. Similarly, LV applied to muscle or tendon regions enhances proprioceptive input, thereby improving motor control and learning. The clinical benefits of LV, like those of SES, can be augmented by incorporating it into motor training regimens. Future research should focus on optimizing stimulation parameters and determining the most effective integration strategies for rehabilitation programs to maximize therapeutic outcomes.
Collapse
Affiliation(s)
- Wan-Yan Tseng
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taiwan
| | - I-Hsiang Tseng
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taiwan
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taiwan
| |
Collapse
|
3
|
Perkins SM, Amematsro EA, Cunningham J, Wang Q, Churchland MM. An emerging view of neural geometry in motor cortex supports high-performance decoding. eLife 2025; 12:RP89421. [PMID: 39898793 PMCID: PMC11790250 DOI: 10.7554/elife.89421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Decoders for brain-computer interfaces (BCIs) assume constraints on neural activity, chosen to reflect scientific beliefs while yielding tractable computations. Recent scientific advances suggest that the true constraints on neural activity, especially its geometry, may be quite different from those assumed by most decoders. We designed a decoder, MINT, to embrace statistical constraints that are potentially more appropriate. If those constraints are accurate, MINT should outperform standard methods that explicitly make different assumptions. Additionally, MINT should be competitive with expressive machine learning methods that can implicitly learn constraints from data. MINT performed well across tasks, suggesting its assumptions are well-matched to the data. MINT outperformed other interpretable methods in every comparison we made. MINT outperformed expressive machine learning methods in 37 of 42 comparisons. MINT's computations are simple, scale favorably with increasing neuron counts, and yield interpretable quantities such as data likelihoods. MINT's performance and simplicity suggest it may be a strong candidate for many BCI applications.
Collapse
Affiliation(s)
- Sean M Perkins
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
| | - Elom A Amematsro
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
- Department of Neuroscience, Columbia University Medical CenterNew YorkUnited States
| | - John Cunningham
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
- Department of Statistics, Columbia UniversityNew YorkUnited States
- Center for Theoretical Neuroscience, Columbia University Medical CenterNew YorkUnited States
- Grossman Center for the Statistics of Mind, Columbia UniversityNew YorkUnited States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Mark M Churchland
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
- Department of Neuroscience, Columbia University Medical CenterNew YorkUnited States
- Grossman Center for the Statistics of Mind, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia University Medical CenterNew YorkUnited States
| |
Collapse
|
4
|
Jones TA, Nemchek V, Fracassi M. Experience-driven competition in neural reorganization after stroke. J Physiol 2025; 603:737-757. [PMID: 39476290 PMCID: PMC11785499 DOI: 10.1113/jp285565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/27/2024] [Indexed: 02/01/2025] Open
Abstract
Behavioural experiences interact with regenerative responses to shape patterns of neural reorganization after stroke. This review is focused on the competitive nature of these behavioural experience effects. Interactions between learning-related plasticity and regenerative reactions have been found to underlie the establishment of new compensatory behaviours and the efficacy of motor rehabilitative training in rodent stroke models. Learning in intact brains depends on competitive and cooperative mechanisms of synaptic plasticity. Synapses are added in response to learning and selectively maintained and strengthened via activity-dependent competition. Long-term memories for experiences that occur closely in time can be weakened or enhanced by competitive or cooperative interactions in the time-dependent process of stabilizing synaptic changes. Rodent stroke model findings suggest that compensatory reliance on the non-paretic hand after stroke can shape and stabilize synaptic reorganization patterns in both hemispheres, to compete with the capacity for experiences of the paretic side to do so. However, the competitive edge of the non-paretic side can be countered by overlapping experiences of the paretic hand, and might even be shifted in a cooperative direction with skilfully coordinated bimanual experience. Advances in the basic understanding of learning-related synaptic competition are helping to inform the basis of experience-dependent variations in stroke outcome.
Collapse
Affiliation(s)
- Theresa A. Jones
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Victoria Nemchek
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Michela Fracassi
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| |
Collapse
|
5
|
Ghanayim A, Benisty H, Cohen Rimon A, Schwartz S, Dabdoob S, Lifshitz S, Talmon R, Schiller J. VTA projections to M1 are essential for reorganization of layer 2-3 network dynamics underlying motor learning. Nat Commun 2025; 16:200. [PMID: 39746993 PMCID: PMC11696230 DOI: 10.1038/s41467-024-55317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
The primary motor cortex (M1) is crucial for motor skill learning. Previous studies demonstrated that skill acquisition requires dopaminergic VTA (ventral-tegmental area) signaling in M1, however little is known regarding the effect of these inputs at the neuronal and network levels. Using dexterity task, calcium imaging, chemogenetic inhibiting, and geometric data analysis, we demonstrate VTA-dependent reorganization of M1 layer 2-3 during motor learning. While average activity and average functional connectivity of layer 2-3 network remain stable during learning, activity kinetics, correlational configuration of functional connectivity, and average connectivity strength of layer 2-3 neurons gradually transform towards an expert configuration. Additionally, sensory tone representation gradually shifts to success-failure outcome signaling. Inhibiting VTA dopaminergic inputs to M1 during learning, prevents all these changes. Our findings demonstrate dopaminergic VTA-dependent formation of outcome signaling and new connectivity configuration of the layer 2-3 network, supporting reorganization of the M1 network for storing new motor skills.
Collapse
Affiliation(s)
- Amir Ghanayim
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Hadas Benisty
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel.
| | | | - Sivan Schwartz
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Sally Dabdoob
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Shira Lifshitz
- Viterbi Faculty of Electrical and Computer Engineering, Technion, Haifa, Israel
| | - Ronen Talmon
- Viterbi Faculty of Electrical and Computer Engineering, Technion, Haifa, Israel
| | - Jackie Schiller
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel.
| |
Collapse
|
6
|
Kim YJ, Kent N, Vargas Paniagua E, Driscoll N, Tabet A, Koehler F, Malkin E, Frey E, Manthey M, Sahasrabudhe A, Cannon TM, Nagao K, Mankus D, Bisher M, de Nola G, Lytton-Jean A, Signorelli L, Gregurec D, Anikeeva P. Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation. NATURE NANOTECHNOLOGY 2025; 20:121-131. [PMID: 39394431 PMCID: PMC11750723 DOI: 10.1038/s41565-024-01798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/02/2024] [Indexed: 10/13/2024]
Abstract
Deep brain stimulation with implanted electrodes has transformed neuroscience studies and treatment of neurological and psychiatric conditions. Discovering less invasive alternatives to deep brain stimulation could expand its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials has been explored as a means for remote neuromodulation. Here we synthesize magnetoelectric nanodiscs (MENDs) with a core-double-shell Fe3O4-CoFe2O4-BaTiO3 architecture (250 nm diameter and 50 nm thickness) with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 µg mm-2 despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization that, combined with cable theory, supports our observations in vitro and informs magnetoelectric stimulation in vivo. Injected into the ventral tegmental area or the subthalamic nucleus of genetically intact mice at concentrations of 1 mg ml-1, MENDs enable remote control of reward or motor behaviours, respectively. These findings set the stage for mechanistic optimization of magnetoelectric neuromodulation towards applications in neuroscience research.
Collapse
Affiliation(s)
- Ye Ji Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noah Kent
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emmanuel Vargas Paniagua
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolette Driscoll
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Tabet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elian Malkin
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department Engineering in Computation and Cognition, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ethan Frey
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie Manthey
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taylor M Cannon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keisuke Nagao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni de Nola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lorenzo Signorelli
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Danijela Gregurec
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Sadegh-Zadeh SA, Bahrami M, Soleimani O, Ahmadi S. Neural reshaping: the plasticity of human brain and artificial intelligence in the learning process. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2024; 13:34-48. [PMID: 39850545 PMCID: PMC11751442 DOI: 10.62347/nhkd7661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
This study explores the concept of neural reshaping and the mechanisms through which both human and artificial intelligence adapt and learn. OBJECTIVES To investigate the parallels and distinctions between human brain plasticity and artificial neural network plasticity, with a focus on their learning processes. METHODS A comparative analysis was conducted using literature reviews and machine learning experiments, specifically employing a multi-layer perceptron neural network to examine regression and classification problems. RESULTS Experimental findings demonstrate that machine learning models, similar to human neuroplasticity, enhance performance through iterative learning and optimization, drawing parallels in strengthening and adjusting connections. CONCLUSIONS Understanding the shared principles and limitations of neural and artificial plasticity can drive advancements in AI design and cognitive neuroscience, paving the way for future interdisciplinary innovations.
Collapse
Affiliation(s)
- Seyed-Ali Sadegh-Zadeh
- Department of Computing, School of Digital, Technologies and Arts, Staffordshire UniversityStoke-on-Trent ST4 2DE, UK
| | - Mahboobe Bahrami
- Behavioral Sciences Research Centre, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | | | - Sahar Ahmadi
- School of Electrical Engineering, Iran University of Science and TechnologyTehran, Iran
| |
Collapse
|
8
|
Kim T, Hooks BM. Developmental timecourse of aptitude for motor skill learning in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604309. [PMID: 39071410 PMCID: PMC11275902 DOI: 10.1101/2024.07.19.604309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Learning motor skills requires plasticity in the primary motor cortex (M1). But the capacity for cortical circuit plasticity varies over developmental age in sensory cortex. This study assesses the normal developmental trajectory of motor learning to assess how aptitude might vary with age. We trained mice of both sexes to run on a custom accelerating rotarod at ages from postnatal day (P) 20 to P120, tracking paw position and quantifying time to fall and changes in gait pattern. While animals of all ages were able to perform better after five training sessions, performance improved most rapidly on the first training day for mice between ages P30-60, suggesting an age with heightened plasticity. Learning this task required M1, because pharmacological inactivation of M1 prevented improvement in task performance. Paw position and gait patterns changed with learning, though differently between age groups. Successful mice learned to shift their gait from hopping to walking. Notably, this shift in gait happened earlier in the trial for forelimbs in comparison to hindlimbs. Thus, motor plasticity might more readily occur in forelimbs. Changes in gait and other kinematic parameters are an additional learning metric beyond time to fall, offering insight into how mice improve performance. Overall, these results suggest mouse motor learning has a developmental trajectory.
