1
|
Mahadeo CO, Shahin-Shamsabadi A, Khodamoradi M, Fahnestock M, Selvaganapathy PR. The Effects of Electrical Stimulation on a 3D Osteoblast Cell Model. Cells 2025; 14:396. [PMID: 40136645 PMCID: PMC11941504 DOI: 10.3390/cells14060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Electrical stimulation has been used with tissue engineering-based models to develop three-dimensional (3D), dynamic, research models that are more physiologically relevant than static two-dimensional (2D) cultures. For bone tissue, the effect of electrical stimulation has focused on promoting healing and regeneration of tissue to prevent bone loss. However, electrical stimulation can also potentially affect mature bone parenchymal cells such as osteoblasts to guide bone formation and the secretion of paracrine or endocrine factors. Due to a lack of physiologically relevant models, these phenomena have not been studied in detail. In vitro electrical stimulation models can be useful for gaining an understanding of bone physiology and its effects on paracrine tissues under different physiological and pathological conditions. Here, we use a 3D, dynamic, in vitro model of bone to study the effects of electrical stimulation conditions on protein and gene expression of SaOS-2 human osteosarcoma osteoblast-like cells. We show that different stimulation regimens, including different frequencies, exposure times, and stimulation patterns, can have different effects on the expression and secretion of the osteoblastic markers alkaline phosphatase and osteocalcin. These results reveal that electrical stimulation can potentially be used to guide osteoblast gene and protein expression.
Collapse
Affiliation(s)
- Crystal O. Mahadeo
- Neuroscience Graduate Program, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Alireza Shahin-Shamsabadi
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.S.-S.); (M.K.)
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Maedeh Khodamoradi
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.S.-S.); (M.K.)
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.S.-S.); (M.K.)
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Katz DH, Lindholm ME, Ashley EA. Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Physiology (Bethesda) 2025; 40:0. [PMID: 39136551 DOI: 10.1152/physiol.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 11/21/2024] Open
Abstract
Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Furthermore, it offers a detailed discussion of known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multiomic technologies is explored with an emphasis on how multiomic and multitissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.
Collapse
Affiliation(s)
- Daniel H Katz
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Maléne E Lindholm
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Euan A Ashley
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
3
|
Hola V, Polanska H, Jandova T, Jaklová Dytrtová J, Weinerova J, Steffl M, Kramperova V, Dadova K, Durkalec-Michalski K, Bartos A. The Effect of Two Somatic-Based Practices Dance and Martial Arts on Irisin, BDNF Levels and Cognitive and Physical Fitness in Older Adults: A Randomized Control Trial. Clin Interv Aging 2024; 19:1829-1842. [PMID: 39525874 PMCID: PMC11550684 DOI: 10.2147/cia.s482479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Maintaining healthy brain function during ageing is of great importance, especially for the self-sufficiency of older adults. The main aim of this study was to determine the effects of dance and martial arts on exerkines Brain Derived Neurotrophic Factor (BDNF) and irisin blood serum levels. Methods This randomized controlled trial examined the effects of dance and martial arts on serum Brain-Derived Neurotrophic Factor (BDNF) and irisin levels, as well as cognitive function, mood, and physical measures in older adults. Seventy-seven independently living older adults (mean age 70.3±3.8 years) were randomized into three groups: dance (DG), martial arts (MaG), and control (CG), followed over 12 weeks. Generalized linear models were used to assess the interventions' effects. Results There was a significant increase in BDNF levels in both the DG (1.8 ± 4.9, p < 0.05) and MaG (3.5 ± 6.3, p < 0.05), while CG experienced a decrease (-4.9 ± 8.2, p < 0.05). Between-group effects were significant for BDNF, with DG and MaG showing higher levels than CG (p < 0.05). No significant changes in irisin levels were found. Cognitive performance, particularly attention and mental flexibility (measured by the Trail Making Test A and B), significantly improved in the DG compared to CG (p < 0.05). Additionally, participants in DG showed improved mood based on the Geriatric Depression Scale (p < 0.05) compared to CG. Anthropometric T-scores were significantly associated with changes in irisin levels (p < 0.05) after intervention. Conclusion The study found that dance and martial arts upregulated BDNF levels, with dance showing notable improvements in cognitive function and mood in older adults. Changes in anthropometric measures were linked to increased irisin levels. These findings suggest that both dance and martial arts may promote healthy brain function in aging populations. Trial Registration NCT05363228.
Collapse
Affiliation(s)
- Veronika Hola
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Hana Polanska
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Tereza Jandova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Josefina Weinerova
- University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic
| | - Michal Steffl
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Veronika Kramperova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Klara Dadova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Ales Bartos
- University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Department of Neurology, Prague, Czech Republic
| |
Collapse
|
4
|
Sezer T, Okudan N, Belviranli M. Comparing the effect of high-intensity interval exercise and voluntary exercise training on cognitive functions in rats. Neurosci Lett 2024; 842:137993. [PMID: 39306028 DOI: 10.1016/j.neulet.2024.137993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
It is known that exercise increases brain-derived neurotrophic factor (BDNF) levels in the hippocampus, the brain region responsible for learning and memory, resulting in improved cognitive functions and learning processes. However, it is claimed that different types of exercise cause different responses in the brain. It is thought that lactate and osteocalcin secreted in response to exercise are associated with an increase in BDNF levels. However, there are not enough studies on this subject. This study aimed to compare the effects of high-intensity interval training (HIIT) and voluntary exercise training on cognitive performance and molecular connections. Male rats were randomly divided into control, voluntary exercise training and HIIT groups. The voluntary exercise group had free access to the voluntary wheel for 8 weeks. The HIIT group performed HIIT on the treadmill 3 days a week for 8 weeks. The rats underwent open field (OF), elevated plus maze (EPM) and Morris water maze (MWM) tests 24 h after the last exercise training. Then, after blood was drawn under anesthesia, the rats were sacrificed and their hippocampus tissues were separated. Glucocorticoid and BDNF levels in the blood were evaluated by enzyme-linked immunosorbent assay (ELISA), and osteocalcin and BDNF expressions in the hippocampus were evaluated by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Neither voluntary exercise training nor HIIT had any significant effect on behavioral parameters assessed by OF, EPM and MWM tests. However, BDNF expression in hippocampus tissue was higher in the HIIT group than in the control group. In addition, osteocalcin expression in hippocampus tissue was higher in the HIIT and voluntary exercise groups than in the control group. In conclusion, according to the findings we obtained from this study, although it does not have a significant effect on cognitive functions, the effect of HIIT on brain functions seems to be more effective than voluntary exercise.
Collapse
Affiliation(s)
- Tuğba Sezer
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| | - Muaz Belviranli
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| |
Collapse
|
5
|
Bogard AT, Hemmerle MR, Smith AC, Tan AQ. Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol 2024; 602:5879-5899. [PMID: 37983629 PMCID: PMC11102937 DOI: 10.1113/jp285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Makenna R Hemmerle
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Andrew C Smith
- Dept. of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
- Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
6
|
Zhang S, Gu B, Zhen K, Du L, Lv Y, Yu L. Effects of exercise on brain-derived neurotrophic factor in Alzheimer's disease models: A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 126:105538. [PMID: 38878598 DOI: 10.1016/j.archger.2024.105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
A growing body of research examining effects of exercise on brain-derived neurotrophic factor (BDNF) in Alzheimer's disease (AD) models, while due to differences in gender, age, disease severity, brain regions examined, and type of exercise intervention, findings of available studies were conflicting. In this study, we aimed to evaluate current evidence regarding effects of exercise on BDNF in AD models. Searches were performed in PubMed, Web of Science, Cochrane, and EBSCO electronic databases, through July 20, 2023. We included studies that satisfied the following criteria: eligible studies should (1) report evidence on experimental work with AD models; (2) include an exercise group and a control group (sedentary); (3) use BDNF as the outcome indicator; and (4) be randomized controlled trials (RCTs). From 1196 search records initially identified, 36 studies met the inclusion criteria. There was a significant effect of exercise on increasing BDNF levels in AD models [standardized mean differences (SMD) = 0.98, P < 0.00001]. Subgroup analysis showed that treadmill exercise (SMD = 0.92, P< 0.0001), swimming (SMD = 1.79, P< 0.0001), and voluntary wheel running (SMD = 0.51, P= 0.04) were all effective in increasing BDNF levels in AD models. In addition, exercise significantly increased BDNF levels in the hippocampus (SMD = 0.92, P< 0.00001) and cortex (SMD = 1.56, P= 0.02) of AD models. Exercise, especially treadmill exercise, swimming, and voluntary wheel running, significantly increased BDNF levels in hippocampus and cortex of AD models, with swimming being the most effective intervention type.
