1
|
Baffour-Awuah KA, Bridge H, Engward H, MacKinnon RC, Ip IB, Jolly JK. The missing pieces: an investigation into the parallels between Charles Bonnet, phantom limb and tinnitus syndromes. Ther Adv Ophthalmol 2024; 16:25158414241302065. [PMID: 39649951 PMCID: PMC11624543 DOI: 10.1177/25158414241302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Charles Bonnet syndrome (CBS) is a condition characterised by visual hallucinations of varying complexity on a background of vision loss. CBS research has gained popularity only in recent decades, despite evidence dating back to 1760. Knowledge of CBS among both the patient and professional populations unfortunately remains poor, and little is known of its underlying pathophysiology. CBS parallels two other better-known conditions that occur as a result of sensory loss: phantom limb syndrome (PLS) (aberrant sensation of the presence of a missing limb) and tinnitus (aberrant sensation of sound). As 'phantom' conditions, CBS, PLS and tinnitus share sensory loss as a precipitating factor, and, as subjective perceptual phenomena, face similar challenges to investigations. Thus far, these conditions have been studied separately from each other. This review aims to bridge the conceptual gap between CBS, PLS and tinnitus and seek common lessons between them. It considers the current knowledge base of CBS and explores the extent to which an understanding of PLS and tinnitus could provide valuable insights into the pathology of CBS (including the roles of cortical reorganisation, emotional and cognitive factors), and towards identifying effective potential management for CBS.
Collapse
Affiliation(s)
- Kwame A. Baffour-Awuah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | - Holly Bridge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hilary Engward
- Veterans and Families Institute, Anglia Ruskin University, Cambridge, UK
| | - Robert C. MacKinnon
- School of Psychology, Sports and Sensory Sciences, Anglia Ruskin University, Cambridge, UK
| | - I. Betina Ip
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jasleen K. Jolly
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Young Street, Cambridge, CB1 2LZ, UK
| |
Collapse
|
2
|
Waechter S, Brännström KJ. Magnitude of extended high frequency hearing loss associated with auditory related tinnitus distress, when controlling for magnitude of hearing loss at standard frequenciesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2821-2827. [PMID: 37921455 DOI: 10.1121/10.0022255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Impaired thresholds at extended high frequencies (EHF) are tightly linked to the prevalence of tinnitus, but little is known about how EHF status relates to tinnitus characteristics. In the present study, 93 individuals with tinnitus underwent standard (from 0.125 to 8 kHz) and EHF (from 10 to 16 kHz) audiometry and indicated their degree of tinnitus distress by completing the tinnitus functional index and their perceived tinnitus loudness by using a numeric rating scale. Partial correlation analyses indicated that the magnitude of EHF loss was significantly associated with degree of auditory related tinnitus distress (r = 0.343, p < 0.001) when controlling for pure tone average at standard frequencies and compensating for multiple testing. It is concluded that EHF status is related specifically to auditory related tinnitus distress, but not to intrusive-, sense of control-, cognitive-, sleep-, relaxation-, quality of life-, emotional-related tinnitus distress, total tinnitus distress, or perceived tinnitus loudness.
Collapse
Affiliation(s)
- Sebastian Waechter
- Department of Clinical Science Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - K Jonas Brännström
- Department of Clinical Science Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Hutchison P, Maeda H, Formby C, Small BJ, Eddins DA, Eddins AC. Acoustic deprivation modulates central gain in human auditory brainstem and cortex. Hear Res 2023; 428:108683. [PMID: 36599259 PMCID: PMC9872081 DOI: 10.1016/j.heares.2022.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Beyond reduced audibility, there is convincing evidence that the auditory system adapts according to the principles of homeostatic plasticity in response to a hearing loss. Such compensatory changes include modulation of central auditory gain mechanisms. Earplugging is a common experimental method that has been used to introduce a temporary, reversible hearing loss that induces changes consistent with central gain modulation. In the present study, young, normal-hearing adult participants wore a unilateral earplug for two weeks, during which we measured changes in the acoustic reflex threshold (ART), loudness perception, and cortically-evoked (40 Hz) auditory steady-state response (ASSR) to assess potential modulation in central gain with reduced peripheral input. The ART decreased on average by 8 to 10 dB during the treatment period, with modest increases in loudness perception after one week but not after two weeks of earplug use. Significant changes in both the magnitude and hemispheric laterality of source-localized cortical ASSR measures revealed asymmetrical changes in stimulus-driven cortical activity over time. The ART results following unilateral earplugging are consistent with the literature and suggest that homeostatic plasticity is evident in the brainstem. The novel findings from the cortical ASSR in the present study indicates that reduced peripheral input induces adaptive homeostatic plasticity reflected as both an increase in central gain in the auditory brainstem and reduced cortical activity ipsilateral to the deprived ear. Both the ART and the novel use of the 40-Hz ASSR provide sensitive measures of central gain modulation in the brainstem and cortex of young, normal hearing listeners, and thus may be useful in future studies with other clinical populations.