Collapse
Affiliation(s)
- Taehyeon Kim
- Center for Neuroscience University of Pittsburgh (CNUP) and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bryan M. Hooks
- Center for Neuroscience University of Pittsburgh (CNUP) and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
9
|
Lin L, Qing W, Zheng Z, Poon W, Guo S, Zhang S, Hu X. Somatosensory integration in robot-assisted motor restoration post-stroke. Front Aging Neurosci 2024; 16:1491678. [PMID: 39568801 PMCID: PMC11576418 DOI: 10.3389/fnagi.2024.1491678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Disruption of somatosensorimotor integration (SMI) after stroke is a significant obstacle to achieving precise motor restoration. Integrating somatosensory input into motor relearning to reconstruct SMI is critical during stroke rehabilitation. However, current robotic approaches focus primarily on precise control of repetitive movements and rarely effectively engage and modulate somatosensory responses, which impedes motor rehabilitation that relies on SMI. This article discusses how to effectively regulate somatosensory feedback from target muscles through peripheral and central neuromodulatory stimulations based on quantitatively measured somatosensory responses in real time during robot-assisted rehabilitation after stroke. Further development of standardized recording protocols and diagnostic databases of quantitative neuroimaging features in response to post-stroke somatosensory stimulations for real-time precise detection, and optimized combinations of peripheral somatosensory stimulations with robot assistance and central nervous neuromodulation are needed to enhance the recruitment of targeted ascending neuromuscular pathways in robot-assisted training, aiming to achieve precise muscle control and integrated somatosensorimotor functions, thereby improving long-term neurorehabilitation after stroke.
Collapse
Affiliation(s)
- Legeng Lin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wanyi Qing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Waisang Poon
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Song Guo
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Ji C, Yang X, Eleish M, Jiang Y, Tetlow AM, Song SC, Martín‐Ávila A, Wu Q, Zhou Y, Gan W, Lin Y, Sigurdsson EM. Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy. Alzheimers Dement 2024; 20:7954-7970. [PMID: 39368113 PMCID: PMC11567809 DOI: 10.1002/alz.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION It is unclear how early neuronal deficits occur in tauopathies, if these are associated with changes in neuronal network activity, and if they can be alleviated with therapies. METHODS To address this, we performed in vivo two-photon Ca2+ imaging in tauopathy mice at 6 versus 12 months, compared to controls, and treated the younger animals with a tau antibody. RESULTS Neuronal function was impaired at 6 months but did not deteriorate further at 12 months, presumably because cortical tau burden was comparable at these ages. At 6 months, neurons were mostly hypoactive, with enhanced neuronal synchrony, and had dysregulated responses to stimulus. Ex vivo, electrophysiology revealed altered synaptic transmission and enhanced excitability of motor cortical neurons, which likely explains the altered network activity. Acute tau antibody treatment reduced pathological tau and gliosis and partially restored neuronal function. DISCUSSION Tauopathies are associated with early neuronal deficits that can be attenuated with tau antibody therapy. HIGHLIGHTS Neuronal hypofunction in awake and behaving mice in early stages of tauopathy. Altered network activity disrupted local circuitry engagement in tauopathy mice. Enhanced neuronal excitability and altered synaptic transmission in tauopathy mice. Tau antibody acutely reduced soluble phospho-tau and improved neuronal function.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Xiaofeng Yang
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Mohamed Eleish
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Yixiang Jiang
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Amber M. Tetlow
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Soomin C. Song
- Department of PathologyNew York University Grossman School of MedicineNew YorkUSA
- IonLabNew York University Grossman School of MedicineNew YorkUSA
| | - Alejandro Martín‐Ávila
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Qian Wu
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Yanmei Zhou
- Skirball InstituteNew York University Grossman School of MedicineNew YorkUSA
| | - Wenbiao Gan
- Skirball InstituteNew York University Grossman School of MedicineNew YorkUSA
| | - Yan Lin
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Einar M. Sigurdsson
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
- Department of PsychiatryNew York University Grossman School of MedicineNew YorkUSA
| |
Collapse
|
11
|
Winter-Hjelm N, Sikorski P, Sandvig A, Sandvig I. Engineered cortical microcircuits for investigations of neuroplasticity. LAB ON A CHIP 2024; 24:4974-4988. [PMID: 39264326 DOI: 10.1039/d4lc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent advances in neural engineering have opened new ways to investigate the impact of topology on neural network function. Leveraging microfluidic technologies, it is possible to establish modular circuit motifs that promote both segregation and integration of information processing in the engineered neural networks, similar to those observed in vivo. However, the impact of the underlying topologies on network dynamics and response to pathological perturbation remains largely unresolved. In this work, we demonstrate the utilization of microfluidic platforms with 12 interconnected nodes to structure modular, cortical engineered neural networks. By implementing geometrical constraints inspired by a Tesla valve within the connecting microtunnels, we additionally exert control over the direction of axonal outgrowth between the nodes. Interfacing these platforms with nanoporous microelectrode arrays reveals that the resulting laminar cortical networks exhibit pronounced segregated and integrated functional dynamics across layers, mirroring key elements of the feedforward, hierarchical information processing observed in the neocortex. The multi-nodal configuration also facilitates selective perturbation of individual nodes within the networks. To illustrate this, we induced hypoxia, a key factor in the pathogenesis of various neurological disorders, in well-connected nodes within the networks. Our findings demonstrate that such perturbations induce ablation of information flow across the hypoxic node, while enabling the study of plasticity and information processing adaptations in neighboring nodes and neural communication pathways. In summary, our presented model system recapitulates fundamental attributes of the microcircuit organization of neocortical neural networks, rendering it highly pertinent for preclinical neuroscience research. This model system holds promise for yielding new insights into the development, topological organization, and neuroplasticity mechanisms of the neocortex across the micro- and mesoscale level, in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| | - Pawel Sikorski
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| |
Collapse
|
12
|
Nakata S, Iwasaki K, Funato H, Yanagisawa M, Ozaki H. Neuronal subtype-specific transcriptomic changes in the cerebral neocortex associated with sleep pressure. Neurosci Res 2024; 207:13-25. [PMID: 38537682 DOI: 10.1016/j.neures.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Sleep is homeostatically regulated by sleep pressure, which increases during wakefulness and dissipates during sleep. Recent studies have suggested that the cerebral neocortex, a six-layered structure composed of various layer- and projection-specific neuronal subtypes, is involved in the representation of sleep pressure governed by transcriptional regulation. Here, we examined the transcriptomic changes in neuronal subtypes in the neocortex upon increased sleep pressure using single-nucleus RNA sequencing datasets and predicted the putative intracellular and intercellular molecules involved in transcriptome alterations. We revealed that sleep deprivation (SD) had the greatest effect on the transcriptome of layer 2 and 3 intratelencephalic (L2/3 IT) neurons among the neocortical glutamatergic neuronal subtypes. The expression of mutant SIK3 (SLP), which is known to increase sleep pressure, also induced profound changes in the transcriptome of L2/3 IT neurons. We identified Junb as a candidate transcription factor involved in the alteration of the L2/3 IT neuronal transcriptome by SD and SIK3 (SLP) expression. Finally, we inferred putative intercellular ligands, including BDNF, LSAMP, and PRNP, which may be involved in SD-induced alteration of the transcriptome of L2/3 IT neurons. We suggest that the transcriptome of L2/3 IT neurons is most impacted by increased sleep pressure among neocortical glutamatergic neuronal subtypes and identify putative molecules involved in such transcriptional alterations.
Collapse
Affiliation(s)
- Shinya Nakata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
13
|
Singh G, Sharma P, Forrest G, Harkema S, Behrman A, Gerasimenko Y. Spinal Cord Transcutaneous Stimulation in Cervical Spinal Cord Injury: A Review Examining Upper Extremity Neuromotor Control, Recovery Mechanisms, and Future Directions. J Neurotrauma 2024; 41:2056-2074. [PMID: 38874496 PMCID: PMC11971538 DOI: 10.1089/neu.2023.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Cervical spinal cord injury (SCI) results in significant sensorimotor impairments below the injury level, notably in the upper extremities (UEs), impacting daily activities and quality of life. Regaining UE function remains the top priority for individuals post-cervical SCI. Recent advances in understanding adaptive plasticity within the sensorimotor system have led to the development of novel non-invasive neurostimulation strategies, such as spinal cord transcutaneous stimulation (scTS), to facilitate UE motor recovery after SCI. This comprehensive review investigates the neuromotor control of UE, the typical recovery trajectories following SCI, and the therapeutic potential of scTS to enhance UE motor function in individuals with cervical SCI. Although limited in number with smaller sample sizes, the included research articles consistently suggest that scTS, when combined with task-specific training, improves voluntary control of arm and hand function and sensation. Further, the reported improvements translate to the recovery of various UE functional tasks and positively impact the quality of life in individuals with cervical SCI. Several methodological limitations, including stimulation site selection and parameters, training strategies, and sensitive outcome measures, require further advancements to allow successful translation of scTS from research to clinical settings. This review also summarizes the current literature and proposes future directions to support establishing approaches for scTS as a viable neuro-rehabilitative tool.