Collapse
Affiliation(s)
- Shiyan Zhang
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Boya Gu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Kai Zhen
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Liwen Du
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China.
| |
Collapse
|
7
|
García-Salazar LF, Pereira ND, Silva ESM, Ribeiro JAM, Nagai Ocamoto G, Mendes Zambetta R, de Oliveira SG, Catai AM, Borstad A, Russo TL. Could aerobic exercise applied before constraint-induced movement therapy change circulating molecular biomarkers in chronic post-stroke? Physiother Theory Pract 2024:1-12. [PMID: 39370701 DOI: 10.1080/09593985.2024.2411311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Integrating aerobic exercise (AE) into rehabilitation programs for post-stroke individuals could enhance motor recovery and cardiovascular health by increasing brain-derived neurotrophic factor (BDNF) and the myokine irisin. Chronic stroke survivors typically exhibit elevated matrix metalloproteinase-9 (MMP-9) activity, which is negatively correlated with steps and time in medium cadence, although the impact of AE on this biomarker remains unclear. OBJECTIVE To evaluate the effect of high-intensity AE training prior to modified constraint-induced movement therapy (mCIMT) on BDNF and irisin concentration, and on MMP-2 and MMP-9 activity in chronic post-stroke individuals and to associate these results with functional improvements. METHODS Nine participants received AE combined with mCIMT for two weeks, while the control group (n = 7) received mCIMT alone. Manual dexterity and functional capacity were assessed before and after the intervention. Serum samples were analyzed for BDNF, irisin, MMP-2 and MMP-9. RESULTS There were no significant main effects of assessment, group or interaction on molecular biomarkers. However, the AE group had a significant increase in MMP-9 activity post-intervention (p = .033; d = 0.67). For the Box and Block Test, there were significant main effects of assessment (F [1, 14] = 33.27, p = .000, ηp2 = 0.70) and group (F [1, 14] = 5.43, p = .035, ηp2 = .28). No correlations were found between biomarkers and clinical assessments. CONCLUSION AE prior to mCIMT did not influence circulating BDNF and irisin levels but did induce an acute rise in MMP-9 activity, suggesting potential effects on cardiovascular remodeling in this population.
Collapse
Affiliation(s)
- Luisa Fernanda García-Salazar
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- School of Medicine and Health Sciences, Rehabilitation Science Research Group, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Duarte Pereira
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | - Jean Alex Matos Ribeiro
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Undergraduate Physiotherapy Program, Morgana Potrich College (FAMP), Mineiros, Brazil
| | - Gabriela Nagai Ocamoto
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | | | - Aparecida Maria Catai
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Alexandra Borstad
- Physical Therapy Department, School of Health Sciences, The College of St. Scholastica, Duluth, MN, USA
| | - Thiago Luiz Russo
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
8
|
Li Q, Li C, Zhang X. Research Progress on the Effects of Different Exercise Modes on the Secretion of Exerkines After Spinal Cord Injury. Cell Mol Neurobiol 2024; 44:62. [PMID: 39352588 PMCID: PMC11445308 DOI: 10.1007/s10571-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Exercise training is a conventional treatment strategy throughout the entire treatment process for patients with spinal cord injury (SCI). Currently, exercise modalities for SCI patients primarily include aerobic exercise, endurance training, strength training, high-intensity interval training, and mind-body exercises. These exercises play a positive role in enhancing skeletal muscle function, inducing neuroprotection and regeneration, thereby influencing neural plasticity, reducing limb spasticity, and improving motor function and daily living abilities in SCI patients. However, the mechanism by which exercise training promotes functional recovery after SCI is still unclear, and there is no consensus on a unified and standardized exercise treatment plan. Different exercise methods may bring different benefits. After SCI, patients' physical activity levels decrease significantly due to factors such as motor dysfunction, which may be a key factor affecting changes in exerkines. The changes in exerkines of SCI patients caused by exercise training are an important and highly relevant and visual evaluation index, which may provide a new research direction for revealing the intrinsic mechanism by which exercise promotes functional recovery after SCI. Therefore, this article summarizes the changes in the expression of common exerkines (neurotrophic factors, inflammatory factors, myokines, bioactive peptides) after SCI, and intends to analyze the impact and role of different exercise methods on functional recovery after SCI from the perspective of exerkines mechanism. We hope to provide theoretical basis and data support for scientific exercise treatment programs after SCI.
Collapse
Affiliation(s)
- Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
9
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Michou V, Tsamos G, Vasdeki D, Deligiannis A, Kouidi E. Unraveling of Molecular Mechanisms of Cognitive Frailty in Chronic Kidney Disease: How Exercise Makes a Difference. J Clin Med 2024; 13:5698. [PMID: 39407758 PMCID: PMC11476541 DOI: 10.3390/jcm13195698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
As our population ages, the medical challenges it faces become increasingly acute, with chronic kidney disease (CKD) becoming more prevalent among older adults. Frailty is alarmingly more common in CKD patients than in the general populace, putting the elderly at high risk of both physical and cognitive decline. CKD not only accelerates physical deterioration, but also heightens vascular dysfunction, calcification, arterial rigidity, systemic inflammation, oxidative stress, and cognitive impairment. Cognitive frailty, a distinct syndrome marked by cognitive deficits caused by physiological causes (excluding Alzheimer's and other dementias), is a critical concern. Although cognitive impairment has been well-studied, the molecular mechanisms driving cognitive frailty remain largely uncharted. Comprehensive interventions, including cutting-edge pharmaceuticals and lifestyle changes, are pivotal and effective, especially in the early stages of CKD. Recent research suggests that systematic exercise could counteract cognitive decline by improving brain blood flow, boosting neuroplasticity through the brain-derived neurotrophic factor (BDNF), and by triggering the release of neurotrophic factors such as insulin-like growth factor (IGF-1). This review delves into the molecular pathways of cognitive frailty in CKD, identifies key risk factors, and highlights therapeutic approaches, particularly the potent role of exercise in enhancing cognitive health.
Collapse
Affiliation(s)
- Vasiliki Michou
- Sports Medicine Laboratory, School of Physical Education & Sport Science, Aristotle University, 57 001 Thessaloniki, Greece; (A.D.); (E.K.)
| | - Georgios Tsamos
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece; (G.T.); (D.V.)
| | - Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece; (G.T.); (D.V.)
| | - Asterios Deligiannis
- Sports Medicine Laboratory, School of Physical Education & Sport Science, Aristotle University, 57 001 Thessaloniki, Greece; (A.D.); (E.K.)
| | - Evangelia Kouidi
- Sports Medicine Laboratory, School of Physical Education & Sport Science, Aristotle University, 57 001 Thessaloniki, Greece; (A.D.); (E.K.)
| |
Collapse
|
11
|
Gökçe E, Adıgüzel E, Koçak ÖK, Kılınç H, Langeard A, Boran E, Cengiz B. Impact of Acute High-intensity Interval Training on Cortical Excitability, M1-related Cognitive Functions, and Myokines: A Randomized Crossover Study. Neuroscience 2024; 551:290-298. [PMID: 38851379 DOI: 10.1016/j.neuroscience.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
High-intensity interval training (HIIT) is a time-efficient, safe, and feasible exercise type that can be utilized across different ages and health status. This randomized cross-over study aimed to investigate the effect of acute HIIT on cortical excitability, M1-related cognitive functions, cognition-related myokines, brain-derived neurotrophic factor (BDNF), and Cathepsin B (CTSB). Twenty-three sedentary young adults (mean age: 22.78 years ± 2.87; 14 female) participated in a cross-over design involving two sessions: either 23 min of HIIT or seated rest. Before and after the sessions, cortical excitability was measured using transcranial magnetic stimulation, and M1-related cognitive functions were assessed by the n-back test and mental rotation test. Serum levels of BDNF and CTSB were assessed using the ELISA method before and after the HIIT intervention. We demonstrated that HIIT improved mental rotation and working memory, and increased serum levels of BDNF and CTSB, whereas cortical excitability did not change. Our findings provide evidence that one session of HIIT is effective on M1-related cognitive functions and cognition-related myokines. Future research is warranted to determine whether such findings are transferable to different populations, such as cognitively at-risk children, adults, and older adults, and to prescribe effective exercise programs.