Collapse
Affiliation(s)
- Peter Hutchison
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Hannah Maeda
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Craig Formby
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Brent J Small
- School of Aging Studies, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - David A Eddins
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA; Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Ann Clock Eddins
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA; School of Communication Sciences and Disorders, University of Central Florida, 4364 Scorpius Street, Orlando, FL 32816, USA.
| |
Collapse
|
4
|
Henry JA. Sound Therapy to Reduce Auditory Gain for Hyperacusis and Tinnitus. Am J Audiol 2022; 31:1067-1077. [DOI: 10.1044/2022_aja-22-00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose:
Hyperacusis is the most common of the different types of sound tolerance conditions. It has been defined as physical discomfort or pain when any sound reaches a certain level of loudness that would be comfortable for most people. Because hyperacusis and tinnitus occur together so often, it has been theorized that they have a common neural mechanism. A leading contender for that mechanism is enhancement of auditory gain. The purpose of this tutorial is to review the evidence that sound/acoustic therapy can reduce auditory gain and, thereby, can increase loudness tolerance for people with hyperacusis and/or suppress the percept of tinnitus.
Method:
The scientific literature was informally reviewed to identify and elucidate relationships between tinnitus, hyperacusis, sound therapy, and auditory gain.
Results:
Evidence exists, both in animal and human studies, that enhanced auditory gain is associated with hyperacusis and tinnitus. Further evidence supports the theory that certain forms of sound therapy can reduce neural hyperactivity, thereby reducing auditory gain. The evidence for sound therapy reducing auditory gain is stronger for hyperacusis than it is for tinnitus.
Conclusions:
Based on results from numerous studies, sound therapy clearly has application as a method of desensitization for hyperacusis. Enhanced auditory gain might be responsible for tinnitus, but other mechanisms have been theorized. A review of the relevant literature leads to the conclusion that some form(s) of sound therapy has the potential to suppress or eliminate tinnitus on a long-term basis. Systematic research is needed to evaluate this premise.
Collapse
Affiliation(s)
- James A. Henry
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
5
|
Joergensen ML, Hyvärinen P, Caporali S, Dau T. Broadband Amplification as Tinnitus Treatment. Brain Sci 2022; 12:brainsci12060719. [PMID: 35741602 PMCID: PMC9221098 DOI: 10.3390/brainsci12060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effect of broadband amplification (125 Hz to 10 kHz) as tinnitus treatment for participants with high-frequency hearing loss and compared these effects with an active placebo condition using band-limited amplification (125 Hz to 3–4 kHz). A double-blinded crossover study. Twenty-three participants with high-frequency (≥3 kHz) hearing loss and chronic tinnitus were included in the study, and 17 completed the full treatment protocol. Two different hearing aid treatments were provided for 3 months each: Broadband amplification provided gain in the frequency range from 125 Hz to 10 kHz and band-limited amplification only provided gain in the low-frequency range (≤3–4 kHz). The effect of the two treatments on tinnitus distress was evaluated with the Tinnitus Handicap Inventory (THI) and the Tinnitus Functional Index (TFI) questionnaires. The effect of the treatment on tinnitus loudness was evaluated with a visual analog scale (VAS) for loudness and a psychoacoustic loudness measure. Furthermore, the tinnitus annoyance was evaluated with a VAS for annoyance. The tinnitus pitch was evaluated based on the tinnitus likeness spectrum. A statistically significant difference was found between the two treatment groups (broadband vs. band-limited amplification) for the treatment-related change in THI and TFI with respect to the baseline. Furthermore, a statistically significant difference was found between the two treatment conditions for the annoyance measure. Regarding the loudness measure, no statistically significant differences were found between the treatments, although there was a trend towards a lower VAS-based loudness measure resulting from the broadband amplification. No changes were observed in the tinnitus pitch between the different conditions. Overall, the results from the present study suggest that tinnitus patients with high-frequency hearing loss can experience a decrease in tinnitus-related distress and annoyance from high-frequency amplification.