Collapse
Affiliation(s)
- Goutam Singh
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Kosair for Kids School of Physical Therapy, Spalding University, Louisville, Kentucky, USA
| | - Pawan Sharma
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gail Forrest
- Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Foundation, Newark, New Jersey, USA
| | - Susan Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Andrea Behrman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
14
|
Kim JH, Daie K, Li N. A combinatorial neural code for long-term motor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597627. [PMID: 38895416 PMCID: PMC11185691 DOI: 10.1101/2024.06.05.597627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Motor skill repertoire can be stably retained over long periods, but the neural mechanism underlying stable memory storage remains poorly understood. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of a mouse's lifespan, and we show that learned actions are stably retained in motor memory in combination with context, which protects existing memories from erasure during new motor learning. We used automated home-cage training to establish a continual learning paradigm in which mice learned to perform directional licking in different task contexts. We combined this paradigm with chronic two-photon imaging of motor cortex activity for up to 6 months. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories while retaining the previous memories. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. At the same time, continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning. Learning in new contexts produces parallel new representations instead of modifying existing representations, thus protecting existing motor repertoire from erasure.
Collapse
|
15
|
Tan T, Jiang L, He Z, Ding X, Xiong X, Tang M, Chen Y, Tang Y. NR1 Splicing Variant NR1a in Cerebellar Granule Neurons Constitutes a Better Motor Learning in the Mouse. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1112-1120. [PMID: 37880519 PMCID: PMC11102416 DOI: 10.1007/s12311-023-01614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
As an excitatory neuron in the cerebellum, the granule cells play a crucial role in motor learning. The assembly of NMDAR in these neurons varies in developmental stages, while the significance of this variety is still not clear. In this study, we found that motor training could specially upregulate the expression level of NR1a, a splicing form of NR1 subunit. Interestingly, overexpression of this splicing variant in a cerebellar granule cell-specific manner dramatically elevated the NMDAR binding activity. Furthermore, the NR1a transgenic mice did not only show an enhanced motor learning, but also exhibit a higher efficacy for motor training in motor learning. Our results suggested that as a "junior" receptor, NR1a facilitates NMDAR activity as well as motor skill learning.
Collapse
Affiliation(s)
- Ting Tan
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Linyan Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhengxiao He
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xuejiao Ding
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoli Xiong
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yuan Chen
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yaping Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
16
|
Milbocker KA, Smith IF, Klintsova AY. Maintaining a Dynamic Brain: A Review of Empirical Findings Describing the Roles of Exercise, Learning, and Environmental Enrichment in Neuroplasticity from 2017-2023. Brain Plast 2024; 9:75-95. [PMID: 38993580 PMCID: PMC11234674 DOI: 10.3233/bpl-230151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 07/13/2024] Open
Abstract
Brain plasticity, also termed neuroplasticity, refers to the brain's life-long ability to reorganize itself in response to various changes in the environment, experiences, and learning. The brain is a dynamic organ capable of responding to stimulating or depriving environments, activities, and circumstances from changes in gene expression, release of neurotransmitters and neurotrophic factors, to cellular reorganization and reprogrammed functional connectivity. The rate of neuroplastic alteration varies across the lifespan, creating further challenges for understanding and manipulating these processes to benefit motor control, learning, memory, and neural remodeling after injury. Neuroplasticity-related research spans several decades, and hundreds of reviews have been written and published since its inception. Here we present an overview of the empirical papers published between 2017 and 2023 that address the unique effects of exercise, plasticity-stimulating activities, and the depriving effect of social isolation on brain plasticity and behavior.
Collapse
Affiliation(s)
| | - Ian F. Smith
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| |
Collapse
|
17
|
Li H, Feng J, Chen M, Xin M, Chen X, Liu W, Wang L, Wang KH, He J. Cholecystokinin facilitates motor skill learning by modulating neuroplasticity in the motor cortex. eLife 2024; 13:e83897. [PMID: 38700136 PMCID: PMC11068356 DOI: 10.7554/elife.83897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.
Collapse
Affiliation(s)
- Hao Li
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Jingyu Feng
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Mengying Chen
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Min Xin
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Xi Chen
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Wenhao Liu
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Liping Wang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Kuan Hong Wang
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| | - Jufang He
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| |
Collapse
|
18
|
Ji C, Yang X, Eleish M, Jiang Y, Tetlow A, Song S, Martín-Ávila A, Wu Q, Zhou Y, Gan W, Lin Y, Sigurdsson EM. Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591735. [PMID: 38746288 PMCID: PMC11092661 DOI: 10.1101/2024.04.29.591735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We previously reported altered neuronal Ca 2+ dynamics in the motor cortex of 12-month-old JNPL3 tauopathy mice during quiet wakefulness or forced running, with a tau antibody treatment significantly restoring the neuronal Ca 2+ activity profile and decreasing pathological tau in these mice 1 . Whether neuronal functional deficits occur at an early stage of tauopathy and if tau antibody treatment is effective in younger tauopathy mice needed further investigation. In addition, neuronal network activity and neuronal firing patterns have not been well studied in behaving tauopathy models. In this study, we first performed in vivo two-photon Ca 2+ imaging in JNPL3 mice in their early stage of tauopathy at 6 months of age, compared to 12 month old mice and age-matched wild-type controls to evaluate neuronal functional deficits. At the animal level, frequency of neuronal Ca 2+ transients decreased only in 6 month old tauopathy mice compared to controls, and only when animals were running on a treadmill. The amplitude of neuronal transients decreased in tauopathy mice compared to controls under resting and running conditions in both age groups. Total neuronal activity decreased only in 6 month old tauopathy mice compared to controls under resting and running conditions. Within either tauopathy or wild-type group, only total activity decreased in older wild-type animals. The tauopathy mice at different ages did not differ in neuronal Ca 2+ transient frequency, amplitude or total activity. In summary, neuronal function did significantly attenuate at an early age in tauopathy mice compared to controls but interestingly did not deteriorate between 6 and 12 months of age. A more detailed populational analysis of the pattern of Ca 2+ activity at the neuronal level in the 6 month old cohort confirmed neuronal hypoactivity in layer 2/3 of primary motor cortex, compared to wild-type controls, when animals were either resting or running on a treadmill. Despite reduced activity, neuronal Ca 2+ profiles exhibited enhanced synchrony and dysregulated responses to running stimulus. Further ex vivo electrophysiological recordings revealed reduction of spontaneous excitatory synaptic transmission onto and in pyramidal neurons and enhanced excitability of inhibitory neurons in motor cortex, which were likely responsible for altered neuronal network activity in this region. Lastly, tau antibody treatment reduced pathological tau and gliosis partially restored the neuronal Ca 2+ activity deficits but failed to rescue altered network changes. Taken together, substantial neuronal and network dysfunction occurred in the early stage of tauopathy that was partially alleviated with acute tau antibody treatment, which highlights the importance of functional assessment when evaluating the therapeutic potential of tau antibodies. Highlights Layer 2/3 motor cortical neurons exhibited hypofunction in awake and behaving mice at the early stage of tauopathy.Altered neuronal network activity disrupted local circuitry engagement in tauopathy mice during treadmill running.Layer 2/3 motor cortical neurons in tauopathy mice exhibited enhanced neuronal excitability and altered excitatory synaptic transmissions.Acute tau antibody treatment reduced pathological tau and gliosis, and partially restored neuronal hypofunction profiles but not network dysfunction.
Collapse
|
19
|
Calderone A, Cardile D, De Luca R, Quartarone A, Corallo F, Calabrò RS. Brain Plasticity in Patients with Spinal Cord Injuries: A Systematic Review. Int J Mol Sci 2024; 25:2224. [PMID: 38396902 PMCID: PMC10888628 DOI: 10.3390/ijms25042224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
A spinal cord injury (SCI) causes changes in brain structure and brain function due to the direct effects of nerve damage, secondary mechanisms, and long-term effects of the injury, such as paralysis and neuropathic pain (NP). Recovery takes place over weeks to months, which is a time frame well beyond the duration of spinal shock and is the phase in which the spinal cord remains unstimulated below the level of injury and is associated with adaptations occurring throughout the nervous system, often referred to as neuronal plasticity. Such changes occur at different anatomical sites and also at different physiological and molecular biological levels. This review aims to investigate brain plasticity in patients with SCIs and its influence on the rehabilitation process. Studies were identified from an online search of the PubMed, Web of Science, and Scopus databases. Studies published between 2013 and 2023 were selected. This review has been registered on OSF under (n) 9QP45. We found that neuroplasticity can affect the sensory-motor network, and different protocols or rehabilitation interventions can activate this process in different ways. Exercise rehabilitation training in humans with SCIs can elicit white matter plasticity in the form of increased myelin water content. This review has demonstrated that SCI patients may experience plastic changes either spontaneously or as a result of specific neurorehabilitation training, which may lead to positive outcomes in functional recovery. Clinical and experimental evidence convincingly displays that plasticity occurs in the adult CNS through a variety of events following traumatic or non-traumatic SCI. Furthermore, efficacy-based, pharmacological, and genetic approaches, alone or in combination, are increasingly effective in promoting plasticity.
Collapse
Affiliation(s)
- Andrea Calderone
- Graduate School of Health Psychology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
20
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
21
|
Abbasi A, Lassagne H, Estebanez L, Goueytes D, Shulz DE, Ego-Stengel V. Brain-machine interface learning is facilitated by specific patterning of distributed cortical feedback. SCIENCE ADVANCES 2023; 9:eadh1328. [PMID: 37738340 PMCID: PMC10516504 DOI: 10.1126/sciadv.adh1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Neuroprosthetics offer great hope for motor-impaired patients. One obstacle is that fine motor control requires near-instantaneous, rich somatosensory feedback. Such distributed feedback may be recreated in a brain-machine interface using distributed artificial stimulation across the cortical surface. Here, we hypothesized that neuronal stimulation must be contiguous in its spatiotemporal dynamics to be efficiently integrated by sensorimotor circuits. Using a closed-loop brain-machine interface, we trained head-fixed mice to control a virtual cursor by modulating the activity of motor cortex neurons. We provided artificial feedback in real time with distributed optogenetic stimulation patterns in the primary somatosensory cortex. Mice developed a specific motor strategy and succeeded to learn the task only when the optogenetic feedback pattern was spatially and temporally contiguous while it moved across the topography of the somatosensory cortex. These results reveal spatiotemporal properties of the sensorimotor cortical integration that set constraints on the design of neuroprosthetics.