Collapse
Affiliation(s)
- Evrim Gökçe
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey.
| | - Emre Adıgüzel
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey
| | - Özlem Kurtkaya Koçak
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hasan Kılınç
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Antoine Langeard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| | - Evren Boran
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bülent Cengiz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey
| |
Collapse
|
12
|
Faro Viana F, Cotovio G, da Silva DR, Seybert C, Pereira P, Silva A, Carvalho F, Oliveira-Maia AJ. Reducing motor evoked potential amplitude variability through normalization. Front Psychiatry 2024; 15:1279072. [PMID: 38356910 PMCID: PMC10864444 DOI: 10.3389/fpsyt.2024.1279072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
BackgroundTranscranial Magnetic Stimulation (TMS) is used for in vivo assessment of human motor cortical excitability, with application of TMS pulses over the motor cortex resulting in muscle responses that can be recorded with electromyography (EMG) as Motor Evoked Potentials (MEPs). These have been widely explored as potential biomarkers for neuropsychiatric disorders but methodological heterogeneity in acquisition, and inherent high variability, have led to constraints in reproducibility. Normalization, consisting in scaling the signal of interest to a known and repeatable measurement, reduces variability and is standard practice for between-subject comparisons of EMG. The effect of normalization on variability of MEP amplitude has not yet been explored and was assessed here using several methods.MethodsThree maximal voluntary isometric contractions (MVICs) and 40 MEPs were collected from the right hand in healthy volunteers, with a retest session conducted 4 to 8 weeks later. MEP amplitude was normalized using either external references (MVICs) or internal references (extreme MEPs). Iterative re-sampling of 30 normalized MEPs per subject was repeated 5,000 times to define, for each normalization method, distributions for between-subject coefficients of variation (CV) of the mean MEP amplitude. Intra-class correlation coefficients (ICC) were used to assess the impact of normalization on test–retest stability of MEP amplitude measurements.ResultsIn the absence of normalization, MEPs collected from the right hand of 47 healthy volunteers were within reported values regarding between-subject variability (95% confidence intervals for the CV: [1.0567,1.0577]) and showed good temporal stability (ICC = 0.77). Internal reference normalization substantially reduced between-subject variability, by values of up to 64%, while external reference normalization had no impact or increased between-subject variability. Normalization with the smallest references reduced test–retest stability, with use of the largest references resulting in slight reduction or improvement of ICCs. Internal reference normalization using the largest MEPs was found to be robust to several sensitivity analyses.ConclusionInternal, but not external, reference normalization reduces between-subject variability of MEP amplitude, and has a minimal impact on within-subject variability when conducted with the largest references. Additional research is necessary to further validate these normalization methods toward potential use of MEPs as biomarkers of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Francisco Faro Viana
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Gonçalo Cotovio
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Daniel Rodrigues da Silva
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Carolina Seybert
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Patrícia Pereira
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- Portuguese Red Cross Health School, Lisbon, Portugal
| | - Artur Silva
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Filipe Carvalho
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Albino J. Oliveira-Maia
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Ren J, Xiao H. Exercise Intervention for Alzheimer's Disease: Unraveling Neurobiological Mechanisms and Assessing Effects. Life (Basel) 2023; 13:2285. [PMID: 38137886 PMCID: PMC10744739 DOI: 10.3390/life13122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a major cause of age-related dementia, characterized by cognitive dysfunction and memory impairment. The underlying causes include the accumulation of beta-amyloid protein (Aβ) in the brain, abnormal phosphorylation, and aggregation of tau protein within nerve cells, as well as neuronal damage and death. Currently, there is no cure for AD with drug therapy. Non-pharmacological interventions such as exercise have been widely used to treat AD, but the specific molecular and biological mechanisms are not well understood. In this narrative review, we integrate the biology of AD and summarize the knowledge of the molecular, neural, and physiological mechanisms underlying exercise-induced improvements in AD progression. We discuss various exercise interventions used in AD and show that exercise directly or indirectly affects the brain by regulating crosstalk mechanisms between peripheral organs and the brain, including "bone-brain crosstalk", "muscle-brain crosstalk", and "gut-brain crosstalk". We also summarize the potential role of artificial intelligence and neuroimaging technologies in exercise interventions for AD. We emphasize that moderate-intensity, regular, long-term exercise may improve the progression of Alzheimer's disease through various molecular and biological pathways, with multimodal exercise providing greater benefits. Through in-depth exploration of the molecular and biological mechanisms and effects of exercise interventions in improving AD progression, this review aims to contribute to the existing knowledge base and provide insights into new therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Child, Lingnan Normal University, Zhanjiang 524037, China
- Institute of Sport and Health, South China Normal University, Guangzhou 510631, China
| | - Haili Xiao
- Institute of Sport and Health, Lingnan Normal University, Zhanjiang 524037, China;
| |
Collapse
|
14
|
Jaberi S, Fahnestock M. Mechanisms of the Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor Expression in Alzheimer's Disease. Biomolecules 2023; 13:1577. [PMID: 38002258 PMCID: PMC10669442 DOI: 10.3390/biom13111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule in promoting neurogenesis, dendritic and synaptic health, neuronal survival, plasticity, and excitability, all of which are disrupted in neurological and cognitive disorders such as Alzheimer's disease (AD). Extracellular aggregates of amyloid-β (Aβ) in the form of plaques and intracellular aggregates of hyperphosphorylated tau protein have been identified as major pathological insults in the AD brain, along with immune dysfunction, oxidative stress, and other toxic stressors. Although aggregated Aβ and tau lead to decreased brain BDNF expression, early losses in BDNF prior to plaque and tangle formation may be due to other insults such as oxidative stress and contribute to early synaptic dysfunction. Physical exercise, on the other hand, protects synaptic and neuronal structure and function, with increased BDNF as a major mediator of exercise-induced enhancements in cognitive function. Here, we review recent literature on the mechanisms behind exercise-induced BDNF upregulation and its effects on improving learning and memory and on Alzheimer's disease pathology. Exercise releases into the circulation a host of hormones and factors from a variety of peripheral tissues. Mechanisms of BDNF induction discussed here are osteocalcin, FNDC5/irisin, and lactate. The fundamental mechanisms of how exercise impacts BDNF and cognition are not yet fully understood but are a prerequisite to developing new biomarkers and therapies to delay or prevent cognitive decline.
Collapse
Affiliation(s)
- Sama Jaberi
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
15
|
Ramdeo KR, Fahnestock M, Gibala M, Selvaganapathy PR, Lee J, Nelson AJ. The Effects of Exercise on Synaptic Plasticity in Individuals With Mild Cognitive Impairment: Protocol for a Pilot Intervention Study. JMIR Res Protoc 2023; 12:e50030. [PMID: 37851488 PMCID: PMC10620638 DOI: 10.2196/50030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a syndrome preceding more severe impairment characterized by dementia. MCI affects an estimated 15% to 20% of people older than 65 years. Nonpharmacological interventions including exercise are recommended as part of overall MCI management based on the positive effects of exercise on cognitive performance. Interval training involves brief intermittent bouts of exercise interspersed with short recovery periods. This type of exercise promotes cognitive improvement and can be performed in individuals with MCI. Synaptic plasticity can be assessed in vivo by the neurophysiological response to repetitive transcranial magnetic stimulation (rTMS). A method to assess synaptic plasticity uses an intermittent theta burst stimulation (iTBS), which is a patterned form of rTMS. Individuals with MCI have decreased responses to iTBS, reflecting reduced synaptic plasticity. It is unknown whether interval training causes changes in synaptic plasticity in individuals living with MCI. OBJECTIVE This research will determine whether interval training performed using a cycle ergometer enhances synaptic plasticity in individuals with MCI. The three aims are to (1) quantify synaptic plasticity after interval training performed at a self-determined intensity in individuals with MCI; (2) determine whether changes in synaptic plasticity correlate with changes in serum brain-derived neurotrophic factor, osteocalcin, and cognition; and (3) assess participant compliance to the exercise schedule. METHODS 24 individuals diagnosed with MCI will be recruited for assignment to 1 of the 2 equally sized groups: exercise and no exercise. The exercise group will perform exercise 3 times per week for 4 weeks. Synaptic plasticity will be measured before and following the 4-week intervention. At these time points, synaptic plasticity will be measured as the response to single-pulse TMS, reflected as the percent change in the average amplitude of 20 motor-evoked potentials before and after an iTBS rTMS protocol, which is used to induce synaptic plasticity. In addition, individuals will complete a battery of cognitive assessments and provide a blood sample from the antecubital vein to determine serum brain-derived neurotrophic factor and osteocalcin. RESULTS The study began in September 2023. CONCLUSIONS The proposed research is the first to assess whether synaptic plasticity is enhanced after exercise training in individuals with MCI. If exercise does indeed modify synaptic plasticity, this will create a new avenue by which we can study and manipulate neural plasticity in these individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT05663918; https://clinicaltrials.gov/study/NCT05663918. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/50030.