Collapse
Affiliation(s)
- Mie Laerkegaard Joergensen
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, 2800 Copenhagen, Denmark; (P.H.); (T.D.)
- WS Audiology, 3540 Lynge, Denmark;
- Correspondence:
| | - Petteri Hyvärinen
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, 2800 Copenhagen, Denmark; (P.H.); (T.D.)
| | | | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, 2800 Copenhagen, Denmark; (P.H.); (T.D.)
| |
Collapse
|
6
|
Salvi R, Radziwon K, Manohar S, Auerbach B, Ding D, Liu X, Lau C, Chen YC, Chen GD. Review: Neural Mechanisms of Tinnitus and Hyperacusis in Acute Drug-Induced Ototoxicity. Am J Audiol 2021; 30:901-915. [PMID: 33465315 DOI: 10.1044/2020_aja-20-00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Tinnitus and hyperacusis are debilitating conditions often associated with age-, noise-, and drug-induced hearing loss. Because of their subjective nature, the neural mechanisms that give rise to tinnitus and hyperacusis are poorly understood. Over the past few decades, considerable progress has been made in deciphering the biological bases for these disorders using animal models. Method Important advances in understanding the biological bases of tinnitus and hyperacusis have come from studies in which tinnitus and hyperacusis are consistently induced with a high dose of salicylate, the active ingredient in aspirin. Results Salicylate induced a transient hearing loss characterized by a reduction in otoacoustic emissions, a moderate cochlear threshold shift, and a large reduction in the neural output of the cochlea. As the weak cochlear neural signals were relayed up the auditory pathway, they were progressively amplified so that the suprathreshold neural responses in the auditory cortex were much larger than normal. Excessive central gain (neural amplification), presumably resulting from diminished inhibition, is believed to contribute to hyperacusis and tinnitus. Salicylate also increased corticosterone stress hormone levels. Functional imaging studies indicated that salicylate increased spontaneous activity and enhanced functional connectivity between structures in the central auditory pathway and regions of the brain associated with arousal (reticular formation), emotion (amygdala), memory/spatial navigation (hippocampus), motor planning (cerebellum), and motor control (caudate/putamen). Conclusion These results suggest that tinnitus and hyperacusis arise from aberrant neural signaling in a complex neural network that includes both auditory and nonauditory structures.
Collapse
Affiliation(s)
- Richard Salvi
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Kelly Radziwon
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Senthilvelan Manohar
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Ben Auerbach
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Dalian Ding
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Xiaopeng Liu
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Condon Lau
- Department of Physics, City University of Hong Kong
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Guang-Di Chen
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| |
Collapse
|
7
|
Hu S, Hall DA, Zubler F, Sznitman R, Anschuetz L, Caversaccio M, Wimmer W. Bayesian brain in tinnitus: Computational modeling of three perceptual phenomena using a modified Hierarchical Gaussian Filter. Hear Res 2021; 410:108338. [PMID: 34469780 DOI: 10.1016/j.heares.2021.108338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Recently, Bayesian brain-based models emerged as a possible composite of existing theories, providing an universal explanation of tinnitus phenomena. Yet, the involvement of multiple synergistic mechanisms complicates the identification of behavioral and physiological evidence. To overcome this, an empirically tested computational model could support the evaluation of theoretical hypotheses by intrinsically encompassing different mechanisms. The aim of this work was to develop a generative computational tinnitus perception model based on the Bayesian brain concept. The behavioral responses of 46 tinnitus subjects who underwent ten consecutive residual inhibition assessments were used for model fitting. Our model was able to replicate the behavioral responses during residual inhibition in our cohort (median linear correlation coefficient of 0.79). Using the same model, we simulated two additional tinnitus phenomena: residual excitation and occurrence of tinnitus in non-tinnitus subjects after sensory deprivation. In the simulations, the trajectories of the model were consistent with previously obtained behavioral and physiological observations. Our work introduces generative computational modeling to the research field of tinnitus. It has the potential to quantitatively link experimental observations to theoretical hypotheses and to support the search for neural signatures of tinnitus by finding correlates between the latent variables of the model and measured physiological data.