Collapse
Affiliation(s)
| | | | | | - Dorian Goueytes
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay (NeuroPSI), 91400 Saclay, France
| | | | | |
Collapse
|
22
|
Inoue R, Nishimune H. Neuronal Plasticity and Age-Related Functional Decline in the Motor Cortex. Cells 2023; 12:2142. [PMID: 37681874 PMCID: PMC10487126 DOI: 10.3390/cells12172142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Physiological aging causes a decline of motor function due to impairment of motor cortex function, losses of motor neurons and neuromuscular junctions, sarcopenia, and frailty. There is increasing evidence suggesting that the changes in motor function start earlier in the middle-aged stage. The mechanism underlining the middle-aged decline in motor function seems to relate to the central nervous system rather than the peripheral neuromuscular system. The motor cortex is one of the responsible central nervous systems for coordinating and learning motor functions. The neuronal circuits in the motor cortex show plasticity in response to motor learning, including LTP. This motor cortex plasticity seems important for the intervention method mechanisms that revert the age-related decline of motor function. This review will focus on recent findings on the role of plasticity in the motor cortex for motor function and age-related changes. The review will also introduce our recent identification of an age-related decline of neuronal activity in the primary motor cortex of middle-aged mice using electrophysiological recordings of brain slices.
Collapse
Affiliation(s)
- Ritsuko Inoue
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi, Tokyo 183-8538, Japan
| |
Collapse
|
23
|
Majumder S, Hirokawa K, Yang Z, Paletzki R, Gerfen CR, Fontolan L, Romani S, Jain A, Yasuda R, Inagaki HK. Cell-type-specific plasticity shapes neocortical dynamics for motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552699. [PMID: 37609277 PMCID: PMC10441538 DOI: 10.1101/2023.08.09.552699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse premotor cortex acquires its well-characterized neural dynamics that control movement timing, specifically lick timing. To probe the role of synaptic plasticity, we have genetically manipulated proteins essential for major forms of synaptic plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Cofilin, in a region and cell-type-specific manner. Transient inactivation of CaMKII in the premotor cortex blocked learning of new lick timing without affecting the execution of learned action or ongoing spiking activity. Furthermore, among the major glutamatergic neurons in the premotor cortex, CaMKII and Cofilin activity in pyramidal tract (PT) neurons, but not intratelencephalic (IT) neurons, is necessary for learning. High-density electrophysiology in the premotor cortex uncovered that neural dynamics anticipating licks are progressively shaped during learning, which explains the change in lick timing. Such reconfiguration in behaviorally relevant dynamics is impeded by CaMKII manipulation in PT neurons. Altogether, the activity of plasticity-related proteins in PT neurons plays a central role in sculpting neocortical dynamics to learn new behavior.
Collapse
Affiliation(s)
- Shouvik Majumder
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Koichi Hirokawa
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Zidan Yang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ronald Paletzki
- National Institute of Mental Health, Bethesda, MD 20814, USA
| | | | - Lorenzo Fontolan
- Turing Centre for Living Systems, Aix- Marseille University, INSERM, INMED U1249, Marseille, France
- Janelia Research Campus, HHMI, Ashburn VA 20147, USA
| | - Sandro Romani
- Janelia Research Campus, HHMI, Ashburn VA 20147, USA
| | - Anant Jain
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | |
Collapse
|
24
|
Dura-Bernal S, Neymotin SA, Suter BA, Dacre J, Moreira JVS, Urdapilleta E, Schiemann J, Duguid I, Shepherd GMG, Lytton WW. Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics. Cell Rep 2023; 42:112574. [PMID: 37300831 PMCID: PMC10592234 DOI: 10.1016/j.celrep.2023.112574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and cell-type-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA; Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, Grossman School of Medicine, New York University (NYU), New York, NY, USA
| | - Benjamin A Suter
- Department of Physiology, Northwestern University, Evanston, IL, USA
| | - Joshua Dacre
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Joao V S Moreira
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA
| | - Eugenio Urdapilleta
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA
| | - Julia Schiemann
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Center for Integrative Physiology and Molecular Medicine, Saarland University, Saarbrücken, Germany
| | - Ian Duguid
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | - William W Lytton
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Department of Neurology, Kings County Hospital Center, Brooklyn, NY, USA
| |
Collapse
|
25
|
Lu Y, Kim J, Kim T. A neurophysiological approach to the distinction between motor and cognitive skills: a functional magnetic resonance imaging study. Front Neurosci 2023; 17:1178800. [PMID: 37274191 PMCID: PMC10235625 DOI: 10.3389/fnins.2023.1178800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
This study investigated the neurophysiological differences underpinning motor and cognitive skills by measuring the brain activity via functional magnetic resonance imaging. Twenty-five healthy adults (11 women, 25.8 ± 3.5 years of age) participated in the study. We developed three types of tasks, namely, simple motor task (SMT), complex motor task (CMT), and cognitive task (CT), using two-dimensional images of Gomoku, a traditional game known as five in a row. When shown the stimulus, participants were instructed to identify the best spot to win the game and to perform motor imagery of placing the stone for the SMT and CMT but not for the CT. Accordingly, we found significant activation from the CMT minus SMT contrast in the dorsolateral prefrontal cortex, posterior parietal cortex, precentral gyrus, and superior frontal cortex, which reflected increased visuospatial attention, working memory, and motor planning. From the CT minus SMT contrast, we observed significant activation in the left caudate nucleus, right medial prefrontal cortex, and right primary somatosensory cortex, responsible for visuospatial working memory, error detection, and cognitive imagery, respectively. The present findings indicate that adopting a conventional classification of cognitive and motor tasks focused on the extent of decision making and motor control involved in task performance might not be ideal.
Collapse
Affiliation(s)
- Yunhang Lu
- Department of Physical Education, Kyungpook National University, Daegu, Republic of Korea
- Institute of Sports Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jingu Kim
- Department of Physical Education, Kyungpook National University, Daegu, Republic of Korea
| | - Teri Kim
- Institute of Sports Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
26
|
Burnsed J, Matysik W, Yang L, Sun H, Joshi S, Kapur J. Increased glutamatergic synaptic transmission during development in layer II/III mouse motor cortex pyramidal neurons. Cereb Cortex 2023; 33:4645-4653. [PMID: 36137566 PMCID: PMC10110452 DOI: 10.1093/cercor/bhac368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal maturation of the motor cortex is vital to developing a variety of functions, including the capacity for motor learning. The first postnatal weeks involve many neuronal and synaptic changes, which differ by region and layer, likely due to different functions and needs during development. Motor cortex layer II/III is critical to receiving and integrating inputs from somatosensory cortex and generating attentional signals that are important in motor learning and planning. Here, we examined the neuronal and synaptic changes occurring in layer II/III pyramidal neurons of the mouse motor cortex from the neonatal (postnatal day 10) to young adult (postnatal day 30) period, using a combination of electrophysiology and biochemical measures of glutamatergic receptor subunits. There are several changes between p10 and p30 in these neurons, including increased dendritic branching, neuronal excitability, glutamatergic synapse number and synaptic transmission. These changes are critical to ongoing plasticity and capacity for motor learning during development. Understanding these changes will help inform future studies examining the impact of early-life injury and experiences on motor learning and development capacity.
Collapse
Affiliation(s)
- Jennifer Burnsed
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia 22908-0386, USA
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| | - Weronika Matysik
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| | - Lu Yang
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
- Department of Pediatrics, Shandong University, Jian, Shandong 250012, China
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908-0386, USA
- Brain Institute, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| |
Collapse
|
27
|
Wu X, Sarpong GA, Zhang J, Sugihara I. Divergent topographic projection of cerebral cortical areas to overlapping cerebellar lobules through distinct regions of the pontine nuclei. Heliyon 2023; 9:e14352. [PMID: 37025843 PMCID: PMC10070096 DOI: 10.1016/j.heliyon.2023.e14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The massive axonal projection from the cerebrum to the cerebellum through the pontine nuclei supports the cerebrocerebellar coordination of motor and nonmotor functions. However, the cerebrum and cerebellum have distinct patterns of functional localization in their cortices. We addressed this issue by bidirectional neuronal tracing from 22 various locations of the pontine nuclei in the mouse in a comprehensive manner. Cluster analyses of the distribution patterns of labeled cortical pyramidal cells and cerebellar mossy fiber terminals classified all cases into six groups located in six different subareas of the pontine nuclei. The lateral (insular), mediorostral (cingulate and prefrontal), and caudal (visual and auditory) cortical areas of the cerebrum projected to the medial, rostral, and lateral subareas of the pontine nuclei, respectively. These pontine subareas then projected mainly to the crus I, central vermis, and paraflocculus divergently. The central (motor and somatosensory) cortical areas projected to the centrorostral, centrocaudal and caudal subareas of the pontine nuclei, which then projected mainly to the rostral and caudal lobules with a somatotopic arrangement. The results indicate a new pontine nuclei-centric view of the corticopontocerebellar projection: the generally parallel corticopontine projection to pontine nuclei subareas is relayed to the highly divergent pontocerebellar projection terminating in overlapping specific lobules of the cerebellum. Consequently, the mode of the pontine nuclei relay underlies the cerebellar functional organization.