Collapse
Affiliation(s)
- Karishma R Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Martin Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Justin Lee
- Department of Geriatric Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
16
|
Irwin G, Rogatzki MJ, Wiltshire HD, Williams GKR, Gu Y, Ash GI, Tao D, Baker JS. Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol. BIOLOGY 2023; 12:1089. [PMID: 37626975 PMCID: PMC10452437 DOI: 10.3390/biology12081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Taking part in moderate-to-vigorous exercise in contact sports on a regular basis may be linked to an increase in cerebrovascular injury and head trauma. Validated objective measures are lacking in the initial post-event diagnosis of head injury. The exercise style, duration, and intensity may also confound diagnostic indicators. As a result, we propose that the new Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) analyze a variety of functional (biomechanical and motor control) tests as well as related biochemistry to see how they are affected by contact in sports and head injury. The study's goal will be to look into the performance and physiological changes in rugby players after a game for head trauma and injury. METHODS This one-of-a-kind study will use a randomized controlled trial (RCT) utilizing a sport participation group and a non-participation control group. Forty male rugby 7 s players will be recruited for the study and allocated randomly to the experimental groups. The intervention group will participate in three straight rugby matches during a local 7 s rugby event. At the pre-match baseline, demographic and anthropometric data will be collected. This will be followed by the pre-match baseline collection of biochemical, biomechanical, and cognitive-motor task data. After three consecutive matches, the same measures will be taken. During each match, a notational analysis will be undertaken to obtain contact information. All measurements will be taken again 24, 48, and 72 h after the third match. DISCUSSION When the number of games increases owing to weariness and/or stressful circumstances, we expect a decline in body movement, coordination, and cognitive-motor tasks. Changes in blood biochemistry are expected to correspond to changes in biomechanics and cognitive-motor processes. This research proposal will generate considerable, ecologically valid data on the occurrence of head trauma events under game conditions, as well as the influence of these events on the biological systems of the performers. This will lead to a greater understanding of how sports participants react to exercise-induced injuries. This study's scope will have far-reaching ramifications for doctors, coaches, managers, scientists, and sports regulatory bodies concerned with the health and well-being of athletic populations at all levels of competition, including all genders and ages.
Collapse
Affiliation(s)
- Gareth Irwin
- Faculty of Sports Science, Ningbo University, Ningbo 315010, China; (G.I.); (Y.G.); (J.S.B.)
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo 315010, China
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF52YB, UK;
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
| | - Matthew J. Rogatzki
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Department of Health & Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Huw D. Wiltshire
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF52YB, UK;
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
| | - Genevieve K. R. Williams
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Department of Sport and Health Sciences, University of Exeter, Exeter EX44QJ, UK
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315010, China; (G.I.); (Y.G.); (J.S.B.)
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo 315010, China
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
| | - Garrett I. Ash
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Section of General Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Center for Pain, Research, Informatics, Medical Comorbidities and Education Center (PRIME), VA Connecticut Healthcare System, West Haven, CT 06510, USA
| | - Dan Tao
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Department of Government and International Studies, Hong Kong Baptist University, Hong Kong 999077, China
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Ningbo 315010, China; (G.I.); (Y.G.); (J.S.B.)
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo 315010, China
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
17
|
Khoury R, Nagy C. Running from stress: a perspective on the potential benefits of exercise-induced small extracellular vesicles for individuals with major depressive disorder. Front Mol Biosci 2023; 10:1154872. [PMID: 37398548 PMCID: PMC10309045 DOI: 10.3389/fmolb.2023.1154872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Aerobic exercise promotes beneficial effects in the brain including increased synaptic plasticity and neurogenesis and regulates neuroinflammation and stress response via the hypothalamic-pituitary-adrenal axis. Exercise can have therapeutic effects for numerous brain-related pathologies, including major depressive disorder (MDD). Beneficial effects of aerobic exercise are thought to be mediated through the release of "exerkines" including metabolites, proteins, nucleic acids, and hormones that communicate between the brain and periphery. While the specific mechanisms underlying the positive effects of aerobic exercise on MDD have not been fully elucidated, the evidence suggests that exercise may exert a direct or indirect influence on the brain via small extracellular vesicles which have been shown to transport signaling molecules including "exerkines" between cells and across the blood-brain barrier (BBB). sEVs are released by most cell types, found in numerous biofluids, and capable of crossing the BBB. sEVs have been associated with numerous brain-related functions including neuronal stress response, cell-cell communication, as well as those affected by exercise like synaptic plasticity and neurogenesis. In addition to known exerkines, they are loaded with other modulatory cargo such as microRNA (miRNA), an epigenetic regulator that regulates gene expression levels. How exercise-induced sEVs mediate exercise dependent improvements in MDD is unknown. Here, we perform a thorough survey of the current literature to elucidate the potential role of sEVs in the context of neurobiological changes seen with exercise and depression by summarizing studies on exercise and MDD, exercise and sEVs, and finally, sEVs as they relate to MDD. Moreover, we describe the links between peripheral sEV levels and their potential for infiltration into the brain. While literature suggests that aerobic exercise is protective against the development of mood disorders, there remains a scarcity of data on the therapeutic effects of exercise. Recent studies have shown that aerobic exercise does not appear to influence sEV size, but rather influence their concentration and cargo. These molecules have been independently implicated in numerous neuropsychiatric disorders. Taken together, these studies suggest that concentration of sEVs are increased post exercise, and they may contain specifically packaged protective cargo representing a novel therapeutic for MDD.
Collapse
Affiliation(s)
- Reine Khoury
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Robbins JM, Gerszten RE. Exercise, exerkines, and cardiometabolic health: from individual players to a team sport. J Clin Invest 2023; 133:e168121. [PMID: 37259917 PMCID: PMC10231996 DOI: 10.1172/jci168121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Exercise confers numerous salutary effects that extend beyond individual organ systems to provide systemic health benefits. Here, we discuss the role of exercise in cardiovascular health. We summarize major findings from human exercise studies in cardiometabolic disease. We next describe our current understanding of cardiac-specific substrate metabolism that occurs with acute exercise and in response to exercise training. We subsequently focus on exercise-stimulated circulating biochemicals ("exerkines") as a paradigm for understanding the global health circuitry of exercise, and discuss important concepts in this emerging field before highlighting exerkines relevant in cardiovascular health and disease. Finally, this Review identifies gaps that remain in the field of exercise science and opportunities that exist to translate biologic insights into human health improvement.
Collapse
Affiliation(s)
- Jeremy M. Robbins
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Chbeir S, Carrión V. Resilience by design: How nature, nurture, environment, and microbiome mitigate stress and allostatic load. World J Psychiatry 2023; 13:144-159. [PMID: 37303926 PMCID: PMC10251360 DOI: 10.5498/wjp.v13.i5.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Resilience to psychological stress is defined as adaption to challenging life experiences and not the absence of adverse life events. Determinants of resilience include personality traits, genetic/epigenetic modifications of genes involved in the stress response, cognitive and behavioral flexibility, secure attachment with a caregiver, social and community support systems, nutrition and exercise, and alignment of circadian rhythm to the natural light/dark cycle. Therefore, resilience is a dynamic and flexible process that continually evolves by the intersection of different domains in human’s life; biological, social, and psychological. The objective of this minireview is to summarize the existing knowledge about the multitude factors and molecular alterations that result from resilience to stress response. Given the multiple contributing factors in building resilience, we set out a goal to identify which factors were most supportive of a causal role by the current literature. We focused on resilience-related molecular alterations resulting from mind-body homeostasis in connection with psychosocial and environmental factors. We conclude that there is no one causal factor that differentiates a resilient person from a vulnerable one. Instead, building resilience requires an intricate network of positive experiences and a healthy lifestyle that contribute to a balanced mind-body connection. Therefore, a holistic approach must be adopted in future research on stress response to address the multiple elements that promote resilience and prevent illnesses and psychopathology related to stress allostatic load.
Collapse
Affiliation(s)
- Souhad Chbeir
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Victor Carrión
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
20
|
Reddy I, Yadav Y, Dey CS. Cellular and Molecular Regulation of Exercise-A Neuronal Perspective. Cell Mol Neurobiol 2023; 43:1551-1571. [PMID: 35986789 PMCID: PMC11412429 DOI: 10.1007/s10571-022-01272-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
The beneficial effects of exercise on the proper functioning of the body have been firmly established. Multi-systemic metabolic regulation of exercise is the consequence of multitudinous changes that occur at the cellular level. The exercise responsome comprises all molecular entities including exerkines, miRNA species, growth factors, signaling proteins that are elevated and activated by physical exercise. Exerkines are secretory molecules released by organs such as skeletal muscle, adipose tissue, liver, and gut as a function of acute/chronic exercise. Exerkines such as FNDC5/irisin, Cathepsin B, Adiponectin, and IL-6 circulate through the bloodstream, cross the blood-brain barrier, and modulate the expression of important signaling molecules such as AMPK, SIRT1, PGC1α, BDNF, IGF-1, and VEGF which further contribute to improved energy metabolism, glucose homeostasis, insulin sensitivity, neurogenesis, synaptic plasticity, and overall well-being of the body and brain. These molecules are also responsible for neuroprotective adaptations that exercise confers on the brain and potentially ameliorate neurodegeneration. This review aims to detail important cellular and molecular species that directly or indirectly mediate exercise-induced benefits in the body, with an emphasis on the central nervous system.