Collapse
Affiliation(s)
- Suyi Hu
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Deborah A Hall
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Department of Psychology, School of Social Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | - Frédéric Zubler
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Raphael Sznitman
- Artificial Intelligence in Medical Imaging, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Lukas Anschuetz
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Marco Caversaccio
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Wilhelm Wimmer
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
8
|
Ashida G, Tollin DJ, Kretzberg J. Robustness of neuronal tuning to binaural sound localization cues against age-related loss of inhibitory synaptic inputs. PLoS Comput Biol 2021; 17:e1009130. [PMID: 34242210 PMCID: PMC8270189 DOI: 10.1371/journal.pcbi.1009130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
Sound localization relies on minute differences in the timing and intensity of sound arriving at both ears. Neurons of the lateral superior olive (LSO) in the brainstem process these interaural disparities by precisely detecting excitatory and inhibitory synaptic inputs. Aging generally induces selective loss of inhibitory synaptic transmission along the entire auditory pathways, including the reduction of inhibitory afferents to LSO. Electrophysiological recordings in animals, however, reported only minor functional changes in aged LSO. The perplexing discrepancy between anatomical and physiological observations suggests a role for activity-dependent plasticity that would help neurons retain their binaural tuning function despite loss of inhibitory inputs. To explore this hypothesis, we use a computational model of LSO to investigate mechanisms underlying the observed functional robustness against age-related loss of inhibitory inputs. The LSO model is an integrate-and-fire type enhanced with a small amount of low-voltage activated potassium conductance and driven with (in)homogeneous Poissonian inputs. Without synaptic input loss, model spike rates varied smoothly with interaural time and level differences, replicating empirical tuning properties of LSO. By reducing the number of inhibitory afferents to mimic age-related loss of inhibition, overall spike rates increased, which negatively impacted binaural tuning performance, measured as modulation depth and neuronal discriminability. To simulate a recovery process compensating for the loss of inhibitory fibers, the strength of remaining inhibitory inputs was increased. By this modification, effects of inhibition loss on binaural tuning were considerably weakened, leading to an improvement of functional performance. These neuron-level observations were further confirmed by population modeling, in which binaural tuning properties of multiple LSO neurons were varied according to empirical measurements. These results demonstrate the plausibility that homeostatic plasticity could effectively counteract known age-dependent loss of inhibitory fibers in LSO and suggest that behavioral degradation of sound localization might originate from changes occurring more centrally.
Collapse
Affiliation(s)
- Go Ashida
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
- * E-mail:
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jutta Kretzberg
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Herrmann B, Butler BE. Hearing loss and brain plasticity: the hyperactivity phenomenon. Brain Struct Funct 2021; 226:2019-2039. [PMID: 34100151 DOI: 10.1007/s00429-021-02313-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Many aging adults experience some form of hearing problems that may arise from auditory peripheral damage. However, it has been increasingly acknowledged that hearing loss is not only a dysfunction of the auditory periphery but also results from changes within the entire auditory system, from periphery to cortex. Damage to the auditory periphery is associated with an increase in neural activity at various stages throughout the auditory pathway. Here, we review neurophysiological evidence of hyperactivity, auditory perceptual difficulties that may result from hyperactivity, and outline open conceptual and methodological questions related to the study of hyperactivity. We suggest that hyperactivity alters all aspects of hearing-including spectral, temporal, spatial hearing-and, in turn, impairs speech comprehension when background sound is present. By focusing on the perceptual consequences of hyperactivity and the potential challenges of investigating hyperactivity in humans, we hope to bring animal and human electrophysiologists closer together to better understand hearing problems in older adulthood.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, Toronto, ON, M6A 2E1, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Blake E Butler
- Department of Psychology & The Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,National Centre for Audiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Abstract
Tinnitus is a phantom auditory sensation in the absence of external sounds, while hyperacusis is an atypical sensitivity to external sounds that leads them to be perceived as abnormally loud or even painful. Both conditions may reflect the brain's over-compensation for reduced input from the ear. The present work differentiates between two compensation models: The additive central noise compensates for hearing loss and is likely to generate tinnitus, whereas the multiplicative central gain compensates for hidden hearing loss and is likely to generate hyperacusis. Importantly, both models predict increased variance in central representations of sounds, especially a nonlinear increase in variance by the central gain. The increased central variance limits the amount of central compensation and reduces temporal synchrony, which can explain the insufficient central gain reported in the literature. Future studies need to collect trial-by-trial firing variance data so that the present variance-based model can be falsified.
Collapse
Affiliation(s)
- Fan-Gang Zeng
- Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, and Otolaryngology - Head and Neck Surgery, Center for Hearing Research, University of California Irvine
| |
Collapse
|
12
|
|