Collapse
|
28
|
Benli ET, Avci Ş, Öğün MN. Feel it or deal with it: Oral perception and aspiration risk in early stroke. J Oral Rehabil 2023; 50:217-222. [PMID: 36533879 DOI: 10.1111/joor.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sensation and perception impairments are significant problems faced by individuals with early-stage stroke. Sensory inputs needed in swallowing guide the perceptual process with the involvement of cognitive functions. In the absence of sensory input, bolus perception may be altered, and swallowing safety may be compromised. OBJECTIVES This study aims to evaluate the oral perception of volume change and the aspiration risk of individuals with stroke and determine the relationship between oral perception and aspiration risk. METHODS Total participants were 35. The Gugging Swallowing Screening Test (GUSS) was used to determine individuals' risk of aspiration and divide them into groups 'aspiration risk' and 'non-aspiration risk'. The Oral Perception of Liquid Volume Changes Test (OPLVCT) was used to determine the level of oral perception. RESULTS The groups were statistically similar in terms of age and other descriptives. When the OPLVC test was examined, the scores of the aspiration risk group were significantly lower (p < .001). In addition, a moderate negative correlation was found between aspiration risk and the OPLVC scores (r: -0.502; p < .001). CONCLUSION In this study, a relationship was found between aspiration risk and oral perception. It also revealed that individuals with stroke who are at risk of aspiration have low oral perception abilities. Based on these results, it was concluded that these individuals cannot reliably determine the maximum volume of liquid to be consumed without assistance. We suggest that evaluations and training of oral perception should be added to the rehabilitation of individuals with stroke.
Collapse
Affiliation(s)
- Enes Tayyip Benli
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Şebnem Avci
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Muhammed Nur Öğün
- Faculty of Medicine, Department of Neurology, Bolu Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
29
|
Wang D, Huang Y, Liang S, Meng Q, Yu H. The identification of interacting brain networks during robot-assisted training with multimodal stimulation. J Neural Eng 2023; 20. [PMID: 36548992 DOI: 10.1088/1741-2552/acae05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Robot-assisted rehabilitation training is an effective way to assist rehabilitation therapy. So far, various robotic devices have been developed for automatic training of central nervous system following injury. Multimodal stimulation such as visual and auditory stimulus and even virtual reality technology were usually introduced in these robotic devices to improve the effect of rehabilitation training. This may need to be explained from a neurological perspective, but there are few relevant studies.Approach.In this study, ten participants performed right arm rehabilitation training tasks using an upper limb rehabilitation robotic device. The tasks were completed under four different feedback conditions including multiple combinations of visual and auditory components: auditory feedback; visual feedback; visual and auditory feedback (VAF); non-feedback. The functional near-infrared spectroscopy devices record blood oxygen signals in bilateral motor, visual and auditory areas. Using hemoglobin concentration as an indicator of cortical activation, the effective connectivity of these regions was then calculated through Granger causality.Main results.We found that overall stronger activation and effective connectivity between related brain regions were associated with VAF. When participants completed the training task without VAF, the trends in activation and connectivity were diminished.Significance.This study revealed cerebral cortex activation and interacting networks of brain regions in robot-assisted rehabilitation training with multimodal stimulation, which is expected to provide indicators for further evaluation of the effect of rehabilitation training, and promote further exploration of the interaction network in the brain during a variety of external stimuli, and to explore the best sensory combination.
Collapse
Affiliation(s)
- Duojin Wang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China.,Shanghai Engineering Research Center of Assistive Devices, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Yanping Huang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Sailan Liang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Qingyun Meng
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Shanghai 201318, People's Republic of China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China.,Shanghai Engineering Research Center of Assistive Devices, 516 Jungong Road, Shanghai 200093, People's Republic of China
| |
Collapse
|
30
|
de Carvalho M, Swash M. Upper and lower motor neuron neurophysiology and motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:17-29. [PMID: 37562869 DOI: 10.1016/b978-0-323-98818-6.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
This chapter considers the principles that underlie neurophysiological studies of upper motor neuron or lower motor neuron lesions, based on an understanding of the normal structure and function of the motor system. Human motor neurophysiology consists of an evaluation of the active components of the motor system that are relevant to volitional movements. Relatively primitive motor skills include locomotion, much dependent on the spinal cord central pattern generator, reaching, involving proximal and distal muscles activation, and grasping. Humans are well prepared to perform complex movements like writing. The role of motor cortex is critical for the motor activity, very dependent on the continuous sensory feedback, and this is essential for adapting the force and speed control, which contributes to motor learning. Most corticospinal neurons in the brain project to brainstem and spinal cord, many with polysynaptic inhibitory rather than excitatory connections. The monosynaptic connections observed in humans and primates constitute a specialized pathway implicated in fractional finger movements. Spinal cord has a complex physiology, and local reflexes and sensory feedback are essential to control adapted muscular contraction during movement. The cerebellum has a major role in motor coordination, but also consistent roles in sensory activities, speech, and language, in motor and spatial memory, and in psychological activity. The motor unit is the final effector of the motor drive. The complex interplay between the lower motor neuron, its axon, motor end-plates, and muscle fibers allows a relevant plasticity in the movement output.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa-Norte, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal.
| | - Michael Swash
- Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal; Department of Neurology, Barts and London School of Medicine, Queen Mary University of London and Royal London Hospital, London, United Kingdom
| |
Collapse
|
31
|
Macías M, Lopez-Virgen V, Olivares-Moreno R, Rojas-Piloni G. Corticospinal neurons from motor and somatosensory cortices exhibit different temporal activity dynamics during motor learning. Front Hum Neurosci 2022; 16:1043501. [PMID: 36504625 PMCID: PMC9732016 DOI: 10.3389/fnhum.2022.1043501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The ability to learn motor skills implicates an improvement in accuracy, speed and consistency of movements. Motor control is related to movement execution and involves corticospinal neurons (CSp), which are broadly distributed in layer 5B of the motor and somatosensory cortices. CSp neurons innervate the spinal cord and are functionally diverse. However, whether CSp activity differs between different cortical areas throughout motor learning has been poorly explored. Given the importance and interaction between primary motor (M1) and somatosensory (S1) cortices related to movement, we examined the functional roles of CSp neurons in both areas. We induced the expression of GCaMP7s calcium indicator to perform photometric calcium recordings from layer 5B CSp neurons simultaneously in M1 and S1 cortices and track their activity while adult mice learned and performed a cued lever-press task. We found that during early learning sessions, the population calcium activity of CSp neurons in both cortices during movement did not change significantly. In late learning sessions the peak amplitude and duration of calcium activity CSp neurons increased in both, M1 and S1 cortices. However, S1 and M1 CSp neurons display a different temporal dynamic during movements that occurred when animals learned the task; both M1 and S1 CSp neurons activate before movement initiation, however, M1 CSp neurons continue active during movement performance, reinforcing the idea of the diversity of the CSp system and suggesting that CSp neuron activity in M1 and S1 cortices throughout motor learning have different functional roles for sensorimotor integration.
Collapse
|
32
|
Mao Y, Gao Z, Yang H, Song C. Influence of proprioceptive training based on ankle-foot robot on improving lower limbs function in patients after a stroke. Front Neurorobot 2022; 16:969671. [PMID: 36386387 PMCID: PMC9643575 DOI: 10.3389/fnbot.2022.969671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Proprioception is important for our everyday activity, as it indicates the position, movement, and force on the body. This is important not only for ambulation but also for patients who are diagnosed with stroke. Objective This study aimed to evaluate the influence of proprioceptive training on lower limb function in patients after a stroke using an ankle-foot robot. Method In total, 60 adult participants who met the criteria were randomly divided into a control group and an experimental group. The control group (RG) was given regular physical activity, and the sensory training group (SG) was given proprioceptive training based on an ankle-foot robot, the rest being the same as RG. Measurements for 10-meter walking time (10MWT), the Berg Balance Scale (BBS), the Fugl-Meyer assessment of lower extremity (FMA-LE), and active range of motion (AROM), passive range of motion (PROM), and ankle joint sensitivity before and after 6 weeks of treatment (30 sessions; five times per week) were assessed. Results There was a significant decrease in both 10MWT and ankle joint sensitivity in both groups (p < 0.05), while there was a significant increase in BBS, FMA-LE, AROM, and PROM in both groups (p < 0.05). A significant relationship was identified between the two groups, the SG group had greater degrees of improvement compared to the RG group. Conclusion The proprioceptive training based on an ankle-foot robot could improve proprioception and effectively improve the motor function and walking ability in patients after a stroke. Proprioceptive strength training is recommended to be emphasized in the regular rehabilitation of patients after a stroke.
Collapse
|
33
|
Bacmeister CM, Huang R, Osso LA, Thornton MA, Conant L, Chavez AR, Poleg-Polsky A, Hughes EG. Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nat Neurosci 2022; 25:1300-1313. [PMID: 36180791 PMCID: PMC9651929 DOI: 10.1038/s41593-022-01169-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/18/2022] [Indexed: 01/10/2023]
Abstract
Myelin plasticity occurs when newly formed and pre-existing oligodendrocytes remodel existing patterns of myelination. Myelin remodeling occurs in response to changes in neuronal activity and is required for learning and memory. However, the link between behavior-induced neuronal activity and circuit-specific changes in myelination remains unclear. Using longitudinal in vivo two-photon imaging and targeted labeling of learning-activated neurons in mice, we explore how the pattern of intermittent myelination is altered on individual cortical axons during learning of a dexterous reach task. We show that behavior-induced myelin plasticity is targeted to learning-activated axons and occurs in a staged response across cortical layers in the mouse primary motor cortex. During learning, myelin sheaths retract, which results in lengthening of nodes of Ranvier. Following motor learning, addition of newly formed myelin sheaths increases the number of continuous stretches of myelination. Computational modeling suggests that motor learning-induced myelin plasticity initially slows and subsequently increases axonal conduction speed. Finally, we show that both the magnitude and timing of nodal and myelin dynamics correlate with improvement of behavioral performance during motor learning. Thus, learning-induced and circuit-specific myelination changes may contribute to information encoding in neural circuits during motor learning.