Collapse
Affiliation(s)
- Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
21
|
Abdulghani A, Poghosyan M, Mehren A, Philipsen A, Anderzhanova E. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD. Front Mol Neurosci 2023; 15:997054. [PMID: 36776770 PMCID: PMC9909442 DOI: 10.3389/fnmol.2022.997054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Adaptive neuroplasticity is a pivotal mechanism for healthy brain development and maintenance, as well as its restoration in disease- and age-associated decline. Management of mental disorders such as attention deficit hyperactivity disorder (ADHD) needs interventions stimulating adaptive neuroplasticity, beyond conventional psychopharmacological treatments. Physical exercises are proposed for the management of ADHD, and also depression and aging because of evoked brain neuroplasticity. Recent progress in understanding the mechanisms of muscle-brain cross-talk pinpoints the role of the myokine irisin in the mediation of pro-cognitive and antidepressant activity of physical exercises. In this review, we discuss how irisin, which is released in the periphery as well as derived from brain cells, may interact with the mechanisms of cellular autophagy to provide protein recycling and regulation of brain-derived neurotrophic factor (BDNF) signaling via glia-mediated control of BDNF maturation, and, therefore, support neuroplasticity. We propose that the neuroplasticity associated with physical exercises is mediated in part by irisin-triggered autophagy. Since the recent findings give objectives to consider autophagy-stimulating intervention as a prerequisite for successful therapy of psychiatric disorders, irisin appears as a prototypic molecule that can activate autophagy with therapeutic goals.
Collapse
Affiliation(s)
- Alhasan Abdulghani
- C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Henrich Heine University, Düsseldorf, Düsseldorf, Germany,*Correspondence: Alhasan Abdulghani,
| | - Mikayel Poghosyan
- Institute for Biology-Neurobiology, Freie University of Berlin, Berlin, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Elmira Anderzhanova
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
22
|
Shah Z, Ahmad F, Zahra M, Zulfiqar F, Aziz S, Mahmood A. Effect of Single Bout of Moderate and High Intensity Interval Exercise on Brain Derived Neurotrophic Factor and Working Memory in Young Adult Females. Brain Plast 2022; 8:35-42. [PMID: 36448038 PMCID: PMC9661357 DOI: 10.3233/bpl-210130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives The objectives of the study were to determine the effect of moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) on serum brain-derived neurotrophic factor (BDNF) levels and working memory (WM) in young adult females. Methodology This study was conducted in the Physiology Department, Khyber Girls Medical College Peshawar. Young adult females (n = 22), with a mean age of 20±2 years were recruited for two experimental sessions of MIE and HIIE, respectively. Baseline and post exercise blood samples were taken for determination of serum BDNF level and backward digit span test (BDST) for assessment of working memory in both sessions. Results Serum BDNF levels pre and post MIE were 707±448 pg/ml and 829±476 pg/ml (p = 0.006) respectively while pre and post HIIE were 785±329 pg /ml and 1116±379 pg/ml (p < 0.001) respectively. BDST scores were significantly high at post intervention for both MIE (p = 0.05) and HIIE (p 0.001). Conclusions Altogether our findings showed that both MIE and HIIE significantly increased serum BDNF levels and working memory in young adult females.
Collapse
Affiliation(s)
- Zubia Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Farida Ahmad
- Department of Physiology, Khyber Girls Medical College, Peshawar, Pakistan
| | - Musarrat Zahra
- Department of Physiology, Gajju Khan Medical College, Swabi, Pakistan
| | - Fatma Zulfiqar
- Department of Community Medicine, Khyber Girls Medical College, Peshawar, Pakistan
| | - Sabeena Aziz
- Community Medicine & Research, Khyber Girls Medical College, Peshawar, Pakistan
| | - Afsheen Mahmood
- Department of Physiology, Khyber Girls Medical College, Peshawar, Pakistan
| |
Collapse
|
23
|
Sui SX, Balanta-Melo J, Pasco JA, Plotkin LI. Musculoskeletal Deficits and Cognitive Impairment: Epidemiological Evidence and Biological Mechanisms. Curr Osteoporos Rep 2022; 20:260-272. [PMID: 35764750 PMCID: PMC9522710 DOI: 10.1007/s11914-022-00736-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW Cognitive impairment is associated with obesity, sarcopenia, and osteoporosis. However, no critical appraisal of the literature on the relationship between musculoskeletal deficits and cognitive impairment, focusing on the epidemiological evidence and biological mechanisms, has been published to date. Herein, we critically evaluate the literature published over the past 3 years, emphasizing interesting and important new findings, and provide an outline of future directions that will improve our understanding of the connections between the brain and the musculoskeletal system. RECENT FINDINGS Recent literature suggests that musculoskeletal deficits and cognitive impairment share pathophysiological pathways and risk factors. Cytokines and hormones affect both the brain and the musculoskeletal system; yet, lack of unified definitions and standards makes it difficult to compare studies. Interventions designed to improve musculoskeletal health are plausible means of preventing or slowing cognitive impairment. We highlight several musculoskeletal health interventions that show potential in this regard.
Collapse
Affiliation(s)
- Sophia X Sui
- Epi-Centre for Healthy Ageing, Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, PO Box 281 (Barwon Health), Geelong, VIC, 3220, Australia.
| | - Julián Balanta-Melo
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MS5022A, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
- Universidad del Valle School of Dentistry, Cali, Colombia
| | - Julie A Pasco
- Epi-Centre for Healthy Ageing, Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, PO Box 281 (Barwon Health), Geelong, VIC, 3220, Australia
- Department of Medicine-Western Campus, The University of Melbourne, St Albans, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MS5022A, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
24
|
Fakhoury M, Eid F, El Ahmad P, Khoury R, Mezher A, El Masri D, Haddad Z, Zoghbi Y, Ghayad LM, Sleiman SF, Stephan JS. Exercise and Dietary Factors Mediate Neural Plasticity Through Modulation of BDNF Signaling. Brain Plast 2022; 8:121-128. [DOI: 10.3233/bpl-220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
The term “neural plasticity” was first used to describe non-pathological changes in neuronal structure. Today, it is generally accepted that the brain is a dynamic system whose morphology and function is influenced by a variety of factors including stress, diet, and exercise. Neural plasticity involves learning and memory, the synthesis of new neurons, the repair of damaged connections, and several other compensatory mechanisms. It is altered in neurodegenerative disorders and following damage to the central or peripheral nervous system. Understanding the mechanisms that regulate neural plasticity in both healthy and diseased states is of significant importance to promote cognition and develop rehabilitation techniques for functional recovery after injury. In this minireview, we will discuss the mechanisms by which environmental factors promote neural plasticity with a focus on exercise- and diet-induced factors. We will highlight the known circulatory factors that are released in response to exercise and discuss how all factors activate pathways that converge in part on the activation of BDNF signaling. We propose to harness the therapeutic potential of exercise by using BDNF as a biomarker to identify novel endogenous factors that promote neural plasticity. We also discuss the importance of combining exercise factors with dietary factors to develop a lifestyle pill for patients afflicted by CNS disorders.
Collapse
Affiliation(s)
- Marc Fakhoury
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Fady Eid
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Perla El Ahmad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Reine Khoury
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Amar Mezher
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Diala El Masri
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Zena Haddad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Yara Zoghbi
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Litsa Maria Ghayad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Sama F. Sleiman
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | | |
Collapse
|
25
|
Comparative Impact of Various Exercises on Circulating Irisin in Healthy Subjects: A Systematic Review and Network Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8235809. [PMID: 35910840 PMCID: PMC9337948 DOI: 10.1155/2022/8235809] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Irisin is a myokine that is secreted from skeletal muscle during exercise and increases lipid metabolism, converting white adipose tissue to brown adipose tissue. Recent studies have shown conflicting results in relation to chronic and acute exercise and irisin. The aim of this study was to evaluate the effects of chronic and acute exercise training on circulating (plasma/serum) irisin level in healthy subjects. We conducted a search of Cochrane Library, PubMed, ISI, Scopus, Embase, and Pedro up to September 2021. A random effects network meta-analysis was performed to calculate the pooled estimate of standardized mean difference (SMD) for acute and chronic exercise effects on irisin level, using Hedge's g statistic. Of the 16 studies included, six were acute exercise studies (175 participants). The aerobic (Hedge's g = 0.23; 95% CI: -0.58, 1.03) and the anaerobic exercises (Hedge's g = 0.12; 95% CI: -0.45, 0.70) were associated with the increased level of irisin, compared to the control. In the ten chronic exercise studies (433 participants), the resistance training was superior to anaerobic and aerobic training (P score = 0.632). However, comparing acute and chronic exercise studies, acute training showed the most excellent potential as the best treatment to improve the irisin level (P score = 0.721). This network meta-analysis showed that acute aerobic exercise has a more effect on irisin levels than acute anaerobic exercise. Also, chronic resistance training has the greatest additive effect on irisin levels compared to chronic aerobic and anaerobic training.
Collapse
|
26
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
27
|
Mazo CE, Miranda ER, Shadiow J, Vesia M, Haus JM. High Intensity Acute Aerobic Exercise Elicits Alterations in Circulating and Skeletal Muscle Tissue Expression of Neuroprotective Exerkines. Brain Plast 2022; 8:5-18. [DOI: 10.3233/bpl-220137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Cathepsin B (CTSB) and brain derived neurotrophic factor (BDNF) are increased with aerobic exercise (AE) and skeletal muscle has been identified as a potential source of secretion. However, the intensity of AE and the potential for skeletal muscle contributions to circulating CTSB and BDNF have not been fully studied in humans. Objective: Determine the effects of AE intensity on circulating and skeletal muscle CTSB and BDNF expression profiles. Methods: Young healthy subjects (n = 16) completed treadmill-based AE consisting of VO2max and calorie-matched acute AE sessions at 40%, 65% and 80% VO2max. Fasting serum was obtained before and 30-minutes after each bout of exercise. Skeletal muscle biopsies (vastus lateralis) were taken before, 30-minutes and 3-hours after the 80% bout. Circulating CTSB and BDNF were assayed in serum. CTSB protein, BDNF protein and mRNA expression were measured in skeletal muscle tissue. Results: Serum CTSB increased by 20±7% (p = 0.02) and 30±18% (p = 0.04) after 80% and VO2max AE bouts, respectively. Serum BDNF showed a small non-significant increase (6±3%; p = 0.09) after VO2max. In skeletal muscle tissue, proCTSB increased 3 h-post AE (87±26%; p < 0.01) with no change in CTSB gene expression. Mature BDNF protein decreased (31±35%; p = 0.03) while mRNA expression increased (131±41%; p < 0.01) 3 h-post AE. Skeletal muscle fiber typing revealed that type IIa and IIx fibers display greater BDNF expression compared to type I (p = 0.02 and p < 0.01, respectively). Conclusions: High intensity AE elicits greater increases in circulating CTSB compared with lower intensities. Skeletal muscle protein and gene expression corroborate the potential role of skeletal muscle in generating and releasing neuroprotective exerkines into the circulation. NEW AND NOTEWORTHY: 1) CTSB is enriched in the circulation in an aerobic exercise intensity dependent manner. 2) Skeletal muscle tissue expresses both message and protein of CTSB and BDNF. 3) BDNF is highly expressed in glycolytic skeletal muscle fibers.
Collapse
Affiliation(s)
- Corey E. Mazo
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edwin R. Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Sugimoto T, Nakamura T, Yokoyama S, Fujisato T, Konishi S, Hashimoto T. Investigation of Brain Function-Related Myokine Secretion by Using Contractile 3D-Engineered Muscle. Int J Mol Sci 2022; 23:ijms23105723. [PMID: 35628536 PMCID: PMC9144730 DOI: 10.3390/ijms23105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Brain function-related myokines, such as lactate, irisin, and cathepsin B (CTSB), are upstream factors that control brain-derived neurotrophic factor (BDNF) expression and are secreted from skeletal muscle by exercise. However, whether irisin and CTSB are secreted by muscle contraction remains controversial. Three-dimensional (3D)-engineered muscle (3D-EM) may help determine whether skeletal muscle contraction leads to the secretion of irisin and CTSB, which has never been identified with the addition of drugs in conventional 2D muscle cell cultures. We aimed to investigate the effects of electrical pulse stimulation (EPS)-evoked muscle contraction on irisin and CTSB secretion in 3D-EM. The 3D-EM, which consisted of C2C12 myoblasts and type-1 collagen gel, was allowed to differentiate for 2 weeks and divided into the control and EPS groups. EPS was applied at 13 V, 66 Hz, and 2 msec for 3 h (on: 5 s/off: 5 s). Irisin and CTSB secretion into the culture medium was measured by Western blotting. Irisin secretion was significantly increased following EPS (p < 0.05). However, there was no significant difference in CTSB secretion between the two groups. The present study suggests that irisin may be a contractile muscle-derived myokine, but CTSB is not secreted by EPS-evoked muscle contractile stimulation in 3D-EM.
Collapse
Affiliation(s)
- Takeshi Sugimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Sho Yokoyama
- Department of Mechanical Engineering, School of Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Toshia Fujisato
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Satoshi Konishi
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan;
- Correspondence: ; Tel.: +81-77-599-4134
| |
Collapse
|
29
|
Fernández-Rodríguez R, Álvarez-Bueno C, Martínez-Ortega IA, Martínez-Vizcaíno V, Mesas AE, Notario-Pacheco B. Immediate effect of high-intensity exercise on brain-derived neurotrophic factor in healthy young adults: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:367-375. [PMID: 34481089 PMCID: PMC9189701 DOI: 10.1016/j.jshs.2021.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although brain-derived neurotrophic factor (BDNF) has been identified as a molecular biomarker of the neurophysiological effects induced by exercise, the acute effects of high-intensity exercise (HIE) on BDNF levels are inconclusive. This study aims to estimate the immediate effects of HIE on BDNF levels in healthy young adults. METHODS A systematic search was conducted in the MEDLINE, Scopus, Cochrane CENTRAL, and SPORTDiscuss databases up to December 2020. Randomized controlled trials (RCTs) and non-RCTs reporting pre-post changes in serum or plasma BDNF after an acute intervention of HIE compared to a control condition were included. Pooled effect sizes (p-ESs) and 95% confidence intervals (95%CIs) were calculated for RCTs using a random effects model with Stata/SE (Version 15.0; StataCorp., College Station, TX, USA). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. PROPERO registration number: CRD42020221047. RESULTS A total of 22 studies with 552 individuals (age range: 20-31 years; 59.1% male) were included. The meta-analysis included 10 RCTs that reported valid outcome data. Higher BDNF levels were observed when HIE interventions were compared with non-exercise (p-ES = 0.55, 95%CI: 0.12-0.98; I2 = 25.7%; n = 4 studies) and light-intensity exercise (p-ES = 0.78, 95%CI: 0.15-1.40; I2 = 52.4%; n = 3 studies) but not moderate-intensity exercise (p-ES = 0.93, 95%CI: -0.16 to 2.02; I2 = 88.5%; n = 4 studies) conditions. CONCLUSION In comparison to non-exercise or light-intensity exercises, an immediate increase in BDNF levels may occur when young adults perform HIE. Given the benefits obtained maximizing circulating BDNF when performing HIE and its potential effects on brain health, our findings suggest that HIE could be recommended by clinicians as a useful exercise strategy to healthy adults.