Collapse
Affiliation(s)
- Clara M Bacmeister
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
- Neuroscience IDP Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Rongchen Huang
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lauren Conant
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anthony R Chavez
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
34
|
Gombaut C, Holmes SA. Sensorimotor Integration and Pain Perception: Mechanisms Integrating Nociceptive Processing. A Systematic Review and ALE-Meta Analysis. Front Integr Neurosci 2022; 16:931292. [PMID: 35990591 PMCID: PMC9390858 DOI: 10.3389/fnint.2022.931292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Pain treatment services and clinical indicators of pain chronicity focus on afferent nociceptive projections and psychological markers of pain perception with little focus on motor processes. Research supports a strong role for the motor system both in terms of pain related disability and in descending pain modulation. However, there is little understanding of the neurological regions implicated in pain-motor interactions and how the motor and sensory systems interact under conditions of pain. We performed an ALE meta-analysis on two clinical cohorts with atypical sensory and motor processes under conditions of pain and no pain. Persons with sensory altered processing (SAP) and no pain presented with greater activity in the precentral and supplementary motor area relative to persons with self-reported pain. In persons with motor altered processing (MAP), there appeared to be a suppression of activity in key pain regions such as the insula, thalamus, and postcentral gyrus. As such, activation within the motor system may play a critical role in dampening pain symptoms in persons with SAP, and in suppressing activity in key pain regions of the brain in persons with MAP. Future research endeavors should focus on understanding how sensory and motor processes interact both to understand disability and discover new treatment avenues.
Collapse
Affiliation(s)
- Cindy Gombaut
- Pediatric Pain Pathway Lab, Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- *Correspondence: Cindy Gombaut
| | - Scott A. Holmes
- Department of Anesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Wolpaw JR, Kamesar A. Heksor: the central nervous system substrate of an adaptive behaviour. J Physiol 2022; 600:3423-3452. [PMID: 35771667 PMCID: PMC9545119 DOI: 10.1113/jp283291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past half-century, the largely hardwired central nervous system (CNS) of 1970 has become the ubiquitously plastic CNS of today, in which change is the rule not the exception. This transformation complicates a central question in neuroscience: how are adaptive behaviours - behaviours that serve the needs of the individual - acquired and maintained through life? It poses a more basic question: how do many adaptive behaviours share the ubiquitously plastic CNS? This question compels neuroscience to adopt a new paradigm. The core of this paradigm is a CNS entity with unique properties, here given the name heksor from the Greek hexis. A heksor is a distributed network of neurons and synapses that changes itself as needed to maintain the key features of an adaptive behaviour, the features that make the behaviour satisfactory. Through their concurrent changes, the numerous heksors that share the CNS negotiate the properties of the neurons and synapses that they all use. Heksors keep the CNS in a state of negotiated equilibrium that enables each heksor to maintain the key features of its behaviour. The new paradigm based on heksors and the negotiated equilibrium they create is supported by animal and human studies of interactions among new and old adaptive behaviours, explains otherwise inexplicable results, and underlies promising new approaches to restoring behaviours impaired by injury or disease. Furthermore, the paradigm offers new and potentially important answers to extant questions, such as the generation and function of spontaneous neuronal activity, the aetiology of muscle synergies, and the control of homeostatic plasticity.
Collapse
Affiliation(s)
- Jonathan R. Wolpaw
- National Centre for Adaptive NeurotechnologiesAlbany Stratton VA Medical CentreAlbanyNYUSA
- Department of Biomedical SciencesState University of New YorkAlbanyNYUSA
| | | |
Collapse
|
36
|
Archery under the (electroencephalography-)hood: Theta-lateralization as a marker for motor learning. Neuroscience 2022; 499:23-39. [PMID: 35870564 DOI: 10.1016/j.neuroscience.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
An intrinsic characteristic of the motor system is the preference of one side of the body. Lateralization is found in motor behavior and in the structural and functional correlates of cortical motor networks. While genetic factors have been elucidated as mechanisms leading to such asymmetries, findings in motor learning and experience from clinical experience demonstrate considerable additional plasticity during the lifespan. If and how functional lateralization develops in short timeframes during training of motor skills involving both sides of the body is still largely unclear. In the present exploratory study, we investigate lateralization of theta-, alpha- and beta-band oscillations during training of an ecologically valid skill - archery. We relate lateralization shift to performance improvement and elucidate the underlying cortical areas. To this end, healthy participants without any previous experience in archery underwent intensive training with 100 shots on each of three days. 64-channel electroencephalography was recorded simultaneously during the individual shots. We found that a central-parietal theta lateralization shift to the left immediately before the shot was associated with performance improvement. Lateralization of alpha or beta did not yield a significant association. Importantly, areas of maximum activation were not identical with areas showing the strongest associations with performance improvement. These data suggest that learning a complex bimanual motor skill is associated with a shift of theta-band oscillations to the left in central-parietal areas. The relationship with performance improvement may reflect increased cortical efficiency of task-relevant processing.
Collapse
|
37
|
Brito V, Montalban E, Sancho-Balsells A, Pupak A, Flotta F, Masana M, Ginés S, Alberch J, Martin C, Girault JA, Giralt A. Hippocampal Egr1-Dependent Neuronal Ensembles Negatively Regulate Motor Learning. J Neurosci 2022; 42:5346-5360. [PMID: 35610044 PMCID: PMC9270920 DOI: 10.1523/jneurosci.2258-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
Motor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia nuclei. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here, we show that mice receiving a long-term training in the accelerating rotarod display marked hippocampal transcriptional changes and reduced pyramidal neurons activity in the CA1 region when compared with naive mice. Then, we use mice in which neural ensembles are permanently labeled in an Egr1 activity-dependent fashion. Using these mice, we identify a subpopulation of Egr1-expressing pyramidal neurons in CA1 activated in short-term (STT) and long-term (LTT) trained mice in the rotarod task. When Egr1 is downregulated in the CA1 or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, Egr1 organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning. These evidences highlight the role of the hippocampus in the control of this type of learning and we provide a possible underlying mechanism.SIGNIFICANCE STATEMENT It is a major topic in neurosciences the deciphering of the specific circuits underlying memory systems during the encoding of new information. However, the potential role of the hippocampus in the control of motor learning and the underlying mechanisms has been poorly addressed. In the present work we show how the hippocampus responds to motor learning and how the Egr1 molecule is one of the major responsible for such phenomenon controlling the rate of motor coordination performances.
Collapse
Affiliation(s)
- Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Enrica Montalban
- Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Université de Paris, Paris F-75014, France
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Francesca Flotta
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Mercè Masana
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona 08036, Spain
| | - Claire Martin
- Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Université de Paris, Paris F-75014, France
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche -S 1270, Paris 75005, France
- Science and Engineering Faculty, Sorbonne Université, Paris 75005, France
- Institut du Fer a Moulin, Paris 75005, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona 08036, Spain
| |
Collapse
|
38
|
Hu N, Avela J, Kidgell DJ, Piirainen JM, Walker S. Modulations of corticospinal excitability following rapid ankle dorsiflexion in skill- and endurance-trained athletes. Eur J Appl Physiol 2022; 122:2099-2109. [PMID: 35729431 PMCID: PMC9212199 DOI: 10.1007/s00421-022-04981-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Purpose Long-term sports training, such as skill and endurance training, leads to specific neuroplasticity. However, it remains unclear if muscle stretch-induced proprioceptive feedback influences corticospinal facilitation/inhibition differently between skill- and endurance-trained athletes. This study investigated modulation of corticospinal excitability following rapid ankle dorsiflexion between well-trained skill and endurance athletes. Methods Ten skill- and ten endurance-trained athletes participated in the study. Corticospinal excitability was tested by single- and paired-pulse transcranial magnetic stimulations (TMS) at three different latencies following passive rapid ankle dorsiflexion. Motor evoked potential (MEP), short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), and long-latency intracortical inhibition (LICI) were recorded by surface electromyography from the soleus muscle. Results Compared to immediately before ankle dorsiflexion (Onset), TMS induced significantly greater MEPs during the supraspinal reaction period (~ 120 ms after short-latency reflex, SLR) in the skill group only (from 1.7 ± 1.0 to 2.7 ± 1.8%M-max, P = 0.005) despite both conditions being passive. ICF was significantly greater over all latencies in skill than endurance athletes (F(3, 45) = 4.64, P = 0.007), although no between-group differences for stimulations at specific latencies (e.g., at SLR) were observed. Conclusion The skill group showed higher corticospinal excitability during the supraspinal reaction phase, which may indicate a “priming” of corticospinal excitability following rapid ankle dorsiflexion for a supraspinal reaction post-stretch, which appears absent in endurance-trained athletes.
Collapse
Affiliation(s)
- Nijia Hu
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Janne Avela
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Jarmo M Piirainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simon Walker
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
39
|
Pass R, Haan N, Humby T, Wilkinson LS, Hall J, Thomas KL. Selective behavioural impairments in mice heterozygous for the cross disorder psychiatric risk gene DLG2. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12799. [PMID: 35118804 PMCID: PMC9393930 DOI: 10.1111/gbb.12799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Mutations affecting DLG2 are emerging as a genetic risk factor associated with neurodevelopmental psychiatric disorders including schizophrenia, autism spectrum disorder, and bipolar disorder. Discs large homolog 2 (DLG2) is a member of the membrane-associated guanylate kinase protein superfamily of scaffold proteins, a component of the post-synaptic density in excitatory neurons and regulator of synaptic function and plasticity. It remains an important question whether and how haploinsuffiency of DLG2 contributes to impairments in basic behavioural and cognitive functions that may underlie symptomatic domains in patients that cross diagnostic boundaries. Using a heterozygous Dlg2 mouse model we examined the impact of reduced Dlg2 expression on functions commonly impaired in neurodevelopmental psychiatric disorders including motor co-ordination and learning, pre-pulse inhibition and habituation to novel stimuli. The heterozygous Dlg2 mice exhibited behavioural impairments in long-term motor learning and long-term habituation to a novel context, but not motor co-ordination, initial responses to a novel context, PPI of acoustic startle or anxiety. We additionally showed evidence for the reduced regulation of the synaptic plasticity-associated protein cFos in the motor cortex during motor learning. The sensitivity of selective behavioural and cognitive functions, particularly those dependent on synaptic plasticity, to reduced expression of DLG2 give further credence for DLG2 playing a critical role in specific brain functions but also a mechanistic understanding of symptom expression shared across psychiatric disorders.