Collapse
Affiliation(s)
| | - Celia Álvarez-Bueno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca 16071, Spain; Universidad Politécnica y Artística del Paraguay, Asunción 2024, Paraguay.
| | | | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca 16071, Spain; Faculty of Medicine, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Arthur Eumann Mesas
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca 16071, Spain; Postgraduate Program in Public Health, Universidad Estadual de Londrina, Londrina 86051-990, Brazil
| | - Blanca Notario-Pacheco
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca 16071, Spain
| |
Collapse
|
30
|
Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, Febbraio MA, Galis ZS, Gao Y, Haus JM, Lanza IR, Lavie CJ, Lee CH, Lucia A, Moro C, Pandey A, Robbins JM, Stanford KI, Thackray AE, Villeda S, Watt MJ, Xia A, Zierath JR, Goodpaster BH, Snyder MP. Exerkines in health, resilience and disease. Nat Rev Endocrinol 2022; 18:273-289. [PMID: 35304603 PMCID: PMC9554896 DOI: 10.1038/s41574-022-00641-2] [Citation(s) in RCA: 419] [Impact Index Per Article: 139.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Diabetes Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joan M Taylor
- Department of Pathology, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism/Centre for PA Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette van Praag
- Stiles-Nicholson Brain institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN, USA
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Zorina S Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Ian R Lanza
- Division of Endocrinology, Nutrition, and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Carl J Lavie
- Division of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA
| | - Chih-Hao Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre ('imas12'), Madrid, Spain
- CIBER en Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, Inserm UMR1297, Toulouse, France
- Toulouse III University-Paul Sabatier (UPS), Toulouse, France
| | - Ambarish Pandey
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Saul Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Victoria, Australia
| | - Ashley Xia
- Division of Diabetes, Endocrinology, & Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front Psychol 2022; 13:831819. [PMID: 35558719 PMCID: PMC9090458 DOI: 10.3389/fpsyg.2022.831819] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity refers to the brain's ability to undergo structural and functional adaptations in response to experience, and this process is associated with learning, memory and improvements in cognitive function. The brain's propensity for neuroplasticity is influenced by lifestyle factors including exercise, diet and sleep. This review gathers evidence from molecular, systems and behavioral neuroscience to explain how these three key lifestyle factors influence neuroplasticity alone and in combination with one another. This review collected results from human studies as well as animal models. This information will have implications for research, educational, fitness and neurorehabilitation settings.
Collapse
Affiliation(s)
| | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karishma Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ravjot S. Rehsi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
32
|
Kim J, McKenna CF, Salvador AF, Scaroni SE, Askow AT, Cerna J, Cannavale CN, Paluska SA, De Lisio M, Petruzzello SJ, Burd NA, Khan NA. Cathepsin B and Muscular Strength are Independently Associated with Cognitive Control. Brain Plast 2022; 8:19-33. [DOI: 10.3233/bpl-210136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Although muscular strength has been linked to greater cognitive function across different cognitive domains, the mechanism(s) through which this occurs remain(s) poorly understood. Indeed, while an emerging body of literature suggests peripheral myokines released from muscular contractions may play a role in this relationship, additional research is needed to understand this link. Accordingly, this study sought to compare the influences of a particular myokine, Cathepsin B (CTSB), and muscular strength on hippocampal-dependent relational memory and cognitive control in 40 adults (age = 50.0±7.3 yrs). Overnight fasted venous blood draws were taken to assess plasma CTSB and muscular strength was assessed as maximal isokinetic strength testing using a Biodex dynamometer. Cognitive performance was assessed using a Spatial Reconstruction Task to assess relational memory and a modified Flanker task to assess cognitive control. Neuroelectric function for cognitive control was assessed using event-related potentials (ERPs) recorded during the Flanker task. Initial bivariate correlational analyses revealed that neither sex, age, lean body mass, or muscular strength was associated with CTSB. However, CTSB was inversely associated with reaction time and fractional peak latency of the P3 component of the Flanker task. Muscular strength was also inversely associated with reaction time and positively associated with relational memory performance. However, the influence of muscular strength on relational memory did not persist following adjustment for covariates. Greater circulating CTSB was selectively associated with greater cognitive control as well as faster information processing speed. These findings are the first to link circulating CTSB to both cognitive control and neuroelectric function. Future intervention studies are needed to examine the effects of changes in muscular strength, circulating myokines, and different domains of cognitive function.
Collapse
Affiliation(s)
- Jeongwoon Kim
- Department of Kinesiology and Community Health, University of Illinois, USA
| | | | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois, USA
| | | | - Andrew T. Askow
- Department of Kinesiology and Community Health, University of Illinois, USA
| | | | | | | | | | | | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois, USA
- Division of Nutritional Sciences, University of Illinois, USA
| | - Naiman A. Khan
- Department of Kinesiology and Community Health, University of Illinois, USA
- Division of Nutritional Sciences, University of Illinois, USA
- Neuroscience Program, University of Illinois, USA
| |
Collapse
|
33
|
Hugues N, Pin-Barre C, Pellegrino C, Rivera C, Berton E, Laurin J. Time-Dependent Cortical Plasticity during Moderate-Intensity Continuous Training Versus High-Intensity Interval Training in Rats. Cereb Cortex 2022; 32:3829-3847. [PMID: 35029628 DOI: 10.1093/cercor/bhab451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/14/2022] Open
Abstract
The temporal pattern of cortical plasticity induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) is required to clarify their relative benefits to prevent neurological disorders. The purpose of this study is to define the time-dependent effects of work-matched HIIT and MICT on cortical plasticity, endurance, and sensorimotor performances over an 8-week training period in healthy rats. Adult healthy rats performed incremental exercise tests and sensorimotor tests before and at 2, 4, and 8 weeks of training. In parallel, cortical markers related to neurotrophic, angiogenic, and metabolic activities were assessed. Results indicate that HIIT induced an early and superior endurance improvement compared to MICT. We found significant enhancement of speed associated with lactate threshold (SLT) and maximal speed (Smax) in HIIT animals. MICT promoted an early increase in brain-derived neurotrophic factor and angiogenic/metabolic markers but showed less influence at 8 weeks. HIIT upregulated the insulin-like growth factor-1 (IGF-1) as well as neurotrophic, metabolic/angiogenic markers at 2 and 8 weeks and downregulated the neuronal K-Cl cotransporter KCC2 that regulates GABAA-mediated transmission. HIIT and MICT are effective in a time-dependent manner suggesting a complementary effect that might be useful in physical exercise guidelines for maintaining brain health.
Collapse
Affiliation(s)
- Nicolas Hugues
- Aix-Marseille Univ, INSERM, INMED, Marseille, France
- Aix-Marseille Univ, CNRS, ISM, Marseille, France
| | | | | | | | - Eric Berton
- Aix-Marseille Univ, CNRS, ISM, Marseille, France
| | - Jérôme Laurin
- Aix-Marseille Univ, INSERM, INMED, Marseille, France
| |
Collapse
|
34
|
Proessl F, Canino MC, Beckner ME, Conkright WR, LaGoy AD, Sinnott AM, Eagle SR, Martin BJ, Sterczala AJ, Roma PG, Dretsch MN, Mi Q, Ferrarelli F, Germain A, Connaboy C, Nindl BC, Flanagan SD. Use-dependent corticospinal excitability is associated with resilience and physical performance during simulated military operational stress. J Appl Physiol (1985) 2022; 132:187-198. [PMID: 34855522 PMCID: PMC8791840 DOI: 10.1152/japplphysiol.00628.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Simulated military operational stress (SMOS) provides a useful model to better understand resilience in humans as the stress associated with caloric restriction, sleep deficits, and fatiguing exertion degrades physical and cognitive performance. Habitual physical activity may confer resilience against these stressors by promoting favorable use-dependent neuroplasticity, but it is unclear how physical activity, resilience, and corticospinal excitability (CSE) relate during SMOS. To examine associations between corticospinal excitability, physical activity, and physical performance during SMOS. Fifty-three service members (age: 26 ± 5 yr, 13 women) completed a 5-day and -night intervention composed of familiarization, baseline, SMOS (2 nights/days), and recovery days. During SMOS, participants performed rigorous physical and cognitive activities while receiving half of normal sleep (two 2-h blocks) and caloric requirements. Lower and upper limb CSE were determined with transcranial magnetic stimulation (TMS) stimulus-response curves. Self-reported resilience, physical activity, military-specific physical performance (TMT), and endocrine factors were compared in individuals with high (HIGH) and low CSE based on a median split of lower limb CSE at baseline. HIGH had greater physical activity and better TMT performance throughout SMOS. Both groups maintained physical performance despite substantial psychophysiological stress. Physical activity, resilience, and TMT performance were directly associated with lower limb CSE. Individual differences in physical activity coincide with lower (but not upper) limb CSE. Such use-dependent corticospinal excitability directly relates to resilience and physical performance during SMOS. Future studies may use noninvasive neuromodulation to clarify the interplay among CSE, physical activity, and resilience and improve physical and cognitive performance.NEW & NOTEWORTHY We demonstrate that individual differences in physical activity levels coincide with lower limb corticospinal excitability. Such use-dependent corticospinal excitability directly relates to resilience and physical performance during a 5-day simulation of military operational stress with caloric restriction, sleep restriction and disruption, and heavy physical and cognitive exertion.