Collapse
Affiliation(s)
- Rachel Pass
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
- Okinawa Institute of Science and TechnologyOkinawaJapan
| | - Niels Haan
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
| | | | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
- School of PsychologyCardiff UniversityCardiffUK
| | - Jeremy Hall
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Kerrie L. Thomas
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| |
Collapse
|
40
|
Stress vulnerability shapes disruption of motor cortical neuroplasticity. Transl Psychiatry 2022; 12:91. [PMID: 35246507 PMCID: PMC8897461 DOI: 10.1038/s41398-022-01855-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic stress is a major cause of neuropsychiatric conditions such as depression. Stress vulnerability varies individually in mice and humans, measured by behavioral changes. In contrast to affective symptoms, motor retardation as a consequence of stress is not well understood. We repeatedly imaged dendritic spines of the motor cortex in Thy1-GFP M mice before and after chronic social defeat stress. Susceptible and resilient phenotypes were discriminated by symptom load and their motor learning abilities were assessed by a gross and fine motor task. Stress phenotypes presented individual short- and long-term changes in the hypothalamic-pituitary-adrenal axis as well as distinct patterns of altered motor learning. Importantly, stress was generally accompanied by a marked reduction of spine density in the motor cortex and spine dynamics depended on the stress phenotype. We found astrogliosis and altered microglia morphology along with increased microglia-neuron interaction in the motor cortex of susceptible mice. In cerebrospinal fluid, proteomic fingerprints link the behavioral changes and structural alterations in the brain to neurodegenerative disorders and dysregulated synaptic homeostasis. Our work emphasizes the importance of synaptic integrity and the risk of neurodegeneration within depression as a threat to brain health.
Collapse
|
41
|
de Oliveira PCA, de Araújo TAB, Machado DGDS, Rodrigues AC, Bikson M, Andrade SM, Okano AH, Simplicio H, Pegado R, Morya E. Transcranial Direct Current Stimulation on Parkinson's Disease: Systematic Review and Meta-Analysis. Front Neurol 2022; 12:794784. [PMID: 35082749 PMCID: PMC8785799 DOI: 10.3389/fneur.2021.794784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for Parkinson's disease (PD) is still a challenge. Thus, there is a need to synthesize available results, analyze methodologically and statistically, and provide evidence to guide tDCS in PD. Objective: Investigate isolated tDCS effect in different brain areas and number of stimulated targets on PD motor symptoms. Methods: A systematic review was carried out up to February 2021, in databases: Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor symptoms of PD were included. Results: Ten studies (n = 236) were included in meta-analysis and 25 studies (n = 405) in qualitative synthesis. The most frequently stimulated targets were dorsolateral prefrontal cortex and primary motor cortex. No significant effect was found among single targets on motor outcomes: Unified Parkinson's Disease Rating Scale (UPDRS) III – motor aspects (MD = −0.98%, 95% CI = −10.03 to 8.07, p = 0.83, I2 = 0%), UPDRS IV – dyskinesias (MD = −0.89%, CI 95% = −3.82 to 2.03, p = 0.55, I2 = 0%) and motor fluctuations (MD = −0.67%, CI 95% = −2.45 to 1.11, p = 0.46, I2 = 0%), timed up and go – gait (MD = 0.14%, CI 95% = −0.72 to 0.99, p = 0.75, I2 = 0%), Berg Balance Scale – balance (MD = 0.73%, CI 95% = −1.01 to 2.47, p = 0.41, I2 = 0%). There was no significant effect of single vs. multiple targets in: UPDRS III – motor aspects (MD = 2.05%, CI 95% = −1.96 to 6.06, p = 0.32, I2 = 0%) and gait (SMD = −0.05%, 95% CI = −0.28 to 0.17, p = 0.64, I2 = 0%). Simple univariate meta-regression analysis between treatment dosage and effect size revealed that number of sessions (estimate = −1.7, SE = 1.51, z-score = −1.18, p = 0.2, IC = −4.75 to 1.17) and cumulative time (estimate = −0.07, SE = 0.07, z-score = −0.99, p = 0.31, IC = −0.21 to 0.07) had no significant association. Conclusion: There was no significant tDCS alone short-term effect on motor function, balance, gait, dyskinesias or motor fluctuations in Parkinson's disease, regardless of brain area or targets stimulated.
Collapse
Affiliation(s)
- Paloma Cristina Alves de Oliveira
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Thiago Anderson Brito de Araújo
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | | | - Abner Cardoso Rodrigues
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | | | - Alexandre Hideki Okano
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Hougelle Simplicio
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil.,Rehabilitation Center, Anita Garibaldi Center for Education and Health, Santos Dumont Institute, Macaíba, Brazil.,Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoró, Brazil.,Neuron-Care Unit in Neurosurgery, Hospital Rio Grande, Natal, Brazil
| | - Rodrigo Pegado
- Program in Rehabilitation Science, Program in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Edgard Morya
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| |
Collapse
|
42
|
Asan AS, McIntosh JR, Carmel JB. Targeting Sensory and Motor Integration for Recovery of Movement After CNS Injury. Front Neurosci 2022; 15:791824. [PMID: 35126040 PMCID: PMC8813971 DOI: 10.3389/fnins.2021.791824] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
The central nervous system (CNS) integrates sensory and motor information to acquire skilled movements, known as sensory-motor integration (SMI). The reciprocal interaction of the sensory and motor systems is a prerequisite for learning and performing skilled movement. Injury to various nodes of the sensorimotor network causes impairment in movement execution and learning. Stimulation methods have been developed to directly recruit the sensorimotor system and modulate neural networks to restore movement after CNS injury. Part 1 reviews the main processes and anatomical interactions responsible for SMI in health. Part 2 details the effects of injury on sites critical for SMI, including the spinal cord, cerebellum, and cerebral cortex. Finally, Part 3 reviews the application of activity-dependent plasticity in ways that specifically target integration of sensory and motor systems. Understanding of each of these components is needed to advance strategies targeting SMI to improve rehabilitation in humans after injury.
Collapse
Affiliation(s)
| | | | - Jason B. Carmel
- Departments of Neurology and Orthopedics, Columbia University, New York, NY, United States
| |
Collapse
|
43
|
Lee C, Kim Y, Kaang BK. The primary motor cortex: the hub of motor learning in rodents. Neuroscience 2022; 485:163-170. [PMID: 35051529 DOI: 10.1016/j.neuroscience.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
The primary motor cortex, a dynamic center for overall motion control and decision making, undergoes significant alterations upon neural stimulation. Over the last few decades, data from numerous studies using rodent models have improved our understanding of the morphological and functional plasticity of the primary motor cortex. In particular, spatially specific formation of dendritic spines and their maintenance during distinct behaviors is considered crucial for motor learning. However, whether the modifications of specific synapses are associated with motor learning should be studied further. In this review, we summarized the findings of prior studies on the features and dynamics of the primary motor cortex in rodents.
Collapse
Affiliation(s)
- Chaery Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonjun Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
44
|
Serradas ML, Stein V, Gellner AK. Long-term changes of parvalbumin- and somatostatin-positive interneurons of the primary motor cortex after chronic social defeat stress depend on individual stress-vulnerability. Front Psychiatry 2022; 13:946719. [PMID: 35966477 PMCID: PMC9366473 DOI: 10.3389/fpsyt.2022.946719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic stress is a major risk factor for developing mental illnesses and cognitive deficiencies although stress-susceptibility varies individually. In a recent study, we established the connection between chronic social defeat stress (CSDS) and impaired motor learning abilities accompanied by chronically disturbed structural neuroplasticity in the primary motor cortex (M1) of mice. In this study, we further investigated the long-term effects of CSDS exposure on M1, focusing on the interneuronal cell population. We used repeated CSDS to elicit effects across behavioral, endocrinological, and metabolic parameters in mice. Susceptible and resilient phenotypes were discriminated by symptom load and motor learning abilities were assessed on the rotarod. Structural changes in interneuronal circuits of M1 were studied by immunohistochemistry using parvalbumin (PV+) and somatostatin (SST+) markers. Stress-susceptible mice had a blunted stress hormone response and impaired motor learning skills. These mice presented reduced numbers of both interneuron populations in M1 with layer-dependent distribution, while alterations in cell size and immunoreactivity were found in both susceptible and resilient individuals. These results, together with our previous data, suggest that stress-induced cell loss and degeneration of the GABAergic interneuronal network of M1 could underlay impaired motor learning, due to their role in controlling the excitatory output and spine dynamics of principal neurons required for this task. Our study further highlights the importance of long-term outcomes of chronically stressed individuals which are translationally important due to the long timecourses of stress-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria L Serradas
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
45
|
Geng HY, Arbuthnott G, Yung WH, Ke Y. Long-Range Monosynaptic Inputs Targeting Apical and Basal Dendrites of Primary Motor Cortex Deep Output Neurons. Cereb Cortex 2021; 32:3975-3989. [PMID: 34905771 DOI: 10.1093/cercor/bhab460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
The primary motor cortex (M1) integrates various long-range signals from other brain regions for the learning and execution of goal-directed movements. How the different inputs target the distinct apical and basal dendrites of M1 pyramidal neurons is crucial in understanding the functions of M1, but the detailed connectivity pattern is still largely unknown. Here, by combining cre-dependent rabies virus tracing, layer-specific chemical retrograde tracing, optogenetic stimulation, and electrophysiological recording, we mapped all long-range monosynaptic inputs to M1 deep output neurons in layer 5 (L5) in mice. We revealed that most upstream areas innervate both dendritic compartments concurrently. These include the sensory cortices, higher motor cortices, sensory and motor thalamus, association cortices, as well as many subcortical nuclei. Furthermore, the dichotomous inputs arise mostly from spatially segregated neuronal subpopulations within an upstream nucleus, and even in the case of an individual cortical layer. Therefore, these input areas could serve as both feedforward and feedback sources albeit via different subpopulations. Taken together, our findings revealed a previously unknown and highly intricate synaptic input pattern of M1L5 neurons, which implicates that the dendritic computations carried out by these neurons during motor execution or learning are far more complicated than we currently understand.