Collapse
Affiliation(s)
- F. Proessl
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. C. Canino
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. E. Beckner
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - W. R. Conkright
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. D. LaGoy
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania,4Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - A. M. Sinnott
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S. R. Eagle
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - B. J. Martin
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. J. Sterczala
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - P. G. Roma
- 2Behavioral Health & Performance Laboratory, Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center/KBR, Houston, Texas
| | - M. N. Dretsch
- 3U.S. Army Medical Research Directorate-West, Walter Reed
Army Institute of Research, Joint Base Lewis-McChord, Washington
| | - Qi Mi
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - F. Ferrarelli
- 4Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - A. Germain
- 4Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - C. Connaboy
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - B. C. Nindl
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S. D. Flanagan
- 1Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Neva JL, Brown KE, Peters S, Feldman SJ, Mahendran N, Boisgontier MP, Boyd LA. Acute Exercise Modulates the Excitability of Specific Interneurons in Human Motor Cortex. Neuroscience 2021; 475:103-116. [PMID: 34487820 DOI: 10.1016/j.neuroscience.2021.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Acute exercise can modulate the excitability of the non-exercised upper-limb representation in the primary motor cortex (M1). Accumulating evidence demonstrates acute exercise affects measures of M1 intracortical excitability, with some studies also showing altered corticospinal excitability. However, the influence of distinct M1 interneuron populations on the modulation of intracortical and corticospinal excitability following acute exercise is currently unknown. We assessed the impact of an acute bout of leg cycling exercise on unique M1 interneuron excitability of a non-exercised intrinsic hand muscle using transcranial magnetic stimulation (TMS) in young adults. Specifically, posterior-to-anterior (PA) and anterior-to-posterior (AP) TMS current directions were used to measure the excitability of distinct populations of interneurons before and after an acute bout of exercise or rest. Motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) were measured in the PA and AP current directions in M1 at two time points separated by 25 min of rest, as well as immediately and 30 min after a 25-minute bout of moderate-intensity cycling exercise. Thirty minutes after exercise, MEP amplitudes were significantly larger than other timepoints when measured with AP current, whereas MEP amplitudes derived from PA current did not show this effect. Similarly, SICI was significantly decreased immediately following acute exercise measured with AP but not PA current. Our findings suggest that the excitability of unique M1 interneurons are differentially modulated by acute exercise. These results indicate that M1 interneurons preferentially activated by AP current may play an important role in the exercise-induced modulation of intracortical and corticospinal excitability.
Collapse
Affiliation(s)
- Jason L Neva
- Université de Montréal, École de kinésiologie et des sciences de l'activité physique, Faculté de médecine, Montréal, QC, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, QC, Canada.
| | - Katlyn E Brown
- University of Waterloo, Department of Kinesiology, Applied Health Sciences, Waterloo, ON, Canada
| | - Sue Peters
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada
| | - Samantha J Feldman
- Graduate Program in Clinical Developmental Neuropsychology, Department of Psychology, York University, Toronto, ON, Canada
| | - Niruthikha Mahendran
- University of Queensland, Discipline of Physiotherapy, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Matthieu P Boisgontier
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa ON, Canada; Bruyère Research Institute, Ottawa, ON, Canada
| | - Lara A Boyd
- University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Turco CV, Nelson AJ. Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. FRONTIERS IN NEUROERGONOMICS 2021; 2:679033. [PMID: 38235229 PMCID: PMC10790852 DOI: 10.3389/fnrgo.2021.679033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 01/19/2024]
Abstract
Aerobic exercise facilitates neuroplasticity and has been linked to improvements in cognitive and motor function. Transcranial magnetic stimulation (TMS) is a non-invasive technique that can be used to quantify changes in neurophysiology induced by exercise. The present review summarizes the single- and paired-pulse TMS paradigms that can be used to probe exercise-induced neuroplasticity, the optimal stimulation parameters and the current understanding of the neurophysiology underlying each paradigm. Further, this review amalgamates previous research exploring the modulation of these paradigms with exercise-induced neuroplasticity in healthy and clinical populations and highlights important considerations for future TMS-exercise research.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Nicolini C, Nelson AJ. Current Methodological Pitfalls and Caveats in the Assessment of Exercise-Induced Changes in Peripheral Brain-Derived Neurotrophic Factor: How Result Reproducibility Can Be Improved. FRONTIERS IN NEUROERGONOMICS 2021; 2:678541. [PMID: 38235217 PMCID: PMC10790889 DOI: 10.3389/fnrgo.2021.678541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 01/19/2024]
Abstract
Neural mechanisms, such as enhanced neuroplasticity within the motor system, underpin exercise-induced motor improvements. Being a key mediator of motor plasticity, brain-derived neurotrophic factor (BDNF) is likely to play an important role in mediating exercise positive effects on motor function. Difficulties in assessing brain BDNF levels in humans have drawn attention to quantification of blood BDNF and raise the question of whether peripheral BDNF contributes to exercise-related motor improvements. Methodological and non-methodological factors influence measurements of blood BDNF introducing a substantial variability that complicates result interpretation and leads to inconsistencies among studies. Here, we discuss methodology-related issues and approaches emerging from current findings to reduce variability and increase result reproducibility.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
38
|
Stephan JS, Sleiman SF. Exercise Factors Released by the Liver, Muscle, and Bones Have Promising Therapeutic Potential for Stroke. Front Neurol 2021; 12:600365. [PMID: 34108925 PMCID: PMC8181424 DOI: 10.3389/fneur.2021.600365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world. Stroke not only affects the patients, but also their families who serve as the primary caregivers. Discovering novel therapeutic targets for stroke is crucial both from a quality of life perspective as well as from a health economic perspective. Exercise is known to promote neuroprotection in the context of stroke. Indeed, exercise induces the release of blood-borne factors that promote positive effects on the brain. Identifying the factors that mediate the positive effects of exercise after ischemic stroke is crucial for the quest for novel therapies. This approach will yield endogenous molecules that normally cross the blood brain barrier (BBB) and that can mimic the effects of exercise. In this minireview, we will discuss the roles of exercise factors released by the liver such as beta-hydroxybutyrate (DBHB), by the muscle such as lactate and irisin and by the bones such as osteocalcin. We will also address their therapeutic potential in the context of ischemic stroke.
Collapse
Affiliation(s)
- Joseph S Stephan
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sama F Sleiman
- Biology Program, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
39
|
Gaitán JM, Moon HY, Stremlau M, Dubal DB, Cook DB, Okonkwo OC, van Praag H. Effects of Aerobic Exercise Training on Systemic Biomarkers and Cognition in Late Middle-Aged Adults at Risk for Alzheimer's Disease. Front Endocrinol (Lausanne) 2021; 12:660181. [PMID: 34093436 PMCID: PMC8173166 DOI: 10.3389/fendo.2021.660181] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that physical activity and exercise training may delay or prevent the onset of Alzheimer's disease (AD). However, systemic biomarkers that can measure exercise effects on brain function and that link to relevant metabolic responses are lacking. To begin to address this issue, we utilized blood samples of 23 asymptomatic late middle-aged adults, with familial and genetic risk for AD (mean age 65 years old, 50% female) who underwent 26 weeks of supervised treadmill training. Systemic biomarkers implicated in learning and memory, including the myokine Cathepsin B (CTSB), brain-derived neurotrophic factor (BDNF), and klotho, as well as metabolomics were evaluated. Here we show that aerobic exercise training increases plasma CTSB and that changes in CTSB, but not BDNF or klotho, correlate with cognitive performance. BDNF levels decreased with exercise training. Klotho levels were unchanged by training, but closely associated with change in VO2peak. Metabolomic analysis revealed increased levels of polyunsaturated free fatty acids (PUFAs), reductions in ceramides, sphingo- and phospholipids, as well as changes in gut microbiome metabolites and redox homeostasis, with exercise. Multiple metabolites (~30%) correlated with changes in BDNF, but not CSTB or klotho. The positive association between CTSB and cognition, and the modulation of lipid metabolites implicated in dementia, support the beneficial effects of exercise training on brain function. Overall, our analyses indicate metabolic regulation of exercise-induced plasma BDNF changes and provide evidence that CTSB is a marker of cognitive changes in late middle-aged adults at risk for dementia.
Collapse
Affiliation(s)
- Julian M. Gaitán
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Hyo Youl Moon
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Department of Education, Seoul National University, Seoul, South Korea
- Institute of Sport Science, Seoul National University, Seoul, South Korea
- Institute on Aging, Seoul National University, Seoul, South Korea
| | - Matthew Stremlau
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, United States
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Henriette van Praag
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
40
|
Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2020; 457:259-282. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke. To fully exploit the benefits of exercise, it is crucial to gain a greater understanding of the neurophysiological and molecular mechanisms underlying exercise-induced brain changes that prime neuroplasticity and thus contribute to postponing, slowing, and ameliorating age- and disease-related impairments in motor function. This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
41
|
High intensity exercise may be needed to change Levels of Biomarkers related to Neuroplasticity. Neuroscience 2020; 437:240-241. [DOI: 10.1016/j.neuroscience.2020.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022]
|