Collapse
Affiliation(s)
- Hong-Yan Geng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Gordon Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0485, Japan
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
46
|
Chinzara T, Buckingham G, Harris D. Transcranial direct current stimulation (tDCS) and sporting performance: A systematic review and meta-analysis of tDCS effects on physical endurance, muscular strength, and visuomotor skills. Eur J Neurosci 2021; 55:468-486. [PMID: 34904303 DOI: 10.1111/ejn.15540] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has been linked with a range of physiological and cognitive enhancements relevant to sporting performance. As a number of positive and null findings have been reported in the literature, the present meta-analysis sought to synthesise results across endurance, strength, and visuomotor skill domains to investigate if tDCS improves any aspect of sporting performance. Online database searches in August 2020 identified 43 full-text studies which examined the acute effects of tDCS compared to sham/control conditions on physical endurance, muscular strength, and visuomotor skills in healthy adults. Meta-analysis indicated a small overall effect favouring tDCS stimulation over sham/control (standardized mean difference (SMD)=0.25, CI95%[0.14;0.36]). Effects on strength (SMD=0.31, CI95%[0.10;0.51]) and visuomotor (SMD=0.29, CI95%[0.00;0.57]) tasks were larger than endurance performance (SMD=0.18, CI95%[0.00;0.37]). Meta-regressions indicated effect sizes were not related to stimulation parameters, but other factors such as genetics, gender, and experience may modulate tDCS effects. The results suggest tDCS has the potential to be used as an ergogenic aid in conjunction with a specified training regime.
Collapse
Affiliation(s)
- Trish Chinzara
- Department of Sport and Health Science, University of Exeter, UK.,Goldsmiths University of London, London, UK
| | - Gavin Buckingham
- Department of Sport and Health Science, University of Exeter, UK
| | - David Harris
- Department of Sport and Health Science, University of Exeter, UK
| |
Collapse
|
47
|
Campos-Ordoñez T, Alcalá E, Ibarra-Castañeda N, Buriticá J, González-Pérez Ó. Chronic exposure to cyclohexane induces stereotypic circling, hyperlocomotion, and anxiety-like behavior associated with atypical c-Fos expression in motor- and anxiety-related brain regions. Behav Brain Res 2021; 418:113664. [PMID: 34780858 DOI: 10.1016/j.bbr.2021.113664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022]
Abstract
Recreational abuse of solvents continues, despite cyclohexane (CHX) is used as a safe replacement in gasoline or adhesive formulations. Increasing evidence indicates that CHX inhalation affects brain functioning; however, scanty information is available about its effects on behavior and brain activity upon drug removal. In this study, we used CD1 adult mice to mimic an intoxication period of recreational drugs for 30 days. During the CHX exposure (~30,000 ppm), we analyzed exploratory and biphasic behaviors, stereotypic circling, and locomotion. After CHX removal (24 h or a month later), we assessed anxiety-like behaviors and quantified c-Fos cells in motor- and anxiety-related brain regions. Our findings indicate that the repeated inhalation of CHX produced steady hyperactivity and reduced ataxia, sedation, and seizures as the exposure to CHX progressed. Also, CHX decreased grooming and rearing behaviors. In the first week of CHX inhalation, a stereotypic circling behavior emerged, and locomotion increased gradually. One month after CHX withdrawal, mice showed low activity in the center zone of the open field and more buried marbles. Twenty-four hours after CHX removal, c-Fos expression was low in the dorsal striatum, ventral striatum, motor cortex, dorsomedial prefrontal cortex, basolateral amygdala, lateral hypothalamus, and ventral hippocampus. One month later, c-Fos expression remained low in the ventral striatum and lateral hypothalamus but increased in the dorsomedial prefrontal cortex and primary motor cortex. This study provides a comprehensive behavioral characterization and novel histological evidence of the CHX effects on the brain when is administered in a recreational-like mode.
Collapse
Affiliation(s)
- Tania Campos-Ordoñez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico; Centro de Estudios e Investigaciones en Comportamiento, University of Guadalajara, Jalisco, Mexico.
| | - Emmanuel Alcalá
- Centro de Estudios e Investigaciones en Comportamiento, University of Guadalajara, Jalisco, Mexico; Research Laboratory on Optimal Design, Devices and Advanced Materials, Department of Mathematics and Physics, ITESO, Jalisco, Mexico
| | - Nereida Ibarra-Castañeda
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico; Medical Science PhD Program, School of Medicine, University of Colima, Colima, Mexico
| | - Jonathan Buriticá
- Centro de Estudios e Investigaciones en Comportamiento, University of Guadalajara, Jalisco, Mexico
| | - Óscar González-Pérez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico.
| |
Collapse
|
48
|
Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science 2021; 374:eaba6905. [PMID: 34618550 DOI: 10.1126/science.aba6905] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia Bonetto
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ragnhildur Thóra Káradóttir
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Department of Physiology, Biomedical Centre, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
49
|
Shafti A, Haar S, Mio R, Guilleminot P, Faisal AA. Playing the piano with a robotic third thumb: assessing constraints of human augmentation. Sci Rep 2021; 11:21375. [PMID: 34725355 PMCID: PMC8560761 DOI: 10.1038/s41598-021-00376-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Contemporary robotics gives us mechatronic capabilities for augmenting human bodies with extra limbs. However, how our motor control capabilities pose limits on such augmentation is an open question. We developed a Supernumerary Robotic 3rd Thumbs (SR3T) with two degrees-of-freedom controlled by the user’s body to endow them with an extra contralateral thumb on the hand. We demonstrate that a pianist can learn to play the piano with 11 fingers within an hour. We then evaluate 6 naïve and 6 experienced piano players in their prior motor coordination and their capability in piano playing with the robotic augmentation. We show that individuals’ augmented performance with the SR3T could be explained by our new custom motor coordination assessment, the Human Augmentation Motor Coordination Assessment (HAMCA) performed pre-augmentation. Our work demonstrates how supernumerary robotics can augment humans in skilled tasks and that individual differences in their augmentation capability are explainable by their individual motor coordination abilities.
Collapse
Affiliation(s)
- Ali Shafti
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.,Department of Computing, Imperial College London, London, SW7 2AZ, UK.,Behaviour Analytics Laboratory, Data Science Institute, London, SW7 2AZ, UK
| | - Shlomi Haar
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.,Behaviour Analytics Laboratory, Data Science Institute, London, SW7 2AZ, UK.,Department of Brain Sciences and UK Dementia Research Institute - Care Research and Technology Centre, Imperial College London, London, W12 0BZ, UK
| | - Renato Mio
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Pierre Guilleminot
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - A Aldo Faisal
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK. .,Department of Computing, Imperial College London, London, SW7 2AZ, UK. .,Behaviour Analytics Laboratory, Data Science Institute, London, SW7 2AZ, UK. .,UKRI CDT in AI for Healthcare, Imperial College London, London, SW7 2AZ, UK. .,MRC London Institute of Medical Sciences, London, W12 0NN, UK.
| |
Collapse
|
50
|
Hescham SA, Chiang PH, Gregurec D, Moon J, Christiansen MG, Jahanshahi A, Liu H, Rosenfeld D, Pralle A, Anikeeva P, Temel Y. Magnetothermal nanoparticle technology alleviates parkinsonian-like symptoms in mice. Nat Commun 2021; 12:5569. [PMID: 34552093 PMCID: PMC8458499 DOI: 10.1038/s41467-021-25837-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
Deep brain stimulation (DBS) has long been used to alleviate symptoms in patients suffering from psychiatric and neurological disorders through stereotactically implanted electrodes that deliver current to subcortical structures via wired pacemakers. The application of DBS to modulate neural circuits is, however, hampered by its mechanical invasiveness and the use of chronically implanted leads, which poses a risk for hardware failure, hemorrhage, and infection. Here, we demonstrate that a wireless magnetothermal approach to DBS (mDBS) can provide similar therapeutic benefits in two mouse models of Parkinson's disease, the bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and in the unilateral 6-hydroxydopamine (6-OHDA) model. We show magnetothermal neuromodulation in untethered moving mice through the activation of the heat-sensitive capsaicin receptor (transient receptor potential cation channel subfamily V member 1, TRPV1) by synthetic magnetic nanoparticles. When exposed to an alternating magnetic field, the nanoparticles dissipate heat, which triggers reversible firing of TRPV1-expressing neurons. We found that mDBS in the subthalamic nucleus (STN) enables remote modulation of motor behavior in healthy mice. Moreover, mDBS of the STN reversed the motor deficits in a mild and severe parkinsonian model. Consequently, this approach is able to activate deep-brain circuits without the need for permanently implanted hardware and connectors.
Collapse
Affiliation(s)
- Sarah-Anna Hescham
- Department of Neurosurgery, Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Po-Han Chiang
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Danijela Gregurec
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Junsang Moon
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ali Jahanshahi
- Department of Neurosurgery, Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Huajie Liu
- Department of Neurosurgery, Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dekel Rosenfeld
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, Buffalo, NY, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yasin Temel
- Department of Neurosurgery, Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|